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Abstract

At the Australian National University we are
developing an autonomous underwater vehicle for
underwater exploration and inspection. One of our
aims is to track the relative position of underwater
targets. This has required the development of a
camera calibration system that can overcome the
difficulties of underwater vision to provide
accurate camera parameters. Conventional camera
calibration systems detect and then identify points
in an image of a known 3-D calibration pattern.
Point identification algorithms typically require the
full set of calibration points to be detected to
register the target, but this requirement is seldom
satisfied in underwater images. We describe a point
identification algorithm which does not rely on
complete point detection, based upon the indexing
of planar invariants calculated from pointson a 3-D
calibration pattern. Underwater experiments have
shown our new method improves the likelihood of
successful calibration by up to 80%, and that our
calibration system calculates camera parameters
enabling range estimation of targets up to 3 metres
away with 95% accuracy.

1 Introduction

At the Australian National University we are developing an
autonomous underwater vehicle (AUV) named Kambara.
We are researching technologies allowing Kambara to
search and navigate underwater environments, using visual
guidance based on range estimation and feature tracking
techniques.

1.1 Underwater Stereo Camera Calibration

Most range estimation a gorithms require knowledge of how
pixel coordinates in stereo images correspond to point
coordinates in 3-D space. Camera parameters define this
correspondence, and the procedure of determining the
parametersis known as camera calibration.

Camera calibration has been an area of extensive
research. Calibration algorithms vary across different
applications, but most involve processing images of a
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FIGURE 1: Kambara's camera suite

calibration pattern. The camera parameters are calculated
from information extracted from the correspondence
between points on the pattern, and pixels in the pattern
image [ Trucco,1998].

Calibration patterns are required to provide a set of 3-D
points, with a relative geometry known to an accuracy that
exceeds the required accuracy of the vision system. A
typical calibration pattern consists of one or two planar grids
of rectangles, or boxes, on a contrasting background [Tsai,
1987]. Paints are extracted from images of the pattern using
edge detection, line fitting, and line intersection techniques.
A point identification algorithm is applied so that each
detected image point can be matched with its corresponding
point in 3-D space. If all the points on the calibration pattern
are successfully detected then this requires a simple point
ordering algorithm.

Underwater environments present challenges to the
reliability and accuracy of calibration algorithms. Edge
detection is challenged by the fact that the contrast in
underwater images reduces with depth [Reynolds, 1998].
Edges in some regions of an image may therefore be missed,
and consequently not al points in a caibration pattern
image can be reliably detected. Simple point ordering
algorithms are therefore impracticad in underwater
environments.

We have addressed this problem by developing a point
identification algorithm which does not rely on the full set
of points being detected. The algorithm is based on indexing
planar projective invariants calculated from points on the
calibration pattern.




1.2 Kambara'sVision System

Kambara' s vision hardware is comprised of three cameras,
shown in Figure 1, and a digitizer. Stereo vision is
accomplished through two Pulnix wide angle lens cameras
(TMC-73M), housed in moveable waterproof containers
mounted on the Kambara frame. A Sony pan-tilt-zoom
camera (EVI-D30) is mounted in the upper watertight
enclosure, capturing images for Kambara s user-interface. A
PXC200 Imagenation framegrabber multiplexes the three
camera signals, delivering image frames to the onboard
computer.

The following section describes the standard approach to
camera caibration, and the problems posed by underwater
imaging. Section 3 discusses our new approach to the point
identification problem, and section 4 describes our
experiments evaluating the robustness of the new approach.
Section 5 discusses an experiment testing the underwater
accuracy of our calibration system.

2 Camera Calibration Overview

2.1 Camera Parameters

Camera parameters characterise the mathematical model
used to describe a camera. Tsai’s camera model [Tsa,
1987] uses two parameter categories:

e extrinsic parameters define the position and
orientation of the camera relative to a world
reference frame;

e intrinsic parameters define the internal projective
geometry of the camera, including focal length and
lens distortion.

Appendix A lists and explains these parameters.

2.2 Calibration Algorithm

Most camera calibration algorithms use a calibration pattern
to accurately locate points in space [Trucco, 1998 and the
references therein]. These 3-D point coordinates are
matched with their corresponding image pixel coordinates
as the basis for an algorithm which calculates the camera
parameters.

A typical calibration pattern uses two planar grids of
boxes on a contrasting background [Tsai, 1987], such as the
one shown in Figure 2. Algorithm 1 lists the standard
algorithm, used with planar box-grid calibration patterns, for
finding the parameters of a single camera. The extrinsic
parameters of each camera can then be used to derive the
stereo extrinsic parameters of the camera suite.

1) Capture an image of the calibration pattern
2) Detect points:

a) Detect edges

b) Find box edges

c) Fit lines to each box edge

d) Intersect lines to find corner points
3) Identify points
4) Calculate parameters

ALGORITHM 1: A standard camera calibration a gorithm.

The performance of a calibration algorithm is judged by
the accuracy of the camera parameters determined in the
parameter calculation step, and the reliability of successful
calibration. Both performance characteristics are dependent

on the quality of the captured image.

2.3 Point Detection

Underwater environments tend to cause errors in edge
detection, which propagate through to errors in point
detection.

Edge detection | ocates pixels in regions where the image
intensity undergoes sharp variations [Trucco, 1998].
Underwater environments compromise the detection of
intensity variations, because the scattering of light by
suspended underwater particles decreases image contrast
[Reynolds, 1998]. Consequently edges, and therefore corner
points, may not be detected in some regions of an image.

The light scattering effect also tends to blur images
[Reynolds, 1998], reducing the sharpness in detected
variations. This makes it difficult for edge detection
agorithms to locate edges accurately. Lines fitted to
inaccurately located edges will deviate from the true box
edge, leading to inaccurately located corner points.

2.4 Point Identification

Point identification is the task of identifying each detected
point in a projected image of the calibration pattern. If all
the corner points are detected, as is the case in typical
calibration environments, then simple point sorting
agorithms can be devised to identify the points on the basis
of their vertical and horizontal ordering.

In underwater applications the detection of al points
cannot be relied upon, and different techniques must be
devised. These are challenged by the fact that much of the
geometric information relating the points is lost under
projection. In particular, the relative distance between
points, the area of a box, and parallelism are not preserved
under projective transformations [Mundy and Zisserman,
1992]. We have addressed the problem with an
identification scheme based on the indexing of planar
projective invariants.

3 Paint Identification using I nvariant
Indexing

We propose a scheme using an index of planar projective
invariants to identify boxes in images of a calibration
pattern. The identified boxes can then be used to identify
the box corner points.

3.1 Kambara'sCalibration System

The calibration system developed for Kambara is based
upon Algorithm 1, and uses the standard calibration pattern
shown in Figure 2. Both planes of the pattern contain 12
boxes, each with dimensions 60mm x 75mm, providing a
total of 96 points [Fitzgerald, 1999].

The calibration pattern images captured by the stereo
cameras have a 640 x 480 resolution. A Canny edge
detection algorithm [Canny, 1996] is used to extract the
edges of each box in the image, followed by orthogonal
regression line fitting. Lines are then intersected to extract
points at the corners of each box.

The point identification step of Algorithm 1 wasinitially
implemented with simple point ordering algorithms
[Fitzgerald, 1999], assuming that all the corner points can be
detected reliably. This assumption was found to be
unrealistic, motivating the development of our new
algorithm.



FIGURE 2: Kambarad s calibration pattern

3.2 Planar Projective Invariants
A projective invariant is an algebraic property of a set of
points which remains constant under projection. Two
projective invariants can be calculated for 5 coplanar points
X, i €{1...5}:
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where the points x; are represented as homogeneous column
vectors [Rothwell,1995].

There are two important collinearity properties of planar
projective invariants which affect the choice and ordering of
planar points [Rothwell, 1995]:

1) If any 3 points are collinear, then either 1, or I,
issingular;

2) If both x; and x, are collinear with any of the
other 3 points, then both I, and I, are singular.

These properties demonstrate the invariants' dependence on
point ordering. The second property leads to a constraint
where any set of 5 points must be chosen such that x; and x,
are not collinear with athird point.

3.3 ldentifying Box-Pairs with Planar Projective
Invariants

Theinvariants given in (1a8) and (1b) can be used to identify
pairs of boxes. Consider two boxes B, and B,: we can take
X, and x, from By, and the remaining points from B, to
calculate 1; and I,. The selection of points used in our
algorithm is shown in Figure 3, with the point order chosen
to avoid having both I, and I, singular for any possible
combination of boxes.
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FIGURE 3: &) The corners selected for invariant calculations;
b) Box-pairsidentical by translation share
the sameinvariant: |0_2 = |3_5 = I6—8 = I9—ll-

Two invariants |; and |, calculated from boxes B; and B,
can be collectively termed as a box-pair invariant Ig; gy,
graphically represented in Figure 3 as an arrow from box B,
to box B,. Each possible box-pair in a calibration pattern
will have an associated box-pair invariant.

Box-pair invariants have the following uniqueness
properties:

1) For any two boxes B; and B,, lg1-p2 # l2-B1;
2) Box pairs identical under translation share the
same invariant.

Figure 3(b) illustrates these uniqueness properties.
Numbering the boxes O through 11 for one plane of the
calibration pattern, we see box-pairs 0-2, 3-5, 6-8, and 9-11
al share the same box-pair invariant.

3.4 Invariant Indexing

A box-pair invariant index can be constructed to aid the
identification of box-pairs in images of the calibration
pattern. Given a box-pair invariant the index returns alist of
the corresponding box-pairs. The index has an entry for
each unique box-pair invariant. For a 4 x 3 grid of boxes
there are 34 unique invariants associated with 132 box-pair
combinations.

The invariants in the index are calculated from precise
measurements of the calibration pattern. The invariants used
to key the index are calculated from images of the
calibration pattern, and will always differ slightly from the
index invariants. There are two man causes of this
difference:

1) Projective invariants are based on an
assumption of pinhole projection. Radial lens
distortion in the cameras means the pinhole
model is not an accurate model for projection;

2) The edge detection and line fitting of boxes has
inaccuracies which propagate through to box
corner point calculations, which in turn leads to
errorsin invariant calculations.

This disparity requires the use of invariant tolerances. When
searching the index, a match is found if the image-based
invariant falls within the tolerance range of the index
invariants. If the tolerance is too small then there will be
many false negatives, resulting in many points not being
identified. There are more serious consequences if the
tolerance is too big: false positives will be made, corrupting
the calculation of the camera parameters.

A tolerance of +20% was empirically determined to
work reliably without false positives, and with only a small
number of false negatives.

3.5 Index Search Algorithm

The invariant index is used to identify a set of planar boxes.
Keying theinvariant index with an invariant calculated from
two of these boxes will return alist of possible box-pairs.
Only one of theseisthe true box-pair. Calculating invariants
between the other boxes can help eliminate possibilities,
until a unique combination of boxes has been identified.
This is the basis for the invariant indexing algorithm
stated in Algorithm 2. The algorithm uses a search structure,
with branches of the structure representing possible box
combination scenarios. As more invariants are calculated,
branches from the search structure are pruned as possible
scenarios are eliminated, until one branch is left which



identifies the boxes.

The index searching algorithm is illustrated in Figure 5.
In this example only 4 boxes have been detected from a
planar grid: By, B,, Bs, and B4. The box-pair invariant Ig;.g,
between boxes B; and B, is calculated and used to search the
invariant index. A match is found, finding B, and B, to be
one of 3 possible box-pairs. A search structure is created by
allocating a branch to represent each of the 3 scenarios: i) B,
is3,1ii) By is6, andiii) By is9.

better the accuracy of that parameter estimate.

Fortunately this is not a serious problem underwater,
since the air-water interface refracts light so as to reduce
lens distortion. With Kambara's vision system it was found
the calibration pattern can be brought close enough to
occupy most of the vertical field of view (FOV) of each
camera.

1) Begin with a list of n unidentified boxes, Bj, B;....Bn
2) Calculate the invariant Ig;.g2 from B; to B,.

3) Key the invariant index with Ig;.; to find the
corresponding list of box-pairs.

4) Create a search structure with one branch allocated
to each of the box pairs found from the index.

5) For the remaining boxes B;, i € {3...n}:

a) Calculate the invariant lg;.gi
b) Use lg1.gi to look up the invariant index
c) For each box-pair BP;, j e {1...k}, found in the index:

i) Search the structure for a branch
having the same base box as BP;.
ii) If such a branch is found, then add BP; to it

d) Prune any branch which doesn't have a base box
corresponding to any of the box-pairs.

6) Succeed if only 1 branch remains in
the search structure, otherwise the boxes B;.....B,
are insufficient for identification.

ALGORITHM 2: Identifying boxes using a search
structure and an invariant index.
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Next the invariant lg;g; between boxes B; and B; is
calculated. Searching the invariant index finds that B; and
B; could be one of 6 possible box-pairs. Only two of them
share the same base boxes with branches of the search tree,
namely box-pairs 6-0 and 9-3. These are added to the
corresponding branches. No possible box-pairs are found
consistent with scenario i), so it is pruned.

Next the invariant lgy.p4 between boxes B; and B, is
calculated. Searching the invariant index finds that B, and
B4 could be one of 6 possible box-pairs. Only 1 box-pair
shares the same base box with a branch in the search tree,
namely 6-10, and thisis added to the corresponding branch.
None of the box-pairs are found to be consistent with
scenario iii), so this branch is pruned.

Only one branch remains, revealing the true identity of
the boxes: B, is6, B, is5, B;is0, and B, is 10.

3.6 PerformanceLimitations

A requirement that must be satisfied for the invariant
algorithm to work is that at least one box from each outer
boundary of the planar grid must be detected. The number
of detected boxes required for identification is therefore
dependent on which boxes are detected. A box on two
opposite grid corners is sufficient for identification, since
each corner box shares two boundaries. The maximum
number of boxesrequiredina4 x 3 gridis 10.

Radia distortion prevents the target being placed too
close to the cameras, as the true invariants increasingly
deviate from the pin-hole model invariants. This conflicts
with the aim of accurately characterising radial distortion,
because the more distortion captured by the image points the

FIGURE 5: An exampleillustrating Algorithm 2. Boxes By, By, B3
and B, have been detected in the image of a calibration pattern, but
their identity is unknown. The invariant index is used together with
the search tree to identify the boxes. The search tree contains
branches representing different possible identities. Arrows
represent box-pair invariants, while a cross represents a pruned
branch of the search structure.

4 Calibration Robustness Evaluation

The performance of the calibration system is judged on both
the reliability of the system and the accuracy of the
calculated camera parameters. This section describes the
experimental evaluation of our calibration system’s
reliability.




4.1 Experimental Procedure

The performance of the invariant algorithm was tested by
comparing the reliability of Kambaras calibration system
using @) the invariant indexing algorithm, and b) simple
point ordering agorithms reliant on al 96 corner points
being detected.

Calibration testing used underwater stereo image sets of
the calibration pattern. The image sets were collected by
placing Kambara underwater, and capturing images from
the stereo cameras as the calibration pattern was moved
about the stereo FOV. The stereo camera pair, apart from
being slightly verged to enable a close stereo range, were
arbitrarily oriented. The calibration pattern was oriented so
as to be approximately horizontal in the FOV of each
camera.

Not all the captured image sets were fit for calibration.
Image sets were discarded if @) both planes of the
calibration pattern was not seen clearly in the FOV of both
cameras, or b) the calibration pattern was more than 2
metres away from the cameras — if the calibration patternis
further away than this, then each projected box edge has too
few pixels for accurate line fitting.

A total of 43 image sets satisfying these requirements
were used for testing our calibration technique. Each image
set was used twice for calibration, once each for the point
ordering and invariant indexing algorithms.

4.2 Reaults

We found the invariant indexing algorithm to be far superior
than simple point ordering. The results of comparison are
summarised in Table 1.

Although the point ordering algorithm led to the
successful calibration of one of the stereo cameras for 40%
of the image sets, calibration of both cameras never
occurred. This result emphasises the difficulty of detecting
all 96 corner pointsin an underwater environment.

The invariant indexing algorithm led to the successful
calibration of both cameras for 80% of the image sets.

Point % of images setsfor % of images setsfor
I dentification which at least 1 which BOTH
Algorithm camera calibrated cameras calibrated
successfully successfully
Point ordering 40% 0%
Invariant indexing 81% 80%

TABLE 1: Evauation of calibration system reliability with point
ordering and invariant indexing point identification algorithms.

5 Calibration Accuracy Evaluation

Underwater environments present challenges to the
accuracy of point detection, and consequently the accuracy
of camera calibration. This section discusses the challenges
of evaluating calibration accuracy, and outlines a
methodology which evaluates accuracy using 3-D object
dimension estimation.

5.1 Difficultiesin Parameter Accuracy
Evaluation

Evaluation of the calibration system accuracy is challenging
because of the difficulty in obtaining ground truth for

comparison.

A camerd s intrinsic parameters are dependent on many
factors, including the calibration environment, so it is
impossible for a camera manufacturer to provide
comprehensive parameter specifications.

A camera’s extrinsic parameters can in principle be
compared with measurements made between camera and
world reference frames. In practice, however, such
measurements are inaccurate and therefore inappropriate for
comparison, since @ the origin of the camera reference
frame is located within the camera, and therefore
inaccessible to ‘ruler’ measurements, and b) it isimpossible
to accurately locate the origin of a camerareference frame.

Another approach might be to use the accuracy of range
estimation to infer the accuracy of the camera parameters.
Range estimation estimates the vector from a camera
reference frame to a point in 3-D space. Unfortunately
inaccessihility of the camera reference frame again prevents
meaningful comparison with measured distances.

5.2 Experimental Methodology

We have devised an experimental approach which compares
the estimated length of objects in Kambara's environment
with accurate ruler measurements. The length estimates are
found by firstly using range estimation to determine the
range vectors to two points in space, and then using simple
vector arithmetic to find the distance between the two
points. If length estimates are accurate then it can be
inferred that range vectors are accurate, which in turn infers
that the cal culated camera parameters are accurate.

The range estimation algorithm used for this experiment
islisted in Appendix B.

5.3 Experimental Procedure

Kambara was placed underwater together with the
calibration pattern, and the stereo cameras were calibrated.

The calibration pattern was then used to provide pairs of
points separated by precisely known distances. Estimates of
point-pair displacements were taken with the calibration
pattern approximately 1, 2 and 3 metres away from
Kambara. At each of these distances the pattern was moved
about the FOV of each camera, and at each position roughly
8 distance measurements between point pairs were
calculated.

5.4 Results

The accuracy of length estimation at each distance was
caculated as a percentage error of the true (measured)
length. The average and maximum percentage errors for
each distance are listed in Table 2.

Length estimates were found to have a maximum mean
error of 5%, indicating that the calculated camera
parameters are sufficiently accurate for range estimation of
targets up to 3 metres away. It was aso found that range
estimates improve as the target approaches closer to the
AUV, which is consistent with our intuition that small errors
in arange vector's orientation will amplify with distance.

Approximate distance Mean Std Dev Max Error
between AUV and target Error % % %
1 metre 14% 1% 6%
2 metre 3.6 % 2.7% 15%
3 metre 5.0 % 5.2% 30%

TABLE 2: Evaluation of calibration system accuracy



6 Conclusion

We have developed a new point identification agorithm,
based on planar projective invariant indexing. Experimental
evaluation has shown the algorithm to be up to 80% more
reliable than simple point ordering agorithms. Further
experiments have found Kambaras calibration system,
based on our invariant indexing algorithm, to be sufficiently
accurate for range estimation applications with target
distances up to 3 metres.

There is scope for improvement in the reliability of
underwater calibration. Finding an optimum invariant
tolerancing scheme would help reduce index fal se negatives,
and therefore increase the calibration success rate.
Robustness could be further enhanced by developing
techniques alowing the calibration pattern to be held at
arbitrary orientations with respect to the camera suite.

In conclusion, we believe that we have developed and
tested a camera calibration scheme suitable for underwater
computer vision applications.
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A Camera Parameters

Theintrinsic parameters of a camera consist of:

o f-focal length of the camera;

e K;-radia lensdistortion coefficient;

e (C,C)) - pixel coordinates of the centre of lens
distortion;
s, - horizontal scale factor;
(dx , dy)- the "centre-to-centre” distance between
adjacent CCD sensor elements in the X and Y
directions;
Nex - the number of CCD sensorsin the X direction;
Ni, - the number of pixels sampled in the X direction.

The stereo extrinsic parameters define the mapping
between the camera reference frames of the left and right
cameras (denoted {L} and {R}). They consist of atranslation

vector ‘R, =| kp, ip, b, |” and rotation matrix :R.

B Range Estimation Algorithm

The following range estimation algorithm is adapted from
the work of [Horn, 1986] and [Tsai, 1987]. The algorithm
finds range vectors from the reference frames of the left and

right camera to a point P: LP:[Lpx ‘p, “p, ]Tand
®p =[ ®p, ®p, ®p, |", as illustrated in Figure 6. There are
two main steps involved:

1) Use the intrinsic camera parameters for each camera to
map the target coordinates ( X, , Y, ) observed in the captured

image, to undistorted coordinates (x', y') corresponding to
the pinhole camera model [Tsai, 1987]:

X'= K X3+ K X Y2 + X, (29)
Y= KYG + K X3 +Yy (2b)

P %
Trorg ™.

FIGURE 6: Range vectors from the | eft
and right cameraframesto apoint P.

where ( X,,Y,) arefound from ( X, ,Y,) by:

xd: ( ( Xf 7Cx ) / Sfox) chdx (3a')

Y,= (v, -c,)d, (3b)
2) The undistorted image coordinates in the left and right
stereo images, (x ,y.) and (x,vys), the focal lengths of
each camera, and the stereo extrinsic parameters, are
substituted into the following equation, derived from the
frame transformations between the stereo camera and the
target reference frames [Horn, 1996]:

X;R/fR XL/fL
RL’R yR/fR sz = yL/fL Lpz (4)
1 1

This vector equation is solved to find “p, and Rp,. We then

substitute into the following equations to find the range
vectors from the | eft and right cameras, “p and®p :

. . T
o[ Bl (53
L L
. . T
P {ﬁ_ £ 1} "p, (5b)
R R
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