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Abstract

A real world automatic lip reading system must
be able to cope with movement of the speaker’s
head during operation. The observed mouth
shape depends not only on the true shape of
the mouth, but also the angle at which the
mouth is viewed. As the speaker’s head moves
and rotates the viewing angle changes. The re-
sulting distortion can lead to inaccurate mouth
measurement and incorrect phoneme recogni-
tion. We have developed a system that ro-
bustly measures the dimensions of a speaker’s
mouth whilst the speaker’s head is moving and
exhibiting rotations of up to 30 degrees away
from the camera. Our system tracks the pose
of the speaker’s head in 3D, detects the mouth
by tracking unadorned lip contours and esti-
mates the 3D locations of the upper and lower
lip edges and the mouth corners. The system
is demonstrated on a person speaking whilst
moving his head in 3D, and the mouth height
and width are corrected over 9 seconds of 25Hz
video footage.

1 Introduction

Automatic lip reading has important applications such
as audio-visual speech recognition [Bregler and Omohun-
dro., 1995] [Harvey et al., 1997] and graphical speech
synthesis [Yamamoto et al., 1998]. A number of tech-
niques have been reported to extract mouth features for
visual lip reading. Active contour models [Kass et al.,
1987] have been used to detect lip contours [Bregler and

Omohundro., 1995] [Chiou and Hwang, 1994] and [Li et
al., 1995] applied the eigensequence approach that is of-
ten used in facial expression recognition.

These systems, however, assume the speaker is directly
facing the camera, and do not allow any head movement
that would distort the lip shape in the captured images.
For example, turning the head to the side makes the lip
width and height ratio appear differently on images even
when the speaker’s mouth shape does not change.

As people talk, their heads naturally move about as
they gesture and follow natural conversation cues. It
is necessary for an automatic lip-reading device to be
robust with respect to this behavior; to be able to detect,
monitor and account for 3D movement of a speaker’s
head.

We have developed a lip tracking system that allows
the speaker’s head to move in 3D and rotate up to 30
degrees away from the camera. Our system performs the
following tasks:

• Tracking the speaker’s head in 3D;

• Tracking the top, bottom and corners of the mouth
in the 2D input image;

• Estimating the 3D locations of the top, bottom and
corners of the mouth; and

• Determining the mouth dimensions from the 3D mouth
information.

Firstly, this paper presents the 3D head tracker used
to determine the head pose in each frame. Secondly,
it explains the detection of the mouth features, the es-
timation of their locations in 3D and the calculation of
the corrected mouth dimensions. Lastly, it demonstrates
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Figure 1: Block diagram of the 3D head tracking system.

the usefulness of this technique with a practical experi-
ment. A subject enunciates 5 phonemes displaying the 5
mouth shapes of visual speech while moving and turning
his head in 3D.

2 3D Head Tracker

The head tracking system uses template matching to lo-
cate features on the face. A rigid 3D model of these
feature points is then iteratively rotated and translated
until the projection of the 3D model points on the image
plane closely matches the 2D feature locations observed
via the template matching. The pose correction for each
rotation and translation of the 3D model is determined
using Lowe’s object tracking algorithm [Lowe, 1991].

The head tracking system can be broken into three
subsystems dealing with pose estimation, 2D feature track-
ing and 3D object tracking. Figure 1 shows a block di-
agram of the system with the three subsystems clearly
identified.

The overall operation of the system is summarised as
follows. The pose estimator supplies an estimated pose
to the 3D object tracker (indicated by the dotted line in
Figure 1). Using this pose, projected feature locations
are predicted and passed to the 2D feature tracker which
searches for the features in the vicinity of these locations.
These observed 2D feature locations then form the target
state of the object tracker. The object tracker performs
up to ten iterations per frame until a satisfactory pose
is found that places the projected 2D feature points suf-
ficiently close to the observed feature locations (errors
of up to 4 pixels per feature are tolerated). If no sat-

isfactory pose is found in twelve consecutive frames the
tracking is assumed to be lost and the system aborts.

Each of the subsystems is discussed in detail below.

2.1 Pose Estimation
The pose in the next frame is estimated by assuming
that the translational and angular velocities between the
current frame and the next are equal to the average of
the velocities over the previous 5 frames, that is

p̂[k + 1] = ~p[k] +
n∑
i=1

~p[k − i+ 1]− ~p[k − i]
n

where n = 5. Initially, the pose history is assumed to
be ~0 (this initial pose history is shown as dotted lines in
Figure 1).

2.2 2D Feature Tracking
The motion of the head in the video sequence is tracked
using template matching of three feature points. For our
experiment the outer corners of each eye and the inner
corner of one nostril were chosen, but any three (or more)
distinctive points that are rigidly attached to the head
can be used.

The features to be tracked were manually selected in
the first frame of the sequence and the initial templates
Ti[0] created.

In every new frame, each template is correlated across
a search area centred about the 2D feature location that
was predicted by the projection of the estimated pose p̂.
Once the best match is found (and provided the corre-
lation coefficient is greater than 0.75) the template Ti[k]



(for the ith feature in the kth frame) is updated to be-
come the weighted average of the initial template and the
image region Ri[k] in the new frame that best matches
the current template, that is

Ti[k + 1] =
1
3
Ti[0] +

2
3
Ri[k],

where Ti[0] is the initial template.
Updating templates in this fashion makes the template

matching robust to feature distortion resulting from head
rotation. Such distortion typically occurs gradually over
a series of frames, thus allowing the templates time to
adapt. The new template is defined as a combination of
the current and the initial feature appearance in order to
prevent template drift that results from simply updating
templates to be the current feature appearance Ti[k]. In
the latter case, any error in the template matching will
never be corrected, since the new template will be chosen
off target. Even if there is no incorrect matching such
templates will do a random walk about the image over
time due to the quantisation error (up to half a pixel)
present in each template match. Grounding each tem-
plate with a portion of the initial template prevents this
problem.

The computational load of the template matching is
significantly reduced by performing the search in two
stages: an initial sparse search to localise the feature,
followed by a localised detailed search. The sparse search
consists of correlating the image with the template cen-
tred at every second pixel in every second row within
a large 41 × 29 search window. The point that returns
the highest correlation in the sparse search becomes the
centre of the detailed search. The detailed search has
a radius of only 2 pixels and the template is correlated
at every location in this small local region, the point of
highest correlation giving the new feature location.

2.3 3D Object Tracking
As can be seen in Figure 1, the object tracking system is
effectively a feedback control system continually correct-
ing the pose until the error between the projected and
observed 2D feature locations is sufficiently small. The
forward kinematics and pin-hole camera determine the
2D feature locations resulting from a particular pose. If
these 2D locations are insufficiently close to the observed
(target) quantities the Jacobian is calculated and a pose
correction factor is determined. Another component of
the object tracking system that is not shown in Figure 1
is the 3D model of the feature points. This is essential
for the calculation of the forward kinematics and the Ja-
cobian.

The 2D feature locations (~qx, ~qy) are a function of the
pose ~p. The 3D object is tracked using Newton’s itera-
tive method, which approximates this function as locally

linear for small incremental changes in ~p. That is, for a
pose ~p[k] at frame k

~q(~p[k + 1]) ≈ ~q(~p[k]) +
d~q(~p[k])
d~p

q(~c),

where ~q = (qx1 , qy1 , qx2 , qy2 , qx3 , qy3)T is a concatenation
of the elements of ~qx and ~qy, d~q(~p[k])d~p is the Jacobian and
~c = (~p[k + 1]− ~p[k]) is the pose correction factor.

The pose of the head ~p = (x, y, z, θx, θy, θz)T is defined
as the pose of the head reference frame that is rigidly
attached to the head, with respect to the initial head
reference frame as seen in the first image of the sequence.

The individual components of the 3D object tracking
system are described below.

3D Model
The 3D model M is a manually constructed rigid model
of the three feature points used for head tracking (namely
the outer eye corners and one nostril).

M =
(
~m1 ~m2 ~m3

)
,

where ~mi = (xi, yi, zi, 1)T contains the homogeneous co-
ordinates of the ith feature point in the head reference
frame.

Forward Kinematics
The forward kinematics determine the 3D locations ~bi
of the ith feature point in the world coordinate frame
(located at the camera origin). For a given head pose ~p

~bi = AH→WT (~p)~mi.

T is the homogeneous transformation matrix represent-
ing the pose ~p and AH→W is the transformation matrix
from the head to the world coordinate frames.

Pin-hole Camera Projection
The pin-hole camera projection performs a true perspec-
tive projection of the 3D feature points from the world
coordinate frame onto the image plane perpendicular to
the z-axis. A 3D feature point ~b = (bx, by, bz)T is pro-
jected onto the image plane at(

qx
qy

)
= − f

bz

(
bx
by

)
,

where f is the focal length of the camera.

Jacobian Calculation
The Jacobian J is calculated from the following equation

J =
d~q(~p)
d~p

=


∂q1
∂p1

∂q1
∂p2

... ∂q1
∂p6

∂q2
∂p1

∂q2
∂p2

... ∂q2
∂p6

: : :
∂q6
∂p1

∂q6
∂p2

... ∂q6
∂p6





where
∂qi∈odd
∂pj

=
−f
zi

(
∂xi
∂pj
− xi
zi

∂zi
∂pj

)
∂qi∈even
∂pj

=
−f
zi

(
∂yi
∂pj
− yi
zi

∂zi
∂pj

)
xi = ~A1 · (AH→W ~mi)

yi = ~A2 · (AH→W ~mi)

zi = ~A3 · (AH→W ~mi)
~Ai is the ith row of the homogeneous transformation ma-
trix A = AH→WT (~p), ~p is the pose, f the camera focal
length, AH→W the transformation matrix from the head
to the world coordinate frames, and ~mi the model coor-
dinates of the ith feature.

Calculating Pose Correction
The pose correction factor ~c is calculated using Lowe’s
algorithm [Lowe, 1991] as follows:

~c = (JTJ + λWTW )−1(JT~e+ λWTW~s),

where J is the Jacobian matrix of ~q, ~e is the error vec-
tor containing the difference between the observed and
projected 2D feature locations, W is a diagonal matrix
whose diagonal elements are Wii = 1

σi
with σi being the

standard deviation of the change in parameter ~pi from
one frame to the next, si is the desired default value for
parameter ~pi, and λ is a scalar weight.

With each iteration of the object tracking loop the
above equation is driven to minimise the difference be-
tween the measured error and the sum of all the changes
in the error resulting from the parameter corrections.
The stabilisation technique uses the addition of a small
constant to the diagonal elements of JTJ in order to
avoid the possibility of this matrix becoming close to
singular.

In this algorithm, the standard deviation of param-
eter changes in consecutive frames represents the limit
on the acceleration of each parameter from one frame
to the next. For translation parameters, a limit of up
to 10 pixels (within the image size of 384× 284) is used
as the standard deviation, and for rotational parame-
ters 0.1 radians is used. The scalar λ can be increased
to strengthen the weight of stabilisation whenever diver-
gence occurs, however, a constant scalar of 0.64 is used
in this system to maintain stability throughout the iter-
ations.

3 Mouth Detection and Correction for
Pose

Template matching is used to track the corners, top and
bottom of the mouth. The 3D pose determined from the
head tracker is then used to determine the mouth feature
locations in 3D from which the true width and height of
the mouth can be determined.

3.1 Mouth Template Matching
The mouth corners are tracked in the same manner as
the feature points used for head tracking (see Section 2.2)
with the exception that the template search areas are
centred at the feature locations determined in the pre-
vious frame. The new mouth corner points are not es-
timated using the method described in Section 2.1 since
they are not rigid with respect to the 3D model, and are
better localised by their previous locations.

Once the mouth corners are located, the upper mouth
edge is searched for along the line joining the mid-point
of the mouth corners to the nose template position, and
the bottom mouth edge is searched for on the line per-
pendicularly bisecting the line joining the mouth cor-
ners. Locating the mouth edges on these lines avoids
the potential problem of the templates drifting along the
top and bottom mouth edges, and the computational re-
quirement for template matching is drastically reduced
by only searching along a line rather than a 2D region.
As the head turns to the side and tilts the mid-point of
the line joining the mouth corners no longer corresponds
to the centre of the mouth, however, this approximation
proved adequate for estimating the height of the mouth.

Initial templates are manually located on the first frame
of the sequence, and they are updated every frame in
the same manner as the head tracking templates. This
updating is essential as the mouth corners look very dif-
ferent when the mouth is open as opposed to when it is
closed.

3.2 Determining Mouth Width and Height
Since the mouth is constantly changing shape during
speech it cannot be modelled as a rigid 3D object, so the
technique used above in Section 2.3 to track the head
cannot be applied to find the 3D locations of the mouth
corners and edges. Instead the mouth is assumed to lie
flat on a plane parallel to the front of the face. The
observed 2D mouth feature locations are projected from
the image plane onto this face plane, the orientation of
which is given by the head pose (as determined by the
3D head tracker). Thus the 3D locations of the mouth
features are determined.

The mouth height and width are then calculated as
the 3D Euclidean distances between the mouth edges
and the mouth corners respectively.

4 Experimentation

The system was tested on a 234 frame video sequence
taken at 25Hz. Each frame was 8-bit grey-scale and 384×
284 pixels. Templates were 12× 12 pixels.

Figures 2 shows six snap shots of the system whilst
tracking, the animated face illustrates the current pose
and mouth dimensions of the subject.
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Figure 2: Some snap shots of the system in operation.
The phoneme being pronounced and the frame number
are indicated.

The quantitative output of the system over the full
video sequence is presented in Figure 3. This shows a
record over the test sequence of the 3D head pose, the
uncorrected mouth dimensions and the corrected mouth
dimensions. As expected there is a strong correlation
between the amount the mouth width is corrected and
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Figure 3: Results of the head and mouth tracking sys-
tem. (a) Translational movement of head, x, y and z
translations are shown as dotted, dashed and solid lines
respectively. (b) Head rotation, rotations about x, y and
z axis are shown as dotted, dashed and solid lines re-
spectively. (c) Mouth height, uncorrected measurement
shown as dotted lines and corrected as dashed lines. (d)
Mouth width, uncorrected measurement shown as dot-
ted lines and corrected as dashed lines.

the head’s rotation about the vertical y-axis.
The result shows the 3D head tracker recovering the

head pose, and the mouth shapes being effectively cor-
rected throughout the sequence. For example, at the
frames 40 and 95, the phonemes ‘W’ and ‘long-E’ were
spoken with the speaker’s head nodding. Thus the de-
tected mouth heights for their surrounding frames were
corrected as shown in Figure 3(c). In frames 95 and 176
(phonemes ‘long-E’ and ‘M’ respectively) the speaker’s



head was turned to the side and it was necessary to
correct the mouth width. Enunciating these phonemes
causes the mouth to widen relative to the neutral mouth
width. Figure 3(d) shows that the uncorrected mouth
widths for these frames were similar to the neutral mouth
width, and that the correction is successfully made to
enlarge the widths to represent the actual mouth shape
corresponding to these phonemes.

5 Future Work

This paper has presented a technique to track robustly
the dimensions of the mouth whilst the speaker’s head
is moving in 3D. This is an important step in the de-
velopment of an automatic lip reading system designed
for practical application. However, using only mouth
width and height, it is possible to distinguish only a
small subset of the mouth shapes corresponding to the
28 visual phonemes. Work is currently underway to ex-
tend this system to detect the appearances of the teeth
and tongue within the mouth area of an image. Linear
Predictive Coding (LPC) is being employed to analyse
changes of the lip area image over time, while the higher
order local autocorrelation feature extraction technique
is being used to extract the visual features from the LPC
analysed images [Holden and Owens, 2000]. We are cur-
rently working on combining the LPC approach with the
mouth area extraction technique presented in this paper
to detect the appearance of the teeth and tongue within
the mouth area. The aim is to build a system capable of
recognising the full set of visual phonemes and which is
robust to movement of the speaker’s head.

Currently, the feature points for head and mouth track-
ing are manually initialised and we are investigating tech-
niques to locate these features automatically. We also
plan to perform a detailed error analysis of the tracking
system using an animated mannequin for which a ground
truth can be measured.
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