“Yamabico” Autonomous Mobile Robots

User Programming Guide
Hardware & Software Implementation Notes
Reference

Version 1.5

Last modified 10/7/96



CONTENTS

i o Fo T €0 V1T (TP 5
1.1 ArCRITECIUIE OVEIVIEWV. .. ..o e e, 5
1.2 MOAUIBS e e e e 6
1.2.1 68000 Master Module MM-KEL. ... 6
L 2. L. L CPU e e, 6
N O TS -Y S T [ - U 6
L.2.0.2 CONIIOL. oo, 7
1.2.1.3 PIA — Parallel Interface Adaptor..........ccccovviieeviiiiieiiieeeeee e, 7
i N |V [T o o Y PP 8
I T T o === 8
1.2.1.6 ACIA — Asynchronous Communications Interface Adaptor...... 8
1.2.1.7 PTMIRTCILED ..o 10
1.2 0.8 BUS BUFEEL ... e e 11
1.2.2.9YamMabiCO BUS Il ... o 11
1.2.1.10 Not on any diagraml..........ceeeeuuieeeiiieeeiie e e e e e e e 11
1.2.2 Transputer Locomotion ModUIe .............ccooeiviiiiiiiiiiie e 11
1.2.2. 0 INErOTUGCTION <. e e 11
L.2.2. 2 MPU e e e 12
1.2.2.3 AdAreSS DECOURT ... e, 13
i \Y [T 0 o] Y PRSPPI 13
1.2.2.5 Dual Port Memory (DPM).......ccuuiiiiiiiiei e 13
1.2.2.6 Yamabico BUS INtEITACE. ......cueee e, 14
1.2.2.7 PWM @nNd COUNLET .. e e 14
L. 2.2 8 LED e 14
1.2.2.9 Second Floor Interface (2F-1/F)........ccoooeiiiiiiiieiiee e, 14
1.2.3 UIrasonic SeNSOr MOAUIE. .. .. oo 15
L. 2.3, L CPU e 15
1.2.3.2 AdAreSS DECOURT ... e e, 16
G e B |V [T 0 o (o] Y PPN 16
L.2.3 4 DP M oo 16
L 2.3 D P e 16
L. 2.3.8 AC A 16
2 T A N =1 0 1] 1 1) PR 17
L. 2.3 8 RECBIVE . .o e 17
2 TR B O] a1 g [T o (0] £ 17
2. SO AN e 19
2.1 ATCHItECIUIE OVEIVIEW. ... e e e e e e 19
N R B 11 = Tox (0] Y I == PP 20
2.2 MO S R A e 21
A T ST | 1= 21

Yamabico Autonomous Mobile Robot Documentation 1



2.2.2 MOSRA AP .. 22

2.2.2.1 Memory AllOCALION...........ueeieii e 22
2.2.2.2 Memory MOAUIES...........ccoeiiieii e 23
2.2.2.3 ProCess CONLIOL.....ciieiiiiiiiiiie e 27
2.2.2.4 Interprocess Communication (IRC)..........ccccoiviiiiiiiiiiiin e 32
2.2.2.5 Interrupt & Exception Handling.............ccoooeveeiiieciiie e, 35
2.2.2.6 SEMAPNOIES ... 38
2.2.3 MOSRA IMPlementation............cooevuiiiieeiie e 42
2.2.3.1 System Initialisation & the Global System Table....................... 42
2.2.3.2 Memory AllOCALION...........uieiei e e 43
2.2.3.3Memory MOAUIES...........cceeiii e 43
2.2.3.4 PrOCESS. ... e 45
2.2.3.5 MBS SAQES. .. ittt 46
2.2.3.6 Interrupts & EXCEPLIONS ....ccovviiiiiiiiii e e 47
2.2.3.7 System Calls & Register Usage.........cccuveeeviiiieeiiiiieeiiiieeeeiieeeens 47
2.2.4 The MOSRA Ir€CIONY. .. .cieii et 49
2.3 FUNCLON MOAUIES ....ouiiieeceeee et e e 50
2.3.1 Ultrasonic SENSOr MOAULE. ..........uuuiieiiiiiiiiie et eeees 50
2.3, 0.0 AP e 50
2.3.1.2 Implementation...........cooeviiii e 51
A Tt G B 11 = Tox (0 YU 52
2.3.2 ISeye Software United Environment (ISSUE)...........ccccooveviiiiiiiiineeeennn, 53
A T N 11 =T o (0] Y 53
2.3.3 Spur (Locomotion MOAUIE).........cooviiiiieieiie e e e e 54
2.3, 3. AP e 55
2.3.3.2 Implementation...........ccceiiiii e 65
P T TG B 11 =T o (0] Y2 69
2.3.4 Voice generator MOUUIE.............uuiiieiiiiii e 70
2.3 4.0 AP e 70
2.3.4.2 Implementation...........coooviiii i 74
A T TG B D 1 = Tox (0] Y 75
2.3.5 TIMET fUNCHONS ... e e e e e eeaee 76
2.3, 5. AP e 76
2.3.5.2 Implementation...........ccoovuuii i 77
2.3.6 WhISKEr FUNCHIONS.......oiiiiiie e e e 78
2.3.6.1 AP e 78
2.3.6.2 Implementation...........coooviuiieiiie e 82
2.3.7 ROMANCE & RADNET console functions.............ccuuceeiieiiiiiiiiiieeeeeeenns 83
2.3. 7.1 ROMANCE AP ... 83
2.3.7.2 RADNET C0NSO0IE AP ... 84
2.3.7.3 ROMANCE Implementation............cccooeeeevieeeiiiieeeeieeeeeieeeeeie 85
A T N 1 = Tox (0] Y 86
P L= 1Yo 4] o PP 87
P RN o3 11 = Tox (0 TP 87
2.4.2 Network User Utility Programs...........ccouiiieiiiiiiiiiii e 88

Yamabico Autonomous Mobile Robot Documentation 2



P N I =< 0 T ] (= 89

2.4.2.2 Radcon (RADNET CoONSO0I€) .....cccvvvviiiiieieiiiie e, 90
2.4.2.3 DLOAA. .. .cciiitiii e eaaa 90
2.4.3 The RADNET liNK SEIVEL.......iiiiiii et 90
2.4.4 Client APl - RODOt SIAE........uuiiiiiie e 91
2.4.5 Client APL - UNIX SIAE......ccuuuiiiieiiiiiiie e 98
2.4.5.1 COMMUNICALION. ....uueeieeeeeei e e e e e e et e e e e e e e e e e eaaaeeees 98
2452 NEtSNEIL.....uiieiiei e 103
2.5 Inter-module Communication and the Yamabico Bus................cccovviiiiieennnn, 110
2.5.1 Case study - The Locomotion Module .............coeeeiiiiiiiieciiiiiie e 112
2.6 Software DeVElOPMENL.........cooii e 116
2.6.1 User program development.............ooieviiiiiiiiii e 116
2.6.1.1 ComMPIlAtION.....uuiiiii e 116
b T O O B = U 0] o] (= T oo | = 1 2 117
2.6.1.1.2 RODOCC & MCC..ceiiiiiiiiiiiiiee e 117
2.6.1.2 ROMANCE. ... ottt e e e e 117
2.6.1.3 SIMUIALION......cccviieeiii e e e e e 118
2.6.1.3. 1 AMROS ...ttt ettt 118
2.6.1.3.2 MAIVIN ettt et 119
2.6.0.4 TOOIS . ettt 120
2.6.1. 4.1 RODOCAN ... ...ttt 120
2.6.1.4.2 RODOEBIMON. ...t e e e e e e eeeeenaeee 120
A TR e T o 0T 1 - VP 120
2.6.1.5 ENVIFONMENL .....ouniiiiii e e e e e e e e e e e e e e e e eeens 120
2.6.2 Building the Yamabico software............ccooiieiiiiiieii e 121
2.6.2.1 Compiling the MOSRA Kernel.........coooovviiiiiiiiiieeie e, 121
2.6.2.2 Making a Master Module ROM image..........ccccceevvvveveeeenneeennnn. 121
2.6.2.3 Compiling function module code............cccoovviiiiiiiiiciiiie e, 122
2.6.2.4 Changing robot library code..........ccooovviiiiiiiiiiieie e 122
2.7 Implementation of a Robot Simulator..............ccooviiiii i 124
2.7.1 Overview of YamabicO architeCture.............cooecvviiieeiiinieeeie e, 124
2.7.2 AMROS IMpPlementation............cooeeeuiicriii e 125
2.7.2.1 Implementation of user calls..............cccoeiiiiiiiiiiii 126
2.7.2.1.1 The UltraSonic module APl calls...........ooooriiiiiii, 127
2.7.2.1.2 The Locomotion module Spur APl calls............cccovvevviiiiiiiiiiiiinceccein. 127
2.7.3 Marvin ImplementatiQnl...............oieeiiiiiieii e 129
2.7.3.1 Implementation of user calls..............cccoeiiiiiiiciiii 129
2.7.3.1.1 The UltraSonic module APl calls............cooooiiiiiiii 130
2.7.3.1.2 The Locomotion module Spur APl calls...........ccooveevviiiiiiiiiiiiie e, 130
2.7.3.2 Marvin multi-robot synchronisation scheme..................ccco...... 132
3. APPENAICES. .. i 135
3.1 Appendix A - APl Prototype ReferencCe..........coccouvieeiiiiiiiiiii e, 135
B L. L MO S R A e 135
3.1.2 MiISCEIIANEOUS. .......cieiii e e e e e e 136

Yamabico Autonomous Mobile Robot Documentation 3



S.L.3 FUNCLON MOAUIES ....ce e, 136

3.2 Appendix B - AMROS Map file format............cooiiiiiiiiiii e 139

3.3 Additional INfOrMAatION........coeeiiiiiiie e 139
TG R R O] ] = (o1 £ PP 139
3.3.2 World Wide Webh (WWW).........iiiiiiiiiie et 139

3.4 BiblOGrapRy......e e 140

3.5 DOCUMENT HISTOIY . .eeiiiceiiii e e e et e e e e e e e aaaaas 141

Yamabico Autonomous Mobile Robot Documentation 4



1. Hardware

The Yamabico robot is designed primarily for research and experimentation. Therefore, the
software and hardware details are available to the user, for modification and revision at any time
as required to suit the current purpose. With this in mind, the robot has been designed so as to
simplify development, at the expense of power conservation, size, and overall cost.

The standard body of the robot is designed to be small to allow experimentation in a
crowded laboratory, and to make handling easier. The purpose of the small robot is for the
investigation and validation of navigational and sensing strategies. Hence, it uses wheels, and is
designed for an indoor environment. This greatly simplifies research.

It is intended that the Hardware section of this document be read in conjunction with the
circuit diagrams and the manufacturers data sheets for each individual IC. This information is
gathered together into the Yamabico Hardware Manual [Yam95], a mix of English and Japanese
documentation.

The aim of this documentation is to provide an understanding of how the hardware is
designed to be used. Further information for programming can be found by inspection of the data
sheets.

1.1 Architecture Overview

The robot’s architecture is broken down into functional modules, according to function, to
simplify research and development on individual components. For example, there is one module
to control the ultrasonic sensing, and another module to control the motor drive system. All
decision making is centralised, and is executed on a master module which is in control of the
entire system. This is the behaviour level. This simplifies the process of upgrading and
modifying individual function modules, because their operation and interactions are very clearly
defined.

Yamabico Autonomous Mobile Robot Documentation 5



1.2 Modules

1.2.1 68000 Master Module mm-KEI

JP6, JP5 Yamabico Bus Connect
debugging lights—_ \

o
n

B
0T}

parallel port 2

JP2, JP1, JP4, JP

parallel port 1

reset switch
reset indicato EEE

SW4 (RAM battery backup)j

The 68000 master module board, showing the jumper leads and major chip positions.

The following descriptions are arranged according to which sheet of the circuit diagram
they appear on.

1.2.1.1 CPU

The CPU is a 10MHz 68000, using a 16 bit data bus and a 24 bit address bus.

1.2.1.1.1 Reset Signal

The reset signal is activated by several sources:

* The reset switch, SW1
+ Power-on reset circuit

» Power low condition, monitored by a MAX695
* Yamabico Bus reset line

Yamabico Autonomous Mobile Robot Documentation 6



1.2.1.2 Control

This diagram includes the memory address decoding, which is performed by two PALs,
U16 & U17. The programming equations for the PALs are contained in the Yamabico Hardware
Manual.

The 74HC161 counter, U18, re-maps the RONI¥G00000 during the first four clock
cycles after a reset. After that, it returns to its normal position in the memory space
(OxF80000~0xFBFFFF ). After startup, the binary outputs of U18 count to 4, which then
disables the ENT and ENP inputs, thereby disabling further counting.

RAM is at the beginning of memory. The IO area is at the top of memory, with the ROM
area just below it. Note that the VPA signal covers the whole 10 range. This signal is designed to
be returned to the 68000 CPU, to tell it that 6800 peripheral ICs are being used. This changes the
bus mode of the CPU to emulate a 6800. Please see 68000 documentation for further
information.

Note that the operating system is usually stored in ROM1, and that romance usually uses
ACIAL1. ROM2 may be used to store user programs if desired, but this is usually performed by
battery backed RAM. Please see the MOSRA documentation for further details.

Device Address Range

RAM1 0x000000 ~ OXO3FFFF
RAM2 0x040000 ~ Ox07FFFF
ROM1 0xF80000 ~ OXF9FFFF
ROM2 OxFA0000 ~ OXFBFFFF

VPA 0xFC0000 ~ OXFFFFFF

ACIA1 0xFC0000 ~ OxFCOOFF
ACIA2 0xFC0100 ~ OXFCO1FF
PTM 0xFC0200 ~ OXxFCO2FF
RTC 0xFC0300 ~ OXxFCO3FF
PIA 0xFC0400 ~ OXFCO4FF
LED 0xFC0500 ~ OxFCO5FF
YBSEL OxFEO000 ~ OXxFFFFFF
IOSEL OxFFFCO0 ~ OXFFFDFF

1.2.1.3 PIA — Parallel Interface Adaptor

The function of the parallel ports is controlled by the 6321 on this diagram. The two
parallel ports can be operated on one direction each, which is selected by jumpers JP1-JP4. The
table below shows how to select the position of the jumpers:

port 1 connect: port 2 connect:
input JP1 input JP3
output JP2 output JP4

Yamabico Autonomous Mobile Robot Documentation




The ports are buffered for protection during experimentation. Port pinouts are shown
below.

13 11 9 7 5 3 1
VCC GNBECAl1 D6 D4 D2 DO

14 12 10 8 6 4 2
VCCGNDCA2 D7 D5 D3 D1

Connections for each of the parallel ports on the mm-KEI master module.

1.2.1.4 Memory

The 68000 master module supports 512kb of RAM, and 256kb of ROM. The CMOS
RAM has a battery back up, so that when the robot is switched off the installed programs are
retained.

The MOSRA operating system is contained in ROM. This contains the ROMANCE
program, so when the board is first powered up it is possible to communicate with it via serial
port 1.

1.2.1.5 Reset

This circuit incorporates a MAX695, which monitors the +5V supply voltage and the
battery backup voltage. When the +5V supply drops below specification, the RAM is powered
from the backup battery, and the CPU is reset. The watchdog feature of th&BlAsxnot used.
Please refer to the MAX695 data in the Yamabico Hardware Manual for more information about
this device.

The switch SW4 connects and disconnects the battery backup for the RAM. If the contents
of the RAM are to be erased, or battery power is to be conserved (where the RAM contents are
not important), this switch may be operated to the 0 position (as marked on the PCB). For normal
operation, leave in the 1 position.

1.2.1.6 ACIA — Asynchronous Communications Interface Adaptor

There are two ACIA or serial ports on the master module mm-KEI. They can be used in
either full RS-232 specification £12V mode, or they can be configured for TTL levels only.

Yamabico Autonomous Mobile Robot Documentation 8



ACIA [ £12V version:

NC GND CTS RX GND
9 7 5 3 1

10 8 6 4 2
NC NC NC RTS TX

Connections for the RS-232 port in £12V mode

This table shows the parts which must be installed on the PCB for £12V operation. The
part numbers for ports 1 and 2 are shown in the notation portl/port2.

Port 1 Port 2
U31 MAX232 Present U31 MAX232 Present
U53 74HC240 Absent U53 74HC240 Absent

JP8

Disconnected

JP8

Disconnected

The connections which must be made in the cable to connect to the ROMANCE port:

Yamabico Connector Computer Connector
1 GND GND

2Tx Rx

3 Rx TX

4 RTS CTS

5CTS RTS

7 GND GND

TTL / OV-5V version:

It is suggested that this mode should be used if a radio modem in installed. This is because
radio modems usually have TTL level I/O.

TX GNDVCC NC GND
9 7 5 3 1

10 8 6 4 2
RTS CTS RX NC NC

Connections for the serial port in TTL mode

Yamabico Autonomous Mobile Robot Documentation 9



Port 1 Port 2

U30 MAX232 Absent U31 MAX232 Absent
U54 74HC240 Present U53 74HC240 Present
JP7 Linked JP8 Linked

In this case, it is not necessary to install the capacitors supporting the MAX232 chip.

If the port is to be used with the SEPCO (System Equipment Products) Wireless Modem,
then a 74HC244 should be used instead of the 74HC240. This is because all the signal
connections on the Wireless Modem are active low. A suitable cable is described in the table
below:

Yamabico Connector Wireless Modem Connector
1 GND 2 GND

5VCC 1vCC

6 *Rx 6 *RxD

7 GND 8 GND

8 *CTS 5*CTS

9 *Tx 3 *TxD

10 *RTS 4 *RTS

In both cases, the ROMANCE program uses serial port 1.
Baud Rate Selection

This is performed by SW2 and SW3 for serial ports 1 and 2 respectively.

Switch Pattern Speed (bps)
123456

000000 9600
000100 4800
000010 2400
000110 1200
000001 60(
000101 30(

1.2.1.7 PTM/RTC/LED

PTM stands for Programmable Timer Module. It is connected to the interrupt line of the
CPU. With suitable software, it can be used to generate a timer tick.

RTC stands for Real Time Clock. This chip is optional. It fits into the socket at U38.

The debugging LEDs are also on this diagram. They are written to for debugging purposes,
mostly to give an indication of whether the CPU is running or not. They are switched off and on
by JP5 and JP6:

Debug LEDs Connect:

Yamabico Autonomous Mobile Robot Documentation 10



On JP6

Off JP5

1.2.1.8 Bus Buffer

At first glance, the function of the buffer appears to be superfluous. However, it is
included to prevent total destruction of the module in the case of a mishap with the bus.

1.2.1.9 Yamabico Bus Il

Details of this bus are in a document in the Yamabico Hardware Manual [Yam95]. The
original Japanese document is ““Yamabico” no 68000 kanitsuite’, by lida.

1.2.1.10 Not on any diagram

SP1: This position is a spare, for inserting a single IC during design revision and
experimentation. None of the pins are connected to any other part of the pattern, except to the
adjacent pads for patch wiring.

1.2.2 Transputer Locomotion Module

1.2.2.1 Introduction

The Locomotion module is designed to follow a given trajectory, using feedback based
upon the shaft encoders. The general operation of the SPUR command language is documented in
a paper byshigeki lida and Shin’ichi Yuta [lida91].

The board operates as a digital PID controller for the motion of the robot. Please refer to
[lida91A] for further information on the control theory of the system.

Yamabico Autonomous Mobile Robot Documentation 1



debugging lights Yamabico Bus Connector—\

uis
DPM
ui7
DPM
N
ﬂ
n

reset indicator (D2) —\

\ coo . ceoe U25 Second Floor sock

reset switch

debug port (link 0)

transputer link 1——

u43 PW

transputer link 2 —

transputer link 3 —m
JP1 clock selector-
to right motor driver

to left motor driver

SW1 (RAM battery backup)—/

1.2.2.2 MPU

The MPU in this module is an Inmos T805 Transputer. For more information on this
processor, please refer to the manufacturer's documentation.

This diagram includes the reset button (SW3), and the reset indicator LED, D2. Note that
this LED is positioned alongside the debugging LEDs.

The switches in SW4 are for configuring the CPU. Switches 1 to 3 control the speed of the
transputer serial links. Switch 4 sets the boot from ROM or transputer link option. The effects of
the switches are outlined in the following table:

Switch CPU Pin label Purpose Action when On Action when Off

Number

1 Link Special Select non-standard non-standard speed 3 non-standard speed S
speed 20Mbits/sec 5Mbits/sec

2 LinkO Special sets LinkO to non- non-standard speed 10Mbits/sec
standard speed.

3 Link123 Special sets links 1 to 3 to non{ non-standard speed 10Mbits/sec
standard speed.

4 Boot From ROM Boot from external RONIBoot from ROM Boot from any link
or from Link

The transputer link connections are also on this diagram. Link 0 is specially wired as a
debug port. It includes the CPU status and control lines for hardware debugging. Please refer to
the circuit diagrams for the pinout.

The other links are not used, and may be allocated as required.

Yamabico Autonomous Mobile Robot Documentation 12



1.2.2.3 Address Decoder

The address decoding is performed by two EP610 PALs. The address mapping is:

Signal Name Address Purpose

DPM 0xFC0000 Dual Port Memory

F210 0xFC4000 Second floor interface (using DTACK)
F2VPA 0xFC8000 Second floor interface (using Eclock)
ACIA 0xFCCO000 ACIA device 6350

PTM 0xFCC100 PTM device 6340

PWM OxFCC200 PWM generator

MODE_R OxFCC300 right motor mode control register
MODE_L OxFCC400 left motor mode control register
CNT_R OxFCC500 right counter

CNT L OxFCC600 left counter

LED 0xFCC700 led

ADCON 0xFCB8000 A/D converter

Note that F2I0 and F2VPA have different purposes. If the peripheral being addressed is a
68000 class peripheral, then it should be selected by using DTACK. If it is a 6800 class
peripheral, it should be addressed using F2VPA. In this way, the bus interfacing requirements are
automatically taken care of.

1.2.2.4 Memory

The memory is battery-backed, so that programs may be stored while the robot is switched
off, and cards can be removed from the robot frame.

1.2.2.5 Dual Port Memory (DPM)

The dual port memory is for communication with the master module, although this may be
revised in future. It is proposed that transputer links may be used for this purpose.

The dual port memory consists of two chips, the IDT7130PLCC and IDT7140PLCC.
Typically, the circuit is constructed using only the IDT7130 for both functions. The address of
the DPM from the YBUS Il side is selected by SW2, by using a comparator (U16) to detect when
the upper address lines match the address selected with the switch. The usual position for the
switches is:

123456
011101

On the TLOCO board, full 16 bit communication via Dual Port Memory is implemented.

Yamabico Autonomous Mobile Robot Documentation 13



1.2.2.6 Yamabico Bus Interface

The bus interface consists mostly of buffering for the signals which are used. The only
exception is an interrupt line (VI5) used by the DPM to inform the master module that data is
waiting to be read from the DPM. However, the current software implementation does not require
this interrupt, and a common debugging technique in the Tsukuba University laboratory is to cut
this interrupt line.

The buffering acts as an electrical firewall to guard against bus problems destroying the
board.

1.2.2.7 PWM and Counter

This section contains the hardware which controls the motors, and monitors the shaft
encoders.

The motor currents are controlled independently by two M66240 PWM generator chips.
These operate under software control by the SPUR program. The feedback is provided by shaft
encoders, whose outputs are monitored and counted by a pair of uPD4702/uPD4704 ICs per
motor.

Header JP1 selects the input reference frequency to the PWM chip. The jumper should
only be placed between one pair of pins at a time. The following table shows the frequency
selected at each position:

Position Frequency
1 10 MHz

2 5 MHz

3 2.5 MHz

4 1.25 MHz

If the jumper position is changed, then the software must be re-compiled.

1.2.2.8 LED

The LEDs are only used for debugging purposes. SPUR periodically writes to the LED
register, which gives the user an indication that the board is running. This is most useful while
performing hardware debugging.

1.2.2.9 Second Floor Interface (2F-I/F)

This is primarily designed for adding extra functionality to the TLOCO module. For
example, the inverse pendulum control problem is solved by adding an extra part here, that
interfaces the gyroscopic accelerometer to the TLOCO board, providing the extra feedback
parameters required to control the posture angle of the robot.

Yamabico Autonomous Mobile Robot Documentation 14



The interface includes de-multiplexed address lines (2-16), select lines and clock, and
multiplexed address-data lines (0-15). This allows extra hardware to be added.

1.2.3 Ultrasonic Sensor Module

Baud rate selector switch SW-I-\

‘il IIIIIiII‘IiI\lIII

™
-

Yamabico Bus Connector
Board select switch SWE—\

Serial port (Romance

Ultra-Sonic transducer connect

EPROM

EPROM

Debugging connecto

Layout of the ultrasonic sensor module

The ultrasonic sensor module is designed to be used in conjunction with an ultrasonic
driver circuit, such as HiSonic. It generates a transmit command signal, and measures the time
until the ‘receive’ command is received from the ultrasonic driver circuit. The mode of operation
is designed only for pulse-echo with threshold detection of the first echo. Further echoes are
ignored. The method of determining the first echo is implemented in the ultrasonic driver circuit.

Note that when the HiSonic ultrasonic driver circuit is used, there is a modification to this
modulel

1.2.3.1 CPU

The ultrasonic board uses a 10MHz 68000 CPU. The design is very similar to that for the
mm-KEI master module.

IThe modification is to cut the wire from U11 pin 13 (MASK signal), and connect it to GND at pin 12 of U48.

Yamabico Autonomous Mobile Robot Documentation 15



1.2.3.2 Address Decoder

This diagram includes some simple address decoding, using binary decoding chips.

Also of interest is the ROM re-mapping circuitry, comprised of U54 and U16D. The ROM
is at the beginning of memor®X000000 ) just after system reset, but after the first four clock
cycles, it is re-mapped to its normal position.

1.2.3.3 Memory

This board includes some RAM, which is not battery-backed, so it does not retain
programs after switch-off. All necessary software is stored in ROM.

1.2.3.4 DPM

This is used for communication with the master module. This module only uses 8 bits for
communication. The operation is very similar to the DPM in the TLOCO board in other respects.

Board selection is performed by decoding the upper address lines of the Yamabico bus.
The decoding is simply a comparison with the outputs of a DIP switch, SW2. (The circuit
diagram and the screen pattern on the board are different.)

The DPM can only be accessed from one side at an one time. The protocol which has been
chosen is to allow the Yamabico bus to access the DPM while the E clock (on the Y-II bus) is
high, and for the CPU on the peripheral module to access the DPM while the E clock is low. This
is achieved by delaying acknowledgment of the memory access until the E clock is low.

1.2.3.5 PTM

The first PTM (Programmable Timer Module) is only used for software timing. This is
because its only hardware connections are to the data bus, address bus, control lines and an
interrupt line. The other PTMs are connected to the receive part of the circuitry. They count the
time interval from the transmission of the pulse to the detection of the echo.

1.2.3.6 ACIA

This is for serial communication with a host computer, for debugging purposes. The baud
rate is adjustable, as per the DIP switches in SW1. (Again, the circuit diagram and the screen
pattern on the board is different.) For the allowable speeds, please refer to the data given in the
68000 Master module section.

The ACIA port is fully RS-232 compatible, having an on-board voltagwearter chip to
allow +/-10V signals to be generated and received.

Yamabico Autonomous Mobile Robot Documentation 16



1.2.3.7 Transmit

This section of the circuit sends out the signal to transmit to one of 12 ultrasonic modules.
The board was designed for flexibility in the number of transmit/receive pairs to be used, so the
same board can be used for both a standard 4 transducer set design and for a ring transducer set.

The transmitters to be used are directly selected by writing into the hardware register at
TXPLUS. The bits are high to transmit, low to remain silent. The transmit pulse length is
controlled by U7, a pre-settable counter. This counter counts from the set value to OxFF before
the transmit pulse is terminated. A one-shot timer, U11, ensures that the register at TXPLUS is
cleared before the next transmit pulse.

The transmit pulse length, as discussed previously, is controlled by a pre-settable counter
U7. This counter has double latches, the first of which store the count preset value. Hence, the
starting count value only needs to be loaded once. All subsequent writes to TXPLUS cause the
starting value to be loaded into the counting latches. The transmit pulse starts, and ends after
OxFF-start value clock pulses.

The transmit section also produces PR CONTROL signals for the receive section. These
are used to prime flip-flops in the receive section.

1.2.3.8 Receive

This diagram includes not only the receive circuitry, but also the register for the debug
port, which is essentially a parallel port with LEDs and no handshaking.

The receive circuit consists firstly of two buffer ICs, U42 and U47. These are to guard
against electrical malfunctions destroying the entire board.

The receive signals then pass to a bank of flip-flops, which are set to trigger or not trigger
depending upon which channels transmitted. The output of each flip-flop is then OR’d with that
of an adjacent channel, to reduce the total number of input channels to 6. These lines are then
used to halt the associated PTM. The output is also directly readable to the CPU through address
3SB.

1.2.3.9 Connectors

The pinouts for the ultrasonic transducer connector are shown below. The connector is a
50 pin 0.1” spacing IDC type.

Yamabico Autonomous Mobile Robot Documentation 17



49

47 VCC
45 GND

43 REC.11
41 REC.9
39 GND

37

35TRS.11
33 TRS.9
31VvCC

29 GND

27 REC.7
25 REC.5
23 GND

21

19 TRS.7
17 TRS.5
15VCC

13 GND

11 REC.3
9 REC.1
7 GND

3 TRS.3
1 TRS.1

50
VCC 48

GND 46

GND 40

38

VCC 32

GND 30

REC.6 26
GND 24

22

VCC 16

GND 14

REC.2 10

GND 8

REC.12 44
REC.10 42
TRS.12 36
TRS.10 34
REC.8 28
TRS.8 20
TRS.6 18
REC.4 12
TRS.4 4
TRS.2 2

Ultrasonic transducer connector

The connections for the ACIA connector are shown below. Note that the connections are
the same as for the serial ports on the 68000 master module, so the same cable may be used to
connect the card to a host computer.

5 CTS

3 RxD
1 GND

ACIA connector

The connections for the debug connector are shown below. Note that this port is not
normally used.

9 VCC

7 DB.D6
5 DB.D4
3 DB.D2
1 DB.DO

GND 10
DB.D7 8
DB.D5 6
DB.D3 4
DB.D1 2

Debug connector

Yamabico Autonomous Mobile Robot Documentation 18



2. Software

2.1 Architecture Overview

The architecture of the software system mirrors that of the current hardware architecture
of the robots. See the hardware section for the hardware architecture. The software functional
architecture is as follows.

Main/Master
Module
Locomotion Ultrasonic Voice etc...
Function Sensor Generation
Module Function Function
Module Module

<+«— Communication

Software Architecture

The master module and each of the function modules executes a simple uni-processor
operating system developed specifically for the Yamabico robots ddi@8RA The user
program for high level control of the robot executes on the master module and conceptually
initiates all communication over the Yamabico Bus (YBus) with the function modules. From the
user's viewpoint the application programming interface (API) can be divided into MOSRA
operating system calls, and calls specific to particular function modules. Each of the API's is
detailed below.

Currently there are two implementations of the master module and of some of the function
modules. The original designs employing a Motorola 68000 main processor and the newer
INMOS T800 Transputer based boards. The following section on the Mosra operating system
concerns only the 68000 based boards. From a software communications viewpoint the
Transputer and 68000 function module boards are identical, as the communication protocol over
the Yamabico Bus hides the specific hardware implementation.

Yamabico Autonomous Mobile Robot Documentation 19



2.1.1 Directory Tree

Below is a partial directory tree of the entire Yamabico project, with the exception of the
Transputer software.
|-doc----|]-romance

| |-compiler
|-ground-|-install
| [-lib

| |-robol0
|
|

|-DPM

| |-HiSonic
ys-Kit-| [-ISSUE

| [-SONic

| |-Spur

[-module-|-Spur-16
| |-Spur-telop
| [-US12
| [-US_ring
| [-USwithPL
| |-Voice
|
|

The directory contents are as follows:

. doc - Documentatich
. ground - The ground software - Compilers, Simulators, etc.
. module -Directories for each function module developed
. mosra - The MOSRA OS
Ground
Thegrounddirectory contains:
. compiler  -Themcc compiler driver ananl68 linker source
. install - Scripts for making OS/9 libs and includes
. lib - Template headers and makefiles
. robol0 -roboc - old driver forRobol/Ocompilation
Module

The moduledirectory contains a subdirectory for the software of each of the developed
function module boards. These function modules are:

. HiSonic - The HiSonic UltraSonic module (Newer than SONic)

. ISSUE -1Seye Software United Environment
. SONic - The UltraSonimodule
. Spur -The Spur locomotion module (8 bit integer version)

2Documentation is not available for most software

Yamabico Autonomous Mobile Robot Documentation 20



. Spur-16 -The Spur locomotion module (16 bit integer version)

. Spur-telop - A version of Spur for TeleOperation
. usi12 - US eyéfor Yamabico type 10)
. US ring - UltraSonic ring software
. Voice -The Voice Synthesiser/Generator software (Japanese)
. DPM3 - Source for Dual Port Memory and 3ifanctions
2.2 MOSRA

MOSRA® is a simple operating system designed specifically to execute on Yamabico
robots. It has been designed to be object module compatible with the OS-9 operating system so
that existing OS-9 targeted compilers may be utilised.

2.2.1 Features

The major features of MOSRA are:

. Process management - cooperative multitasking

. Interrupt handling

. Exception handling

. Memory module management (single address space for all processes)
. Memory allocation management

. Interprocess communication (using shared memory)

The MOSRA API calls will be detailed in terms of these functional divisions.

3Refer to the Yamabico Bus 1l section in the Yamabicblardware Folderfor a detailed description of the DPM
hardware and protocol used for communication over the Yamabico Bus Il.

4P - State Information Panel (data structure for exchange of information between modules via DPM). Sometimes
also referred to as State Information Monitoring Panel (SIMP)

5MOSRA - The cooperative multitasking Operating System that runs on Yamabico robots.

Yamabico Autonomous Mobile Robot Documentation 21



2.2.2 MOSRA API

2.2.2.1 Memory Allocation

Low level memory allocation in MOSRA is managed using these memory allocation calls.
Each allocation should be matched by a corresponding deallocativee() to return the
memory back to the free memory pool once it is no longer required. Memory is allocated from a
global free memory pool.

API Calls

char* malloc(int size)

Description:

Allocates some memory of at least the requested size if enough memory is available.

Parameters:

size The size in bytes of the memory required.

Return:

The address of at leaszebytes of memory, or 0 if not enough memory is free.

mfree(char* address)

Description:

Frees the specified pre-allocated memory, releasing it back into the free memory
pool. No check is made to ensure memory has been allocated at the address. DO NOT
free unallocated memory. This call cannot be used to directly free MOSRA memory
modules.

Parameters:

address  The address of previously allocated memory.

Return:

void

Yamabico Autonomous Mobile Robot Documentation 22



Example

main()
char *Mem_for_integers;

Mem_for_integers = malloc(100*sizeof(int)); // allocate memory for 100
int's
if (Mem_for_integers == 0) {
write_cons(“Not enough memory.”);
death(); // kill this process

/I Use the memory

mfree(Mem_for_integers);

2.2.2.2 Memory Modules

MOSRA handles the main CPU memory in termdeimory Modules A memory module
is a region of memory delimited by a special header section that identifies memory modules and
provide information such as a hame. The memory module format matches that of 0OS-9. The
format is detailed in thBIOSRA Implementatiosection below. Memory modules can be further
divided intoexecution moduleanddata modules Both share common header information. The
modules are generated by the OS-9 targetiedoware C compiler.

API Calls

int ismod(MOD_DATA* m_adr)

Description:

Tests if the supplied address points to a memory module.

Parameters:

m_adr Address of memory module structure

Return:

Returns TRUB if the supplied address points to a memory mod&&l.SE
otherwise.

SFALSE == 0, TRUE == non zero (usually 1)

Yamabico Autonomous Mobile Robot Documentation 23



MOD_DATA* make_mod(char* mname, int size)

Description:

Request the creation of a new memory module of the specified size and with the
given name. Usawmalloc() , see memory allocation API. You should cagen()
after this to calculate the CRC check. MOSRIil mot recognise the memory module by
name in any memory module calls that take a hame parameter until you register the module
in the directory by callingegmod() .

Parameters:

mname  C character string name for the new module

msize The requested size in bytes

Return:

Returns the address of the new module) dran error occurred. An error can be
caused by lack of memory.

crcgen(MOD_DATA* m_addr)

Description:

Calculates and fills in th€RC (Cyclic Redundancy Check) field of the specified
memory module. MOSRA will only recognise memory modules with co€&€’s for
some memory module operations.

Parameters:
m_addr Address of a pre-allocated memory module
(created withmake_mod() ).
Return:
void

Yamabico Autonomous Mobile Robot Documentation 24



MOD_DATA* get_mod(char* mname)

Description:

Finds the address of a memory module by name, if a module with the specified name
exists.

Parameters:

mname  C string hame of module to find the address of.

Return:

The address of a module with the given nainéno such named module exists.

int regmod(MOD_DATA* m_addr)

Description:
Registers the specified module with MOSRA.

Parameters:

m_addr  Address of pre-allocated and CRC checked memory module.

Return:
TRUEIf registered OKFALSE otherwise.

int delmod(MOD_DATA* m_addr)

Description:

Unregister the specified memory module with MOSRA and delete it, hence freeing
it's memory for use.

Parameters:

m_addr  Address of memory module to unregister and deallocate.

Return:
TRUEIf OK, FALSEIf error.

Yamabico Autonomous Mobile Robot Documentation 25



Example

#include <mosra/system.h>
#include <mosra/data.h>

main()

int b;

/I Duplicate the startup module (standard module executed on MOSRA
boot)

/I First find the “startup” module

1 NB: Actually the startup module is an executable module
(EXEC_MOD),

I but we can just treat it as a DATA_MOD for copying it. The

I memory module functions are also prototyped as returning
MOD_DATA

I SO we save casting.

MOD_DATA* newmod,;

MOD_DATA* startmod = get_mod(“startup”);

if (startmod == NIL) {
write_cons(“No startup module! - oops”);
death();

}

/I Create new module in memory
newmod = make_mod(“start_copy”, startmod->mh_size); // same size

if (newmod == NIL) {
write_cons(“no memory for new module”);
death();

/I Copy the startup module’s data into the new module’s data
/I (see implementation section for the MOD_DATA structure definition)
for(b = 0; b < startmod->mh_dsize; b++)
*(newmod + newmod->mh_data + b) = *(startmod + startmod->mh_data +
b);

/I Update new module’s CRC
crcgen(newmod);

/I And register it in the module directory

if (regmod(newmod) == FALSE) {
write_cons(“error registering module”);
death();

/I Now we could use fork() to start executing our new module if we
wished.

/I Done with it, now unregister and delete the module
delmod(newmod); /I This also unregisterd the module in the
directory

}

Yamabico Autonomous Mobile Robot Documentation 26



2.2.2.3 Process Control

MOSRA process management is very simple. Multitasking is cooperative so processes
must voluntarily relinquish the processor to other processes. A process can be in any of three
statesRUN, WAIT or MESW A process in thRUN state is ready to run and may be executing.

A process in thaVAIT state is blocked waiting for some event, likevakeup() call from

another process. A process in MESW state is waiting for an IPCmessage from either a
specific source or from any source. Once such a message has been received the process will go
into theRUN state.

API Calls

int mfork(char* mname, int pid, int priority)

Description:

Creates a new process that executes the code in the execution memory module
specified by name. The process will have the PID (Process Identifier) thatupyaied
unless it was already in use. If 0 is supplied as a PID, MOSRA chooses a PID.

Parameters:

mname C String name specifying the execution module for the process.

pid PID to use, or 0 if MOSRA may choose a PID.

priority The required priority of the process in the range 1-256. The larger the
number the higher the priority. Default is 9.

Return:

The PID of the created process. This is as supplied or in the case 0 was supplied
the PID MOSRA has chosen. If the PID supplied was already in use, the call fails and 0 is
returned. Returns the named module doesn'’t exist in the module directory.

int pcreate(MOD_EXEC* mod_address, int pid,int priority)

Description:

Creates a new process that executes the code in the execution memory module
specified bymod_address . The process will have the PID (Process Identifier) that was
supplied, unless it was already in use. If O is supplied as a PID, MOSRA chooses a PID.

7|PC - Inter Process Communication

Yamabico Autonomous Mobile Robot Documentation 27



The function is identical tmfork()  except the executable module is supplied by address
rather than by name.

Parameters:
mod_address  Address specifying the execution module for the process.
pid PID to use, or 0 if MOSRA may choose a PID.

priority The required priority of the process in the range 1-256. The larger the
number the higher the priority. Default is 9.

Return:

The PID of the created process. This is as supplied or in the case 0 was supplied
the PID MOSRA has chosen. If the PID supplied was already in use, 0 is returned.

int tfork(void* start_pc, int pid, int priority) 8
Description:

Creates a new thread that shares the same code and data as the parent thread or
process. A thread is just a process that shares it's module and data area. Execution will
start at the address specified, usually a C function that must never return, but should end
with death() . The thread will have the PID (Process ldentifier) that waspleed,
unless it was already in use. If 0 is supplied as a PID, MOSRA chooses a PID.

Note that only the first process started for a given code module (the parent) will
deallocate the static data area upon exit. Haloehild threads should terminabefore
their parent.

Parameters:

start_pc Address of the execution entry point (e.g. a C function - which is a
pointer to it's code).

pid PID to use, or 0 if MOSRA may choose a PID.

priority The required priority of the process in the range 1-256. The larger the
number the higher the priority. Default is 9.

Return:

The PID of the created process. This is as supplied or in the case 0 was supplied
the PID MOSRA has chosen. If the PID supplied was already in use, the call fails and 0 is
returned. Returns the named module doesn'’t exist in the module directory.

8 Threads are only available in some versions of the MOSRA kernel. They were added at Wollongong University.

Yamabico Autonomous Mobile Robot Documentation 28



death()

Description:

This function kills the calling process. Hence it never returns, since the calling
function will never be re-scheduled. The calling process’s process descriptor is unlinked
from the active process list and the static data and stack is deaRocated

Parameters:

None.

Return:

Never returns.

sleep()

Description:

This function causes the calling process to switch intoVh®T state, hence
relinquishing the CPU to the next process in RéN state. If no other processes are
ready to execute (in tHRUN state) the CPU will halt until a process becomes ready to run.
Interrupts will continue to be processed. The process will remain W&I& state until
explicitly put into the RUN state by a call tovakeup() . The sleep() and
wakeup()  functions together allow a user defined scheduling to be imposed on
processés.

Parameters:

None.

Return:

void.

9 Only parent processes deallocate the static data area, not child threads. Hence all children should terminate
before their ultimate parent process.
10 This is mostly useful when using processes executing in cooperative scheduled mode of MOSRA. Later versions

of MOSRA have the option of executing processes under a pre-emptive multitasking schedular.

Yamabico Autonomous Mobile Robot Documentation 29



int wakeup(int pid)
Description:

Changes the state of the process with PiiD to RUN, and immediately transfers
control to this process. The process must have been previoushWimAlfiestate (it must
have calledleep() ), or theRUNstate (in which case control is just passed).

Parameters:

pid The Process ID (PID) of the process to begin execution.

Return:

TRUEIf OK, FALSE if error (e.g. no process with the given PID exists), in which
case the call has no effect.

int getpid()
Description:

Get the Process ID (PID) of the current process (the caller).

Parameters:

None.

Return:
The PID of the caller.

char* get_work()

Description:

This call is not normally required by user/application code. It gives the address of
the static data area. The data area is location of the static variables andiC stack

Parameters:

None.

Return:

Address of the data area of the caller process.

11 |n Jater versions of MOSRA that support Threads, the static area and stack are no longer allocated together.

This is because threads share the same data area but each have their own stack.

Yamabico Autonomous Mobile Robot Documentation 30



Example

#include <mosra/system.h>
#include <mosra/data.h>

I/l procl main
main()

/I Assume we have an executable memory module in memory called
/I “proc2”. Start this as a new process.

int proc2pid,;
proc2pid = mfork(“proc2”, 0, 9);

while (more_work_to_do) {
/I do some work

/I relinquish control of CPU (to proc2)
sleep();

death(); // no more work to do so kill ourself!

}

I/l proc2 main
main()

int proclpid; // must find out procl’s PID. procl will need to send
us a
/I message containing it's PID

while (more work to do) {
/I do some work

/I Throw control back to procl
wakeup(proclpid);

death(); // no more work to do so kill ourself!

Yamabico Autonomous Mobile Robot Documentation

31



2.2.2.4 Interprocess Communication (IPC)

Interprocess communication in MOSRA is modelled on message passing. The current
implementation is very efficient because it uses pointer passing, possible since all processes share
a common address space.

Types

This type should be included as the first member of a user defined message type, or the
user can define message structure that duplicates these fields as the first three. The user is
responsible for allocation of the message. The usual convention is for the sender to allocate the
message space and the receiver deallocates it. For this reason it is not advisable to use
static ally declared message structures.

/* data structure for message

*
/
typedef struct _messt {

struct _messt *ms_next; [* pointer to the next message */
int ms_leng; /* message length */
SHORT ms_scid; /* message source ID */

[* user/application message data goes here */

} MESST;

Example

/I User defined message for commands

typedef struct _mymessg {

MESST messg;
int command;
int x,y,th;

} COMMAND_MESG;

Yamabico Autonomous Mobile Robot Documentation 32



API Calls

int send_mess(int pid, char* mes_p)

Description:

Send a message to a specified process. By convention the sender allocates memory
for a message and the receiver deallocates the memory. Hence do not free the memory for
messages you send and do not declare a message as a static or stack variable (or it will be
deallocated by the program automatically).

Parameters:

pid The Process ID of the destination process.
mes_p The address of the message to send.
Return:

TRUEIf message sent OlALSEIf error (e.g. invalid PID)

void* recv_mess(int pid)

Description:

Receive a message from the specified source process, or from any process. The
process willsleep()  until a message is available. By convention the receiver always
deallocates any received messages.

Parameters:

pid The Process ID of the source process, or 0 to specify any source.

Return:

The address of the received message structure.

Yamabico Autonomous Mobile Robot Documentation 33



int test_mess(int pid)

Description:

Because a process may block (stslfeSW- Message Wait) if no messages are
available when usingecv_mess() , this function allows the caller to test if any
messages are waiting to be received. The parameter has the same meaning as for
recv_mess() . If a message is waiting, the next callégv_mess()  with the same
argument is guaranteed to return a message without blocking.

Parameters:
pid The Process ID of the source process, or 0 to specify any source.

Return:

TRUEIf at least one message is waitifgy\LSE otherwise.

Example

#include <mosra/system.h>
#include <mosra/data.h>

main()
/I Assume message definition in example above, and a process exists
with PID
/I childpid.
COMMAND_MESG *mycommand, *reply;
MESST *m,;
/I Construct a command message and send it to the child process
mycommand = malloc(sizeof(COMMAND_MESG)); // child will mfree
mycommand->command = COMMAND_CODE_1;
mycommand->x = 0;
mycommand->y = 50;
mycommand->th = 90;
send_mess(childpid, mycommand); // send message to child process
/I Now wait for a reply
reply = recv_mess(childpid);
/I Now loop and process any messages we get from any other process
for(;;) {
if (test_mess(0) == TRUE ) { // if a message is waiting
m = recv_mess(0); // get the message
... process incoming message ...
mfree(m); // as reciever it's our responsibility to mfree
the msg
}
... do work ...
}
}

Yamabico Autonomous Mobile Robot Documentation 34



2.2.2.5 Interrupt & Exception Handling

MOSRA implements a set of system calls for managing interrupt handlers (service
routines) for CPU interrupts and for locking out interrupts during critical code sections.
MOSRA maintains a separate handler chain for each CPU interrupt level. Some of the calls
described below take parameters of the following Interrupt Request Table type.

/: interrupt table structure
ty/pedef struct _irgtbl{

char *ig_poll; [* polling device address */

char iqg_mask; /* mask byte */

char ig_flip; /* flip byte */

LONG (*ig_serv)(), /*interrupt service address */

ig_static;  /* static storage address */

SHORT iq_prio; [* interrupt priority */

struct _irqtbl *iq_next; [* pointer for nextt irg table */
} IRQTBL;

This structure is used when installing a new interrupt handler for a specific CPU interrupt
level. The interrupt handling routine is entered intaghserv  field. As there may be several
devices that trigger the same level interrupt to the CPU, MOSRA will only activate the service
routine if the byte at the address specifieddpypoll ~ AND’ed with the maskg_mask and
exclusive OR’ed withq_flip is non-zero. That is, if

(*iq_poll & (iq_mask ~ iq_flip)) & $FF != $00

Before the interrupt routine is activated, registe® is loaded with the value in
iq_static which points to the process’s static data area. The code generated by the OS/9
compiler uses indirect addressing via the A6 register for access to static datay_pirie
specifies the required priority of the handler. This determines the order in which handlers in the
chain are called. Theg_next field is used by MOSRA internally for chaining and should not
be used by user code. Note that the functions that install and remove interrupts modify the
interrupt handler chain for the specified level, so you should ensure that interrupts to the CPU of
this level do not occur during the function call (i.e. disable them).

Yamabico Autonomous Mobile Robot Documentation 35



API Calls

int irgtbl(int level, IRQTBL* table)
Description:

This function installs a new interrupt service routine (handler) as specified by the
table structure as described above, into the interrupt level chain.

Parameters:

level The CPU interrupt level [0..7]

table The IRQTBL pointer as described above.
Return:

TRUE for success, FALSE for failure (level was > 7).

int irgdel(int level, IRQTBL* table)

Description:
This routine removes the specified IRQ table from the chain. tdlile must be
the same pointer as passedrtpbl() for thislevel
Parameters:
level The CPU interrupt level [0..7]
table The IRQTBL pointer as passeditqtbl()
Return:

TRUE is removed successfully, FALSE if not found inltheel  chain.

Yamabico Autonomous Mobile Robot Documentation 36



int irgctl(int pid, int level)
Description:

This functions sets the CPU interrupt priority mask of the specified process as
defined in the Status Register (SR) bits 10-12.

Parameters:

pid Process IDentifier of process whose priority mask is to be modified. If
pid is O the priority mask of all processes will be changed.

level The new mask level.

Return:

TRUE is successful, FALSE if the process is not found.

exsect()

Description:

This function masks all interrupts while the current process is executing. It also
retains the current interrupt mask for the process so it may be restasrdrz() . The
exsect() ...exend() pair can be used when an exclusion section is required in code.

Parameters:

None.

Return:
Void.

exend()

Description:

This function returns the current process interrupt mask to the value previous to the
exsect() call. exend() mustonly be called aftexxsect() . It may be used to end
a critical section of code.

Parameters:

None.

Return:
Void.

Yamabico Autonomous Mobile Robot Documentation 37



irgset(int level)

Description:

This function sets the CPU interrupt priority mask of the current process as defined
in the Status Register (SR) bits 10-12. The current level is retained for restoration upon a
call toirgrst()

Parameters:

level The new interrupt priority mask.

Return:
Void.

irgrst()
Description:

This function restores the CPU interrupt priority mask of the current process to the
value previous to the last callitgset()

Parameters:

None.

Return:
Void.

2.2.2.6 Semaphores

Semaphores are a synchronisation primitive commonly used to manage mutual exclusion
of resources shared between multiple processes. They can also be used as a convenient and
efficient signalling mechanism. The semaphores implemented M&SRA binary semaphores,
not counting semaphores. The API, as described here, is very similar to the VxWorks OS
semaphore API.

Semaphores can be used to protect access to data shared between multiple threads or
processes. Note that if processes are only being scheduled cooperatively, semaphores need not be
used to protect shared data since no pre-emption can take place unless explicitly programmed

12 semaphores were developed for a version of MOSRA at the University of Wollongong. They are most useful

when using pre-emptive scheduling as developed jointly by the Tsukuba and Wollongong Laboratories.

Yamabico Autonomous Mobile Robot Documentation 38



(via calls that relinquish the CPU, lilkeep() , send_mess() , etc.). They may be useful,
however, for sharing data between processes and interrupt routines.

Semaphore semcreate()

Description:

This function creates a new semaphore for use and returns it's semaphore ID. The
ID is subsequently used by all other semaphore API calls for identification. Every call to
semcreate()  should be matched with a callsemdelete()  to free the semaphore
when no longer needed. There are only a finite number of semaphores in the system.

Parameters: None.

Return:

The new semaphore ID, or -1 in case of error (semaphore table is full).

int semdelete(Semaphore sem)

Description:

This deallocates the specified semaphore so it may be reused by new calls to
semcreate() . Itis safe to call this with a semaphore that has already been deleted, but
is bad practice, since the semaphore may have been re-cycled in another call to
semcreate() . It is also good practice for the calling process to own the semaphore
being deleted, in case another process is blocked waiting for it, in which case it will block
forever. It is not necessary that the caller be the same process that created the semaphore.

Parameters:

sem The semaphore ID of the semaphore to delete, as returned by
semcreate()

Return:

TRUE if the semaphore had been created and was successfully deleted, FALSE if
the semaphore had not been previously created, in which case the call has no effect.

Yamabico Autonomous Mobile Robot Documentation 39



int semtake(Semaphore sem, int blockingmode)

Description:

Attempt to take (own) the semaphore specified (e.g. own the resource represented by
the semaphore).

Parameters:

sem The semaphore ID of the semaphore to attempt to take. Must be a
valid ID as returned bgemcreate()

blockingmode One of BLOCKINGor NONBLOCKING If BLOCKING the calling
process will block (in statsSEMW until the semaphore becomes
available (the owner callsemgive() ). If NONBLOCKINGhe call
will return immediately and the return code will indicate if the
semaphore could be owned or not.

Return:

FALSE if the semaphore was not available (already taken or not valid), TRUE if
taken successfully. IBLOCKING mode, always returns TRUE after taking (unless
invalid).

int semgive(Semaphore sem)

Description:

Attempt to give back (disowd) the semaphore specified (e.g. disown the resource
represented by the semaphore). The semaphore must have already been taken (by any
process) or the call has no effect. If one or more other processes (or threads) are blocked
waiting to take the semaphore, execution control of the CPU will immediately be passed to
one of the waiting processes (which will be unblocked as it's blocking csdirake()
returns).

Parameters:

sem The semaphore ID of the semaphore to give. Must be a valid ID as
returned bysemcreate()

13 semaphores are not actually owned by any particular thread. If used for mutual exclusion it is usually best to
conceptually think of them in this way (as being owned by the thread thatseaitske() ). Hence calls to
semtake() are usually matched with corresponding callseémgive() by the same threadalthough this is

not necessary). If used for signalling purposes this is usually not the case.

Yamabico Autonomous Mobile Robot Documentation 40



Return:

TRUE if given successfully (the CPU may have been lost to another thread before
the call returns), or FALSE if the semaphore was not taken or not valid.

Example

#include <mosra/system.h>
#include <mosra/data.h>

/I shared data
LinkedList list;

/I semaphore to protect access to list
Semaphore listsem;

thread_proc()

while (my_work_do_do) {
... dowork ...

I/l access list

semtake(listsem, BLOCKING);
... manipluate list ...
semgive(listsem);

... do more work ...

}

death(); // no more work to do so kill ourself!

main()

listsem = semcreate(); // create this before starting thread_proc()
/I because tfork() (and mfork()) transfer
/I execution immediately to the new process,
/I hence it may try to semtake() on an
/I invalid semaphore.

/I start a new thread for this module (main is the parent process)
int childPID = tfork(thread_proc, 0, 0x70);

while (work_to_do) {
... dowork ...

/I need to access list

semtake(listsem, BLOCKING); // wait until thread_proc() isn’t
/I using list (if it was)

... manipluate list ...

semgive(listsem);

... do more work ...
}
semtake(listsem, BLOCKING); // don't just destroy it
/I from under thread_proc()’s nose!
semdelete(listsem);

death(); // no more work to do so kill ourself!

Yamabico Autonomous Mobile Robot Documentation 41



2.2.3 MOSRA Implementation

This section assumes familiarity with the MOSRA API. All type definitions listed in the
Typessections to follow are from the header fiekit/mosra/defs/mosra/data.h

2.2.3.1 System Initialisation & the Global System Table

MOSRA is activated by a boot prograbo6t.c/boot.a ) As the power is supplied
or a reset button is pushed, the boot program activates, and searches for the MOSRA kernel in
RAM and ROM. After MOSRA is found, MOSRA can control the system.

Order of Initialisation hain.c ):

Initialisation of 68000 vector table
Initialisation of MOSRA system table
Search and registration of memory modules
Drawing up freenemory links

Registration of MOSRA as process
Activating startup module

o gk wbdpE

Only startup is activated by MOSRA. All other necessary processes are activated by
startup.

Types

This structure is the global system table. It is always located at aBdress

typedef struct _sysglob {

LONG (*D_VECT[VCTSIZE])(); /I* exception vectors */

IRQTBL *D_IRQT[IRQTSIZE]; /*irqg managemant table link top */

PDSC *D_APROC; [* active process link top */

FMEM *D_FREEM; /* free memory link top (size = 0) */

LONG D_RAMTOP, /*RAM areatop (lowest addr) */
D_RAMEND, /* RAM area end ( highest addr ) */
D_ROMTOP, /*ROM area top ( lowest addr) */
D_ROMEND, /*ROM area end ( highest addr) */

D_MODE; /* Round robin mode or cooperative */

PDSC *D_RRLIST; /*circular list of processes for round robin */

SEMTBL *D_SEMT,; [* Table of active semaphores */

LONG D_free[47]; /* free area (unused ) */

PDSC *D_PTBL[PTBLSIZE]; /* process descriptor directory */

MOD_EXEC *D_MDIR[MDIRSIZE]; /* module directory */

LONG _sp_svc[STACKSIZE], /* stack area for system servicecall */
_Sp_irq[STACKSIZE]; /* stack area for interrupt */

} SYSGLOB,;

The fields in this structure are mostly self explanatory.SXSGLOBs always located at
addres9), theD_VECTarray maps directly onto the 68000’s exception vector area, and hence
provides a convenient method for accessing it. DhéRQT is an array of linked lists of
interrupt handlers, one for each processor interrupt level. All processes that are currently active
are linked in priority order frord_ APROGs well as being accessible from the aBayTBL
indexed by process ID. THe _RAMTOMEND and D_ ROMTQEND fields give the address

Yamabico Autonomous Mobile Robot Documentation 42



range of RAM and ROM respectivelyD MDIRis an array of pointers to memory modules,
_sp_svc and sp_irg are stack areas used during kernel and interrupt execution
respectively. In versions of MOSRA that support pre-emptive multitask scheduling, the
D_MODEand D_RRLIST flag the scheduling mode and store the list of processes being
round-robin scheduled respectively (the remaining processes not on this list are scheduled
cooperatively as in older versions). TbheSEMTpoints to a semaphore table for managing
semaphores.

2.2.3.2 Memory Allocation

Types

/*

* data structure for free memory link
*/

typedef struct _fmem{

int fm_size; /* memory block size */
struct _fmem *fm_next;  /* memory link */
} FMEM;

This is the node type of a linked list of free areas of memory starting at the address of the
node and extending fdm_size bytes. When memory is freed usingree() , adjacent
areas of free memory are coalesced into a contiguous area.

2.2.3.3 Memory Modules

Types

A Memory Module (MM) consists of :

. Common header

. Header for execution module / Header for data module
. Machine word code

. Initialising information

. CRC code

The size of the data area and stack area, offset to initialising information of the data area
and text area, are recorded in the header for the execution module. MOSRA initialises processes
when created witfork()  on the basis of this information.

Yamabico Autonomous Mobile Robot Documentation 43



/*
* header structure of execution module
*/
typedef struct mod_exec{
SHORT mh_sync, /* sync code(4afc) (Magic# for MM
identification) */
mh_sysrev; /* system revision */

LONG mh_size, /* module size */
mh_owner, /* owner id */
mh_name; /* module name */

SHORT mh_undef[15], /* unused in mosra */
mh_parity;  /* header parity code */

LONG mh_exec, /* offset to execution entry */
mh_ecept,  /* offset to exception entry */
mh_mem, /* data area rquirement */
mh_stack, /* stack size */
mh_idata, /* offset to initialized data */
mh_irefs; /* offset to data reference lists */

} MOD_EXEC;

This structure is an OS/9 format object module header. The object modules produced by
the compiler for the Yamabico robots produce this format. mhesync field is used by
MOSRA upon boot to search memory and locate all the memory modoies.sysrev is
ignored by MOSRA. mh_size is the total size of the module including this header.
mh_owner is also ignored. Theh_namefield is the offset into the module of the name that is
entered into the module directory list, and hence used to look up modules using the module
system call API described abovenh_exec is the offset into the module of the start execution
point. Themh_menfield gives the total amount of memory required for static data by the
program. This includes the initialised static data, whose initial values are stored in the module at
offsetmh_idata , and the uninitialised static data. The maximum stack size required is given
by mh_stack .

When a new process is created an area of memory is allocated for the stack, the processes
registers, and for the static datah_menbytes). Next the initialised data is copied to the data
area (work area) by the  init_work() function in
..Jys-kit/mosra/kernel/process.c . Each process descriptor has a pointer to an
area for saving the processes registers when not active, this is also kept in the work area. The
stack pointer in this register set is initialised to point to the stack area and the address register A6
is initialised to point to the work area. The OS/9 convention for access to the data area is
through A6 indirect addressing.

/*
* header structure of data module
*/
typedef struct mod_data{
SHORT mh_sync, [* sync code (4afc) */
mh_sysrev; /* system revision */
LONG mh_size, /* module size */
mh_owner, /* owner id */
mh_name; /* module name */
SHORT mh_undef[15], /* unused in mosra */
mh_parity;  /* header parity code */
LONG mh_data, /* offset to data */
mh_dsize; /* data size */
} MOD_DATA;

The format for data modules is very similar, but no interpretation on the data is made.

Yamabico Autonomous Mobile Robot Documentation 44



2.2.3.4 Process

Types

This is a MOSRA internal structure. It need not be manipulated by user application code,
and does not appear in the API specification.

/*

* process descriptor structure
*/

typedef struct _pdsc{

struct _reg *pd_regp; /* saved register address */
SHORT pd_id, /* process ID */
pd_wid, /* message waiting ID */

pd_stat, /* process status */
pd_prio,  /* process priority */
pd_reglv; /* saved irg mask level */
struct mod_exec  *pd_modh; /* pointer to module header */
char *pd_work;  /* work area address */
struct _pdsc *pd_next; /* active process link */
struct _messt *pd_mesp; /* recieved message link */

char *pd_stack; /* stack area address */
SHORT pd_child; /* T_CHILD if tfork()'d */
SHORT pd_sem; /* semaphore we're waiting on */

} PDSC;
#define PDSIZE 28

This is the structure used to represent a process. All exiting processes in MOSRA have an

associated process descriptor. Processes in MOSRA can be in any of fourSstRigs|

S _WAIT, S_ MESWorS_SEMWt. All processes that are ready to run are inghRUNstate

and are kept in a linked lisD( APROCIn the system global table with the currently executing
process always at the top of the list. Processes i8 tMESWstate are blocked waiting for a
message to arrive, and processes in Sh&AIT state are blocked as a result of calling
sleep() . Once a process has caligdep() it will not be placed back in th®_RUNstate

until another process wakes it with a callvtekeup() . A process in th&_SEMWstate is
blocked while waiting for a semaphore to become free (it catlestake() in blocking mode).

Thepd_regp field is used to store a copy of the processors registers when the process is
not executing. pd_id is the process identifier (PID). Theel_wid is the source PID the
process iSS_MESWIting on. If this is 0 a message from any process will wake it. One of the
three process states is storegdh stat , and the process priority is storedpicd_prio . The
messages received but not read by the process are linked intpda fistsp. When the process
is on the active process list, tipel_next field is used for linking. Thed_modh and
pd_work field point to the executable memory module and work area respectively. Finally the
pd_reglv is used to store the IRQ mask level of this process. See the Interrupt & Exception
Handling API above. In versions of MOSRA that support threads and semaphores, the
pd_stack field stores the stack area address (allocated independently of the work area in these
versions), thepd_child  flags for a thread (hence it's doesn't free the static area during

14 versions of MOSRA that do not support semaphores do not uSe 8&MVétate.

Yamabico Autonomous Mobile Robot Documentation 45



death()), and thepd_sem gives the semaphore ID if the thread is blocked waiting for a
semaphore.

The source code for the MOSRA process APl is located in the
..Jlys-kit/mosra/kernel/process.c file.

2.2.3.5 Messages

Types

/*

* data structure for message
*/

typedef struct _messt{

struct _messt *ms_next; [* pointer to the next message */
int ms_leng; /* message lengs */
SHORT ms_scid; /* message source ID */
char ms_body[2]; /* message bady */
} MESST;

#define MSSIZE 12

/*
* data structure for wake up message( message without message body )
*/

typedef struct __messt{
struct __messt *ms_next; /* pointer to the next message */

int ms_leng; /* message lengs */
SHORT ms_scid; /* message source ID */
} _MESST;

These structures are used as the header to a MOSRA type message. The data following
this header is not interpreted by MOSRA and may contain pointers, as messages are exchanged
between processes simply by pointer passing. mi$iescid is the process PID of the sender,
thems_next field is used for linking the message into a list andntise leng field is the
total length of the message in bytes - header and any user data. The source code for the message
APl is located in the ../ys-kit/mosra/kernel/message.c file. The
recv_mess() call will return a message from the ququi mesp in the callers process
descriptor, that matches the source PID (0 matches any message). If there are no matching
messages, the process is placed inSheRIESWstate. Thesend_mess()  call either places
the message on the destination processes message queue, or if the destination process was in a
S MESWtate and the message matchespiiswid , then the process is placed directly in the
S_RUNstate and the message pointer placed in the DO register. This simulates a return from a
system call (since the process iSSNMESW must have blocked on a call tecv_mess()
which never returned due to no messages being available).

Yamabico Autonomous Mobile Robot Documentation 46



2.2.3.6 Interrupts & Exceptions

Types

/*

* interrupt table structure
*/

typedef struct _irgtbl{

char *ig_poll; [* polling device address */

char iqg_mask; /* mask byte */

char ig_flip; /* flip byte */

LONG (*ig_serv)(), /*interrupt service address */

ig_static;  /* static storage address */

SHORT iq_prio; /* interrupt priority */

struct _irqtbl *iq_next; [* pointer for nextt irg table */
} IRQTBL;

#define IQSIZE 22

/*
* data structure for stacked registor at exception
*/
typedef struct _reg{
LONG d[8], /*data register dOto d7 */
a[7]; /* address register a0 to a6 */
SHORT  sr; [* status register */
LONG pc; /* program counter */
} REG;
The MOSRA interrupt mechanism is explained in the API section above. The source code

is located in the file./ys-kit/mosra/kernel/exception.c

2.2.3.7 System Calls & Register Usage

The mechanism for MOSRA system calls from user programs utilisesT R#A&P
instruction to activate a software interrupt. SpecificaljRAP #0. Each MOSRA system call
has asystem call codthat is defined in the header file:

..Jlys-kit/mosra/defs/mosra/syscall_No.h

This call codeis placed in the instruction word following th&®AP #0 instruction in the
user code. The MOSRA kern@RAP handler then obtains the PC location of FRAP
instruction and hence theall code from the stack. The appropriate kernel function is then
dispatched. The user program actually calls a system call stub function that performs this
process. These system call stub functions are in a user link library whose source is located in the
..lys-kit/mosra/lib/syscall directory. For example the implementation of the
mfree() stub looks as follows.

Yamabico Autonomous Mobile Robot Documentation 47



/*

* mfree( adrs)
* SHORT *adrs;
*/

#include <mosra/syscall_No.h>

#asm

mfree:
trap  #0
dcw  F$MFREE
rts

#endasm

The ../yskit/mosra/kernel/mosra68000.a file contains the_syscall
TRAP #0 handler that obtains the call code and calls the C function
syscall(fnum, argl, arg2) in the file:

..Jks-kit/mosra/kernel/exception.c

which dispatches the call. Upon return tisgscall —assembly function executes the top
process on the process list - the process that was interrupted, and then deesiratruction
(return from interrupt).

0OS/9 Register Conventions

The convention for OS/9 function calling if for parameters to be placed in registers and on
the stack, and the return code is returned in regiier Before the call the first argument is
placed into registed0 and the second argument in regisidr. Any further arguments are
placed onto the stack in standard C convention.

The a6 register is used for the static storage address péinteFhere may be other
registers used by convention by OS/9 but no documentation was available when this was written.

15 For reasons | do not understand the valuaénis always set to the static data address + $8000. See the
set_a6 routine inmosra68000.a and also the ling->pd_regp->a[6] = (LONG)p->pd_work +

0x8000 frompcreate() in process.c

Yamabico Autonomous Mobile Robot Documentation 48



2.2.4 The MOSRA directory

The MOSRA directory./ys-kit/mosra

|-config

|-defs----]-mosra

I |-backup
|-kernel--]-objs
I |-rels
I
I |-cstart
|-lib-----]-rels
I |-syscall
I
I |-common
| |-Xterminal-|-bt-----|-get
I I [-put
I I [-work
I I
mosra-| [Hlib------- |-rels
I |-0s9
I I
I I |-backup
o
|-romance-| | |[-common
I |-target—-|  |-doc
I I |-unixft-]-get
I |-put
I I |-work
I I
I I [-common
I [-unix------ |-bt-----|-get
| |-put
I |-work
|-startup

has the following structure.

Yamabico Autonomous Mobile Robot Documentation

49



2.3 Function Modules

2.3.1 Ultrasonic sensor module

There are two implementations of the ultrasonic sensor hardware. The original Sonic
hardware and the new HiSonic hardware [Ohno95]. The interface is identical for both, however
if using the HiSonic hardware on a robot the user must defiS©NIC before including the
ymbc_usr.h file.

#define HISONIC
#include <ymbc_usr.h>

Both hardware versions have four US sensors, facing left, right, toward the front and
toward the back of the robot. The interface is very simple. There is a function to get the range
distance from a particular directional sensor, and a function to enable/disable some or all of the
sensors.

2.3.1.1 API

int us_dist(int dir)

Description:
This function gets the range of a detected object from the specified sensor. The

units are cm.

Parameters:

dir The direction, one ofUS_FRONT US BACK US LEFT or
US_RIGHT If using the new 16 sensor rifigyou may also pass an
integer [0..15] for the sensor number to read.

Return:

The distance in cm or if no echo was detected by the sensor, the value
US_NOECHO

16 This is the 16 sensor ring developed at Wollongong not the 12 sensor ring developed at Tsukuba.

Yamabico Autonomous Mobile Robot Documentation 50



us_mask(int mask_pattern)

Description:
The function allows the selective enabling or disabling of any of the sensors.

Parameters:

mask_pattern One of US_NOMASKUS MASKALL or any logical AND of
US FMASK US_BMASK US_LMASK or US_RMASKto disable
selected sensofg. Only useUS_NOMASKr US_MASKALLfor the
16 sensor ring.

Return:
Void.

Examples

#define HISONIC
#include <ymbc_usr.h>

main()

/I Turn off all sensors
us_mask(US_MASKALL);

/I Turn off just left and right sensors
us_mask(US_RMASK & US_LMASK);

/I Turn on all sensors again
us_mask(US_NOMASK);

2.3.1.2 Implementation

The implementation of the HiSonic function module software is not discussed in this
document.

17some implementations contain a bug that causes the left and right sensors to be confused. This only affects
us_mask() . Sous_mask(US_LMASK) may physically disable the right sensor, but the software will still

returnUS_NOECH®r the distance on the left sensor - hence both left and right will be unusable.

Yamabico Autonomous Mobile Robot Documentation 51



2.3.1.3 Directory

|-defs

|-hard

[-lib
HiSonic-|-master-|-rels

|-mmacro

|-module-|-rels
|-rom

|-SON----|-rels
|-defs
|-lib

SONic---|-master-|-rels
|-mmacro

|-module-|-rels
|-rom

Yamabico Autonomous Mobile Robot Documentation

52



2.3.2 ISeye Software United Environment (ISSUE)

The ISSUE module includes tiadjustment and Interactive Drawing To@ID), Path
Search SensofPaSS) andASensor yokedAlS) systems in an integrated environment. The
ISSUE API is currently undocumentéd

2.3.2.1 Directory

|-defs

|-lib----]-rels

I

|-master-|-rels

I

| [-AID------ |-rels

I I

I I |-objs

| [-IAS------ |-params
ISSUE-|-module-| |-rels

I

| [-IScommon-|-rels

I I

| [-PaSS----- [-objs

| | |-rels

I

| [-eye_bank-|-rels

|-rom

|-sample

18SSUE is not used in the Wollongong laboratory.

Yamabico Autonomous Mobile Robot Documentation 53



2.3.3 Spur (Locomotion module)

The vehicle command subsystem, or locomotion module is responsible for accepting hight
level motion commands from the master module and controlling the wheel motors appropriately.
It also uses the wheel shaft encoders to count wheel rotations and maintain odometry information.
The software is nameSlpur  For a detailed description of Spur s&eHicle Command System
and Trajectory Control for Autonomous Mobile Rob@iisla91]1®.

Spur maintains three independent coordinate systems in (x,y,q). Global coordinates (GL)
which are initially (0,0,0) when the robot is powered-on. These coordinates are typically used for
mapping. The Local coordinates (LC) are an independent coordinate set that can be set relative
to the GL coordinates, for example for negotiating an obstacle before returning to the previous
tracked path. Lastly, the Front Side (FS) coordinate system is always relative to the robot. The
(0,0,0) position is at the centre of the robot looking forward. See the diagram below.

XLe

OLc

OGL > Xol

The relationship between Spur coordinate systems.

The Spur commands can be divided into the following categories:

e Line and Arc Tracking

 Coordinate system setting

» Locomotion error adjustment

* Velocity and Acceleration control

« Other - Stopping, Spinning, Retrieving coordinates

Unless otherwise indicated all distance units are in milimetres (mm), and angles are
measured in degrees. Note that many Spur commands have an alternate version suffixed with
_cm. These use distance units of centimetres (cm) instead of millimetres. Velocity is always
measured in cntk

19 his paper can be located in the English version of the Yamabico Hardware documentation folder [Yam95].

Yamabico Autonomous Mobile Robot Documentation 54



2.3.3.1 API

Spur_line_GL(int x,int y,int th)
Spur_line_LC(int x,int y,int th)
Spur_line_FS(int x,int y,int th)
Spur_line_GL_cm(int x,int y,int th)
Spur_line_LC_cm(int x,int y,int th)
Spur_line_FS_cm(int x,int y,int th)

Description:

These commands instruct Spur to track along the line passing through the point
(x,y) in the direction th in the designated coordinate system until further notice. See
[lida91] for a diagram.

Parameters:
XY Cartesian Coordinate position that tracking line passes through.
th Angle tracking lines makes with the coordinate systeiin®.
Return:
Void.
Example

In this example the robot will track along a line af 4& the Global X coordinate axis. If
it is at it's starting location it will track along a line@&® the right of the robot looking forward.
Note that the robot will not rotate to @&hen track forward, but rather will start moving forward
immediately at B, then veer right until it reaches the specified line.

#include <ymbc_usr.h>
main()

Spur_line_GL(0,0,45);

Yamabico Autonomous Mobile Robot Documentation 55



Spur_arc_c_GL(int x,int y,intr)
Spur_arc_c_LC(int x,int y,int r)
Spur_arc_c_FS(int x,int y,int r)
Spur_arc_c_GL_cm(int x,int y,intr)
Spur_arc_c_LC_cm(int x,int y,int r)

Spur_arc_c_FS_cm(int x,int y,int r)

Description:

These commands instruct Spur to track along an arc with centre (x,y) and radius |[r|.
The rotational direction is counter-clockwise for positive r and clockwise for negative r.
See [lida91] for a diagram.

Parameters:
X,y Cartesian Coordinate position that tracking arc is centred on.
r Radius of tracking arc. Sign determines direction of rotation.
Return:

Void.

Spur_arc_t_GL(int x,int y,int th, intr)
Spur_arc_t_LC(int x,int y,int th, int r)
Spur_arc_t_FS(int x,int y,int th, int r)
Spur_arc_t GL_cm(int x,int y,int th, int r)
Spur_arc_t LC cm(int x,int y,int th, intr)
Spur_arc_t FS_cm(int x,int y,int th, intr)

Description:

These commands instruct Spur to track along an arc which touches the tangent
through the point (x,y) with direction th and arc radius r. The rotational direction is
counter-clockwise for positive r and clockwise for negative r. See [lida91] for a diagram.

Parameters:

X,y Cartesian Coordinate position that tracking arc tangent is centred on.
th Angle of tangent line.

r Radius of tracking arc. Sign determines direction of rotation.

Yamabico Autonomous Mobile Robot Documentation 56



Return:
Void.

Spur_stop_GL(int x,int y,int th)
Spur_stop_LC(int x,int y,int th)
Spur_stop_FS(int x,int y,int th)
Spur_stop_GL_cm(int x,int y,int th)
Spur_stop_LC_cm(int x,int y,int th)
Spur_stop_FS_cm(int x,int y,int th)

Description:

These commands instruct Spur to stop the robot when it gets close to the position
(x,y) and angle th. Because of non-holonomic constraints the actual stoping position may
no be exactly (x,y,th).

Parameters:

x,y,th Stopping position and angle.

Return:
Void.

Spur_stop_q()
Spur_stop_Q()

Description:

These two identical commands stop the robot with maximum acceleration. The
preferred command to useSpur_stop_q()

Parameters:

None.

Return:
Void.

Yamabico Autonomous Mobile Robot Documentation 57



Spur_spin_GL(int th)
Spur_spin_LC(int th)
Spur_spin_FS(int th)

Description:

These commands instruct Spur to spin the robot on the spot to the angle th. This
command will cause the robot to stop after the turn is completed.

Parameters:
th Angle to turn to.

Return:
Void.

Spur_adjust_pos_GL(int x,int y,int th)
Spur_adjust_pos_LC(int x,int y,int th)
Spur_adjust_pos_FS(int x,int y,int th)
Spur_adjust_pos_GL_cm(int x,int y,int th)
Spur_adjust_pos_LC_cm(int x,int y,int th)
Spur_adjust_pos_FS_cm(int x,int y,int th)

Description:

These commands adjust the current coordinates of the robot in the specified
coordinate system to the values supplied. This does not change the absolute values of
coordinates used in the current tracking command being executed. Hence the effect is to
modify the robot’s notion of where it is in the coordinate space. This is typically used to
correct accumulated odometry errors when other sources of position information are
available, for example sensed landmarks.

Parameters:
x,y,th The new values of the coordinates in the specified coordinate system.

Return:
Void.

Yamabico Autonomous Mobile Robot Documentation 58



Example

In this example the robot is tracking along a straight line directly forward. Then the
coordinate system is adjusted so as to translate it to the robot’s left. The effect of this will be that
the robot veers right to track back onto the specified line through (0,9)vettiéh is now to it’s
right in the coordinate space.

#include <ymbc_usr.h>
main()

Spur_line_LC(0,0,0); // Track straight forward

set_timer(5*SEC); /I let the robot go forward for 5 seconds
timer_wait();
Spur_adjust_pos_LC(0, 300, 0); /I This actually translates the
coordinate
/I system left 30cm and back by the
/I amount the robot has already
traveled
/I in the X direction, but as the
line
/I command specifies an infinite
line, it
/I makes no difference to x.
}

Spur_set LC_on_GL(int x,int y,int th)
Spur_set LC_on_LC(int x,int y,int th)
Spur_set_GL_on_GL(int x,int y,int th)
Spur_set LC_on_GL_cm(int x,int y,int th)
Spur_set_LC_on_LC_cm(int x,int y,int th)

Description:

These commands change the current coordinates of the first specified coordinate
system to the values supplied relative to the second specified coordinate system. This is
not a motion command but just changes Spur's coordinate values. It also changes the
absolute coordinate values used in the current tracking state. Hence the motion of the
robot will not be effected.

Parameters:
X,y,th Values of the new coordinates relative to the second specified
coordinate system.
Return:
Void.

Yamabico Autonomous Mobile Robot Documentation 59



Spur_set_pos_GL(int x,int y,int th)
Spur_set_pos_LC(int x,int y,int th)
Spur_set_pos_GL_cm(int x,int y,int th)
Spur_set_pos_LC_cm(int x,int y,int th)

Description:

These commands change the coordinates of the specified coordinate system to the
values supplied. This is not a motion command but just changes Spur's coordinate values.
It also changes the absolute coordinate values used in the current tracking state. Hence the
motion of the robot will not be effected.

Parameters:

x,y,th Values of the specified coordinate system relative to it's current values.

Return:
Void.

Spur_set_vel(int vel)

Spur_set_vel_cm(int vel)

Description:

This command instructs Spur to change the current maximum velocity (reference
velocity) of the robot. If tracking the robot will accelerate until the desired velocity is
reached.

Parameters:

vel The new reference velocity.

Return:
Void.

Yamabico Autonomous Mobile Robot Documentation 60



Spur_set_ang_vel(int angv)

Description:
This command instructs Spur to change the current maximum angular velocity of
the robot.
Parameters:
angv The new reference angular velocity.
Return:
Void.

Spur_set_accel(int acc)
Spur_set_accel_cm(int acc)

Description:
This command instructs Spur to change the current maximum acceleration of the
robot.
Parameters:
acc The new maximum acceleration.
Return:

Void.

Spur_set_ang_accel(int alpha)

Description:

This command instructs Spur to change the current maximum angular acceleration
of the robot.

Parameters:

alpha The new maximum angular acceleration.

Return:
Void.

Yamabico Autonomous Mobile Robot Documentation 61



Spur_servo()

Description:

This command instructs Spur to engage the motor servoing if it is not already
engaged. The robot will not be free-wheeling once it has been engaged. Any attempt to
move the robot manually will cause the robot to attempt to accelerate and move back to it's
current global coordinates.

Parameters:

None.

Return:
Void.

Spur_servo_free()

Description:

This command instructs Spur to free the motor servoing. The robot will then be
free-wheeling and may be manually pushed. Note that Spur still keeps odometry
information up-to-date. Hence the robot will still know it's current global position after
being manually pushed.

Parameters:

None.

Return:
Void.

Spur_get_pos_GL(int *x0,int *y0,int *th0)
Spur_get_pos_LC(int *x0,int *y0,int *thQ)
Spur_get_pos_GL_cm(int *x0,int *y0,int *th0)
Spur_get_pos_LC_cm(int *x0,int *y0,int *th0)

Description:

These commands obtain the current coordinate values in the specified coordinate
system.

Yamabico Autonomous Mobile Robot Documentation 62



Parameters:

x0,y0,th0 The current coordinates in the specified coordinate system. Note that
the address of variables oft type must be supplied to receive the
values.
Return:
Void.

Spur_get_vel(int *vel,int *angv)
Spur_get_vel_cm(int *vel,int *angv)
Description:

These commands obtain the current linear and angular velocities. Note that the
address of variables @fit type must be supplied to receive the values. These are the
reference maximum velocities not the actual current velocity of the robot. Use

Spur_near_vel() or Spur_near_ang_vel() to test the current robot velocities.
Parameters:
vel The current linear velocity.
angv The current angular velocity.
Return:
Void.

int Spur_near_pos_GL(int xx, int yy, intr)
int Spur_near_pos_LC(int xx, intyy, intr)
int Spur_near_pos_GL_cm(int xx, int yy, intr)
int Spur_near_pos_LC_cm(int xx, intyy, intr)

Description:

This call determines if the robot is near the specified position (x,y) within a
tolerance radius r.

Parameters:

XX,YY Cartesian coordinate position the robot may be near.
r The tolerance radius.

Return:

TRUEIf near the specified coordinates within the toleraRéd,SE if not.

Yamabico Autonomous Mobile Robot Documentation 63



int Spur_near_ang_GL(int ang,int error)
int Spur_near_ang_LC(int ang,int error)

Description:

This call determines if the robot's angle is near the specified anglevithin an

error anglesrror

Parameters:

ang Angle the robot may be near.
error The error tolerance angle.
Return:

TRUEIf near the specified angle within the tolerarfe&l SE if not.

int Spur_near_vel(int vel,int error)
int Spur_near_vel_cm(int vel,int error)

Description:

This call determines if the robot's current velocity is near the specified veletity

within an error tolerancerror

Parameters:

vel The velocity the robot may be near.
error The error tolerance velocity.
Return:

TRUEIf near the specified velocity within the toleran€dL SE if not.

Yamabico Autonomous Mobile Robot Documentation

64



int Spur_near_ang_vel(int angv,int error)

Description:

This call determines if the robot's current angular velocity is near the specified
angular velocityangv within an error tolerancerror

Parameters:

angv The angular velocity the robot may be near.
error The error tolerance angular velocity.
Return:

TRUEIf near the specified angular velocity within the toleraf@d, SE if not.

Spur_over_line_GL(int xx,int yy,int th)

Spur_over_line_LC(int xx,int yy,int th)

Spur_over_line_GL_cm(int xx,int yy,int th)

Spur_over_line_LC_cm(int xx,int yy,int th)
Description:

This call determines if the robot is over the line through (xx,yy) at angle th.

Parameters:

XX,YY Point which line passes through.
th Angle of the line.

Return:

TRUEIf the current position is over the specified #ie-ALSE otherwise.

2.3.3.2 Implementation

The Spur locomotion system is currently implemented as an independent function module
on a Yamabico CPU bus card. The source for this implementation can be located in the directory
..lys-kit/module/Spur-16/module . The implementation at the algorithmic level is
not discussed in this document, but is discussed in [lida91A, lida91]. What follows is a brief
overview of the function of the source code. A description of the locomotion software in the

20Need to clarify exactly what ‘over the line' means.

Yamabico Autonomous Mobile Robot Documentation 65



context of communication with the master module is also given inabe studyf Section 2.4
Inter-module Communication and the Yamabico.Bus

The Spur software is interrupt driven. Thestartup module
(../module/startup.c ) that is loaded onto the locomotion board starts romance as usual,
then mfork() ’'s the spur module. The Spur main function frommpur.c , calls
_spur_init() then busy-wait’s in an infinite loop. Thespur_init() function carries
out the following steps in sequence .

Initialises the hardware pointers hwinit()

The Spur software access three types of Yamabico hardware. The communication of
locomotion commands from the master module and state information to the master module is
via Dual Port Memory(DPM). A description of this mechanism and the DPM is in section
2.4. TheProgrammable Timer ModuléPTM) is used to deliver periodic interrupts to the
CPU and activate the interrupt routine which ultimately does the work of the locomotion
software. The 4 ChannBllse Width ModulatoBignal Generator (PWM) is used to control
the motor currents independently.

This function initialises the pointer variablesn, dpm, pwm mode, andcnt to point
to the respective hardware addresses. drite and mode variables are for wheel shaft
encoder feedback.

Initialises the software state variableswinit()

This function initialises the variables that represent the dynamic state of Spur. This
includes resetting the coordinate system, setting the initial acceleration and velocity to O,
calculating initial gains for the motors from the velocity and settinguhent modeo stop.

The current mode of Spur is represented by dimode variable. This is a C
structure/union  with  substructures that look as follows (frondSpur-
16/defs/mode_ctl.h )

/* for mode control structure */

struct mode_ctl_str {
char mode; /* Control mode */
union mode_para para,

h

union mode_para {
struct line_para_str line_para;
struct accel_para_str accel_para;
struct stop_para_str stop_para;
struct circle_para_str circle_para;

h

[* for line trace mode parameters */
struct line_para_str {

int x_org;

inty_org;

int th_org;
2

/* for acceleration mode */
struct accel_para_str {

int vel;
h

Yamabico Autonomous Mobile Robot Documentation 66



/* for stop mode parameters */
struct stop_para_str {

int x_stop;

inty_stop;

int th_stop;

int sumx;

int sumth;

2
struct circle_para_str {
int x_cent;
inty_cent;
int radi;
2
The major modes ar8TOR LINE, CIRCLE, FREE andACCEL The modes and
their associated parameters are self explanatory.

Sets up the table data tblinit()

This function initialises a tabbdl[]  for 2D current control. The data for the table is
different for each robot body and is included from a file in thable/tdata directory.

Registers an interrupt routine for the PTMreg ptm()

This function registers an interrupt routine for the PTM. The routitienisq()
from ../module/timirg.c . This will be called every 5ms.

Registers an interrupt routine for the DPMreg pdm()

This function registers an interrupt routine for the DPM. The routimprisirg()
from ../module/dpmirq() . This will be called when the master module writes a Spur
command into the SIMP. See section 2.4 for details.

Initialises the PWM hardware initpwm()

This function simply initialises the PWM hardware.

Initialises the DPM hardware 4initpdm()

This function clears the DPM SIMP and command areas.

Initialises the PTM hardware 4nitptm()

This function initialises the PTM to interrupt the CPU at 5 millisecond (ms) intervals.

Once initialisation is complete the main program busy waits in an infinite loop. The work
is then carried out by thémirq() anddpmirg() routines. Thedpmirq() routine is
activated when the master module writes a new command into the DPM. This invokes the
appropriate command function which just modifies the current state of &podé) to reflect
the requested command action. This is explained in section 2.4.

Thetimirq() function callsread_cnt()  to read the current wheel encoder counter
values, then calls the feedback control roufimectl() (timirg.c ). Thefb_ctl()

Yamabico Autonomous Mobile Robot Documentation 67



function calls on other functions to calculate various values, such as the robot velocity
(cal_r_vel() ), depending on the current mode. It implements the feedback control as
described in the paper [lida91A]. Thal r_vel() function also updates the DPM SIMP
information making it available to the master module. Hence the SIMP is updated every 5ms.
To summarise, the architecture looks as follows.

Master Module
User program linked with lib_source

Spur_line_GL(0,0,0)

\ send_C0m16() /

dpm = command & srgs

Spur_get _pos_GL(&x,&y,&th)

rd_SIP()
X =dpm
Yamabico Bus Il
Locomotion Module Interrupt
Timer chip Motor hardware dpm_l|rq()
Every SmSl Interrupts \ / D
com_ana() P
tim_irq() : M
\/
¢ cmode = dpm
fb_ctl()
cal_r_vel()
wt_SIP()
\ dpm = Spur state
mode_ctl()
switch (cmode.mode)
do_line_track ()
pwm-> ...= ... ——— > Control Motors
count=cnt[M_  xx] <«€«— Encoder counters

Spur locomotion software and Master module architecture

Yamabico Autonomous Mobile Robot Documentation 68



2.3.3.3 Directory

|-DPM
[-defs
|-doc
|-exp
[-lib

|-lib_source--|-rels

|-line_tr_sim-|-data

| |-setup

|

[-master------ |-obj

| [-rels

|

[-module------ |-obj

| [-rels
Spur-|-obavo

[-rom

[-rrl

[-rr2

[-rr_avo

[-sample

[-simlib

[-simulator

| [-mktable

|-table------- |-setup

| |-tdata

| |-tempdir

|-tosim

Yamabico Autonomous Mobile Robot Documentation



2.3.4 Voice generator module

The voice generation function module has the ability to say numbers in decimal and
hexadecimal, string of romanji characters, and pre-recorded sample modules. All requests for
speech are queued and the function returns to the caller immediately. See the dgsument
kit/module/Voice/doc/library_func.txt for Japanese documentation.

A description of the available functions is given belaw

2.3.4.1 API

voice_init()
Description:

This function initialises the voice function module and must be called prior to usage
of any other voice module functions.

Parameters:

None.

Return:
Void.

voice_set(int amp, int rate)

Description:

Set the amplitude and rate of spoken voice.

Parameters:
amp Amplitude.
rate Rate.
Return:

Void.

210nly in Japanese

22The Voice module is not used at the Wollongong laboratory, hence the documentation is incomplete.

Yamabico Autonomous Mobile Robot Documentation 70



v_boadCHK(int boad)

Description:

Check the existence of the specified Board and if detected plays a recorded message
indicating the board is OK. The check is done by checking the accessibility of the board’s
DPM. The recorded message data is read from a data memory module of sampled data
with pre-defined names for each board. The pre-defined sample module names are:
sonic_ok ,eye ok ,spur_ok andvoice ok

Parameters:
boad The board to che@R This is actually the address of the board’s
DPM. These are defined vusr.h
Return:
Void.
Example

#include <ymbc_usr.h>
#include <vusr.h>

main()
/* Check sonic, ISeye, and Spur boards. Voice will announce OK message
the board is OK */
v_boadCHK(SON);

v_boadCHK(ISe);
v_boadCHK(SPR);

sayd(int num)

Description:

Say the specified decimal.

Parameters:

num Number to say.

Return:
Void.

23Note boad is just a Japanese misspelling of Board.

Yamabico Autonomous Mobile Robot Documentation 71



sayx(int num)
Description:

Say the specified hexadecimal number.

Parameters:

num The number to say.

Return:
Void.

says(int num)
Description:

Say the pre-defined sentence stored on the voice module with index nuumber
All the pre-defined sentences are currently in Japanese.

Parameters:

num Index of pre-defined sentence to say.

Return:
Void.

sayw(char *str)
Description:

Say the romaniji string specifiéti

Parameters:

str The romanijistring to say.

Return:
Void.

24Note that the current implementation is intended to speak Japanese, hence some characters are converted.

Specifically ‘I' ->'r’, 'v' -> 'b’, j’ -> ‘2’ and ‘¢’ -> 's’.

Yamabico Autonomous Mobile Robot Documentation 72



speakf(char *fmt, int agl, int ag2,...,int ag9)

Description:
Say a C printbtyle formatted string.

Parameters:

fmt The format string. This parameter is similar to, but more restricted
than, C’s printf() format function. The allowable format specifiers are:

. %c character

. %d integer (decimal)

. %x integer (hexadecimal)

. %a set amplitude to arg and rate to default

. %r set rate to arg and amplitude to default
agN N =[1..9], the arguments
Return:

Void.

sayp(char *str)

Description:

Play the pre-recorded sounds memory module with the specified name.

Parameters:
str The name of an existihng MOSRA memory module containing the
sample data.
Return:
Void.

Yamabico Autonomous Mobile Robot Documentation 73



say_flush(int thre)

Description:

This function is for flushing the queued say requests. If the number of queued
requests is greater th#me then the oldest requests are aborted/dequeued leaving only the
newesthre requests.

Parameters:

thre The thresh-hold number of requests to leave queued.

Return:
Void.

int say_ended(int rest)

Description:

This function returns TRUE if the number of queued voice requests on the voice
module is equal teest , FALSE otherwise.

Parameters:

rest Test number of remaining requests.

Return:

TRUE if remaining requests queuedeast , FALSE otherwise.

2.3.4.2 Implementation

The implementation of the voice module is not discussed in the document.

Yamabico Autonomous Mobile Robot Documentation 74



2.3.4.3 Directory

|-defs

|-doc

|-hard

|-lib

|-lib_source

|-master

I

| |-etc

| |

I |-j50--|-j50

| |-datae7--]-num

| | |-sent

I I |-wd

| | |-etc

I I |-i50
Voice-|-mky-------- |-datae9--|-num

| | |-sent

I I |-wd

| | |-etc

I I | _

I I |-j50--|-j50

| |-dataea--|-num

| |-sent

I |-wd

I

|-module----- |-objs

| |-rels

|-pcmdatal

|-pcmdata?

I

|-rom-------- |-startup

|-test

Yamabico Autonomous Mobile Robot Documentation



2.3.5 Timer functions

The timer functions are not implemented in a separate function module, but as an
independent process that executes on the master module. séthémer() and
timer_wait() function interact with th@ IMER process, hence blocking the process that
calls timer_wait() until the time expires. Thead SRTKEI() andcompSRTKEI()
function simply read the global system timer.

2.3.5.1 API

set_timer(int count)

Description:

This function is used in conjunction with thiener_wait() function to delay
execution for a specific amount of time. Other program code may execute between the
set_tirper() .timer_wait() pair provided it does not take longer than count
1/100 of a second to execute. Note that the definli&i€==100 is available.

Parameters:
Th
count Number of 1/100 of a second to delay.
Return:
Void.
timer_wait()
Description:
This function is used in conjunction with tlset_timer() function to delay

execution for a specific amount of time. Once called the execution is delayed until the
count time has expired from whexet_timer() was called.

Parameters:

None.

Return:
Void.

Yamabico Autonomous Mobile Robot Documentation 76



int readSRTKEI()

Description:

This function returns the current value of the quasi-real time clock. The units are
10 msec.

Parameters:

None.

Return:

Current time in units 1énhsec.

int compSRTKEI(int t0,int time)

Description:

This function compares the value of the specified timesimké represents a time
greater that of equal t0 TRUE is returned.

Parameters:

t0 Initial time to compare. Units are hisec.
time time to compare witkO .

Return:

TRUEIf time >1t0 , FALSE otherwise.

2.3.5.2 Implementation

The set_timer() and timer_wait() functions can be found in the file
..Jys-kit/module/mmKEl/lib/timer6340.c 25, The set_timer() function
allocates and sendss&uct timess message to thEIMER process (PIDTIMEMON The
TIMER process is implemented inlys-kit/module/mmKEl/iomon/timer.c . The
main loop wait for incoming messages, and retains a list of timer requests. As each timer request
expires a message is sent back to the sending process. The TIMER process uses interrupts from
the timer device to efficiently wait for times to expire without busy waiting. When a process
makes a call tovait_timer() , wait_timer() just blocks waiting for a message from the
TIMER process.

25 For other Master Module versions the directory will be other thaiKEI For example the Wollongong version

of the master module source is in thenWirectory.

Yamabico Autonomous Mobile Robot Documentation 7



The readSRTKEI() and compSRTKEI() functions are implemented in the file
.Jys-kit/module/mmKEl/lib/srt_KEI.c . They simply read and compare against
the free running system timer.

2.3.6_Whisker functions

Some Yamabico robots have a number proportional passive whisker 3&nddrsse are
accessed by the whisker library API. This whiskers are accessed by an integer index [0..7] or by
the PCB socket numberd/J 3 ... WJ_10. Some synonyms also existVi eftFront
WLeftBack , WFrontRight andWFrontLeft ).

2.3.6.1 API

RelnitWhiskers()

Description:

This function initialises or re-initialises the whisker software. It must be called prior
to calling any other whisker functions. The whisker module will not access the whisker
hardware or execute until this function is called. Hence it is acceptable to have the whisker
module in ROM and running on a robot that has no whiskers connected, as it will do
nothing until this function is called.

Parameters: None.

Return: None.

26 Currently only Flo at the Wollongong laboratory. The implementation currently connects the hardware to the

master module, and hence the whisker module is an executable module on the master module ROM.

Yamabico Autonomous Mobile Robot Documentation 78



CalibrateWhisker(int whisker)

Description:

This function calibrates the centre position of the specified whisker to it's current
physical position. This is called to set the current physical position (usually the rest
position) to the 0 point. The readings will then be positive or negative depending on the
direction of deflection.

Parameters:

whisker The whisker number to calibrate.

Return: None.

int ReadWhisker(int whisker)

Description:

This is the main function used to read whisker values. The values returned have
been adjusted to the calibrated centre (and hence are signed values), possibly reversed in
sense and are averaged over a number of samples (seBegiwSampAverage() ).

Parameters:

whisker The whisker number to read the current averaged value of.

Return:

The whisker sensor value.

int ReadRawWhisker(int whisker)

Description:

This function returns the raw value of a whisker sensor reading as obtained from the
hardware A/D converter. It is not averaged or centre calibrated.

Parameters:

whisker The whisker number to read the current raw value of.

Return:

The whisker sensor value.

Yamabico Autonomous Mobile Robot Documentation 79



int SetSampleFreq(int FreqHz)

Description:

The whisker module samples each whisker at a fixed sampling rate (all whiskers at
the same rate). This call is used to change the default rate or to disable sampling. The
default is 20Hz and the valid range is 1Hz...60Hz. A value ofllctwn off sampling
and the whisker module will no longer use the CPU until the frequency is reset (or
RelnitWhiskers() is called).

Parameters:

FregqHz The whisker sampling frequency in Hz or 0.

Return:

The old sampling frequency (current previous to the call).

int SetNoSampAverage(int NoSamples)

Description:

This function is sets the number of sample over which the read whisker values are
averaged. The default is 5 and the valid range is [1..50]. If the value 0 is passed the
whisker module will not do averaging at all. In this case the result of calling
ReadWhisker()  will be meaningless, but the raw un-averaged values may be read
usingReadRawWhisker()

Parameters:

NoSamples The number of samples to average over, or 0 to disable calculation of
average values.

Return: Undefined.

Yamabico Autonomous Mobile Robot Documentation 80



SetDebug(int Channel)

Description:

The whisker module can send debugging output to either the ROMANCE or
RADNET consoles. This is useful to display a continuous readings of whisker values
when calibrating hardware etc. If averaging has been disabled, only raw values will be
displayed.

Parameters:
Channel One of CON, NET or -1. To disable debugging pass -1 (the default),

to enable display of whiskers every one second specify which console.

Return: None.

SetSense(int whisker, int Sense)

Description:

It is sometimes desirable to reverse the numeric range of the sensor readings, for
example if the whisker connector was wired backwards.

Parameters:
whisker The whisker number to set the sense of.
Sense Either 1 or -1. If 1 the sense is as read from the hardware, if -1 the

sense is reversed

Return: None.

QuitWhiskers()

Description:

Calling this function causes the whisker module to exit. (Ghdlath() , and
hence can be unlinked or restarted with execute). Issuing whisker calls after this will cause
the caller to block forever. Even if the whisker module is restarted, client progmashs
call RelnitWhiskers() again.

Parameters: None.

Return: None.

Yamabico Autonomous Mobile Robot Documentation 81



2.3.6.2 Implementation

The current implementation is just an executable module that runs on the master module.
The library calls communicate with it via message passing, with the exception of
ReadWhisker() andReadRawWhisker() , which just read from an array of values shared
between the whisker module and the clients. The address of this array is passed from the whisker
module to a client wheRelnitWhiskers() is called. The whisker module accesses a
multiplexed Analogue to Digital (A/D) converter via the master module parallel port. The
whiskers themselves are currently just variable rotary potentiometers. The sampling rate is
achieved just by using the timer module functions, and hence two messages are exchanged every
sampling period. For this reason the sampling period should not be set too high or the CPU will
be loaded with message passing between the whisker module and the timet/mddigetiming
method may change in the future.

27 There seems to be a bug in the timer module software where by occasionally it doesn’t reply to a timer request
(wait_timer() never returns). This seems only to show up when messages are sent at a high rate as with the

whisker module.

Yamabico Autonomous Mobile Robot Documentation 82



2.3.7 ROMANCE & RADNET console functions

The ROMANCE and RADNET console functions are used to do Input/Output through
one of the serial ports on each CPU board. The ROMANCE functions are used for the first port
(which is usually connected using a cable to a UNIX host executingptih@nceu program).

The RADNET network functions use the second port and communicate with a UNIX host
running the RADNET software. Ultimately the output goes tadldeon console utility. The
RADNET Host software is documented in a later section.

2.3.7.1 ROMANCE API

write_cons(char *form_str)
write_cons(char *form_str, int data)
write_cons(char *form_str, char *data)

Description:

This function is for output to the@mance console. The function is similar to, but
more restricted than, Cprintf() function. The allowable format specifiers are:

. %c character

. %s C string

. %d integer (decimal)

. %x integer (hexadecimal)

. %b integer (binary)

Parameters:
form_str A format string in theprintf() style, butwrite_cons() only
allowsO or 1 format specifiers in the string.
Return:
Void.

char *read_cons(char *form_str, char *data, int *count)

Description:

This function is for input from theomance console. The function is similar to,
but more restricted than, CGsanf()  function. The allowable format specifiers are:

. %c character
. %s C string
. %d integer (decimal)

Yamabico Autonomous Mobile Robot Documentation 83



. %x integer (hexadecimal)
. %b integer (binary)

Parameters:

form_str A format string in thescanf() style. The format specifiers are
limited to those listed above.

data The address of an appropriate type of variable at which the input will
be stored.

count The address of an integer into which the number of bytes read from the
console will be stored.

Return:

Unknown

2.3.7.2 RADNET Console API

RADNET provides two functions that closely mimic the behaviour of the ROMANCE
functions above. These functions, however, interact with the user viadiken console utility
which may run on any UNIX machine. Tih@dcon utility connects to the RADNET link
server, and hence the robot, via the Internet. For more details see the RADNET documentation
later in this document.

write_port(int Channel, char *form_str)
write_port(int Channel, char *form_str, int data)

Description:
This function is for output to thesmance or RADNET console. The parameters
are similar tawvrite_cons()

Parameters:
Channel One of CONor NET. If CONthe output will go to the romance console,
if NETthe output will go to the RADNET console.
form_str As forwrite_cons()
Return:
Void.

Yamabico Autonomous Mobile Robot Documentation 84



read_port(int Channel, char *form_str, char *data, int *count)

Description:

This function is for input from theomance or RADNET console. The
parameters are similar tead_cons()

Parameters:
Channel One of CONor NET. If CONthe input will come from the romance
console, iNETthe input will come from the RADNET console.
form_str, data, count As forread_cons()
Return:
Void.

2.3.7.3 ROMANCE Implementation

The console functions use ROMANCE to do I/O through the serial port (using the ACIA
device). ROMANCE is implemented as an independent MOSRA process. One function of
ROMANCE is to provide a menu interface via the serial port to the host computer to allow
program upload/download, memory module manipulation and other services. The other function
is to provide the console I/O described here.

The ROMANCE source code is located in théys-kit/mosra/romance
directory. Communication with the user program process is via the MOSRA message passing
facility (see MOSRA API section). The console functions described above just send a MOSRA
message to the ROMANCE process, which has a pre-defined process ID. The receipt of a
message wakes the main loop in the ROMANCE process and it carries out the 1/O via the serial
port. The actual serial I/O is interrupt driven. The ROMANCE process installs an interrupt
handler for the serial port when first started bydtesetup  module.

The write_cons() andread_cons()  function are available to user programs by
linking with theromancelib.| library, hence are implemented in th&#omance/lib
directory (vrite_cons.c andread_cons.c ). These functions simply call the read/write
routines provided in theavritefunc.c and readfunc.c source files. For example,
_cwritech() creates a message of tylESST(standard MOSRA message header type) and
sends it to ROMANCE.

Yamabico Autonomous Mobile Robot Documentation 85



_cwritech(dir,str,count)
char dir;
char *str;
int count;
{
MESST *m;
inti,l,head;

m=(MESST *)malloc(10+l);
m->ms_scid=getpid();
m->ms_leng=l;
m->ms_body[0]=STX;
m->ms_body[1]="W";

for (i=0;i<count;i++) m->ms_body[head+i]=str[i];
/* STXW < data > NULL
if (dir==STDOUT){ m->ms_body[2]=SI; /* STX W Sl <data> SO NULL */

m->ms_body[l-1]=NULL;

m->ms_body[l-2]=SO0;

}
if (send_mess(ROMANCE,m)) return(1); /* send to ROMANCE */

else return(0);

The ROMANCE process source is located in the directdrgmance/target
When ROMANCE receives this message in it's main loop inatiig()
it calls themessage() function to process the message. If, for example, the message indicated
a write pody[1] == ‘W’ ), thenmessage() callswritestr()
the string to the ACIA’s serial port (usimgitech()

2.3.7.4 Directory

|-lib----neemeev |-rels
|-0s9
|
| [-backup
|
romance----| | doc
[-arget—--— | |-common
| [-unixft---|-get
| |-put
| [-work
|
| [-common
|_un|X ---------- |_get
|-put
|-work

function fnain.c ),

which actually outputs

Yamabico Autonomous Mobile Robot Documentation

86



2.4 Networking

The Yamabico Radio Network RADNET is a software system that enables two-way
communication between any number of Yamabico's and host computers. It consists of software
components for both the Robot and host machines on a network. The current implementation
executes the robot software on the master module and communicates over point-to-point radio
modem links connected via the master module serial port. The host side of the link is a UNIX
workstation with the radio modem also connected via a serial port.

The Network APl on the robot side provides user programs, currently under MOSRA,
with services for sending and receiving unreliable datagrams. Datagrams are addressed using IP
numbers, where the robots have special numbers starting at zero, and a port number. Using ports
it is possible to have a large number of independent channels of communication with another
robot or host machine. The API on the host machine is provided by a client link library. This
provides a similar datagram API as available on the robot in addition to functions for directly
accessing Spur locomotion functions remotely and up/downloading OS/9 modules over the link.

User utility programs are provided for convenient interaction and control of the robots
(downloading programs and executing them, etc.). These programs rely on the client library for
communication with the robots.

The following sections document the general RADNET architecture, the user programs,
and the robot and host side client API's.

2.4.1 Architecture

The RADNET software supports multiple robots each with a point-to-point link between
the robot and a UNIX host. The host need not be the same machine for each robot, although if
the host supports multiple serial ports it is possibleotmect multiple radio modems. The host
end of each robot link runs a copy of the RADNET program in the background. This is called
theRADNET link server It manages the raw communication with it's robot over the modem link
and also routes packets betw@hDNET Clientsother RADNET link servers and the robot.

As shown in the figure below there can be any number of RADNET clients running on the
UNIX hosts or PC’s. A client may connect to any RADNET link server and will be able to
communicate with any robot or other client. The link servers manage routing of packets to the
appropriate host for sending to a robot or a client. Note that the client's IP address is the IP
address of the machine on which it is executing. All communication between RADNET link
servers and clients uses BSD UNIX Sockets.

28\ ote that RADNET was developed at Wollongong University and is an independent and unrelated system to the
CARNET networking system developed at Tsukuba University that employs broadcast technology with token

passing.

Yamabico Autonomous Mobile Robot Documentation 87



Ethernet

UNIX Host UNIX Host PC

Client Client Client |Client | Client

P /
/
RADNET §& RADNET I< Client

A 4

Serial
Link
Radio Moden Radio Moden

NETSHELL NETSHELL

- Client
Client :| Client
NETWORK NETWORK
3 k3
NETLINK NETLINK
RADNET Architecture

All the RADNET source code is located in thelys-kit/module/mmW/network
directory. Subdirectories exist for the robot and UNIX sides of the code, and beneath them,
subdirectories for library code, and the different OSI layers, etc.

2.4.2 Network User Utility Programs

This section describes the user utility programs available for interacting with the robots
over the network. These programs are for conveniently uploading, downloading and executing
robot programs from the UNIX host development environment. They also provide other facilities
as described below. Each program uses the UNIX client library for communication with the
robots, and hence when run each program must connect to a RADNET link server. Command
line options allow the server host and robot to be selected.

Yamabico Autonomous Mobile Robot Documentation 88



2.4.2.1 Remote

Theremote program is a menu driven program for interacting remotely with a robot
over the network. The program can be run on any machine on the Internet, provided an
appropriate RADNET server host is specified and the network latency is not tad. high
Command line usage is as follows:

remote [-r <robot> -s <RADNET server host> -dk]
-r RobotNumber (default 0 = FLO)
-s LinkServer_Machine_Host_Name (default terumi)
-dk Don't Spur_servo_free() or us_mask(MASK_ALL) at startup

Pressing ‘h’ for help after the program is running will display the help menu. Facilities are
available for module manipulation, checking memory, module and process status, and for driving
the robot using the numeric keypad.

If the messageRemote: Can't connect to NetShell " is display when the
program is started it means that tdetShell module on the robot could not be contacted.
This indicates either that the robot is turned off, rebooting, the master module CPU is so heavily
loaded it can't reply, or a problem exists with the robot’s networking software or the modem link.
The RADNET link server, however, is operating correctly. Should the message
“OpenConnection(): Can't connect to server. " Be displayed instead, this
indicates that either the specified host has no RADNET link server, or that the server is not
running. In this case it must be started - see the documentatiRA DI E Toelow.

If the program started correctly, and ‘h’ for help is pressed, the menu looks as follows:

** Remote v1.60 **

(Q)uit [ESC] (H)elp

COMMAND: Help

(D)ownload module from UNIX (A)re you there?

Upload module to U(N)IX (C)hange robots
(R)eset robot Sensors (O)ff
(U)nlink module (S)ensors On
(Z2)ero local coords (M)emory Status
(K)ill (ServoFree&SensorsOff)
(P)rocess list (L)ist modules
E(X)ecute module () UNIX command
Robot control:

789 +

\~ A

Direction 4<5>6 Velocity 0

/v \

123 -
(Q)uit [ESC] (H)elp
COMMAND:

29 For example, executingmote on a machine located in Japan and connecting to a robot server in Australia

doesn’t work because the network latency is too high and the NetShell commands timeout.

Yamabico Autonomous Mobile Robot Documentation 89



2.4.2.2 Radcon (RADNET Console)

The RADNET Console utility is for standard 1/0O with the robot. All output written with
the robot API functionvrite_port(NET, ... ) will appear on the RADNET console. Also
any keyboard input toadcon can be read via the robot commaedd_port(NET, ... )
The console also displays upload/download progress indicators and robot status messages. The
status of the robot link is also display when it is lost or re-established. Usage:

radcon [ -r RobotNumber (default 0 = FLO)
-s LinkServer_Machine_Host Name (default terumi) ]

2.4.2.3 DLoad

dload (Download) is a simple utility for downloading an OS/9 module from the host to
the robot, just as themote ‘d’ command. It will overwrite any existing module with the same
name. It's just a convenience utility to save starting and exiéntpte just to download a
module. Usage:

dload [-r <robot> -s <RADNET server host> ] <module file>

2.4.3 The RADNET link server

The RADNET link server is the component of the network system that manages the link
layer and network layer on the UNIX host side. One RADNET link server RBNET
program) must be executing for each robot link. It executes on a host that is physically
connected to a radio modem via the host serial port. Only one server may execute on any single
UNIX hosB0. The server listens in a pre-defined socket for connections from RADNET clients
(on UNIX, Windows '95 or VxWorks). Once a client has established a connection to a server it
may send datagrams to the server and the server will route them to either it's robot, another
server or another client. Clients are able to nominate a number of port numbers on which they
wish to listen. If a datagram packet is received by a server destined for a particular host, a client
executing on the specific host and listening on the appropriate port number will be send the
datagram. If no clients are listening on the specified port on the addressed machine, the packet is
simply discarded. Hence on any one host there should be only a single client listening on any
particular port number. Datagrams are addressed by anmber, Port numbepair. Client
applications need not worry about the interface to a RADNET link server directly as a client API
library is available that abstracts the interaction and it is documented below.

30 This is because the server uses a pre-defined socket on which to listen for client connections. If two servers

were executing on the same host, one would be unable to use the socket.

Yamabico Autonomous Mobile Robot Documentation 90



Theradnet program is invoked from the UNIX command line as follows:
radnet [-p port] [-d] [-b baud]

The options are:

c -p The serial tty on which the radio modem is connected. (dédewitttyb )
e -b The baud rate. (default 9600)
e d Show debugging information. (default off) - This shows a hex dump of

incoming and outgoing packets.

Theradnet program will usually be set to run permanently in the background, and only
need be restarted if the machine is rebooted or it crashes. This can be accomplished by the
following command:

nohup radnet &

In this case all output will be directed to a file (for zsbHup.out ).

2.4.4 Client API - Robot side

The API can be divided into two parts. These correspond to the two layers of the protocol
stack - the network layemétwork module) and the link layemétlink  module). The
datagram services are provided by the network layer. This API provides a facility to send and
receive unreliable datagram packets between any two clients addressed UBingraber and a
Port number. The network layer uses the services provided by the link layer, which are also
directly available via the RawDatagram API which can be used to inject or extract raw packets at
the link layer level. This is usually used only for debugging the networking software.

Yamabico Autonomous Mobile Robot Documentation 91



int SendDatagram(int Dest, int Port, char *Data, int Length,
int BlockingMode)

Description:

This is called to send a datagram packet specified byD#ia and Length
parameters, to a destination client specified bybtbst IP address anéort31 number.

Parameters:
Dest

Port

Data

Length

BlockingMode

Return:

The IP Address of the machine on which the receiving client is
executing. Other robots have special addresses denoted by:

ADDR_ROBOT1, ADDR_ROBOT2 etc32 for robots.

ADDR_VISION - for the vision system.

ADDR_HOST for the host the robot is directly connected to.
The type is an unsigned 4 byte integer, each byte represents a
component of the standard 4 component IP ader®ss.d

The Port number you wish to send the datagram to, in the range
[1..21]. Do not use and special port numbers defined in the
net_usr.h  header.

A pointer to a buffer containing the packet data to be sent.

A count of the number of bytes in the buffer to be sent. All packets
much be of even length.

One of the valueBLOCKINGor NONBLOCKINGIf a packet is send

in blocking mode the call will not return until the packet has been

gueued. This does not guarantee delivery. If the send buffer is full the
call will not return until it has emptied enough to queue the packet. In
nonblocking mode the call will return immediately but the packet may

be discarded if the send buffer is full.

If NONBLOCKING mode returns 0, in BLOCKING mode return O for success.

31 Note that although RADNET uses IP addresses for host addressing, the P& @@P/IP port numbers.

32 These have synonyms for the Wollongong robots whicAB®R_FLCandADDR_JOH

Yamabico Autonomous Mobile Robot Documentation 92



int ReceiveDatagram(int *Src, int Port, char *Data,

Description:

int *Length, int BlockingMode)

This function receives a datagram from the specPied and returns the IP address
of the machine on which the sending client is executin@rin. The received data
packet’s length in bytes is returned.

Parameters:
Src

Port

Data

Length

BlockingMode

Return:

A pointer to a variable that upon return will contain the IP address of
the machine on which the sending client is executing.

The Port number you wish to receive the datagram from, in the range

[1..2"-1].

A pointer to a buffer large enough to contain the packet data to be
received. The length of the buffer should be specified as the initial
value of the variabléength. The packet will be truncated if it is too
large for the buffer.

A pointer to a variable into which the received packet byte count will
be placed. All packets are of even length. The variable should initially
contain the buffer size. The packet will be truncated to this size if it is
too large. The buffer size should also be evedB: Failure to
initialise this variable is a common error and often results in
unpredictable behaviour

One of the valueBLOCKINGor NONBLOCKING If in BLOCKING
mode the call will not return until a packet has been received from the
specifiedPort and read into the buffer. If in NONBLOCKING mode
the call will return immediately. If a packet was available for the port
it will be returned in the buffer, if no packet was available an empty
packet is returned._éngth is set to 0 and the buffer is not written).

On Success returns 0.

Yamabico Autonomous Mobile Robot Documentation 93



int PeekDatagram(int *Src, int Port, char *Data, int *Length,
int BlockingMode)

Description:

This function is identical tRecieveDatagram()  except that the read packet is
not removed from the network receive queue. Hence it may be repeBtskid or
subsequentlfReceive’d

Parameters: As above.

Return: As above.

int SelectPort(int NoPorts, pt_set *PortSet, int TimeOut) 33

Description:

This function allows a process or thread to block while waiting for input from a number of
ports simultaneously. It is similar in concept to the UNBfect()  call but only for input. It
uses a datatypet_set which represents a set of port numbers on which your process wishes to
block. Apt_set is large and so should be used sparingly and always allocated from the heap.
SeePT_ZERO(), PT_SET() , PT_CLR() andPT_ISSET() below?4.

Parameters:

NoPorts The maximum port number used in the PortSet.

PortSet A pointer to apt_set which contains a set of port numbers on which
the caller wishes to wait. On return the set will contain only those
ports on which data is ready to read udRerceiveDatagram() ,
hence the set must be reset on each call.

Timeout The number of 100ths of a s&a after which the call will return if no
ports have data ready for reading. In this case the port set will be
empty and O will be returned.

Return:

The number of ports ready for reading (number of elements in the port set upon
return). If a timeout occurred 0 is returned. A return of -1 indicates an error.

33 As of July/1996 theSelectPort() function was not fully implemented. U$®ekDatagram() on the
relevant ports instead. Use a delay to ensure your thread does not busy-wait poll and tie up the CPU.
34 Note that whilePT_ZERO() is a functionPT_SET() , PT_CLR() andPT_ISSET() are C Macro's defined

in thenet_usr.h  header file.

Yamabico Autonomous Mobile Robot Documentation 94



PT_ZERO(pt_set *PortSet)

Description:
AssignsPortSet to the empty set. That is, clears all elements from the set leaving
it empty.
Parameters:
PortSet A pointer to the port set to be cleared. Note that this call doesn't
allocate storage - you much do this before calling this function.
Return:
None.

PT_SET(int Port, pt_set *PortSet)

Description:
Adds a port to the port set.

Parameters:
PortSet A pointer to the port set.
Port The port number to add to the set.
Return:
None.

PT_CLR(int Port, pt_set *PortSet)

Description:

Removes a port from the port set.

Parameters:
PortSet A pointer to the port set.
Port The port number to remove from the set.
Return:
None.

Yamabico Autonomous Mobile Robot Documentation 95



int PT_ISSET(int Port, pt_set *PortSet)

Description:

Determines if a port is in the port set.

Parameters:
PortSet

Port

Return:

A pointer to the port set.

The port number in which to test membership of the port set.

Returns a boolean valuERUEIf the Port was in thePortSet, FALSE if not.

int PutRawPacket(SHORT protocol, char *Data, int Length,
int BlockingMode)

Description:

This call will insert the specified data packet into the link layer hence bypassing the
network layer. It may be used for testing or for sending packets using a different protocol
than used by the network lay#®r.

Parameters:

protocol

Data
Length

BlockingMode

Return:

Currently one ofPRAW_DGRAMSOCK_DGRAMused for normal
packets by the link layer,PSOCK_STREAM- for future
implementation of stream connectioRKEEP_ALIVE - used by the
link layer to periodically check the modem connection is still available
or a user specified value. Seetle¢_usr.h  header file.

The address of data buffer containlrength bytes to be sent.
The number of bytes from the buffer to send.

As above foilSendDatagram()

Returns 0 for Success, or a non-zero error code.

35 The current implementation of the UNIX host end software will display a hex dump of the any received packet

who's protocol is unknown.

Yamabico Autonomous Mobile Robot Documentation 96



int GetRawPacket(SHORT *protocol, char *Data, int *Length,
int BlockingMode)

Description:

This call will read the next available packet from the link layer receive queue. Note
that if the network layer is running you will not be able to obtain all incoming packets over
the link with this call because you will be competing with the network layer which also
uses this service.

Parameters:

protocol Upon return this will contain the protocol of the read packet as
described above.

Data The address of a buffer large enough to store the incoming packet.

Length The address of an integer into which the number of bytes read from the

link will be stored (the packet size). Initially thizust contain the size
of the buffer. If the packet is larger that this specified size it will be
truncated.

BlockingMode As above foiGetDatagram()

Return:

Returns O for Success, or a non-zero error code.

int PeekRawPacket(SHORT *protocol, char *Data, int *Length,
int BlockingMode)

Description:

This function is identical tRRecieveRawPacket()  except that the read packet
is not removed from the link layer receive queue. Hence it may be repdReeddyl or
subsequentlfReceive’d

Parameters: As Above.

Return: As Above.

Yamabico Autonomous Mobile Robot Documentation 97



2.4.5 Client API - UNIX side

The UNIX side Client API is a set of functions to allow UNIX programs to communicate
among themselves and client programs executing on a number of Yamabico robots connected into
the RADNET network via radio modems. The API is divided into two portions, the
CommunicationAPI and theNetShellAPI. The Communication API provides an unreliable
datagram service and is similar to it's corresponding robot side client APl documented above.
The NetShell API provides additional functions for managing robot software development. The
client APl is available to C or C++ UNIX programs as a link library. Simply include the
client.h header file and link to thelient.o object file.

2.4.5.1 Communication

The API available to UNIX programs for communication with robots and other RADNET
clients is similar, but not identical, to the API available on the robotfside

int OpenConnection(LONG ServerAddr, char *ServerName,
LONG Port)

Description:

Before using theSendDatagram()  or ReceiveDatagram() functions a
client must open a connection to a RADNET link server and establish the Port(s) on which
it wishes to receive datagram®penConnection()  may be called a multiple times to
open connections for receiving datagrams on multiple ports. Each call should be matched
with a correspondin@loseConnection() before the client terminates (or when it no
longer wishes to receive datagrams on the given port). Note that at least one port
connection must be open before callBgndDatagram() - although the port number is
irrelevant. Note also that any given client can only have connectiame RADNET link
server, so all calls t®penConnection()  must specify the same server.

Parameters:

ServerAddr This parameter is used to specify the IP number of the RADNET link
server this client will connect to. If the IP number is unknown, set this
parameter to 0 and specify the string host nam&darnverName
instead.

ServerName This parameter specifies the host name of the RADNET link server this
client will connect to. This should be set to NULL if the IP address
was specified irserverAddr instead.

36 The Communication portion of the client API is also available under the VxWorks operating system (used in the

Fujitsu Vision system at the ANU Canberra).

Yamabico Autonomous Mobile Robot Documentation 98



Port The Port number on which you wish to receive datagrams, in the range
[1..21]. Do not use and special port numbers defined in the
net_usr.h  header.

Return:

-1 on error, else the UNIX file descriptor (socket number) associated with this
connection.

int CloseConnection(int Port)

Description:

This is called to close a connection opened @plenConnection()

Parameters:

Port The Port number that was passed to the matching
OpenConnection()  call.

Return:

0 for success, or -1 if the specifiddrt was never opened (or already closed).

Yamabico Autonomous Mobile Robot Documentation 99



int SendDatagram(LONG Dest, LONG Port, void *Data, int Length)

Description:

This is called to send a datagram packet specified byD#ia and Length
parameters, to a destination client specified byDibst IP address andort number.

Parameters:
Dest The IP Address of the machine on which the receiving client is
executing. Robots have special addresses denoted by:
ADDR_ROBOT1, ADDR_ROBOT2 etc. for robots.
ADDR_VISION - for the vision system.
ADDR_HOST for the host the robot is directly connected to.
The type is an unsigned 4 byte integer, each byte represents a
component of the standard 4 component IP ader®ss.d
Port The Port number you wish to send the datagram to, in the range
[1..21]. Do not use and special port numbers defined in the
net_usr.h  header.
Data A pointer to a buffer containing the packet data to be sent.
Length A count of the number of bytes in the buffer to be sent. All packets
much be of even length.
Return:

-1 on error, or O for success.

int ReceiveDatagram(LONG *Src, LONG Port, void *Data,
int *Length, long timeout_sec=0,
long timeout_usec=0)

Description:

This function receives a datagram from the specPied and returns the IP address
of the machine on which the sending client is executin@rin. The received data
packet’'s length in bytes is returned. It is not possible to receive data on a Port that has not
been previously opened witbpenConnection() . This call will block until data on
the specified port is available or the timeout period elapses (if non-zero).

Parameters:

Src A pointer to a variable that upon return will contain the IP address of
the machine on which the sending client is executing.

Yamabico Autonomous Mobile Robot Documentation 100



Port The Port number you wish to receive the datagram from, in the range

[1..2"-1].

Data A pointer to a buffer large enough to contain the packet data to be
received. The length of the buffer should be specified as the initial
value of the variabléength. The packet will be truncated if it is too
large for the buffer.

Length A pointer to a variable into which the received packet byte count will
be placed. All packets are of even length. The variable should initially
contain the buffer size. The packet will be truncated to this size if it is
too large. The buffer size should also be evedB: Failure to
initialise this variable is a common error and often results in
unpredictable behaviour

timeout_sec 37 A timeout period in seconds, upon which the call will return if no data
is available. If bothimeout_sec  andtimeout_usec are O the
call will block indefinitely or until data becomes available.

timeout_usec A timeout period in micro-seconds. The call will return after the
specified seconds and micro-seconds if no data is available. If both
timeout_sec and timeout_usec are 0 the call will block
indefinitely or until data becomes available.

Return:

0 for success, -1 on error or 1 if a timeout occurred.

37 The timeout parameters are optional under C++ on UNIX, but the C version of the API under VxWorks requires

0’s be supplied if no timeout period is required.

Yamabico Autonomous Mobile Robot Documentation 101



int PortFd(LONG Port)

Description:

This function can be used to obtain the UNIX file descriptor (socket number)
associated with the specified Port. Since the current implementation of the API provides
no SelectPort() call, the client can use this function if waiting on multiple ports is
required. The UNIX select() system call can be used on the file descriptors returned as an
alternative to polling the ports witRReceiveDatagram() and a timeout. The
OpenConnection()  function also returns such a file descriptor.

Parameters:

Port The Port number already opened usdgenConnection()

Return:

-1 on error (if thdPort was not open), or the UNIX file descriptor of the associated
socket.

Yamabico Autonomous Mobile Robot Documentation 102



2.4.5.2 NetShell

This portion of the API provides services that are ultimately carried out byat®&hell
module on the Yamabico. Services such as upload and download of executable and data
modules, execution and unlinking of modules. A list of modules in the robot's memory as well as
memory status and the process table can be output to standard output. It also provides the ability
to execute angpurlocomotion command or ultrasonic sensor command directly from the client
program. These services are also used by the user utility progeamage , radcon and
dload , which are documented above.

int SetCurrentRobot(int Address)

Description:

This functionmust be called before anMetShellcommands are issued to specify
which robot subsequent commands will be addressed to. It may be called any number of

times to change the currently addressed robot. Before client termination,
CloseConnection() should be called (only once eversi#tCurrentRobot() is
called multiple times). Pas3loseConnection() the port number returned by this
function.

Parameters:

Address The @pecia) IP address of the robot (e. ADDR_ROBOTIlor

ADDR_FLOADDR_JOHetc.). Note that if the address specified is
not a robot, the NetShell commands will block for ever awaiting a reply
(other clients usually don't listen for NetShell commands on the
NetShellport).

Return:

-1 if a connection to the RADNET link server could not be established, or the
NetShell port number otherwise. This port number should be passed to
CloseConnection()

Yamabico Autonomous Mobile Robot Documentation 103



SetServer(char *ServerHostName)

Description:

This function can be used to change the default RADNET link servéB.hdistmay
be called before a call ®etCurrentRobot()

Parameters:

ServerHostName A C string containing the UNIX host name of the machine which
is executing a RADNET link server.

Return: None.

FlushinputQueue()

Description:

This is used to discard any packets received back from NetShell. Some times, due
to fact that datagrams are unreliable, or if the robot CPU is heavily loaded, the NetShell
commands issued from the client timeout. If after the timeout a reply is finally sent, it will
be stay in the input queue and will cause the communication to be out of synchronisation.
If strange behaviour results when using the NetShell API - try using this call, and check for
robot CPU overload or other factors that could cause large network latency.

Parameters: None.

Return: None.

38 please NoteThe current default is the Wollongong machine “terumi.cs.uow.edu.au”. If you are at a geographic
location other than Wollongong and forget to @&éitServer() before SetCurrentRobot() , the software
will quite happily connect téerumi and issue commands to the Wollongong robots (if they happen to be powered

on). If this is not what was intended you may be left wondering where the commands are going!

Yamabico Autonomous Mobile Robot Documentation 104



int NetShellAreYouThere(char *RobotName)

Description:

Check if theNetShell module on the robot can be contacted, hence if the link is
operational and all networking software is running. This function can also be used just to
retrieve the ASCII string name of the robot.

Parameters:

RobotName A pointer to a string buffer that will hold the name of the robot on
return if NetShell could be contacted. The buffer should be at least 32
characters.

Return:

The IP address of the robot, or 0 if not contackiR NONE

int MOSRA_Execute(char *ModuleName, int pid=0,
int priority=0x70)
Description:
Starts the execution of a MOSRA executable module on the robot.
Parameters:

ModuleName The module name on the robot to execute.

pid Preferred Process ID (PID), or O for any. (omit under C++ for any)

priority The preferred process priority, 0x70 is normal (omit under C++ for the
default 0x70).

Return:

The PID of the started module, or 0 if not found.

Yamabico Autonomous Mobile Robot Documentation 105



int MOSRA_Upload(char *FileName)

Description:

Uploads an OS/9 robot module from the robot to the host on which the client is

executing. The module will be placed in a file in the current directory with the same name
as the robot module.

Parameters:

FileName The module name of an OS/9 executable or data module currently on
the robot. The upload progress will be displayed on standard output
(and sent toadcon ).

Return:

The size of the module in bytes, or 0 if the module was not found or a network error
occurred during the upload (which causes an abort).

MOSRA_Download(char *FileName)

Description:

Downloads an OS/9 robot module from the host on which the client is executing to
the robot. The module file should be in the current directory.

Parameters:

FileName The UNIX file name of a valid OS/9 robot module. This shau@IT
include the path name (change directory first if necessary). This hame
will be the module name on the robot after a successful download. The

download progress will be displayed on standard output (and sent to
radcon ).

Return: None.

Yamabico Autonomous Mobile Robot Documentation 106



MOSRA_Reset()

Description:

This function causes a software reset of the master module on the robot. After
issuing this command the network connection to the robot will be lost until it finishes
rebooting.

Parameters: None.

Return: None.

int MOSRA_Unlink(char *ModuleName, int ModNum)

Description:

This removes the specified robot module from the robot’s memory. The module
may be specified by nanee number.

Parameters:

ModuleName  The module name of an OS/9 executable or data module currently on
the robot. Set this tNULL if specifying by module number instead.

ModNum The module number of an OS/9 executable or data module currently on
the robot. Set this to 0 if specifying by module name instead.

Return:

TRUE if module found and unlinked or FALSE if not found.

MOSRA_ModuleList()

Description:

Display the list of OS/9 memory modules currently in the robots memory. The list
is displayed as a formatted output on standard output.

Parameters: None.

Return: None.

Yamabico Autonomous Mobile Robot Documentation 107



MOSRA_ProcessList()

Description:

Display the list of currently executing processes or threads on the robot. The list is
displayed as a formatted output on standard output. The output also shows PID numbers,
process status and the message source process or semaphore a process is waiting on.

Parameters: None.

Return: None.

MOSRA_MemStats()

Description:

Display the robot memory status (free memory and number of fragments). The
status is displayed as a formatted output on standard output.

Parameters: None.

Return: None.

int us_dist(int dir, USDistData *DistData = NULL)

Description:

Obtains the current distance reading of one or all of the ultrasonic sensors.
Supports the old 4 sensor HiSonic Yamabico’s and the new 16 sensor HiSonic ring

Yamabico’'s®.

Parameters:

dir One ofUS_FRONTUS_BACKUS_ LEFT, orUS_RIGHTfor the 16
and 4 sensor cases, or an integer sensor number [0...15] for the 16
Sensor ring.

DistData If a pointer to a pre-allocatedSDistData struct is supplied, the
current distance reading from all 16 sensors is returned in the structure.
This only applies to the 16 sensor ring, pass NULL for the 4 sensor
case or if the data is not required. Th®DistData struct is defined
in theclient.h header file.

Return:

US_NOECH® no obstacle was detected in front of the nominated sensor, or the
range reading in cm.

39 Currently only the 16 sensor ring developed at Wollongong is supported, the 12 sensor ring developed at

Tsukuba is not (sorry).

Yamabico Autonomous Mobile Robot Documentation 108



us_mask(int mask_pattern)

Description:

Sets the ultrasonic mask pattern. For a 4 sensor HiSonic Yamabico the sensors can
be selectively enabled. If using a 16 sensor ring, only turn all the sensors on or off.

Parameters:

mask_pattern  One ofUS_FMASKUS BMASKUS LMASKorUS_ RMASKor the
4 sensor case, ddS_NOMASKo enable all orUS_MASKALLto
diable all for the 4 or 16 sensor case.

Return: None.

Spur locomotion commands
Description:

All Spur locomotion commands that are available to robot programs via the
spurlib.| library are also available to UNIX clients. Refer to the Spur documentation,
since all function prototypes and behaviour are identical. Note that issuing a Spur
command from the client is significantly slower than directly from the robot. Hence this
facility should only be used to issue interactive commands, for rapid prototyping of
programs, or for testing.

Parameters:

Identical to those described in the Spur documentation.

Return:

Identical to those described in the Spur documentation.

Yamabico Autonomous Mobile Robot Documentation 109



2.5 Inter-module Communication and the Yamabico Bus

The Yamabico Bus is a back plane bus that serves as the communication medium between
modules. The architecture is shown in the figure in section 2.1. Communication is between the
Master and function modules, never between function modules. The Yamabico Bus hardware is
explained in detail in the hardware section and also in [Yam95].

Each of the function modules contains a small amount (1Kbyte) of Dual Port
Memory (DPM) that can be addressed directly by the local CPU, and independently by the
Master Module CPU over the Yamabico Bus. This shared memory is the basis for
communication between the master and function modules. The philosophy of the Yamabico
architecture is that the master module directs the function modules by issuing commands and then
monitors their progress or state. In accordance with this there are two mechanisms for
communication via the DPM. The first mechanism is for sending a command from the master
module to the function module with arguments (upto 128 bytes). Thedsawchanism involves
the concept of &tate Information Monitoring Pan€éSIMP). The function modules periodically
update a representation of their current state in their respective SIMP’s. The user program
executing on the master module is then free to interrogate the current state of any function
module asynchronously.

Each of the function modules is memory mapped to a specified fixed address in the
master module. The address is configurable using DIP switches on the function module boards.
The addresses of the standard function modules in the master's address space is defined in the file
..lys-kit‘module/DPM/DPM.h and also in [Yam95]. The DPM hardware and protocol
is explained in the Hardware documentation folder [Yam95]. The software protocol is reiterated
below for completeness. The DPM has two sides, left and right. If data is written into the status
register on one side an interrupt signal is generated on the other side. The interrupt is not cleared
until the status register on the other side is read. The left side is the function module side and the
right side is the master module side. Currently interrupts to the master module are ignored. The
DPM is organised as follows:

DPM Address
Offset Usage

$000-$1FF  |LtoR SIMP -wt_SIP16() andrd_SIP16()

$200-$2FF Not used RtoL SIMP)

$300-$37F RtoL Data area for command communicatic@end_com16()

$380-$3FD LtoR Data for command replysend_reply16() (rarely used

$3FE RtoL Status registeiir{terrupt occurs on left side

$3FF LtoR Status registeiir{terrupt occurs on right sige

Dual Port Memory Usage Map

Yamabico Autonomous Mobile Robot Documentation 110



The DPM has two sides, Left and Right. If data is written into the status register on one
side an interrupt signal is generated on the other side. The interrupt is not cleared until the status
register on the other side is read. The left side is the function module side and the right side is the
master module side. Currently interrupts to the master module are ignored. The most significant
bit (MSB) of the last two addresses in the DPM ($3FE and $3FF) are interrupt flags for the
Right-to-Left and Left-to-Right sides respectively. The lower 7 bits of these registers is used as a
byte count for the command communication, since no interrupts are required for the SIMP
communication model.

Interrupt
Flag

$3FE D7 D6 DO

or INT | Byte Count

$3FF Command Length
Structure of the status register

If the master module wishes to send a command to a function module it uses the
send_coml16(module,argc,argv) function. This function and the other functions
discussed below are implemented in the source directys+kit/module/DPM . The
protocol used by this function is as follows:

read RtoL-SR

IRQ-flag == 0?
N

y Yes
[ write RtoL-DR |
v
write RtoL-SR
=(IRQ-flag=1
& Byte count)

Protocol for Master to Function module command send.

The writing into the RtoL status register triggers an interrupt on the function module,
which is vectored to an interrupt routine that reads the command and clears the status register
before processing the command.

START
read RtoL-SR
A4
copy RtoL-DR

to command buf.
1

A 4
[ write RtoL-SR = 0 |

END

Protocol for Function module interrupt routine.

Yamabico Autonomous Mobile Robot Documentation 111



If function module code wishes to write into it's SIMP it useswheSIP16()  function.
This may trigger an interrupt on the master module CPU, but it is usually ié®orEde master
module may examine the current state of a function module at any time by reading the DPM
using therd_SIP16() function.

2.5.1 Case study - The Locomotion Module

This section describes the implementation of communication between the master module
and the locomotion module specifically. Some background knowledge from the locomotion
module implementation is assumed.

The software that executes on the locomotion module is n&mas User programs
executing on the master module make calls to a number of available Spur commands. Refer to
the Spur API section for a list of these calls. For the remainder of this discussion just two Spur
commands will be considered. Namely 8rur_line_GL() andSpur_get _pos_GL()
functions. These are representative of Spur commands because they represent to two
communication mechanisms discussed above. The Spur_line_GL command sends a command to
the locomotion module but returns no information to the user program, while the Spur_get _pos
command requests information from the SIMP without effecting Spur’s current state.

The Spur source code is located in the directafys-kit/module/Spur-16
When a user program on the master module callSpe line_GL() function it is calling a
stub function that is statically linked with the user program at compile time. The implementation
is in the Spurlib.| library. The source for this stub function is in tliie source
directory and looks as follows:
_line_GL(x,y,th)

int x,y,th;

{
comma[0] = Spur_LINE_GL,;
comma[l] = x<<8;
comma[2] = y<<8;

comma|3] = th*IN_DEGREE;
send_com16(DPM_ADDR,16,comma);
count_msec(10);

Each of the Spur command has an associated humeric command code. These are defined
in the../defs/command.h header file. In this case the code is placing the command code
and required arguments into an arcaynma(] . The code then invokes teend_com16()
function discussed above to write the 16 bytes of data (4 long words) into the locomotion DPM,
hence causing an interrupt on the locomotion module board. The header file defiiesADDR
as the base address for the locomotion module’s DPM. This is typical of the implementation of
command type Spur functions.

Next, the interrupt on the locomotion module is vectored to the following interrupt service
routine (./module/dpmirg.c ).

400n some Yamabico Robots this interrupt line on the Yamabico Bus Il has been cut.

Yamabico Autonomous Mobile Robot Documentation 112



dpmirq()
{

int leng;
char c;

¢ = dpm->mast_csr,
leng = c;

leng &= 0X007F;
rd_dr(leng);

com_ana();

In this case the dpm variable is an instance of the strucipme str defined in
../DPM/DPM.h . This structure has members corresponding to the address usage map in the
table above. Thmast_csr member is the master to function module status register. The code
extracts the number of bytes in the sent command and thendcallg)  with the length. The
rd_dr() function read the specified number of data bytes from the DPM intothenand[]
array. Next,dpmirq() callscom_ana() (command analyse). Thmm_ana() source
looks as follows:

com_ana()

switch(command[0]) {

case Spur_LINE_GL: line_GL_com(); break;
case Spur_LINE_LC: line_LC_com(); break;
case Spur_LINE_FS: line_FS_com(); break;
case Spur_ARC_C_GL: arc_c_GL_com(); break;
case Spur_ARC_C_LC: arc_c_LC_com(); break;
.... case Spur_SET_GL_ON_GL: set_GL_on_GL_com(); break;

default: break;

clear_sr();

Which clearly calls théine_GL_com()  function in the case of the Spur_LINE_GL
command. This function processes the new trajectory command and then returns. Next the
com_ana() function callsclear_sr() , Which simply clears the status register. This clears
the interrupt and also indicates to the master modséaisl_com16() function that the DPM
is no longer busy and may be written into again.

The Spur software maintains a current state or mode at all times. The commands from the
master module simply modify this mode hence changing the tracking behaviour. The mode is
maintained in themode variable. The implementation éihe_GL_com() is as follows
(../module/command_line.c ):

Yamabico Autonomous Mobile Robot Documentation 113



line_GL_com()
int temp,x1,yl,thl;

temp = command[3] - lo_th_org_in;

thl = mul444(temp,DELTA_T);

xI = command[1] - lo_x_org;

yl = command[2] - lo_y_org;
trans_cood(xl,yl,lo_th_org,&xl,&yl);
cmode.para.line_para.x_org = xI;
cmode.para.line_para.y_org =yl;
cmode.para.line_para.th_org = cal_ang(thl);
cmode.mode = LINE_MODE;

The main thing to notice here is that the function uses the arguments supplied in the
command[] array and changes the current modmdde) variable. This concludes the
processing that occurs as a result of the DPM interrupt.

The main loop of the Spur software uses the current mode to adjust the tracking and
control the motor hardware using feedback from the wheel shaft encoders. The Spur software is
driven by hardware interrupts every 5ms which are vectored tanihe() service routine in
../module/timirqg.c . This in turn callsfb_ctl() which calls cal_r_vel() to
calculate the robot velocity and also thede_ctl()  function which does a switch statement
based on the current modadde_ctl.c ):

mode_ctl()

if(cmode.mode == EXP_MODE) do_exp();
if(cmode.mode == LINE_MODE) do_line_track();
if(cmode.mode == STOP_MODE) do_stop();
if(cmode.mode == ACCEL_MODE) do_accel();
if(cmode.mode == CIRCLE_MODE) do_circle_track();

}

Which in the case of line tracking mode calts _line_track() which implements
the line tracking algorithm. Looking back tfo_ctl() which, as mentioned, calls
cal_r_vel() which calculates the robot’s velocity:
cal_r_vel()

register int temp;

short *data_ptr;

w_vel[M_RT] = cnt_var[M_RT]*INV_VELOCITY;
w_vel[M_LT] = cnt_var[M_LT]*INV_VELOCITY;

"“gl_th = cal_ang(lo_th_org + lo_th);

if(w_flag == 0) {
wt_SIP16((int)(dpm)+0x00,4,&r_vel);  /* write to SIP */
wt_SIP16((int)(dpm)+0x10,4,&r_angv);

else if(w_flag == 1) {
wt_SIP16((int)(dpm)+0x20,4,&l0_X);
wt_SIP16((int)(dpm)+0x30,4,&l0_y);
wt_SIP16((int)(dpm)+0x40,4,&l0_th);

else if(w_flag == 2) {
wt_SIP16((int)(dpm)+0x50,4,&gl_X);
wt_SIP16((int)(dpm)+0x60,4,&gl_y);
wt_SIP16((int)(dpm)+0x70,4,&gl_th);

if(++w_flag == 3) w_flag = 0;

Yamabico Autonomous Mobile Robot Documentation 114



This clearly calls thevt_SIP16() function to write the current state of the position and
velocity variable into the DPM. This data will then become available to the master module to
read. Hence the SIMP is updated every 5ms.

Turning back to the master module, if we look at the implementation of the library stub for
theSpur_get pos GL()  function we find it simply uses thid_SIP16()  function to read
the current values from the DPM.
_get_pos_GL(x,y,th)
int *x,*y,*th;
int xx,yy,thth;

rd_SIP16(DPM_ADDR+0x50,4,&xXx);
rd_SIP16(DPM_ADDR+0x60,4,&yy);
rd_SIP16(DPM_ADDR+0x70,4,&thth);

*X = XX>>8;
*y = yy>>8;
*th = thth/ DEGREE;

In conclusion, this model of communication between the locomotion and master module is
typical of other functions modules. For example the HiSonic ultrasonic moduledu§#® ()
to retrieve the latest ultrasonic distance reading and sesed com() to send the mask
commands to the HiSonic module.

Yamabico Autonomous Mobile Robot Documentation 115



2.6 Software Development

Section 2.5.1 describes how to develop user programs on a UNIX host, compile them,
debug them, and download them to a Yamabico robot. The robot simulators are also described.
Section 2.5.2 describes how to compile MOSRA and function module implementation code and
create ROM files for use with an EPROM programmer.

2.6.1 User program development

The sections to follow are:

» Compilation - Compiling Robol/0 and C programs

* Romance - Downloading and executing code on a robot

* Simulation - Using the (M)AMROS and Marvin robot simulators

» Tools - Other tools and utilities for program development

» Environment - The required UNIX host environment for the development
software

2.6.1.1 Compilation

To compile aRobol/0Oor C program type the following from the directory containing the
source file. This will use th#licroware 68000 C Cross compiler, hence yoill weed to
executaobocc from a Sun3 UNIX machirfé.

robocc -ymbc myprg .rb0
or
mcc myprg.c

This will produce a file calleanyprg. This file can then be downloaded to the robot
using theomanceu program described below.

41n the Wollongong Laboratory use the ‘Kanako’ machine.

Yamabico Autonomous Mobile Robot Documentation 116



2.6.1.1.1 Example programs

Example source code Robol/0and C can be found in the directory:
.Jys-kit’lydemo

Some of the examples are:

e square.c - a naive program that drives the robot in a square (aff)ost
* square.rb0 - aRobol/Oprogram to drive the robot in a square.
« avoid.rb0 - A very simple obstacle avoidance demo.
Can avoid a cardboard box for example.
» UScheck.c - Displays the ultrasonic sensor distances every second.

2.6.1.1.2 Robocc & mcc

Robocc is aRobol/0to C source translator and compiler driver. After translating your
myprg.rb0  file into C (myprg.c ) it invokesmcc. Themcc driver invokes the following
programs to compile and link the code.

* cc68- Compiler driver (compile only - no linking)

* cpp - C preprocessor

» c68 - C compiler

* 068 - Optimiser

* 168 - Produces OS/9 relocatable object files (.r files)
* mi68 - Linker (Produces the final OS/9 object for the robot)

2.6.1.2 Romance

The romance software (RObot and MAN’s communicating environment) is used to
interface the UNIX host with the robot. Hence romance consists of two parts - the UNIX side
and the MOSRA (robot) side. The standatdrtup  module started by MOSRA on robot
power-on automatically starts the romance module on the robot. The UNIX side can be started
as follows.

romanceu -p  serialdevice

Where serialdevice is the UNIX serial port device that is plugged into the robot’s serial
port. For example:

romanceu -p /dev/ttya

42The program waits until the robot has traversed the full distance of one side of the square before changing the

tracking to a line at $for the next side. Hence the robot will overshoot on the corners.

Yamabico Autonomous Mobile Robot Documentation 117



The MOSRA side provides some interactive commands for manipulating and
downloading/uploading object files to/from the robot. It displays the following menu when
started:

RObot and MANs' Communicating Environment
ROMANCE ver 1.5a

-

: Module directory List

P : Process information

. Interrupt table information

S : free memory Status

H : Help

B : Bye 'kill ROMANCE on Yamabico'
U : Unlink module (name)
X
D

: eXecute process (name)
format := X <module name> [<pid>] [<prio>]
: Dump memory
format := D <s_adrs> [<count>]
F : Fill memory by short
format := F <s_adr> <e_adr> <data>
W : Write memory by short
format := W <s_adr> ( back:"V',skip:CR,end:".")
FTF9 : File Transfer from OS9 (F9)
FTTO : File Transferto OS9 (T9)
FTFU : File Transfer from UNIX (FU)
FTTU : File Transfer to  UNIX (TU)
format := FT** <module name>
SM : Send Massage
R : Reset

*

So, for example to download your myprg object file to the robot and execute it you would
type (* is the prompt):

* fu myprg
* X myprg

If you used thel*’ command to list the current OS/9 memory modules in RAM you would
see a module nameayprg .

To quit theromanceu program on UNIX typ€€TRL-C and then presQ.

2.6.1.3 Simulation

During the development of robot programs it is inefficient to run them over and over on the
robot for testing their behaviour. A simulation system provides a powerful alternative allowing
robot programs to be validated with a much smaller turn around time and without utilising a
robot. The following sections describe the AMROS and Marvin simulators. The multiple robot
version of AMROS called MAMROS is also mentioned.

2.6.1.3.1 AMROS

The AMROS Autonomous Mobile RObot Simuldtosimulator was written in the
laboratory in Tsukuba, Japan. It simulates robot programs written in Robol/0 only, not C. It
also assumes that only one user robot program is executing, hence the MOSRA process creation

Yamabico Autonomous Mobile Robot Documentation 118



calls cannot be used. It also assumes a Robol/0 WAIT loop executes every 50ms. The robot
program is compiled to run as a native process on the UNIX host. So the simulation is not quite
realistic. AMROS still provides a good idea of a robot program's behaviour. [If your program
fails on AMROS it will surely fail on the real robot, but if it performs correctly on AMROS it
may perform correctly on the robot.

AMROS has also been extended to simulate Multiple robots. For information on Multiple
AMROS (MAMROS) refer to [Naum93].

Compiling
To compile your Robol/0 program for use with AMROS you need to use a UNIX host that
has the GNU gcc compiler instalféd Type the following:

robocc -sim myprg .rb0

This will compile the source program and produce an executable in your directory called
a.out . This executable includes the AMROS program and your robot program linked together.
Ensure your X Window®ISPLAY variable is set and executieout to run the simulation.

The simulator also has the ability to read in map files to represent the environment around the
robot. These arm files and are described in the following section. For example:

a.out -vm roboken91.vm

Would start AMROS with a map of Tsukuba's Roboken Laboratory as it was in 1991.
This assumes the map file is in the current directory. A full path may be specified.

Map files

The map files represent the environment as a simple 2D line drawing. The map can also
store information about the surface reflectivity for the ultrasonic sensors. The 2D line drawings
can be converted from thieterviews 3.1 IDrawdrawing program files into map files using the
utility id2vm . The format of vm map files is detailed in an appendix.

2.6.1.3.2 Marvin

The Marvin Multiple Autonomous Robot Virtual eNvironmesimulator allows the
simulation of multiple Yamabico robot in realistic simulation time. It is modular in construction
so that sensor and actuator simulation can be added incrementally.

Marvin is still under @velopment in the Wollongong LaboratoryRefer toMarvin
documentation.

43in the Wollongong laboratory use the ‘Terumi' machine.

Yamabico Autonomous Mobile Robot Documentation 119



2.6.1.4 Tools

2.6.1.4.1 Robocon

Robocon is a utility to allow the graphical editing Rbbol/O programs. It displays a
graphical representation of the Robol/0 action states and allows them to be manipulated using the
mouse and menu’s.

It is invoked as follow&*:
robocon myprg.rb0

Note that robocon works by embedding information as comments into the Robol/0O source
code. Hence you should not edit these comments directly. Also the Robol/0 program must have
been initially created with robocon, otherwise the existing action modes will all be placed at the
same default location on the robocon display when robocon is used for the first time.

2.6.1.4.2 Roboemon

To be completed.

2.6.1.4.3 Robotra

To be completed.

2.6.1.5 Environment

This section details the environment that must be present on the UNIX host for the
software development tools to work correctly. This includes the appropriate installation
directories, necessary symbolic links, and environment variables.

To be completed.

44 the Wollongong laboratory use the ‘Terumi’ machine.

Yamabico Autonomous Mobile Robot Documentation 120



2.6.2 Building the Yamabico software

2.6.2.1 Compiling the MOSRA Kernel

To compile the MOSRA kernel for the master module or a function module follow these
steps:

1) Edit both the fles  Config.h and Config.a in the
..Jlys-kit/mosra/config directory. Just un-comment the line for the module
you wish to build.

2) Change to the ../ys-kit/mosra/kernel directory and type:
make -f Makefile.sun all

This produces a file calledosra.rom in the../kernel/objs directory. It consists
of some boot code to get the board started and an OS/9 format object modulmaatza8k
which is the kernel code. Since the 68000 CPU requires the start of execution vector to in low
memory and the Yamabico ROM’s typically map into higher memory, the boards contain a
circuit that temporarily maps the ROM to address 0 upon reset. $odhecode contains the
initial execution address. Thmosra.rom file is the minimum required to make a ROM to
execute MOSRA. When started MOSRA will look for a module nastexdup , and if found
will mfork() it. Typically startup  will fork any required modules and then exit (with
death() ).

2.6.2.2 Making a Master Module ROM image

A simple master module ROM image would consist of the MOSRA kernel image, a startup
module whichmfork() ’'s TIMER and ROMANCEthe timer module and theomance
module. Other modules may be included in the ROM image as desired. Because MOSRA
locates the memory module’s by searching memory for them (they begin with a special magic
number $4afc), modules may be added to the ROM by simple concatenation. There are a number
of different master module configurations represented by subdirectories  of
..Jlys-kit/module beginning withmm Suppose we wish to builbm¥. Follow these
steps:

1) Build the MOSRA kernel as described in the last section, remembering to configure for
the required master module.

2) Change to the ../ys-kit‘/module/mmwW directory and  type:
make -f Makefile.sun all

45 The standard master module used by the typical Yamabico is mmKEI. mmW is a modification of mmKEI used

in Wollongong that adds the Radio Modem Network (RAD NET) and some minor kernel modifications.

Yamabico Autonomous Mobile Robot Documentation 121



3) Change to the./ys-kit/module/mmW/rom directory and typecp.mosra
This copies the MOSRA kernel image built in step 1 andah®nce module into the
file mosra.mmw

4) Typemake.rom

This copies thanosra.mmW, startup module, network module, andiimer
module into the final ROM image fitkm.mmwW

Next the ROM imageom.mmWcan be programmed using a ROM programmer. Note
that since the ROM is built for a 68000 CPU which has a 16Bit data bus, the ROb w
16bits wide. This means that the computer driving a ROM programmer must interpret the image
as a stream of 16bit words (pairs of bytes). So the CPU of the computer driving the ROM
programmer must be of the same endian as the 68000 or the ROM image file must have the
endian reversed by swapping byte pairs (for example if the ROM programmer was connected to
an Intel 80x86 based computer).

2.6.2.3 Compiling function module code

To be completed. Similar to above, but build an appropriate MOSRA kernel first, then
compile the function module code and build a ROM image.

2.6.2.4 Changing robot library code

All functions available to user robot programs come from a set of link libraries that are
linked with the final OS/9 executable module after compilation. In many cases these are simple
stubs that communicate with a function module via DPM or cauBRAP to the kernel (for
system calls). The link libraries can be found in thkcal/os9/yamabico/lib
directory. Some of these libraries are concatenations of smaller libraries for specific parts of the
API. OS/9 library modules may be simply concatenated to form larger libraries (using the UNIX
cat command for example).

The procedure for updating or modifying a library function is best illustrated with an
example. The example will show how to modify tne dist() command that obtains a
distance range reading from an ultrasonic sensor.

The implementation of the HiSonic library code can be found in the directgsy
kit/module/HiSonic/lib . The function we wish to modify is in the files_dist.c
Suppose we have modified the function, now from the directory re-compile to generate the new
libSONic.l link library by using the commanaake -f Makefile.sun . Once this is
complete change into the directarjys-kit/ground/install and typemakelib to
execute thenakelib  script file. This script concatenates all the link libraries from the various
module directories into thgmbclib.| link library that is linked into user programs from the
lib directory. If you wish to actually add another link library to this, modify the script. This is

Yamabico Autonomous Mobile Robot Documentation 122



not necessary for this example. This takes care of the modification tastluist()
implementation, and may be all you wished to do.

If in addition to change the implementation you also wished to add some extra definitions
or declarations that the user programs will require, you will also need to update the
HiSonic_usr.h header file that is included into user programs fromdéfs directory

(../local/os9/yamabico/defs/ymbc ). You shouldhot edit this file directly as there
are two copies of these header files. The original source is usually kept in the defdule
directory. Change into the directaryys-kit/module/HiSonic/defs where you will

find the correcHiSonic_usr.h header to edit. Now this modified header should be updated
into the OS/9 defs directory. This is also achieved using a script from the
..Jlys-kit/ground/install directory as with updating the library. Change to this
directory and execute thmakedefs script. This will copy all the header files from their
respective moduldefs directories into the OS/@efs directory. That completes necessary the
changes. Of course user programs will need to be re-compiled and re-linked to use the updated
version of the library function.

Yamabico Autonomous Mobile Robot Documentation 123



2.7 Implementation of a Robot Simulator

This section discusses the implementation of AMROSand Marvin robot simulators.
Specifically what follows is a brief overview and comparison of how the roination module
andmaster moduleode interacts in three contextsy@amabicorobot, theAMROSsimulator and
the Marvin simulator. Then some aspects of the implementation of AMROS and Marvin are
discussed.

2.7.1 Overview of Yamabico architecture

The Yamabico robots consist of a collection of single board computers interconnected by a
bus (the Yamabico Il bus). One of the CPU boards is nameandister moduleand it
conceptually directs the functions of the remainingction modules The function modules
typically implement the function of a particular sensor or actuator system, while the master
module executes user level code to implement the higher level behaviour of the robot.

On the Yamabico robots, each of the module boards runs an operating system called
MOSRA The user programs that run on the master module have an number of API sets available
to them. Specifically, the MOSRA system call API, which is implemented by linking stub
routines with the user code, which cause a software TRAP #0 which is then vectored to the
MOSRA system call dispatch code. The API sets for accessing each of the function modules are
implemented using a set of stub routines which read and wiigah Port Memory(DPM) on
the appropriate function module. A write causes an interrupt on the function module CPU board
which then triggers the appropriate action. If the user function being called only requires current
state information, often the DPM is asynchronously read from the master module without the
intervention of the function module, which is just required to periodically update the state
information in the DPM. This concept is calle&tate Information Monitoring Pan¢SIMP).

As is the case with th8pur locomotion module, function module code is often largely
interrupt driven, being tied closely with the robot hardware. <&etion 2.5for a detailed
explanation of the communication between Spur and the master module. The locomotion
algorithms implemented on the Spur locomotion module are driven by interrupts from the
hardware and from a timer device that delivers interrupts every 5ms. The algorithms use
feedback from the motors and wheel encoders to adjust the motor currents based on the current
tracking mode. The tracking mode is only modified by master module commands as issued from
user program code. The mode is modified when an interrupt is received from the DPM in
response to a write from the master module.

The are a number of ways to implement the simulation of these hardware and software
components of a robot.

Yamabico Autonomous Mobile Robot Documentation 124



Execute the module software on the host operating system

The software that is normally compiled for the robot CPU target can be re-compiled to
run directly on the simulation host system. This is the approach taken by AMROS. The user
program is run directly under UNIX. A link library is provided that matches the API of the
library of routines available under the robot environment. These routines call functions in the
simulator that interact with a representation of the robot’s simulated environment.

Simulate the robot module at a hardware level

The CPU and hardware of the robot can be simulated on the host. The code compiled
for the robot target can then be interpreted and any memory accesses to hardware trapped and
simulated. The interaction with the simulated environment is then via the simulated sensor
and actuator hardware.

A hybrid of the above two approaches

Alternatively a combination of these approaches can be taken. This is the approach
taken by theMarvin simulator. Marvin interprets the user code targeted for the robot. The
MOSRA operating system, however, is not simulated in the current version. Any user code
system calls or function module commands can be caught by intercepting TRAP #0
instructions, or accesses to the DPM addresses. The code that normally executes on the Spur
locomotion module is executed directly on the UNIX host as in AMROS. The code that
normally executes on the ultrasonic function module is not executed at all, but the
functionality is simulated directly.

2.7.2 AMROS Implementation

The source code for AMROS is located in thiams-kit directory. Under this
directory you will findys-amros which a duplication of the robot source code frotys-
kit that will now run directly on the UNIX host. Also there is amros directory that
contains source code for simulation of the robot’s environment and gluing the user code with the
simulator. AMROS imposes a few restrictions on user robot code to be simulated. Specifically,
it assumes that only one user process is executed on the robot and that many MOSRA system
calls are not used. The only MOSRA system calls implemented for simulation are the
malloc() andmfree() memory management calls and theath() call. No process,
interrupt, memory module managenféntr interprocess communication calls may be used. This
is typical of user robot code.

46 AMROS does construct a module directory and implements the MOSRA module API calls by maintaining
created modules as standard UNIX files. This facility may not be propgyboged in the current version and is

rarely used in practice. See thlams-kit/amros/mosra.c file.

Yamabico Autonomous Mobile Robot Documentation 125



2.7.2.1 Implementation of user calls

The next few sections detail how particular user functions available in the robot target
environment are implemented when user code is executing on the UNIX host environment linked
with AMROS.

Themalloc() andmfree() MOSRA calls

In the robot environment the function stubs that are linked with the user code for these two
functions cause a TRAP #0 with the appropriate code so that MOSRA will dispatch to it's
implementation the functions. When the user code is instead linked with AMROS the functions
are implemented to simply call the equivalent UNilloc()  andfree()  functiond’. This
means that the simulation places no restrictions on memory usage by user robot code, as it is
allocated from the UNIX process’s heap space.

The readSRTKEI() and compSRTKEI() calls

These functions are implemented on the robot by simply reading the current value of the
free running timer chip hardware. AMROS implements them..lams-kit/ys-

amros/ymbclib/srt.c by accessing the global functiayet timer6840() which
returns a 10ms interval count by accessing the global vat@blehich is incremented by the
environment simulation. See thfams-kit/amros/main.c file.

The set_timer() andtimer_wait() calls

These are implemented on the robot by using the MOSRA inter-process communication
calls to send a message to the TIMER module process. AMROS implements them by again
accessing the global simulation time counter (global variapleia the CLKget_ time()
function. The implementation is contained in the file
..Jams-kit/amros/ymbcfuncs.c.

The death() function

This is the only process management MOSRA system call implemented. On the robot is
terminates the current process and frees it's static data area and process descriptor. Under
AMROS the implementation ends the simulation.

47 since the UNIX memory allocation function has the same name as the MOSRéAwaiee() ), the function

is not redefined by AMROS. AMROS only implementfee()  to call the UNIXfree()  function.

Yamabico Autonomous Mobile Robot Documentation 126



The write_cons() andread_cons() ROMANCE functions

These two functions are implemented on the robot with link library stubs that use inter-
process communication to communicate with the ROMANCE module process. This process in
turn uses the serial interface to communicate with the user on the UNIX host. Under AMROS
these functions simply call C standard librprintf() andscanf()

2.7.2.1.1 The UltraSonic module API calls

The HiSonic ultrasonic module is more difficult to simulate. AMROS has adopted a ray
line model, where for each firing of the simulated sensor, a fan of rays witlln +1@P of the
sensor direction are traced out until they intersect a surface in the 2D map. The 2D map files
contain reflectance and diffusivity data for each surface, which is used to calculate the reflected
rays. If the rays eventually reflect back into the sensor, the length of the traced ray is used as the
measure of the distance the sensor detects.

The user program on the robot calls the dist() andus_mask() functions to
obtain range data and select the sensors. These functions just read and write the DPM on the
HiSonic board. The AMROS implementation for the functions is located in./th@s-
kit/amros/sensor.c file. It directly implements the ray algorithm by accessing the map
data structures.

2.7.2.1.2 The Locomotion module Spur API calls

Rather than simulating the locomotion of the robot at a high level as was the case with the
ultrasonic sensor simulation, the approach taken is to execute the code that normally executes on
the robot’s locomotion function module board directly on the UNIX host. The motor and wheel
encoder hardware is then simulated and interacts with the Spur locomotion software. Please refer
back to the diagram at the end of the Spur implementation section for a summary of how Spur
works in the robot environmensédction 2.3.3.2 The diagram below shows how Spur is
executed in AMROS. Compare it with the robot case.

Yamabico Autonomous Mobile Robot Documentation 127



AMROS

main()
\ Robol0_main()
_>

User Robol/0 program linked with AMROS
Spur_line_GL(0,0,0)

send_com16()
dpm = command & srgs

\ dpm_irq()
Call
%)‘ur_get_pos_G L(&x,&y,&th)

dpm_irq()
rd_SIP() :
x =dpm * \
com_ana()

\ amros_simulate()

LOCOsim(50ms) \
cmode = dpm *
tim_irq()

/

fb_ctl()
cal_r_vel()

wt_SIP()
dpnt = Spur state
\ mode_ctl()
switch (cmode.mode)
do_line_track ()
pwnf-> .= ..
count=cnt *[M_xx]
\ robot_motion()

v pwm*; cnt  *[] =

*shared global variabl

AMROS software implementation

Yamabico Autonomous Mobile Robot Documentation

128



2.7.3 Marvin Implementation

The Marvin simulator is designed to simulate multiple robots more realistically that
AMROS. It removes some of the restrictions such as only simulating Robol/0, and only allowing
a single user process per rdfot Marvin uses an interpreter to execute the Motorola 68000
machine code that executed on the robot itself. Hence it is binary compatible with the robot. A
single UNIX process is created for each robot being simulated. These each run a copy of the
interpreter an communicate with the main Marvin process using Sockets. The main process
manages the user interface, represents the environment and manages the communications between
robots. The environment representation is object-oriented and is 3D. This will allow extra
sensor simulations to be added in a modular fashion in the 48tuMarvin uses some of the
locomotion and ultrasonic sensor simulation code from AMROS.

2.7.3.1 Implementation of user calls

The next few sections detail how particular user functions available in the robot target
environment are implemented when user code is executing under the Marvin interpreter. In the
current version of Marvin any MOSRA system calls have to be caught by interceptifig AlRe
#0 instruction and simulated. In a future version the operating system executing on the robot
master module (MOSRA) will execute under the interpreter.

Themalloc() andmfree() MOSRA calls

In Marvin themalloc() andmfree() system calls are caught throufRAP #0 and
implemented on the simulated memory array using the MOSRA algorithms.

ThereadSRTKEI() andcompSRTKEI() calls

These functions are implemented under Marvin by catching memory read/write accesses to
the address of the timer chip hardware. The appropriate time it returned based in the number of
clock cycles elapsed, which is counted by the interpreter.

The set_timer() andtimer_wait() calls

Marvin intercepts these calls by intercepting the MOfeAd _mess()  system call.
It then checks the destination process ID (pid). If the pid is that GFIMER process then the
calls are simulated.

48The first implementation of Marvin will only allow a single user process per robot, and will not run MOSRA.
Hence not all the MOSRA system calls are available.

49t is hoped that vision simulation will be added in the next year.

Yamabico Autonomous Mobile Robot Documentation 129



The death() function

The death()  function sends a terminate message to the main process and ends the
interpreter.

The write_cons() andread_cons() ROMANCE functions

The console I/O calls are handled in a similar way to the timer calls. The user program
sends /O requests to tREOMANCHRrocess using the MOSRgend_mess() system call. It
is intercepted and if the process ID is that of romance then a message is sent to the main Marvin
process to input or output to either standard I/O or a robot window.

2.7.3.1.1 The UltraSonic module API calls

Marvin uses the AMROS ray model to simulate the ultrasonic sensors. The difference is
that the environment is represented in 3D in Marvin. The user program on the robot calls the
us_dist() andus_mask() functions to obtain range data and select the sensors. These
functions just read and write the DPM on the HiSonic board. Under Marvin the interpreter can
detect and intercept memory accesses to the HiSonic DPM area. It then sends the appropriate
messages to the main process where the ray model algorithm is implemented with the environment
representation.

2.7.3.1.2 The Locomotion module Spur API calls

Again, Marvin uses the code from AMROS to simulate the locomotion. Both the Spur
software that normally executes on the locomotion board and the environment simulation of
motors and wheel encoders execute on the main Marvin process. User program Spur calls just
read and write to the locomotion DPM, which is intercepted by the interpreter and the command,
arguments and results are communicated with the main process via the sockets. The diagram
below shows the architecture of Marvin executing a single robot’s code.

Yamabico Autonomous Mobile Robot Documentation 130



68000 Interpreter
User program linked with lib_source

Spur_line_GL(0,0,0) Memory access caught by
interpreter

send_com16()
dpm = command & srgs

Spur_get_pos_GL(&x,&y,&th)

rd_SIP()
X =dpm

Marvin main process
ET++ Onldle call back

if Socket message recieved \
switch (type) (us, Spur, etc.)

\/
LOCOsim() dpm_irq()
tim_irq() V
¢ com_ana()
fo_ctl() :
\/
\ cal_r_vel() cmode = ...
\ wt_SIP() —/
Spur state
\ mode_ctl()

switch (cmode.mode)
do_line_track ()
pwni-> .= ..
count=cnt  *[M_xx]
\ robot_motion()

vy 7 pwm*;cnt *[] =

case Spur: com_ana(  ...) \ T

*shared global variabl

1%

Marvin software implementation

UNIX Sockets

Yamabico Autonomous Mobile Robot Documentation

131



2.7.3.2 Marvin multi-robot synchronisation scheme

This section briefly describes the protocol by which Marvin manages the simulation-time
synchronisation of multiple robot interpreter processes. As the user code on each robot is
simulated independently of the others and of the environment by an interpreter, we need to have a
mechanism to manage the synchronisation of their interaction. Consider the following example.

Suppose robot 1 runs it's user program for 10omd@s with no interaction with the
environment. Then at 10 seconds it decides to read an ultrasonic sensor. At this point the
blackboard needs to simulate the environment up to the 10 second mark before calculating the
ultrasonic distance. This involves simulating the locomotion etc. of all of the robots up to 10
seconds. If this were not done, another robot may not be in the correct place when the distance
reading is taken (it could be in front of robot 1's sensor, for example). Unfortunately it is not as
simple as just advancing the environment simulation up to 10 seconds, because is may be that
another robot, say robot 2, will take a sensor reading at 5 seconds, but the interpreter for it is
running so slow it's only currently up to 3 seconds and hence has not requested the reading from
the blackboard yet. If when it gets to 3 seconds and requests a reading from the blackboard and
the environment had already been advanced to 10 seconds the reading would be incorrectly from
the robot’s future.

The solution to this problem used by Marvin is to use the protocol described here, briefly
at first and then in more detail with pseudo code. Basically the simulation is started with all of
the robots executing and keeping their own independent simulation time count. When a robot
wishes to perform a sensor or actuator command it sends a message to the blackboard process. If
results are to be returned, the interpreter is halted, only monitoring messages from the
blackboard. If no results are needed the interpreter continues on. The blackboard maintains a
sorted queue of requests for ‘sensor/actuator commands’ received from the robots. Upon
receiving a command message the blackboard adds it to the queue sorted on the time the
command was issued. It then sends requests to each robot except the originator of the command
message, requesting that tHeymulate up-to’at least the time the originator's command was
issued. It also stores an indication that each robot has replied to the requests. Only after all
robots have replied to the ‘simulate up-to’ request can the environment be simulated up to this
time. However, as a result of the other robot processes simulating up-to the requested time, if
they were not past it already, they may have sent further ‘sensor/actuator command’ requests to
the blackboard of an earlier time. In this case the same procedure is followed when these are
received. When all replied have been received for the message on the queue with the earliest time
(since earlier ‘sensor/actuator command’ requests may have been received), the environment may
be advanced to this time and the command removed from the queue.

The robot processes only have to keep a sorted list of the ‘simulate up-to’ request times
they have been requested to simulate up to by the blackboard, so they can reply to each as their
simulation time advances past them. The robot processes always continue to simulate unless
waiting for data to be returned from a sensor command.

Yamabico Autonomous Mobile Robot Documentation 132



Algorithm for the Robot processes

Flag simulating  // Are we executing or waiting for sensor/actuator requests?
Flag terminate /l Have we received a terminate request from the blackboard?
SortedList simulateTo  // Blackboard has requested us to simulate to these times

SimulationTime t /I Current simulation time

simulating = Yes
terminate = No

Do
If (simulating)
Interpret one instruction
If (User code crashes) terminate = Yes

If (User code executes sensor/actuator command)
Send request to blackboard
If (requires a reply) simulating = No

If (t >= simulateTo[lowset t])
Remove lowest t from simulateTo list
Send simulate upto time reply

If (Received message from blackboard)
If (Sensor/actuator reply message) simulating = Yes
If (Terminate request) terminate = Yes
If (simulate upto time request message)
If (message.t >=1t)
Send upto time reply immediately
Else
Put t on simulateTo list in sorted position

While (not terminate)

Yamabico Autonomous Mobile Robot Documentation

133



Algorithm for Main Process (Blackboard)

The main Marvin process is also responsible for implementing the Graphical User
Interface (GUI). The GUI is implemented using tBE++ framework. The socket
communications between the main and robot processes was implemented vetitkiie-+
framework. In order to integrate the input models of ET++ and socket++ it was necessary to
implement the main processing of the blackboard inside the Eitdle call-back.

Type CommandType is {
CommandMessage message
Time time
Robot fromRobot
Array of Flags uptoTimeReplied[1..NoRobots]

SortedList of CommandType commands // Queue of commands to be processed
SimulationTime t /I Current simulation time

Onldle:
If (Robot message received)
switch (message type)
case (sensor/actuator command):
Add message to commands]] in sorted order by message.time
Send simulate uptoTime request messages to all robots*
command.uptoTimeReplied[1..NoRobots] = No*
(*except SendingRobot, and except if a robot already
replied to a future uptoTime request)

case (simulate uptoTime reply FromRobot):
commands[].uptoTimeReplied[FromRobot] = Yes

If (commands|[lowest time].uptoTimeReplied[1..NoRobots] all Yes)
Simulate environment
(for 200ms or up to commands[lowest time].time,
whichever is sooner)
If (t >= commands[lowest time].time)
Process sensor/actuator command commands[lowest time].message
Remove commands[lowest time] command from list

Yamabico Autonomous Mobile Robot Documentation 134



3. Appendices

3.1 Appendix A - API Prototype Reference

This appendix summarises the API's of MOSRA and some function modules. The
function call prototypes are listed below.

3.1.1 MOSRA

Process Control functions
int mfork(char *mname,int pid,int priority);
int pcreate(MOD_EXEC *mod_address,int pid,int priority);
int death();
int sleep();
int wakeup(int pid);
int getpid();
char *get_work();

Interrupt Handling & Exception functions
int irgtbl(int level,IRQTBL *table);
int irgdel(int level,IRQTBL *table);
int irgctl(int pid,int level);
int exsect();
int exend();
int irgset(int level);
int irgrst();

Interprocess Communication functions
int send_mess(int pid,char *mes_p);
void *recv_mess(int pid);
int test_mess(int pid);

Memory Allocation functions
void *malloc(int size);
int mfree(void *address);

Memory Module functions
int ismod(void *m_adr);
MOD_DATA *make_mod(char *mname,int size);
int crcgen(MOD_DATA *m_adr);
MOD_DATA *get_mod(char *mname);
int regmod(MOD_DATA *m_adr);
int delmod(MOD_DATA *m_adr);

Yamabico Autonomous Mobile Robot Documentation 135



3.1.2 Miscellaneous

ROMANCE console functions
void write_cons(char *form_str,...);

char *read_cons(char *form_str, char *data, int *count);

robocc option function
void _report_am_name(char *name);

Simulator
void amros_simulate();
void robol0_main();

3.1.3 Function Modules

US Sensor functions
int us_dist(int dir);
void us_mask(int mask_pattern);

Optical Sensor functions

IS eye functions
void ISSUE_FORK(int p_name);

IS eye IAS process functions
void IAS_thdist(int thdist[256]);
void IAS_dist_cm(int i);
void IAS_change_mode(int mode);
int IAS_active_mode();
void IAS_Id_control(int Id_mode);

IS eyePaSS process functions

PaSS_index PaSS_can_pass(PaSS_degree,PaSS_index);

PaSS_index PaSS_free_pass(PaSS_degree,PaSS_index,PaSS_index);
PaSS_degree PaSS_find_patchCL(PaSS_degree,PaSS_degree,PaSS_index,int);
PaSS_degree PaSS_find_patchL(PaSS_degree,PaSS_degree,PaSS_index,int);
PaSS_degree PaSS_find_patchCR(PaSS_degree,PaSS_degree,PaSS_index,int);
PaSS_degree PaSS_find_patchR(PaSS_degree,PaSS_degree,PaSS_index,int);

int PaSS_get_dy(PaSS_index,PaSS_degree);
int PaSS_get x(PaSS_index);

Spur functions
void Spur_stop_q();
void Spur_stop_Q();
void Spur_spin_GL(int th);
void Spur_spin_LC(int th);
void Spur_spin_FS(int th);
void Spur_set_ang_vel(int angv);
void Spur_set_ang_accel(int alpha);
void Spur_servo();
void Spur_servo_free();
int Spur_near_ang_GL(int ang,int error);
int Spur_near_ang_LC(int ang,int error);
int Spur_near_ang_vel(int angv,int error);
void Spur_line_GL(int x,int y,int th);
void Spur_line_LC(int x,int y,int th);
void Spur_line_FS(int x,int y,int th);

Yamabico Autonomous Mobile Robot Documentation

136



void Spur_arc_c_GL(int x,int y,int r);

void Spur_arc_c_LC(int x,int y,int r);

void Spur_arc_c_FS(int x,int y,int r);

void Spur_arc_t_GL(int x,int y,int th,int r);
void Spur_arc_t_LC(int x,int y,int th,int r);
void Spur_arc_t_FS(int x,int y,int th,int r);
void Spur_stop_GL(int x,int y,int th);

void Spur_stop_LC(int x,int y,int th);

void Spur_stop_FS(int x,int y,int th);

void Spur_adjust_pos_GL(int x,int y,int th);
void Spur_adjust_pos_LC(int x,int y,int th);
void Spur_adjust_pos_FS(int x,int y,int th);
void Spur_set_LC_on_GL(int x,int y,int th);
void Spur_set_LC_on_LC(int x,int y,int th);
void Spur_set_GL_on_GL(int x,int y,int th);
void Spur_set_pos_GL(int x,int y,int th);
void Spur_set_pos_LC(int x,int y,int th);
void Spur_set_vel(int vel);

void Spur_set_accel(int acc);

void Spur_get_pos_GL(int *x0,int *y0,int *th0);
void Spur_get_pos_LC(int *x,int *y,int *th);
void Spur_get_vel(int *vel,int *angv);

int Spur_near_pos_GL(int xx,int yy,int r);
int Spur_near_pos_LC(int xx,int yy,int r);
int Spur_near_vel(int vel,int error);

int Spur_over_line_GL(int xx,int yy,int th);
int Spur_over_line_LC(int xx,int yy,int th);

void Spur_line_GL_cm(int x,int y,int th);

void Spur_line_LC_cm(int x,int y,int th);

void Spur_line_FS_cm(int x,int y,int th);

void Spur_arc_c_GL_cm(int x,int y,int r);

void Spur_arc_c_LC_cm(int x,int y,int r);

void Spur_arc_c_FS_cm(int x,int y,int r);

void Spur_arc_t_GL_cm(int x,int y,int th,int r);
void Spur_arc_t_LC_cm(int x,int y,int th,int r);
void Spur_arc_t_FS_cm(int x,int y,int th,int r);
void Spur_stop_GL_cm(int x,int y,int th);

void Spur_stop_LC_cm(int x,int y,int th);

void Spur_stop_FS_cm(int x,int y,int th);

void Spur_adjust_pos_GL_cm(int x,int y,int th);
void Spur_adjust_pos_LC_cm(int x,int y,int th);
void Spur_adjust_pos_FS_cm(int x,int y,int th);
void Spur_set_LC_on_GL_cm(int x,int y,int th);
void Spur_set_LC_on_LC_cm(int x,int y,int th);
void Spur_set_GL_on_GL_cm(int x,int y,int th);
void Spur_set_pos_GL_cm(int x,int y,int th);
void Spur_set_pos_LC_cm(int x,int y,int th);
void Spur_set_vel_cm(int vel);

void Spur_set_accel_cm(int acc);

void Spur_get_pos_GL_cm(int *x,int *y,int *th);
void Spur_get_pos_LC_cm(int *x,int *y,int *th);
void Spur_get_vel_cm(int *vel,int *angv);

int Spur_near_pos_GL_cm(int xx,int yy,int r);
int Spur_near_pos_LC_cm(int xx,int yy,int r);
int Spur_near_vel_cm(int vel,int error);

int Spur_over_line_GL_cm(int xx,int yy,int th);
int Spur_over_line_LC_cm(int xx,int yy,int th);

Voice functions
void voice_init();
void voice_set(int amp, int rate);
void v_boadCHK(int boad);
void sayd(int num);
void sayx(int num);
void says(int num);
void sayw(char *str);

void speakf(char *fmt, int agl, int ag2, int ag3, int ag4,...,int ag9);

void sayp(char *str);
void say_flush(int thre);
int say_ended(int rest);

Yamabico Autonomous Mobile Robot Documentation

137



Timer functions
void set_timer(int count);
void timer_wait();
int readSRTKEI();
int compSRTKEI(int t0,int time);

Yamabico Autonomous Mobile Robot Documentation 138



3.2 Appendix B - AMROS Map file format

To be written.

3.3 Additional Information

3.3.1 Contacts

The authors of this document can be reached by e-mail at:
David Jung djung@cs.uow.edu.au

Ben Stanley ben@cs.uow.edu.au

Please contact us if you have any comments, find errors or have suggestions on content.

Also, Prof. Shin’ichi Yuta of the Tsukuba laboratory and Dr. Alex Zelinsky of the
Wollongong laboratory may be contacted at:

Prof. Shin’ichi Yuta yuta@roboken.is.tsukuba.ac.jp

Dr. Alex Zelinsky alex@cs.uow.edu.au

3.3.2 World Wide Web (WWW)

The Wollongong laboratory home page has the URL:
http://terumi.cs.uow.edu.au/

The Tsukubd&oboken laboratory home page is:
http://roboken.is.tsukuba.ac.jp/

or

http://130.158.125.241/

Yamabico Autonomous Mobile Robot Documentation 139



3.4 Bibliography

[Yam95] Yamabico Hardware documentation folder Intelligent Robotics Laboratory,
1995 Mostly a direct translation from the Japanese version maintained by the
Tsukuba Laboratory.

[lida91] lida, Shigeki and Yuta, Shin’ichiVehicle Command System and Trajectory
Control for Autonomous Mobile Robots’, IROS 91 Nov. 3-5 1991, Osaka,
Japan. IEEE Cat. No. 91TH0375-6.

[lida91A] lida, Shigeki and Yuta Shin’ichi Control of Vehicle with Power Wheeled
Steerings Using Feedforward Dynamics Compensatitn Proceedings IECON
91, pp 2264.

[Naum93] Naumovski, Jim, MAMROS - A Multiple Autonomous Mobile Robot
Simulator”, Masters of Computer Science Theblsiversity of Wollongong.

[Ohno95] Ohno, Takayuki, Ohya, Akihisa and Yuta, Shin'ichhn“Improved Sensory
Circuit of an Ultrasonic Range Finder for Mobile Robot's Obstacle Detectiot)
Proceedings of the 1995 National Conference of the Australian Robot Assqciation
Melbourne, 5-7 July. pp 178.

Yamabico Autonomous Mobile Robot Documentation 140



3.5 Document History

Date Author Comment

10/2/95 David Jung Created initial document, version 0.x
Documented Software Section

19/5/95 Ben Stanley Re-forat to MS-Word 6.0 for Windows, added some pgarts
on hardware.

Ben Stanley Converted back to Word for the Mac.

2716195 David Jung Fixed formatting lost in conversion.

28/6/95 David Jung Documented more API calls.

10/7/95 Ben Stanley Split document into Hardware and Software files.

10/7/95 David Jung More format fixes. Filled out section on Softyare
Development.

11/7/95 David Jung Described directory structure. Added MAMROS section.

12/7/95 Ben Stanley Accidentaltieletedsoftware documentation!

13/7/95 David Jung Re-wrote section on Software development and Simulation.

14/7/95 David Jung Re-wrote and finished Spur API.

2/8/95 David Jung Added MOSRA Examples.

8/8/95 David Jung Added more Examples. Corrections.

26/8/95 David Jung Described MOSRA system calls.

28/8/95 David Jung Added section 2.4 Inter-module communication.

5/9/95 David Jung Added Spur examples/diagrams.

12/9/95 David Jung Documented ROMANCE console impldatésn, voice
API, and locomotion implementation.

13/9/95 David Jung Documented MOSRA interrupt API, cleaned up Hardware
section styles.

13/9/95 Ben Stanley Cleaned up and added to Hardware section.

14/9/95 Release 1.0

1/10/95 David Jung Added AMROS and Marvin implementation notes.

6/10/95 David Jung Converted to Word 6.0 and made master document, ¢leaned
up styles, headers, footers etc.

6/10/95 David Jung Filled out buildifrgOM'’s section.

7/10/95 David Jung Finished MOSRA & timer function implementation notgs.

8/10/95 Release 1.1

10/5/96 David Jung Corrections to module API atekp() , wakeup() .

2/7/96 David Jung Documented RADNET Networking.

6/7/96 David Jung Documented Threads, Semaphores and Whiskers API|s.

10/7/96 Release 1.5

Yamabico Autonomous Mobile Robot Documentation 141



