
“Yamabico” Autonomous Mobile Robots

User Programming Guide
Hardware & Software Implementation Notes

Reference

Version 1.5

Last modified 10/7/96

Yamabico Autonomous Mobile Robot Documentation 1

CONTENTS

1. Hardware.. 5

1.1 Architecture Overview.. 5

1.2 Modules ... 6

1.2.1 68000 Master Module mm-KEI.. 6
1.2.1.1 CPU... 6

1.2.1.1.1 Reset Signal.. 6
1.2.1.2 Control... 7
1.2.1.3 PIA — Parallel Interface Adaptor... 7
1.2.1.4 Memory... 8
1.2.1.5 Reset.. 8
1.2.1.6 ACIA — Asynchronous Communications Interface Adaptor............. 8
1.2.1.7 PTM/RTC/LED ... 10
1.2.1.8 Bus Buffer.. 11
1.2.1.9 Yamabico Bus II.. 11
1.2.1.10 Not on any diagram.. 11

1.2.2 Transputer Locomotion Module ... 11
1.2.2.1 Introduction ... 11
1.2.2.2 MPU .. 12
1.2.2.3 Address Decoder.. 13
1.2.2.4 Memory... 13
1.2.2.5 Dual Port Memory (DPM).. 13
1.2.2.6 Yamabico Bus Interface... 14
1.2.2.7 PWM and Counter ... 14
1.2.2.8 LED... 14
1.2.2.9 Second Floor Interface (2F-I/F).. 14

1.2.3 Ultrasonic Sensor Module... 15
1.2.3.1 CPU... 15
1.2.3.2 Address Decoder.. 16
1.2.3.3 Memory... 16
1.2.3.4 DPM .. 16
1.2.3.5 PTM .. 16
1.2.3.6 ACIA ... 16
1.2.3.7 Transmit... 17
1.2.3.8 Receive.. 17
1.2.3.9 Connectors... 17

2. Software.. 19

2.1 Architecture Overview.. 19

2.1.1 Directory Tree.. 20

2.2 MOSRA... 21

2.2.1 Features.. 21

Yamabico Autonomous Mobile Robot Documentation 2

2.2.2 MOSRA API.. 22
2.2.2.1 Memory Allocation... 22
2.2.2.2 Memory Modules... 23
2.2.2.3 Process Control.. 27
2.2.2.4 Interprocess Communication (IPC)... 32
2.2.2.5 Interrupt & Exception Handling.. 35
2.2.2.6 Semaphores.. 38

2.2.3 MOSRA Implementation.. 42
2.2.3.1 System Initialisation & the Global System Table............................. 42
2.2.3.2 Memory Allocation... 43
2.2.3.3 Memory Modules... 43
2.2.3.4 Process... 45
2.2.3.5 Messages.. 46
2.2.3.6 Interrupts & Exceptions ... 47
2.2.3.7 System Calls & Register Usage... 47

2.2.4 The MOSRA directory... 49

2.3 Function Modules ... 50

2.3.1 Ultrasonic sensor module.. 50
2.3.1.1 API .. 50
2.3.1.2 Implementation... 51
2.3.1.3 Directory.. 52

2.3.2 ISeye Software United Environment (ISSUE)... 53
2.3.2.1 Directory.. 53

2.3.3 Spur (Locomotion module)... 54
2.3.3.1 API .. 55
2.3.3.2 Implementation... 65
2.3.3.3 Directory.. 69

2.3.4 Voice generator module.. 70
2.3.4.1 API .. 70
2.3.4.2 Implementation... 74
2.3.4.3 Directory.. 75

2.3.5 Timer functions.. 76
2.3.5.1 API .. 76
2.3.5.2 Implementation... 77

2.3.6 Whisker functions... 78
2.3.6.1 API .. 78
2.3.6.2 Implementation... 82

2.3.7 ROMANCE & RADNET console functions... 83
2.3.7.1 ROMANCE API .. 83
2.3.7.2 RADNET Console API .. 84
2.3.7.3 ROMANCE Implementation.. 85
2.3.7.4 Directory.. 86

2.4 Networking.. 87

2.4.1 Architecture.. 87

2.4.2 Network User Utility Programs.. 88

Yamabico Autonomous Mobile Robot Documentation 3

2.4.2.1 Remote .. 89
2.4.2.2 Radcon (RADNET Console) .. 90
2.4.2.3 DLoad.. 90

2.4.3 The RADNET link server... 90

2.4.4 Client API - Robot side... 91

2.4.5 Client API - UNIX side.. 98
2.4.5.1 Communication.. 98
2.4.5.2 NetShell..103

2.5 Inter-module Communication and the Yamabico Bus.....................................110

2.5.1 Case study - The Locomotion Module ...112

2.6 Software Development...116

2.6.1 User program development..116
2.6.1.1 Compilation...116

2.6.1.1.1 Example programs.. 117
2.6.1.1.2 Robocc & mcc... 117

2.6.1.2 Romance...117
2.6.1.3 Simulation...118

2.6.1.3.1 AMROS.. 118
2.6.1.3.2 Marvin.. 119

2.6.1.4 Tools...120
2.6.1.4.1 Robocon.. 120
2.6.1.4.2 Roboemon... 120
2.6.1.4.3 Robotra... 120

2.6.1.5 Environment..120

2.6.2 Building the Yamabico software..121
2.6.2.1 Compiling the MOSRA Kernel..121
2.6.2.2 Making a Master Module ROM image...121
2.6.2.3 Compiling function module code...122
2.6.2.4 Changing robot library code..122

2.7 Implementation of a Robot Simulator...124

2.7.1 Overview of Yamabico architecture...124

2.7.2 AMROS Implementation...125
2.7.2.1 Implementation of user calls..126

2.7.2.1.1 The UltraSonic module API calls .. 127
2.7.2.1.2 The Locomotion module Spur API calls.. 127

2.7.3 Marvin Implementation..129
2.7.3.1 Implementation of user calls..129

2.7.3.1.1 The UltraSonic module API calls .. 130
2.7.3.1.2 The Locomotion module Spur API calls.. 130

2.7.3.2 Marvin multi-robot synchronisation scheme...................................132

3. Appendices.. 135

3.1 Appendix A - API Prototype Reference..135

3.1.1 MOSRA..135

3.1.2 Miscellaneous..136

Yamabico Autonomous Mobile Robot Documentation 4

3.1.3 Function Modules..136

3.2 Appendix B - AMROS Map file format ..139

3.3 Additional Information..139

3.3.1 Contacts ..139

3.3.2 World Wide Web (WWW)...139

3.4 Bibliography...140

3.5 Document History ..141

Yamabico Autonomous Mobile Robot Documentation 5

1. Hardware

The Yamabico robot is designed primarily for research and experimentation. Therefore, the

software and hardware details are available to the user, for modification and revision at any time

as required to suit the current purpose. With this in mind, the robot has been designed so as to

simplify development, at the expense of power conservation, size, and overall cost.

The standard body of the robot is designed to be small to allow experimentation in a

crowded laboratory, and to make handling easier. The purpose of the small robot is for the

investigation and validation of navigational and sensing strategies. Hence, it uses wheels, and is

designed for an indoor environment. This greatly simplifies research.

It is intended that the Hardware section of this document be read in conjunction with the

circuit diagrams and the manufacturers data sheets for each individual IC. This information is

gathered together into the Yamabico Hardware Manual [Yam95], a mix of English and Japanese

documentation.

The aim of this documentation is to provide an understanding of how the hardware is

designed to be used. Further information for programming can be found by inspection of the data

sheets.

1.1 Architecture Overview

The robot’s architecture is broken down into functional modules, according to function, to

simplify research and development on individual components. For example, there is one module

to control the ultrasonic sensing, and another module to control the motor drive system. All

decision making is centralised, and is executed on a master module which is in control of the

entire system. This is the behaviour level. This simplifies the process of upgrading and

modifying individual function modules, because their operation and interactions are very clearly

defined.

Yamabico Autonomous Mobile Robot Documentation 6

1.2 Modules

1.2.1 68000 Master Module mm-KEI

The following descriptions are arranged according to which sheet of the circuit diagram

they appear on.

1.2.1.1 CPU

The CPU is a 10MHz 68000, using a 16 bit data bus and a 24 bit address bus.

1.2.1.1.1 Reset Signal

The reset signal is activated by several sources:

• The reset switch, SW1

• Power-on reset circuit

• Power low condition, monitored by a MAX695

• Yamabico Bus reset line

serial port 1 (Romance)

serial port 2

parallel port 1

parallel port 2

reset switch

reset indicator

debugging lights

JP8

JP7

JP2, JP1, JP4, JP3

U
3

1
U

3
0

U
5

3
U

5
4

U
2

9

A
C

IA

U
2

8

A
C

IA
U

3
8 U5

CPU

S
W

3
S

W
2

BT1

SW4 (RAM battery backup)

U
1

6

U
1

7

U
9

E

P
R

O
M

 1

U
1

0

E
P

R
O

M
 2

S
P

1

JP6, JP5 Yamabico Bus Connector

The 68000 master module board, showing the jumper leads and major chip positions.

Yamabico Autonomous Mobile Robot Documentation 7

1.2.1.2 Control

This diagram includes the memory address decoding, which is performed by two PALs,

U16 & U17. The programming equations for the PALs are contained in the Yamabico Hardware

Manual.

The 74HC161 counter, U18, re-maps the ROM to 0x000000 during the first four clock

cycles after a reset. After that, it returns to its normal position in the memory space

(0xF80000~0xFBFFFF). After startup, the binary outputs of U18 count to 4, which then

disables the ENT and ENP inputs, thereby disabling further counting.

RAM is at the beginning of memory. The IO area is at the top of memory, with the ROM

area just below it. Note that the VPA signal covers the whole IO range. This signal is designed to

be returned to the 68000 CPU, to tell it that 6800 peripheral ICs are being used. This changes the

bus mode of the CPU to emulate a 6800. Please see 68000 documentation for further

information.

Note that the operating system is usually stored in ROM1, and that romance usually uses

ACIA1. ROM2 may be used to store user programs if desired, but this is usually performed by

battery backed RAM. Please see the MOSRA documentation for further details.

Device Address Range

RAM1 0x000000 ~ 0x03FFFF

RAM2 0x040000 ~ 0x07FFFF

ROM1 0xF80000 ~ 0xF9FFFF

ROM2 0xFA0000 ~ 0xFBFFFF

VPA 0xFC0000 ~ 0xFFFFFF

ACIA1 0xFC0000 ~ 0xFC00FF

ACIA2 0xFC0100 ~ 0xFC01FF

PTM 0xFC0200 ~ 0xFC02FF

RTC 0xFC0300 ~ 0xFC03FF

PIA 0xFC0400 ~ 0xFC04FF

LED 0xFC0500 ~ 0xFC05FF

YBSEL 0xFE0000 ~ 0xFFFFFF

IOSEL 0xFFFC00 ~ 0xFFFDFF

1.2.1.3 PIA — Parallel Interface Adaptor

The function of the parallel ports is controlled by the 6321 on this diagram. The two

parallel ports can be operated on one direction each, which is selected by jumpers JP1-JP4. The

table below shows how to select the position of the jumpers:

port 1 connect: port 2 connect:

input JP1 input JP3

output JP2 output JP4

Yamabico Autonomous Mobile Robot Documentation 8

The ports are buffered for protection during experimentation. Port pinouts are shown

below.

1
D0

3
D2

5
D4

7
D6

2
D1

4
D3

6
D5

8
D7

9
CA1

11
GND

10
CA2

12
GND

13
VCC

14
VCC

Connections for each of the parallel ports on the mm-KEI master module.

1.2.1.4 Memory

The 68000 master module supports 512kb of RAM, and 256kb of ROM. The CMOS

RAM has a battery back up, so that when the robot is switched off the installed programs are

retained.

The MOSRA operating system is contained in ROM. This contains the ROMANCE

program, so when the board is first powered up it is possible to communicate with it via serial

port 1.

1.2.1.5 Reset

This circuit incorporates a MAX695, which monitors the +5V supply voltage and the

battery backup voltage. When the +5V supply drops below specification, the RAM is powered

from the backup battery, and the CPU is reset. The watchdog feature of the MAX695 is not used.

Please refer to the MAX695 data in the Yamabico Hardware Manual for more information about

this device.

The switch SW4 connects and disconnects the battery backup for the RAM. If the contents

of the RAM are to be erased, or battery power is to be conserved (where the RAM contents are

not important), this switch may be operated to the 0 position (as marked on the PCB). For normal

operation, leave in the 1 position.

1.2.1.6 ACIA — Asynchronous Communications Interface Adaptor

There are two ACIA or serial ports on the master module mm-KEI. They can be used in

either full RS-232 specification ±12V mode, or they can be configured for TTL levels only.

Yamabico Autonomous Mobile Robot Documentation 9

ACIA / ±12V version:

2
TX

4
RTS

6
NC

8
NC

10
NC

GND
1

RX
3

CTS
5

GND
7

NC
9

Connections for the RS-232 port in ±12V mode

This table shows the parts which must be installed on the PCB for ±12V operation. The

part numbers for ports 1 and 2 are shown in the notation port1/port2.

Port 1 Port 2

U31 MAX232 Present U31 MAX232 Present

U53 74HC240 Absent U53 74HC240 Absent

JP8 Disconnected JP8 Disconnected

The connections which must be made in the cable to connect to the ROMANCE port:

Yamabico Connector Computer Connector

1 GND GND

2 Tx Rx

3 Rx Tx

4 RTS CTS

5 CTS RTS

7 GND GND

TTL / 0V-5V version:

It is suggested that this mode should be used if a radio modem in installed. This is because

radio modems usually have TTL level I/O.

2
NC

4
NC

6
RX

8
CTS

10
RTS

GND
1

NC
3

VCC
5

GND
7

TX
9

Connections for the serial port in TTL mode

Yamabico Autonomous Mobile Robot Documentation 10

Port 1 Port 2

U30 MAX232 Absent U31 MAX232 Absent

U54 74HC240 Present U53 74HC240 Present

JP7 Linked JP8 Linked

In this case, it is not necessary to install the capacitors supporting the MAX232 chip.

If the port is to be used with the SEPCO (System Equipment Products) Wireless Modem,

then a 74HC244 should be used instead of the 74HC240. This is because all the signal

connections on the Wireless Modem are active low. A suitable cable is described in the table

below:

Yamabico Connector Wireless Modem Connector

1 GND 2 GND

5 VCC 1 VCC

6 *Rx 6 *RxD

7 GND 8 GND

8 *CTS 5 *CTS

9 *Tx 3 *TxD

10 *RTS 4 *RTS

In both cases, the ROMANCE program uses serial port 1.

Baud Rate Selection

This is performed by SW2 and SW3 for serial ports 1 and 2 respectively.

Switch Pattern

1 2 3 4 5 6

Speed (bps)

0 0 0 0 0 0 9600

0 0 0 1 0 0 4800

0 0 0 0 1 0 2400

0 0 0 1 1 0 1200

0 0 0 0 0 1 600

0 0 0 1 0 1 300

1.2.1.7 PTM/RTC/LED

PTM stands for Programmable Timer Module. It is connected to the interrupt line of the

CPU. With suitable software, it can be used to generate a timer tick.

RTC stands for Real Time Clock. This chip is optional. It fits into the socket at U38.

The debugging LEDs are also on this diagram. They are written to for debugging purposes,

mostly to give an indication of whether the CPU is running or not. They are switched off and on

by JP5 and JP6:

Debug LEDs Connect:

Yamabico Autonomous Mobile Robot Documentation 11

On JP6

Off JP5

1.2.1.8 Bus Buffer

At first glance, the function of the buffer appears to be superfluous. However, it is

included to prevent total destruction of the module in the case of a mishap with the bus.

1.2.1.9 Yamabico Bus II

Details of this bus are in a document in the Yamabico Hardware Manual [Yam95]. The

original Japanese document is ‘“Yamabico” no 68000 kanitsuite’, by Iida.

1.2.1.10 Not on any diagram

SP1: This position is a spare, for inserting a single IC during design revision and

experimentation. None of the pins are connected to any other part of the pattern, except to the

adjacent pads for patch wiring.

1.2.2 Transputer Locomotion Module

1.2.2.1 Introduction

The Locomotion module is designed to follow a given trajectory, using feedback based

upon the shaft encoders. The general operation of the SPUR command language is documented in

a paper by Shigeki Iida and Shin’ichi Yuta [Iida91].

The board operates as a digital PID controller for the motion of the robot. Please refer to

[Iida91A] for further information on the control theory of the system.

Yamabico Autonomous Mobile Robot Documentation 12

Yamabico Bus Connector

reset switch

debug port (link 0)

transputer link 1

transputer link 3

transputer link 2

to right motor driver

to left motor driver

reset indicator (D2)

debugging lights

U25 Second Floor socket

U
4

3
 P

W
M U

2
7

U
3

4

MPU1

U
1

2

E
P

R
O

M

U
1

3

E
P

R
O

M

U18
DPM

U17
DPM

BT1

S
W

2

SW1 (RAM battery backup)

JP1 clock selector

SW4
TP3
TP4
TP1

TP2

1.2.2.2 MPU

The MPU in this module is an Inmos T805 Transputer. For more information on this

processor, please refer to the manufacturer's documentation.

This diagram includes the reset button (SW3), and the reset indicator LED, D2. Note that

this LED is positioned alongside the debugging LEDs.

The switches in SW4 are for configuring the CPU. Switches 1 to 3 control the speed of the

transputer serial links. Switch 4 sets the boot from ROM or transputer link option. The effects of

the switches are outlined in the following table:

Switch

Number

CPU Pin label Purpose Action when On Action when Off

1 Link Special Select non-standard

speed

non-standard speed =

20Mbits/sec

non-standard speed =

5Mbits/sec

2 Link0 Special sets Link0 to non-

standard speed.

non-standard speed 10Mbits/sec

3 Link123 Special sets links 1 to 3 to non-

standard speed.

non-standard speed 10Mbits/sec

4 Boot From ROM Boot from external ROM

or from Link

Boot from ROM Boot from any link

The transputer link connections are also on this diagram. Link 0 is specially wired as a

debug port. It includes the CPU status and control lines for hardware debugging. Please refer to

the circuit diagrams for the pinout.

The other links are not used, and may be allocated as required.

Yamabico Autonomous Mobile Robot Documentation 13

1.2.2.3 Address Decoder

The address decoding is performed by two EP610 PALs. The address mapping is:

Signal Name Address Purpose

DPM 0xFC0000 Dual Port Memory

F2IO 0xFC4000 Second floor interface (using DTACK)

F2VPA 0xFC8000 Second floor interface (using Eclock)

ACIA 0xFCC000 ACIA device 6350

PTM 0xFCC100 PTM device 6340

PWM 0xFCC200 PWM generator

MODE_R 0xFCC300 right motor mode control register

MODE_L 0xFCC400 left motor mode control register

CNT_R 0xFCC500 right counter

CNT_L 0xFCC600 left counter

LED 0xFCC700 led

ADCON 0xFC8000 A/D converter

Note that F2IO and F2VPA have different purposes. If the peripheral being addressed is a

68000 class peripheral, then it should be selected by using DTACK. If it is a 6800 class

peripheral, it should be addressed using F2VPA. In this way, the bus interfacing requirements are

automatically taken care of.

1.2.2.4 Memory

The memory is battery-backed, so that programs may be stored while the robot is switched

off, and cards can be removed from the robot frame.

1.2.2.5 Dual Port Memory (DPM)

The dual port memory is for communication with the master module, although this may be

revised in future. It is proposed that transputer links may be used for this purpose.

The dual port memory consists of two chips, the IDT7130PLCC and IDT7140PLCC.

Typically, the circuit is constructed using only the IDT7130 for both functions. The address of

the DPM from the YBUS II side is selected by SW2, by using a comparator (U16) to detect when

the upper address lines match the address selected with the switch. The usual position for the

switches is:

123456

011101

On the TLOCO board, full 16 bit communication via Dual Port Memory is implemented.

Yamabico Autonomous Mobile Robot Documentation 14

1.2.2.6 Yamabico Bus Interface

The bus interface consists mostly of buffering for the signals which are used. The only

exception is an interrupt line (VI5) used by the DPM to inform the master module that data is

waiting to be read from the DPM. However, the current software implementation does not require

this interrupt, and a common debugging technique in the Tsukuba University laboratory is to cut

this interrupt line.

The buffering acts as an electrical firewall to guard against bus problems destroying the

board.

1.2.2.7 PWM and Counter

This section contains the hardware which controls the motors, and monitors the shaft

encoders.

The motor currents are controlled independently by two M66240 PWM generator chips.

These operate under software control by the SPUR program. The feedback is provided by shaft

encoders, whose outputs are monitored and counted by a pair of uPD4702/uPD4704 ICs per

motor.

Header JP1 selects the input reference frequency to the PWM chip. The jumper should

only be placed between one pair of pins at a time. The following table shows the frequency

selected at each position:

Position Frequency

1 10 MHz

2 5 MHz

3 2.5 MHz

4 1.25 MHz

If the jumper position is changed, then the software must be re-compiled.

1.2.2.8 LED

The LEDs are only used for debugging purposes. SPUR periodically writes to the LED

register, which gives the user an indication that the board is running. This is most useful while

performing hardware debugging.

1.2.2.9 Second Floor Interface (2F-I/F)

This is primarily designed for adding extra functionality to the TLOCO module. For

example, the inverse pendulum control problem is solved by adding an extra part here, that

interfaces the gyroscopic accelerometer to the TLOCO board, providing the extra feedback

parameters required to control the posture angle of the robot.

Yamabico Autonomous Mobile Robot Documentation 15

The interface includes de-multiplexed address lines (2-16), select lines and clock, and

multiplexed address-data lines (0-15). This allows extra hardware to be added.

1.2.3 Ultrasonic Sensor Module

Yamabico Bus Connector

Serial port (Romance)

Ultra-Sonic transducer connector

Reset switch

Debugging lights

Debugging connector

Baud rate selector switch SW1
Board select switch SW2

U25 U34 U38 U43

U29

U
39

E

P
R

O
M

 1

U35

U
44

E

P
R

O
M

 2

U22
CPU

U9

Layout of the ultrasonic sensor module

The ultrasonic sensor module is designed to be used in conjunction with an ultrasonic

driver circuit, such as HiSonic. It generates a transmit command signal, and measures the time

until the ‘receive’ command is received from the ultrasonic driver circuit. The mode of operation

is designed only for pulse-echo with threshold detection of the first echo. Further echoes are

ignored. The method of determining the first echo is implemented in the ultrasonic driver circuit.

Note that when the HiSonic ultrasonic driver circuit is used, there is a modification to this

module.1

1.2.3.1 CPU

The ultrasonic board uses a 10MHz 68000 CPU. The design is very similar to that for the

mm-KEI master module.

1The modification is to cut the wire from U11 pin 13 (MASK signal), and connect it to GND at pin 12 of U48.

Yamabico Autonomous Mobile Robot Documentation 16

1.2.3.2 Address Decoder

This diagram includes some simple address decoding, using binary decoding chips.

Also of interest is the ROM re-mapping circuitry, comprised of U54 and U16D. The ROM

is at the beginning of memory (0x000000) just after system reset, but after the first four clock

cycles, it is re-mapped to its normal position.

1.2.3.3 Memory

This board includes some RAM, which is not battery-backed, so it does not retain

programs after switch-off. All necessary software is stored in ROM.

1.2.3.4 DPM

This is used for communication with the master module. This module only uses 8 bits for

communication. The operation is very similar to the DPM in the TLOCO board in other respects.

Board selection is performed by decoding the upper address lines of the Yamabico bus.

The decoding is simply a comparison with the outputs of a DIP switch, SW2. (The circuit

diagram and the screen pattern on the board are different.)

The DPM can only be accessed from one side at an one time. The protocol which has been

chosen is to allow the Yamabico bus to access the DPM while the E clock (on the Y-II bus) is

high, and for the CPU on the peripheral module to access the DPM while the E clock is low. This

is achieved by delaying acknowledgment of the memory access until the E clock is low.

1.2.3.5 PTM

The first PTM (Programmable Timer Module) is only used for software timing. This is

because its only hardware connections are to the data bus, address bus, control lines and an

interrupt line. The other PTMs are connected to the receive part of the circuitry. They count the

time interval from the transmission of the pulse to the detection of the echo.

1.2.3.6 ACIA

This is for serial communication with a host computer, for debugging purposes. The baud

rate is adjustable, as per the DIP switches in SW1. (Again, the circuit diagram and the screen

pattern on the board is different.) For the allowable speeds, please refer to the data given in the

68000 Master module section.

The ACIA port is fully RS-232 compatible, having an on-board voltage converter chip to

allow +/-10V signals to be generated and received.

Yamabico Autonomous Mobile Robot Documentation 17

1.2.3.7 Transmit

This section of the circuit sends out the signal to transmit to one of 12 ultrasonic modules.

The board was designed for flexibility in the number of transmit/receive pairs to be used, so the

same board can be used for both a standard 4 transducer set design and for a ring transducer set.

The transmitters to be used are directly selected by writing into the hardware register at

TXPLUS. The bits are high to transmit, low to remain silent. The transmit pulse length is

controlled by U7, a pre-settable counter. This counter counts from the set value to 0xFF before

the transmit pulse is terminated. A one-shot timer, U11, ensures that the register at TXPLUS is

cleared before the next transmit pulse.

The transmit pulse length, as discussed previously, is controlled by a pre-settable counter

U7. This counter has double latches, the first of which store the count preset value. Hence, the

starting count value only needs to be loaded once. All subsequent writes to TXPLUS cause the

starting value to be loaded into the counting latches. The transmit pulse starts, and ends after

0xFF-start value clock pulses.

The transmit section also produces PR CONTROL signals for the receive section. These

are used to prime flip-flops in the receive section.

1.2.3.8 Receive

This diagram includes not only the receive circuitry, but also the register for the debug

port, which is essentially a parallel port with LEDs and no handshaking.

The receive circuit consists firstly of two buffer ICs, U42 and U47. These are to guard

against electrical malfunctions destroying the entire board.

The receive signals then pass to a bank of flip-flops, which are set to trigger or not trigger

depending upon which channels transmitted. The output of each flip-flop is then OR’d with that

of an adjacent channel, to reduce the total number of input channels to 6. These lines are then

used to halt the associated PTM. The output is also directly readable to the CPU through address

3SB.

1.2.3.9 Connectors

The pinouts for the ultrasonic transducer connector are shown below. The connector is a

50 pin 0.1” spacing IDC type.

Y
a

m
a

b
ico

 A
u

to
n

o
m

o
u

s M
o

b
ile

 R
o

b
o

t D
o

cu
m

e
n

ta
tio

n
1

8

1 TRS.1TRS.2 2
3 TRS.3TRS.4 4
56
7 GNDGND 8
9 REC.1REC.2 10
11 REC.3REC.4 12
13 GNDGND 14
15 VCC

TRS.6 18 17 TRS.5
VCC 16

19 TRS.7TRS.8 20
2122
23 GNDGND 24
25 REC.5REC.6 26
27 REC.7REC.8 28

29 GNDGND 30
31 VCCVCC 32
33 TRS.9TRS.10 34
35 TRS.11TRS.12 36
3738
39 GNDGND 40

41 REC.9REC.10 42
43 REC.11REC.12 44
45 GNDGND 46

47 VCCVCC 48
4950

U
ltra

so
n
ic tra

n
sd

u
ce

r co
n
n
e
cto

r

T
he connections for the A

C
IA

 connector a
re show

n below
. N

ote tha
t the connections a

re

the sa
m

e a
s for the seria

l p
orts on the 6

8
0

0
0

 m
a

ster m
odule, so the sa

m
e ca

b
le m

a
y b

e u
sed to

connect the card to a host com
puter.

1 GNDTxD 2
3 RxDRTS 4
5 CTS6

7 GND8
9 10

A
C

IA
 co

n
n

e
cto

r

T
he connections for the debug connector a

re show
n below

. N
ote tha

t this port is not

norm
ally used.

1 DB.D0DB.D1 2

3 DB.D2DB.D3 4

5 DB.D4DB.D5 6
7 DB.D6DB.D7 8
9 VCC GND 10

D
e
b
u
g
 co

n
n
e
cto

r

Yamabico Autonomous Mobile Robot Documentation 19

2. Software

2.1 Architecture Overview

The architecture of the software system mirrors that of the current hardware architecture

of the robots. See the hardware section for the hardware architecture. The software functional

architecture is as follows.

Main/Master
Module

Locomotion
Function
Module

Ultrasonic
Sensor

Function
Module

Voice
Generation
Function
Module

etc…

Communication

Software Architecture

The master module and each of the function modules executes a simple uni-processor

operating system developed specifically for the Yamabico robots called MOSRA. The user

program for high level control of the robot executes on the master module and conceptually

initiates all communication over the Yamabico Bus (YBus) with the function modules. From the

user's viewpoint the application programming interface (API) can be divided into MOSRA

operating system calls, and calls specific to particular function modules. Each of the API's is

detailed below.

Currently there are two implementations of the master module and of some of the function

modules. The original designs employing a Motorola 68000 main processor and the newer

INMOS T800 Transputer based boards. The following section on the Mosra operating system

concerns only the 68000 based boards. From a software communications viewpoint the

Transputer and 68000 function module boards are identical, as the communication protocol over

the Yamabico Bus hides the specific hardware implementation.

Yamabico Autonomous Mobile Robot Documentation 20

2.1.1 Directory Tree

Below is a partial directory tree of the entire Yamabico project, with the exception of the

Transputer software.

 |-doc----|-romance
 |
 | |-compiler
 |-ground-|-install
 | |-lib
 | |-robol0
 |
 | |-DPM
 | |-HiSonic
 ys-kit-| |-ISSUE
 | |-SONic
 | |-Spur
 |-module-|-Spur-16
 | |-Spur-telop
 | |-US12
 | |-US_ring
 | |-USwithPL
 | |-Voice
 |
 |-mosra

The directory contents are as follows:

• doc - Documentation2

• ground - The ground software - Compilers, Simulators, etc.

• module - Directories for each function module developed

• mosra - The MOSRA OS

Ground
The ground directory contains:

• compiler - The mcc compiler driver and ml68 linker source

• install - Scripts for making OS/9 libs and includes

• lib - Template headers and makefiles

• robol0 - roboc - old driver for Robol/0 compilation

Module
The module directory contains a subdirectory for the software of each of the developed

function module boards. These function modules are:

• HiSonic - The HiSonic UltraSonic module (Newer than SONic)

• ISSUE - ISeye Software United Environment

• SONic - The UltraSonic module

• Spur - The Spur locomotion module (8 bit integer version)

2Documentation is not available for most software

Yamabico Autonomous Mobile Robot Documentation 21

• Spur-16 - The Spur locomotion module (16 bit integer version)

• Spur-telop - A version of Spur for TeleOperation

• US12 - US eye (for Yamabico type 10)

• US_ring - UltraSonic ring software

• Voice - The Voice Synthesiser/Generator software (Japanese)

• DPM3 - Source for Dual Port Memory and SIP4 functions

2.2 MOSRA

MOSRA5 is a simple operating system designed specifically to execute on Yamabico

robots. It has been designed to be object module compatible with the OS-9 operating system so

that existing OS-9 targeted compilers may be utilised.

2.2.1 Features

The major features of MOSRA are:

• Process management - cooperative multitasking

• Interrupt handling

• Exception handling

• Memory module management (single address space for all processes)

• Memory allocation management

• Interprocess communication (using shared memory)

The MOSRA API calls will be detailed in terms of these functional divisions.

3Refer to the “Yamabico Bus II” section in the Yamabico Hardware Folder for a detailed description of the DPM

hardware and protocol used for communication over the Yamabico Bus II.

4SIP - State Information Panel (data structure for exchange of information between modules via DPM). Sometimes

also referred to as State Information Monitoring Panel (SIMP)

5MOSRA - The cooperative multitasking Operating System that runs on Yamabico robots.

Yamabico Autonomous Mobile Robot Documentation 22

2.2.2 MOSRA API

2.2.2.1 Memory Allocation

Low level memory allocation in MOSRA is managed using these memory allocation calls.

Each allocation should be matched by a corresponding deallocation (mfree) to return the

memory back to the free memory pool once it is no longer required. Memory is allocated from a

global free memory pool.

API Calls

char* malloc(int size)

Description:

Allocates some memory of at least the requested size if enough memory is available.

Parameters:

size The size in bytes of the memory required.

Return:

The address of at least size bytes of memory, or 0 if not enough memory is free.

mfree(char* address)

Description:

Frees the specified pre-allocated memory, releasing it back into the free memory

pool. No check is made to ensure memory has been allocated at the address. DO NOT

free unallocated memory. This call cannot be used to directly free MOSRA memory

modules.

Parameters:

address The address of previously allocated memory.

Return:

void

Yamabico Autonomous Mobile Robot Documentation 23

Example

main()
{

char *Mem_for_integers;

Mem_for_integers = malloc(100*sizeof(int)); // allocate memory for 100
int’s

if (Mem_for_integers == 0) {
write_cons(“Not enough memory.”);
death(); // kill this process

}

// Use the memory
...

mfree(Mem_for_integers);
}

2.2.2.2 Memory Modules

MOSRA handles the main CPU memory in terms of Memory Modules. A memory module

is a region of memory delimited by a special header section that identifies memory modules and

provide information such as a name. The memory module format matches that of OS-9. The

format is detailed in the MOSRA Implementation section below. Memory modules can be further

divided into execution modules and data modules. Both share common header information. The

modules are generated by the OS-9 targeted Microware C compiler.

API Calls

int ismod(MOD_DATA* m_adr)

Description:

Tests if the supplied address points to a memory module.

Parameters:

m_adr Address of memory module structure

Return:

Returns TRUE6 if the supplied address points to a memory module, FALSE

otherwise.

6FALSE == 0, TRUE == non zero (usually 1)

Yamabico Autonomous Mobile Robot Documentation 24

MOD_DATA* make_mod(char* mname, int size)

Description:

Request the creation of a new memory module of the specified size and with the

given name. Uses malloc() , see memory allocation API. You should call crcgen()

after this to calculate the CRC check. MOSRA will not recognise the memory module by

name in any memory module calls that take a name parameter until you register the module

in the directory by calling regmod() .

Parameters:

mname C character string name for the new module

msize The requested size in bytes

Return:

Returns the address of the new module, or 0 if an error occurred. An error can be

caused by lack of memory.

crcgen(MOD_DATA* m_addr)

Description:

Calculates and fills in the CRC (Cyclic Redundancy Check) field of the specified

memory module. MOSRA will only recognise memory modules with correct CRC’s for

some memory module operations.

Parameters:

m_addr Address of a pre-allocated memory module

(created with make_mod()).

Return:

void

Yamabico Autonomous Mobile Robot Documentation 25

MOD_DATA* get_mod(char* mname)

Description:

Finds the address of a memory module by name, if a module with the specified name

exists.

Parameters:

mname C string name of module to find the address of.

Return:

The address of a module with the given name, 0 if no such named module exists.

int regmod(MOD_DATA* m_addr)

Description:

Registers the specified module with MOSRA.

Parameters:

m_addr Address of pre-allocated and CRC checked memory module.

Return:

TRUE if registered OK, FALSE otherwise.

int delmod(MOD_DATA* m_addr)

Description:

Unregister the specified memory module with MOSRA and delete it, hence freeing

it’s memory for use.

Parameters:

m_addr Address of memory module to unregister and deallocate.

Return:

TRUE if OK, FALSE if error.

Yamabico Autonomous Mobile Robot Documentation 26

Example

#include <mosra/system.h>
#include <mosra/data.h>

main()
{

int b;

// Duplicate the startup module (standard module executed on MOSRA
boot)

// First find the “startup” module
// NB: Actually the startup module is an executable module

(EXEC_MOD),
// but we can just treat it as a DATA_MOD for copying it. The
// memory module functions are also prototyped as returning

MOD_DATA
// so we save casting.

MOD_DATA* newmod;
MOD_DATA* startmod = get_mod(“startup”);
if (startmod == NIL) {

write_cons(“No startup module! - oops”);
death();

}

// Create new module in memory
newmod = make_mod(“start_copy”, startmod->mh_size); // same size

if (newmod == NIL) {
write_cons(“no memory for new module”);
death();

}

// Copy the startup module’s data into the new module’s data
// (see implementation section for the MOD_DATA structure definition)
for(b = 0; b < startmod->mh_dsize; b++)

*(newmod + newmod->mh_data + b) = *(startmod + startmod->mh_data +
b);

// Update new module’s CRC
crcgen(newmod);

// And register it in the module directory
if (regmod(newmod) == FALSE) {

write_cons(“error registering module”);
death();

}

// Now we could use fork() to start executing our new module if we
wished.

...

// Done with it, now unregister and delete the module
delmod(newmod); // This also unregisterd the module in the

directory
}

Yamabico Autonomous Mobile Robot Documentation 27

2.2.2.3 Process Control

MOSRA process management is very simple. Multitasking is cooperative so processes

must voluntarily relinquish the processor to other processes. A process can be in any of three

states, RUN, WAIT or MESW. A process in the RUN state is ready to run and may be executing.

A process in the WAIT state is blocked waiting for some event, like a wakeup() call from

another process. A process in the MESW state is waiting for an IPC7 message from either a

specific source or from any source. Once such a message has been received the process will go

into the RUN state.

API Calls

int mfork(char* mname, int pid, int priority)

Description:

Creates a new process that executes the code in the execution memory module

specified by name. The process will have the PID (Process Identifier) that was supplied,

unless it was already in use. If 0 is supplied as a PID, MOSRA chooses a PID.

Parameters:

mname C String name specifying the execution module for the process.

pid PID to use, or 0 if MOSRA may choose a PID.

priority The required priority of the process in the range 1-256. The larger the

number the higher the priority. Default is 9.

Return:

The PID of the created process. This is as supplied or in the case 0 was supplied

the PID MOSRA has chosen. If the PID supplied was already in use, the call fails and 0 is

returned. Returns the named module doesn’t exist in the module directory.

int pcreate(MOD_EXEC* mod_address, int pid,int priority)

Description:

Creates a new process that executes the code in the execution memory module

specified by mod_address . The process will have the PID (Process Identifier) that was

supplied, unless it was already in use. If 0 is supplied as a PID, MOSRA chooses a PID.

7IPC - Inter Process Communication

Yamabico Autonomous Mobile Robot Documentation 28

The function is identical to mfork() except the executable module is supplied by address

rather than by name.

Parameters:

mod_address Address specifying the execution module for the process.

pid PID to use, or 0 if MOSRA may choose a PID.

priority The required priority of the process in the range 1-256. The larger the

number the higher the priority. Default is 9.

Return:

The PID of the created process. This is as supplied or in the case 0 was supplied

the PID MOSRA has chosen. If the PID supplied was already in use, 0 is returned.

int tfork(void* start_pc, int pid, int priority) 8

Description:

Creates a new thread that shares the same code and data as the parent thread or

process. A thread is just a process that shares it’s module and data area. Execution will

start at the address specified, usually a C function that must never return, but should end

with death() . The thread will have the PID (Process Identifier) that was supplied,

unless it was already in use. If 0 is supplied as a PID, MOSRA chooses a PID.

Note that only the first process started for a given code module (the parent) will

deallocate the static data area upon exit. Hence all child threads should terminate before

their parent.

Parameters:

start_pc Address of the execution entry point (e.g. a C function - which is a

pointer to it’s code).

pid PID to use, or 0 if MOSRA may choose a PID.

priority The required priority of the process in the range 1-256. The larger the

number the higher the priority. Default is 9.

Return:

The PID of the created process. This is as supplied or in the case 0 was supplied

the PID MOSRA has chosen. If the PID supplied was already in use, the call fails and 0 is

returned. Returns the named module doesn’t exist in the module directory.

8 Threads are only available in some versions of the MOSRA kernel. They were added at Wollongong University.

Yamabico Autonomous Mobile Robot Documentation 29

death()

Description:

This function kills the calling process. Hence it never returns, since the calling

function will never be re-scheduled. The calling process’s process descriptor is unlinked

from the active process list and the static data and stack is deallocated9.

Parameters:

None.

Return:

Never returns.

sleep()

Description:

This function causes the calling process to switch into the WAIT state, hence

relinquishing the CPU to the next process in the RUN state. If no other processes are

ready to execute (in the RUN state) the CPU will halt until a process becomes ready to run.

Interrupts will continue to be processed. The process will remain in the WAIT state until

explicitly put into the RUN state by a call to wakeup() . The sleep() and

wakeup() functions together allow a user defined scheduling to be imposed on

processes10.

Parameters:

None.

Return:

void.

9 Only parent processes deallocate the static data area, not child threads. Hence all children should terminate

before their ultimate parent process.

10 This is mostly useful when using processes executing in cooperative scheduled mode of MOSRA. Later versions

of MOSRA have the option of executing processes under a pre-emptive multitasking schedular.

Yamabico Autonomous Mobile Robot Documentation 30

int wakeup(int pid)

Description:

Changes the state of the process with PID pid to RUN, and immediately transfers

control to this process. The process must have been previously in the WAIT state (it must

have called sleep()), or the RUN state (in which case control is just passed).

Parameters:

pid The Process ID (PID) of the process to begin execution.

Return:

TRUE if OK, FALSE if error (e.g. no process with the given PID exists), in which

case the call has no effect.

int getpid()

Description:

Get the Process ID (PID) of the current process (the caller).

Parameters:

None.

Return:

The PID of the caller.

char* get_work()

Description:

This call is not normally required by user/application code. It gives the address of

the static data area. The data area is location of the static variables and C stack11.

Parameters:

None.

Return:

Address of the data area of the caller process.

11 In later versions of MOSRA that support Threads, the static area and stack are no longer allocated together.

This is because threads share the same data area but each have their own stack.

Yamabico Autonomous Mobile Robot Documentation 31

Example

#include <mosra/system.h>
#include <mosra/data.h>

// proc1 main
main()
{

// Assume we have an executable memory module in memory called
// “proc2”. Start this as a new process.

int proc2pid;
proc2pid = mfork(“proc2”, 0, 9);

while (more_work_to_do) {
// do some work

// relinquish control of CPU (to proc2)
sleep();

}
death(); // no more work to do so kill ourself!

}

// proc2 main
main()
{

int proc1pid; // must find out proc1’s PID. proc1 will need to send
us a

 // message containing it’s PID
...
while (more work to do) {

// do some work

// Throw control back to proc1
wakeup(proc1pid);

}
death(); // no more work to do so kill ourself!

}

Yamabico Autonomous Mobile Robot Documentation 32

2.2.2.4 Interprocess Communication (IPC)

Interprocess communication in MOSRA is modelled on message passing. The current

implementation is very efficient because it uses pointer passing, possible since all processes share

a common address space.

Types

This type should be included as the first member of a user defined message type, or the

user can define message structure that duplicates these fields as the first three. The user is

responsible for allocation of the message. The usual convention is for the sender to allocate the

message space and the receiver deallocates it. For this reason it is not advisable to use

static ally declared message structures.

/*
 * data structure for message
 */
typedef struct _messt {
 struct _messt *ms_next; /* pointer to the next message */
 int ms_leng; /* message length */
 SHORT ms_scid; /* message source ID */

 /* user/application message data goes here */

} MESST;

Example

// User defined message for commands

typedef struct _mymessg {
MESST messg;
int command;
int x,y,th;

} COMMAND_MESG;

Yamabico Autonomous Mobile Robot Documentation 33

API Calls

int send_mess(int pid, char* mes_p)

Description:

Send a message to a specified process. By convention the sender allocates memory

for a message and the receiver deallocates the memory. Hence do not free the memory for

messages you send and do not declare a message as a static or stack variable (or it will be

deallocated by the program automatically).

Parameters:

pid The Process ID of the destination process.

mes_p The address of the message to send.

Return:

TRUE if message sent OK, FALSE if error (e.g. invalid PID)

void* recv_mess(int pid)

Description:

Receive a message from the specified source process, or from any process. The

process will sleep() until a message is available. By convention the receiver always

deallocates any received messages.

Parameters:

pid The Process ID of the source process, or 0 to specify any source.

Return:

The address of the received message structure.

Yamabico Autonomous Mobile Robot Documentation 34

int test_mess(int pid)

Description:

Because a process may block (state MESW - Message Wait) if no messages are

available when using recv_mess() , this function allows the caller to test if any

messages are waiting to be received. The parameter has the same meaning as for

recv_mess() . If a message is waiting, the next call to recv_mess() with the same

argument is guaranteed to return a message without blocking.

Parameters:

pid The Process ID of the source process, or 0 to specify any source.

Return:

TRUE if at least one message is waiting, FALSE otherwise.

Example

#include <mosra/system.h>
#include <mosra/data.h>

main()
{

// Assume message definition in example above, and a process exists
with PID

// childpid.
...

COMMAND_MESG *mycommand, *reply;
MESST *m;

// Construct a command message and send it to the child process
mycommand = malloc(sizeof(COMMAND_MESG)); // child will mfree
mycommand->command = COMMAND_CODE_1;
mycommand->x = 0;
mycommand->y = 50;
mycommand->th = 90;
send_mess(childpid, mycommand); // send message to child process

// Now wait for a reply
reply = recv_mess(childpid);

// Now loop and process any messages we get from any other process
for(;;) {

if (test_mess(0) == TRUE) { // if a message is waiting
m = recv_mess(0); // get the message
... process incoming message ...
mfree(m); // as reciever it’s our responsibility to mfree

the msg
}

... do work ...

}
}

Yamabico Autonomous Mobile Robot Documentation 35

2.2.2.5 Interrupt & Exception Handling

MOSRA implements a set of system calls for managing interrupt handlers (service

routines) for CPU interrupts and for locking out interrupts during critical code sections.

MOSRA maintains a separate handler chain for each CPU interrupt level. Some of the calls

described below take parameters of the following Interrupt Request Table type.

/*
 * interrupt table structure
 */
typedef struct _irqtbl{
 char *iq_poll; /* polling device address */
 char iq_mask; /* mask byte */
 char iq_flip; /* flip byte */
 LONG (*iq_serv)(), /* interrupt service address */
 iq_static; /* static storage address */
 SHORT iq_prio; /* interrupt priority */
 struct _irqtbl *iq_next; /* pointer for nextt irq table */
} IRQTBL;

This structure is used when installing a new interrupt handler for a specific CPU interrupt

level. The interrupt handling routine is entered into the iq_serv field. As there may be several

devices that trigger the same level interrupt to the CPU, MOSRA will only activate the service

routine if the byte at the address specified by iq_poll AND’ed with the mask iq_mask and

exclusive OR’ed with iq_flip is non-zero. That is, if

(*iq_poll & (iq_mask ^ iq_flip)) & $FF != $00

Before the interrupt routine is activated, register A6 is loaded with the value in

iq_static which points to the process’s static data area. The code generated by the OS/9

compiler uses indirect addressing via the A6 register for access to static data. The iq_prio

specifies the required priority of the handler. This determines the order in which handlers in the

chain are called. The iq_next field is used by MOSRA internally for chaining and should not

be used by user code. Note that the functions that install and remove interrupts modify the

interrupt handler chain for the specified level, so you should ensure that interrupts to the CPU of

this level do not occur during the function call (i.e. disable them).

Yamabico Autonomous Mobile Robot Documentation 36

API Calls

int irqtbl(int level, IRQTBL* table)

Description:

This function installs a new interrupt service routine (handler) as specified by the

table structure as described above, into the interrupt level level chain.

Parameters:

level The CPU interrupt level [0..7]

table The IRQTBL pointer as described above.

Return:

TRUE for success, FALSE for failure (level was > 7).

int irqdel(int level, IRQTBL* table)

Description:

This routine removes the specified IRQ table from the chain. The table must be

the same pointer as passed to irqtbl() for this level .

Parameters:

level The CPU interrupt level [0..7]

table The IRQTBL pointer as passed to irqtbl() .

Return:

TRUE is removed successfully, FALSE if not found in the level chain.

Yamabico Autonomous Mobile Robot Documentation 37

int irqctl(int pid, int level)

Description:

This functions sets the CPU interrupt priority mask of the specified process as

defined in the Status Register (SR) bits 10-12.

Parameters:

pid Process IDentifier of process whose priority mask is to be modified. If

pid is 0 the priority mask of all processes will be changed.

level The new mask level.

Return:

TRUE is successful, FALSE if the process is not found.

exsect()

Description:

This function masks all interrupts while the current process is executing. It also

retains the current interrupt mask for the process so it may be restored by exend() . The

exsect() ...exend() pair can be used when an exclusion section is required in code.

Parameters:

None.

Return:

Void.

exend()

Description:

This function returns the current process interrupt mask to the value previous to the

exsect() call. exend() must only be called after exsect() . It may be used to end

a critical section of code.

Parameters:

None.

Return:

Void.

Yamabico Autonomous Mobile Robot Documentation 38

irqset(int level)

Description:

This function sets the CPU interrupt priority mask of the current process as defined

in the Status Register (SR) bits 10-12. The current level is retained for restoration upon a

call to irqrst() .

Parameters:

level The new interrupt priority mask.

Return:

Void.

irqrst()

Description:

This function restores the CPU interrupt priority mask of the current process to the

value previous to the last call to irqset() .

Parameters:

None.

Return:

Void.

2.2.2.6 Semaphores

Semaphores are a synchronisation primitive commonly used to manage mutual exclusion

of resources shared between multiple processes. They can also be used as a convenient and

efficient signalling mechanism. The semaphores implemented MOSRA12 are binary semaphores,

not counting semaphores. The API, as described here, is very similar to the VxWorks OS

semaphore API.

Semaphores can be used to protect access to data shared between multiple threads or

processes. Note that if processes are only being scheduled cooperatively, semaphores need not be

used to protect shared data since no pre-emption can take place unless explicitly programmed

12 Semaphores were developed for a version of MOSRA at the University of Wollongong. They are most useful

when using pre-emptive scheduling as developed jointly by the Tsukuba and Wollongong Laboratories.

Yamabico Autonomous Mobile Robot Documentation 39

(via calls that relinquish the CPU, like sleep() , send_mess() , etc.). They may be useful,

however, for sharing data between processes and interrupt routines.

Semaphore semcreate()

Description:

This function creates a new semaphore for use and returns it’s semaphore ID. The

ID is subsequently used by all other semaphore API calls for identification. Every call to

semcreate() should be matched with a call to semdelete() to free the semaphore

when no longer needed. There are only a finite number of semaphores in the system.

Parameters: None.

Return:

The new semaphore ID, or -1 in case of error (semaphore table is full).

int semdelete(Semaphore sem)

Description:

This deallocates the specified semaphore so it may be reused by new calls to

semcreate() . It is safe to call this with a semaphore that has already been deleted, but

is bad practice, since the semaphore may have been re-cycled in another call to

semcreate() . It is also good practice for the calling process to own the semaphore

being deleted, in case another process is blocked waiting for it, in which case it will block

forever. It is not necessary that the caller be the same process that created the semaphore.

Parameters:

sem The semaphore ID of the semaphore to delete, as returned by

semcreate() .

Return:

TRUE if the semaphore had been created and was successfully deleted, FALSE if

the semaphore had not been previously created, in which case the call has no effect.

Yamabico Autonomous Mobile Robot Documentation 40

int semtake(Semaphore sem, int blockingmode)

Description:

Attempt to take (own) the semaphore specified (e.g. own the resource represented by

the semaphore).

Parameters:

sem The semaphore ID of the semaphore to attempt to take. Must be a

valid ID as returned by semcreate() .

blockingmode One of BLOCKING or NONBLOCKING. If BLOCKING, the calling

process will block (in state SEMW) until the semaphore becomes

available (the owner calls semgive()). If NONBLOCKING the call

will return immediately and the return code will indicate if the

semaphore could be owned or not.

Return:

FALSE if the semaphore was not available (already taken or not valid), TRUE if

taken successfully. If BLOCKING mode, always returns TRUE after taking (unless

invalid).

int semgive(Semaphore sem)

Description:

Attempt to give back (disown13) the semaphore specified (e.g. disown the resource

represented by the semaphore). The semaphore must have already been taken (by any

process) or the call has no effect. If one or more other processes (or threads) are blocked

waiting to take the semaphore, execution control of the CPU will immediately be passed to

one of the waiting processes (which will be unblocked as it’s blocking call to semtake()

returns).

Parameters:

sem The semaphore ID of the semaphore to give. Must be a valid ID as

returned by semcreate() .

13 Semaphores are not actually owned by any particular thread. If used for mutual exclusion it is usually best to

conceptually think of them in this way (as being owned by the thread that calls semtake()). Hence calls to

semtake() are usually matched with corresponding calls to semgive() by the same thread (although this is

not necessary). If used for signalling purposes this is usually not the case.

Yamabico Autonomous Mobile Robot Documentation 41

Return:

TRUE if given successfully (the CPU may have been lost to another thread before

the call returns), or FALSE if the semaphore was not taken or not valid.

Example

#include <mosra/system.h>
#include <mosra/data.h>

// shared data
LinkedList list;

// semaphore to protect access to list
Semaphore listsem;

thread_proc()
{
 while (my_work_do_do) {
 … do work …

 // access list
 semtake(listsem, BLOCKING);
 … manipluate list …
 semgive(listsem);

 … do more work …
 }

death(); // no more work to do so kill ourself!

}

main()
{
 listsem = semcreate(); // create this before starting thread_proc()
 // because tfork() (and mfork()) transfer
 // execution immediately to the new process,
 // hence it may try to semtake() on an
 // invalid semaphore.

 // start a new thread for this module (main is the parent process)
 int childPID = tfork(thread_proc, 0, 0x70);

 while (work_to_do) {
 … do work …

 // need to access list
 semtake(listsem, BLOCKING); // wait until thread_proc() isn’t
 // using list (if it was)
 … manipluate list …
 semgive(listsem);

 … do more work …
 }
 semtake(listsem, BLOCKING); // don’t just destroy it
 // from under thread_proc()’s nose!
 semdelete(listsem);

death(); // no more work to do so kill ourself!
}

Yamabico Autonomous Mobile Robot Documentation 42

2.2.3 MOSRA Implementation

This section assumes familiarity with the MOSRA API. All type definitions listed in the

Types sections to follow are from the header file ys-kit/mosra/defs/mosra/data.h .

2.2.3.1 System Initialisation & the Global System Table

MOSRA is activated by a boot program.(boot.c/boot.a) As the power is supplied

or a reset button is pushed, the boot program activates, and searches for the MOSRA kernel in

RAM and ROM. After MOSRA is found, MOSRA can control the system.

Order of Initialisation (main.c):

1. Initialisation of 68000 vector table

2. Initialisation of MOSRA system table

3. Search and registration of memory modules

4. Drawing up free memory links

5. Registration of MOSRA as process

6. Activating startup module

Only startup is activated by MOSRA. All other necessary processes are activated by

startup.

Types

This structure is the global system table. It is always located at address 0.

typedef struct _sysglob {
 LONG (*D_VECT[VCTSIZE])(); /* exception vectors */
 IRQTBL *D_IRQT[IRQTSIZE]; /* irq managemant table link top */
 PDSC *D_APROC; /* active process link top */
 FMEM *D_FREEM; /* free memory link top (size = 0) */
 LONG D_RAMTOP, /* RAM area top (lowest addr) */
 D_RAMEND, /* RAM area end (highest addr) */
 D_ROMTOP, /* ROM area top (lowest addr) */
 D_ROMEND, /* ROM area end (highest addr) */
 D_MODE; /* Round robin mode or cooperative */
 PDSC *D_RRLIST; /* circular list of processes for round robin */
 SEMTBL *D_SEMT; /* Table of active semaphores */
 LONG D_free[47]; /* free area (unused) */
 PDSC *D_PTBL[PTBLSIZE]; /* process descriptor directory */
 MOD_EXEC *D_MDIR[MDIRSIZE]; /* module directory */
 LONG _sp_svc[STACKSIZE], /* stack area for system servicecall */
 _sp_irq[STACKSIZE]; /* stack area for interrupt */
} SYSGLOB;

The fields in this structure are mostly self explanatory. As SYSGLOB is always located at

address 0, the D_VECT array maps directly onto the 68000’s exception vector area, and hence

provides a convenient method for accessing it. The D_IRQT is an array of linked lists of

interrupt handlers, one for each processor interrupt level. All processes that are currently active

are linked in priority order from D_APROC as well as being accessible from the array D_PTBL

indexed by process ID. The D_RAMTOP/END and D_ROMTOP/END fields give the address

Yamabico Autonomous Mobile Robot Documentation 43

range of RAM and ROM respectively. D_MDIR is an array of pointers to memory modules,

_sp_svc and _sp_irq are stack areas used during kernel and interrupt execution

respectively. In versions of MOSRA that support pre-emptive multitask scheduling, the

D_MODE and D_RRLIST flag the scheduling mode and store the list of processes being

round-robin scheduled respectively (the remaining processes not on this list are scheduled

cooperatively as in older versions). The D_SEMT points to a semaphore table for managing

semaphores.

2.2.3.2 Memory Allocation

Types

/*
 * data structure for free memory link
 */
typedef struct _fmem{
 int fm_size; /* memory block size */
 struct _fmem *fm_next; /* memory link */
} FMEM;

This is the node type of a linked list of free areas of memory starting at the address of the

node and extending for fm_size bytes. When memory is freed using mfree() , adjacent

areas of free memory are coalesced into a contiguous area.

2.2.3.3 Memory Modules

Types

A Memory Module (MM) consists of :

• Common header

• Header for execution module / Header for data module

• Machine word code

• Initialising information

• CRC code

The size of the data area and stack area, offset to initialising information of the data area

and text area, are recorded in the header for the execution module. MOSRA initialises processes

when created with fork() on the basis of this information.

Yamabico Autonomous Mobile Robot Documentation 44

/*
 * header structure of execution module
 */
typedef struct mod_exec{
 SHORT mh_sync, /* sync code(4afc) (Magic# for MM
identification) */
 mh_sysrev; /* system revision */
 LONG mh_size, /* module size */
 mh_owner, /* owner id */
 mh_name; /* module name */
 SHORT mh_undef[15], /* unused in mosra */
 mh_parity; /* header parity code */
 LONG mh_exec, /* offset to execution entry */
 mh_ecept, /* offset to exception entry */
 mh_mem, /* data area rquirement */
 mh_stack, /* stack size */
 mh_idata, /* offset to initialized data */
 mh_irefs; /* offset to data reference lists */
} MOD_EXEC;

This structure is an OS/9 format object module header. The object modules produced by

the compiler for the Yamabico robots produce this format. The mh_sync field is used by

MOSRA upon boot to search memory and locate all the memory modules. mh_sysrev is

ignored by MOSRA. mh_size is the total size of the module including this header.

mh_owner is also ignored. The mh_name field is the offset into the module of the name that is

entered into the module directory list, and hence used to look up modules using the module

system call API described above. mh_exec is the offset into the module of the start execution

point. The mh_mem field gives the total amount of memory required for static data by the

program. This includes the initialised static data, whose initial values are stored in the module at

offset mh_idata , and the uninitialised static data. The maximum stack size required is given

by mh_stack .

When a new process is created an area of memory is allocated for the stack, the processes

registers, and for the static data (mh_mem bytes). Next the initialised data is copied to the data

area (work area) by the init_work() function in

../ys-kit/mosra/kernel/process.c . Each process descriptor has a pointer to an

area for saving the processes registers when not active, this is also kept in the work area. The

stack pointer in this register set is initialised to point to the stack area and the address register A6

is initialised to point to the work area. The OS/9 convention for access to the data area is

through A6 indirect addressing.

/*
 * header structure of data module
 */
typedef struct mod_data{
 SHORT mh_sync, /* sync code (4afc) */
 mh_sysrev; /* system revision */
 LONG mh_size, /* module size */
 mh_owner, /* owner id */
 mh_name; /* module name */
 SHORT mh_undef[15], /* unused in mosra */
 mh_parity; /* header parity code */
 LONG mh_data, /* offset to data */
 mh_dsize; /* data size */
} MOD_DATA;

The format for data modules is very similar, but no interpretation on the data is made.

Yamabico Autonomous Mobile Robot Documentation 45

2.2.3.4 Process

Types

This is a MOSRA internal structure. It need not be manipulated by user application code,

and does not appear in the API specification.

/*
 * process descriptor structure
 */
typedef struct _pdsc{
 struct _reg *pd_regp; /* saved register address */
 SHORT pd_id, /* process ID */
 pd_wid, /* message waiting ID */
 pd_stat, /* process status */
 pd_prio, /* process priority */
 pd_reglv; /* saved irq mask level */
 struct mod_exec *pd_modh; /* pointer to module header */
 char *pd_work; /* work area address */
 struct _pdsc *pd_next; /* active process link */
 struct _messt *pd_mesp; /* recieved message link */

char *pd_stack; /* stack area address */
 SHORT pd_child; /* T_CHILD if tfork()'d */
 SHORT pd_sem; /* semaphore we're waiting on */
} PDSC;

#define PDSIZE 28

This is the structure used to represent a process. All exiting processes in MOSRA have an

associated process descriptor. Processes in MOSRA can be in any of four states: S_RUN,

S_WAIT, S_MESW, or S_SEMW14. All processes that are ready to run are in the S_RUN state

and are kept in a linked list (D_APROC) in the system global table with the currently executing

process always at the top of the list. Processes in the S_MESW state are blocked waiting for a

message to arrive, and processes in the S_WAIT state are blocked as a result of calling

sleep() . Once a process has called sleep() it will not be placed back in the S_RUN state

until another process wakes it with a call to wakeup() . A process in the S_SEMW state is

blocked while waiting for a semaphore to become free (it called semtake() in blocking mode).

The pd_regp field is used to store a copy of the processors registers when the process is

not executing. pd_id is the process identifier (PID). The pd_wid is the source PID the

process is S_MESWaiting on. If this is 0 a message from any process will wake it. One of the

three process states is stored in pd_stat , and the process priority is stored in pd_prio . The

messages received but not read by the process are linked into a list pd_mesp . When the process

is on the active process list, the pd_next field is used for linking. The pd_modh and

pd_work field point to the executable memory module and work area respectively. Finally the

pd_reglv is used to store the IRQ mask level of this process. See the Interrupt & Exception

Handling API above. In versions of MOSRA that support threads and semaphores, the

pd_stack field stores the stack area address (allocated independently of the work area in these

versions), the pd_child flags for a thread (hence it’s doesn’t free the static area during

14 Versions of MOSRA that do not support semaphores do not use the S_SEMW state.

Yamabico Autonomous Mobile Robot Documentation 46

death()), and the pd_sem gives the semaphore ID if the thread is blocked waiting for a

semaphore.

The source code for the MOSRA process API is located in the

../ys-kit/mosra/kernel/process.c file.

2.2.3.5 Messages

Types

/*
 * data structure for message
 */
typedef struct _messt{
 struct _messt *ms_next; /* pointer to the next message */
 int ms_leng; /* message lengs */
 SHORT ms_scid; /* message source ID */
 char ms_body[2]; /* message bady */
} MESST;

#define MSSIZE 12

/*
 * data structure for wake up message(message without message body)
 */

typedef struct __messt{
 struct __messt *ms_next; /* pointer to the next message */
 int ms_leng; /* message lengs */
 SHORT ms_scid; /* message source ID */
} _MESST;

These structures are used as the header to a MOSRA type message. The data following

this header is not interpreted by MOSRA and may contain pointers, as messages are exchanged

between processes simply by pointer passing. The ms_scid is the process PID of the sender,

the ms_next field is used for linking the message into a list and the ms_leng field is the

total length of the message in bytes - header and any user data. The source code for the message

API is located in the ../ys-kit/mosra/kernel/message.c file. The

recv_mess() call will return a message from the queue pd_mesp in the callers process

descriptor, that matches the source PID (0 matches any message). If there are no matching

messages, the process is placed in the S_MESW state. The send_mess() call either places

the message on the destination processes message queue, or if the destination process was in a

S_MESW state and the message matches it’s pd_wid , then the process is placed directly in the

S_RUN state and the message pointer placed in the D0 register. This simulates a return from a

system call (since the process is in S_MESW it must have blocked on a call to recv_mess()

which never returned due to no messages being available).

Yamabico Autonomous Mobile Robot Documentation 47

2.2.3.6 Interrupts & Exceptions

Types

/*
 * interrupt table structure
 */
typedef struct _irqtbl{
 char *iq_poll; /* polling device address */
 char iq_mask; /* mask byte */
 char iq_flip; /* flip byte */
 LONG (*iq_serv)(), /* interrupt service address */
 iq_static; /* static storage address */
 SHORT iq_prio; /* interrupt priority */
 struct _irqtbl *iq_next; /* pointer for nextt irq table */
} IRQTBL;

#define IQSIZE 22

/*
 * data structure for stacked registor at exception
 */
typedef struct _reg{
 LONG d[8], /* data register d0 to d7 */
 a[7]; /* address register a0 to a6 */
 SHORT sr; /* status register */
 LONG pc; /* program counter */
} REG;

The MOSRA interrupt mechanism is explained in the API section above. The source code

is located in the file ../ys-kit/mosra/kernel/exception.c .

2.2.3.7 System Calls & Register Usage

The mechanism for MOSRA system calls from user programs utilises the TRAP

instruction to activate a software interrupt. Specifically a TRAP #0 . Each MOSRA system call

has a system call code that is defined in the header file:

../ys-kit/mosra/defs/mosra/syscall_No.h

This call code is placed in the instruction word following the TRAP #0 instruction in the

user code. The MOSRA kernel TRAP handler then obtains the PC location of the TRAP

instruction and hence the call code from the stack. The appropriate kernel function is then

dispatched. The user program actually calls a system call stub function that performs this

process. These system call stub functions are in a user link library whose source is located in the

../ys-kit/mosra/lib/syscall directory. For example the implementation of the

mfree() stub looks as follows.

Yamabico Autonomous Mobile Robot Documentation 48

/*
 * mfree(adrs)
 * SHORT *adrs;
 */

#include <mosra/syscall_No.h>

#asm
mfree:
 trap #0
 dc.w F$MFREE
 rts
#endasm

The ../yskit/mosra/kernel/mosra68000.a file contains the _syscall

TRAP #0 handler that obtains the call code and calls the C function

syscall(fnum, arg1, arg2) in the file:

../ks-kit/mosra/kernel/exception.c

which dispatches the call. Upon return the _syscall assembly function executes the top

process on the process list - the process that was interrupted, and then does an rte instruction

(return from interrupt).

OS/9 Register Conventions

The convention for OS/9 function calling if for parameters to be placed in registers and on

the stack, and the return code is returned in register d0 . Before the call the first argument is

placed into register d0 and the second argument in register d1 . Any further arguments are

placed onto the stack in standard C convention.

The a6 register is used for the static storage address pointer15. There may be other

registers used by convention by OS/9 but no documentation was available when this was written.

15 For reasons I do not understand the value in a6 is always set to the static data address + $8000. See the

set_a6 routine in mosra68000.a and also the line p->pd_regp->a[6] = (LONG)p->pd_work +

0x8000 from pcreate() in process.c .

Yamabico Autonomous Mobile Robot Documentation 49

2.2.4 The MOSRA directory

The MOSRA directory ../ys-kit/mosra has the following structure.

 |-config
 |
 |-defs----|-mosra
 |
 | |-backup
 |-kernel--|-objs
 | |-rels
 |
 | |-cstart
 |-lib-----|-rels
 | |-syscall
 |
 | |-common
 | |-Xterminal-|-bt-----|-get
 | | |-put
 | | |-work
 | |
 mosra-| |-lib-------|-rels
 | |-os9
 | |
 | | |-backup
 | | |
 |-romance-| | |-common
 | |-target----| |-doc
 | | |-unixft-|-get
 | | |-put
 | | |-work
 | |
 | | |-common
 | |-unix------|-bt-----|-get
 | |-put
 | |-work
 |-startup

Yamabico Autonomous Mobile Robot Documentation 50

2.3 Function Modules

2.3.1 Ultrasonic sensor module

There are two implementations of the ultrasonic sensor hardware. The original Sonic

hardware and the new HiSonic hardware [Ohno95]. The interface is identical for both, however

if using the HiSonic hardware on a robot the user must define HISONIC before including the

ymbc_usr.h file.

#define HISONIC
#include <ymbc_usr.h>

Both hardware versions have four US sensors, facing left, right, toward the front and

toward the back of the robot. The interface is very simple. There is a function to get the range

distance from a particular directional sensor, and a function to enable/disable some or all of the

sensors.

2.3.1.1 API

int us_dist(int dir)

Description:

This function gets the range of a detected object from the specified sensor. The

units are cm.

Parameters:

dir The direction, one of US_FRONT, US_BACK, US_LEFT or

US_RIGHT. If using the new 16 sensor ring16, you may also pass an

integer [0..15] for the sensor number to read.

Return:

The distance in cm or if no echo was detected by the sensor, the value

US_NOECHO.

16 This is the 16 sensor ring developed at Wollongong not the 12 sensor ring developed at Tsukuba.

Yamabico Autonomous Mobile Robot Documentation 51

us_mask(int mask_pattern)

Description:

The function allows the selective enabling or disabling of any of the sensors.

Parameters:

mask_pattern One of US_NOMASK, US_MASKALL or any logical AND of

US_FMASK, US_BMASK, US_LMASK, or US_RMASK to disable

selected sensors.17 Only use US_NOMASK or US_MASKALL for the

16 sensor ring.

Return:

Void.

Examples

#define HISONIC
#include <ymbc_usr.h>

main()
{

// Turn off all sensors
us_mask(US_MASKALL);

...

// Turn off just left and right sensors
us_mask(US_RMASK & US_LMASK);

...

// Turn on all sensors again
us_mask(US_NOMASK);

}

2.3.1.2 Implementation

The implementation of the HiSonic function module software is not discussed in this

document.

17Some implementations contain a bug that causes the left and right sensors to be confused. This only affects

us_mask() . So us_mask(US_LMASK) may physically disable the right sensor, but the software will still

return US_NOECHO for the distance on the left sensor - hence both left and right will be unusable.

Yamabico Autonomous Mobile Robot Documentation 52

2.3.1.3 Directory

 |-defs
 |-hard
 |-lib
 |
 HiSonic-|-master-|-rels
 |-mmacro
 |
 |-module-|-rels
 |-rom

 |-SON----|-rels
 |-defs
 |-lib
 |
 SONic---|-master-|-rels
 |-mmacro
 |
 |-module-|-rels
 |-rom

Yamabico Autonomous Mobile Robot Documentation 53

2.3.2 ISeye Software United Environment (ISSUE)

The ISSUE module includes the Adjustment and Interactive Drawing Tool (AID), Path

Search Sensor (PaSS) and IASensor yoked (AIS) systems in an integrated environment. The

ISSUE API is currently undocumented18.

2.3.2.1 Directory

 |-defs
 |
 |-lib----|-rels
 |
 |-master-|-rels
 |
 | |-AID------|-rels
 | |
 | | |-objs
 | |-IAS------|-params
 ISSUE-|-module-| |-rels
 | |
 | |-IScommon-|-rels
 | |
 | |-PaSS-----|-objs
 | | |-rels
 | |
 | |-eye_bank-|-rels
 |-rom
 |-sample

18ISSUE is not used in the Wollongong laboratory.

Yamabico Autonomous Mobile Robot Documentation 54

2.3.3 Spur (Locomotion module)

The vehicle command subsystem, or locomotion module is responsible for accepting hight

level motion commands from the master module and controlling the wheel motors appropriately.

It also uses the wheel shaft encoders to count wheel rotations and maintain odometry information.

The software is named Spur. For a detailed description of Spur see “Vehicle Command System

and Trajectory Control for Autonomous Mobile Robots” [Iida91]19.

Spur maintains three independent coordinate systems in (x,y,q). Global coordinates (GL)

which are initially (0,0,0) when the robot is powered-on. These coordinates are typically used for

mapping. The Local coordinates (LC) are an independent coordinate set that can be set relative

to the GL coordinates, for example for negotiating an obstacle before returning to the previous

tracked path. Lastly, the Front Side (FS) coordinate system is always relative to the robot. The

(0,0,0) position is at the centre of the robot looking forward. See the diagram below.

θLC

θGL

OGL

YGL

XGL

OLC

YLC

XLCOFS

YFS

XFS

The relationship between Spur coordinate systems.

The Spur commands can be divided into the following categories:

• Line and Arc Tracking

• Coordinate system setting

• Locomotion error adjustment

• Velocity and Acceleration control

• Other - Stopping, Spinning, Retrieving coordinates

Unless otherwise indicated all distance units are in millimetres (mm), and angles are

measured in degrees. Note that many Spur commands have an alternate version suffixed with

_cm. These use distance units of centimetres (cm) instead of millimetres. Velocity is always

measured in cm.s-1.

19This paper can be located in the English version of the Yamabico Hardware documentation folder [Yam95].

Yamabico Autonomous Mobile Robot Documentation 55

2.3.3.1 API

Spur_line_GL(int x,int y,int th)

Spur_line_LC(int x,int y,int th)

Spur_line_FS(int x,int y,int th)

Spur_line_GL_cm(int x,int y,int th)

Spur_line_LC_cm(int x,int y,int th)

Spur_line_FS_cm(int x,int y,int th)

Description:

These commands instruct Spur to track along the line passing through the point

(x,y) in the direction th in the designated coordinate system until further notice. See

[Iida91] for a diagram.

Parameters:

x,y Cartesian Coordinate position that tracking line passes through.

th Angle tracking lines makes with the coordinate system 0o line.

Return:

Void.

Example

In this example the robot will track along a line at 45o to the Global X coordinate axis. If

it is at it’s starting location it will track along a line 45o to the right of the robot looking forward.

Note that the robot will not rotate to 45o then track forward, but rather will start moving forward

immediately at 0o, then veer right until it reaches the specified line.

#include <ymbc_usr.h>

main()
{

Spur_line_GL(0,0,45);
}

Yamabico Autonomous Mobile Robot Documentation 56

Spur_arc_c_GL(int x,int y,int r)

Spur_arc_c_LC(int x,int y,int r)

Spur_arc_c_FS(int x,int y,int r)

Spur_arc_c_GL_cm(int x,int y,int r)

Spur_arc_c_LC_cm(int x,int y,int r)

Spur_arc_c_FS_cm(int x,int y,int r)

Description:

These commands instruct Spur to track along an arc with centre (x,y) and radius |r|.

The rotational direction is counter-clockwise for positive r and clockwise for negative r.

See [Iida91] for a diagram.

Parameters:

x,y Cartesian Coordinate position that tracking arc is centred on.

r Radius of tracking arc. Sign determines direction of rotation.

Return:

Void.

Spur_arc_t_GL(int x,int y,int th, int r)

Spur_arc_t_LC(int x,int y,int th, int r)

Spur_arc_t_FS(int x,int y,int th, int r)

Spur_arc_t_GL_cm(int x,int y,int th, int r)

Spur_arc_t_LC_cm(int x,int y,int th, int r)

Spur_arc_t_FS_cm(int x,int y,int th, int r)

Description:

These commands instruct Spur to track along an arc which touches the tangent

through the point (x,y) with direction th and arc radius r. The rotational direction is

counter-clockwise for positive r and clockwise for negative r. See [Iida91] for a diagram.

Parameters:

x,y Cartesian Coordinate position that tracking arc tangent is centred on.

th Angle of tangent line.

r Radius of tracking arc. Sign determines direction of rotation.

Yamabico Autonomous Mobile Robot Documentation 57

Return:

Void.

Spur_stop_GL(int x,int y,int th)

Spur_stop_LC(int x,int y,int th)

Spur_stop_FS(int x,int y,int th)

Spur_stop_GL_cm(int x,int y,int th)

Spur_stop_LC_cm(int x,int y,int th)

Spur_stop_FS_cm(int x,int y,int th)

Description:

These commands instruct Spur to stop the robot when it gets close to the position

(x,y) and angle th. Because of non-holonomic constraints the actual stoping position may

no be exactly (x,y,th).

Parameters:

x,y,th Stopping position and angle.

Return:

Void.

Spur_stop_q()

Spur_stop_Q()

Description:

These two identical commands stop the robot with maximum acceleration. The

preferred command to use is Spur_stop_q() .

Parameters:

None.

Return:

Void.

Yamabico Autonomous Mobile Robot Documentation 58

Spur_spin_GL(int th)

Spur_spin_LC(int th)

Spur_spin_FS(int th)

Description:

These commands instruct Spur to spin the robot on the spot to the angle th. This

command will cause the robot to stop after the turn is completed.

Parameters:

th Angle to turn to.

Return:

Void.

Spur_adjust_pos_GL(int x,int y,int th)

Spur_adjust_pos_LC(int x,int y,int th)

Spur_adjust_pos_FS(int x,int y,int th)

Spur_adjust_pos_GL_cm(int x,int y,int th)

Spur_adjust_pos_LC_cm(int x,int y,int th)

Spur_adjust_pos_FS_cm(int x,int y,int th)

Description:

These commands adjust the current coordinates of the robot in the specified

coordinate system to the values supplied. This does not change the absolute values of

coordinates used in the current tracking command being executed. Hence the effect is to

modify the robot’s notion of where it is in the coordinate space. This is typically used to

correct accumulated odometry errors when other sources of position information are

available, for example sensed landmarks.

Parameters:

x,y,th The new values of the coordinates in the specified coordinate system.

Return:

Void.

Yamabico Autonomous Mobile Robot Documentation 59

Example

In this example the robot is tracking along a straight line directly forward. Then the

coordinate system is adjusted so as to translate it to the robot’s left. The effect of this will be that

the robot veers right to track back onto the specified line through (0,0) at 0o which is now to it’s

right in the coordinate space.

#include <ymbc_usr.h>

main()
{

Spur_line_LC(0,0,0); // Track straight forward

set_timer(5*SEC); // let the robot go forward for 5 seconds
timer_wait();

Spur_adjust_pos_LC(0, 300, 0); // This actually translates the
coordinate

// system left 30cm and back by the
// amount the robot has already

traveled
// in the X direction, but as the

line
// command specifies an infinite

line, it
// makes no difference to x.

}

Spur_set_LC_on_GL(int x,int y,int th)

Spur_set_LC_on_LC(int x,int y,int th)

Spur_set_GL_on_GL(int x,int y,int th)

Spur_set_LC_on_GL_cm(int x,int y,int th)

Spur_set_LC_on_LC_cm(int x,int y,int th)

Description:

These commands change the current coordinates of the first specified coordinate

system to the values supplied relative to the second specified coordinate system. This is

not a motion command but just changes Spur's coordinate values. It also changes the

absolute coordinate values used in the current tracking state. Hence the motion of the

robot will not be effected.

Parameters:

x,y,th Values of the new coordinates relative to the second specified

coordinate system.

Return:

Void.

Yamabico Autonomous Mobile Robot Documentation 60

Spur_set_pos_GL(int x,int y,int th)

Spur_set_pos_LC(int x,int y,int th)

Spur_set_pos_GL_cm(int x,int y,int th)

Spur_set_pos_LC_cm(int x,int y,int th)

Description:

These commands change the coordinates of the specified coordinate system to the

values supplied. This is not a motion command but just changes Spur's coordinate values.

It also changes the absolute coordinate values used in the current tracking state. Hence the

motion of the robot will not be effected.

Parameters:

x,y,th Values of the specified coordinate system relative to it's current values.

Return:

Void.

Spur_set_vel(int vel)

Spur_set_vel_cm(int vel)

Description:

This command instructs Spur to change the current maximum velocity (reference

velocity) of the robot. If tracking the robot will accelerate until the desired velocity is

reached.

Parameters:

vel The new reference velocity.

Return:

Void.

Yamabico Autonomous Mobile Robot Documentation 61

Spur_set_ang_vel(int angv)

Description:

This command instructs Spur to change the current maximum angular velocity of

the robot.

Parameters:

angv The new reference angular velocity.

Return:

Void.

Spur_set_accel(int acc)

Spur_set_accel_cm(int acc)

Description:

This command instructs Spur to change the current maximum acceleration of the

robot.

Parameters:

acc The new maximum acceleration.

Return:

Void.

Spur_set_ang_accel(int alpha)

Description:

This command instructs Spur to change the current maximum angular acceleration

of the robot.

Parameters:

alpha The new maximum angular acceleration.

Return:

Void.

Yamabico Autonomous Mobile Robot Documentation 62

Spur_servo()

Description:

This command instructs Spur to engage the motor servoing if it is not already

engaged. The robot will not be free-wheeling once it has been engaged. Any attempt to

move the robot manually will cause the robot to attempt to accelerate and move back to it's

current global coordinates.

Parameters:

None.

Return:

Void.

Spur_servo_free()

Description:

This command instructs Spur to free the motor servoing. The robot will then be

free-wheeling and may be manually pushed. Note that Spur still keeps odometry

information up-to-date. Hence the robot will still know it's current global position after

being manually pushed.

Parameters:

None.

Return:

Void.

Spur_get_pos_GL(int *x0,int *y0,int *th0)

Spur_get_pos_LC(int *x0,int *y0,int *th0)

Spur_get_pos_GL_cm(int *x0,int *y0,int *th0)

Spur_get_pos_LC_cm(int *x0,int *y0,int *th0)

Description:

These commands obtain the current coordinate values in the specified coordinate

system.

Yamabico Autonomous Mobile Robot Documentation 63

Parameters:

x0,y0,th0 The current coordinates in the specified coordinate system. Note that

the address of variables of int type must be supplied to receive the

values.

Return:

Void.

Spur_get_vel(int *vel,int *angv)

Spur_get_vel_cm(int *vel,int *angv)

Description:

These commands obtain the current linear and angular velocities. Note that the

address of variables of int type must be supplied to receive the values. These are the

reference maximum velocities not the actual current velocity of the robot. Use

Spur_near_vel() or Spur_near_ang_vel() to test the current robot velocities.

Parameters:

vel The current linear velocity.

angv The current angular velocity.

Return:

Void.

int Spur_near_pos_GL(int xx, int yy, int r)

int Spur_near_pos_LC(int xx, int yy, int r)

int Spur_near_pos_GL_cm(int xx, int yy, int r)

int Spur_near_pos_LC_cm(int xx, int yy, int r)

Description:

This call determines if the robot is near the specified position (x,y) within a

tolerance radius r.

Parameters:

xx,yy Cartesian coordinate position the robot may be near.

r The tolerance radius.

Return:

TRUE if near the specified coordinates within the tolerance, FALSE if not.

Yamabico Autonomous Mobile Robot Documentation 64

int Spur_near_ang_GL(int ang,int error)

int Spur_near_ang_LC(int ang,int error)

Description:

This call determines if the robot's angle is near the specified angle ang within an

error angle error .

Parameters:

ang Angle the robot may be near.

error The error tolerance angle.

Return:

TRUE if near the specified angle within the tolerance, FALSE if not.

int Spur_near_vel(int vel,int error)

int Spur_near_vel_cm(int vel,int error)

Description:

This call determines if the robot's current velocity is near the specified velocity vel

within an error tolerance error .

Parameters:

vel The velocity the robot may be near.

error The error tolerance velocity.

Return:

TRUE if near the specified velocity within the tolerance, FALSE if not.

Yamabico Autonomous Mobile Robot Documentation 65

int Spur_near_ang_vel(int angv,int error)

Description:

This call determines if the robot's current angular velocity is near the specified

angular velocity angv within an error tolerance error .

Parameters:

angv The angular velocity the robot may be near.

error The error tolerance angular velocity.

Return:

TRUE if near the specified angular velocity within the tolerance, FALSE if not.

Spur_over_line_GL(int xx,int yy,int th)

Spur_over_line_LC(int xx,int yy,int th)

Spur_over_line_GL_cm(int xx,int yy,int th)

Spur_over_line_LC_cm(int xx,int yy,int th)

Description:

This call determines if the robot is over the line through (xx,yy) at angle th.

Parameters:

xx,yy Point which line passes through.

th Angle of the line.

Return:

TRUE if the current position is over the specified line20, FALSE otherwise.

2.3.3.2 Implementation

The Spur locomotion system is currently implemented as an independent function module

on a Yamabico CPU bus card. The source for this implementation can be located in the directory

../ys-kit/module/Spur-16/module . The implementation at the algorithmic level is

not discussed in this document, but is discussed in [Iida91A, Iida91]. What follows is a brief

overview of the function of the source code. A description of the locomotion software in the

20Need to clarify exactly what 'over the line' means.

Yamabico Autonomous Mobile Robot Documentation 66

context of communication with the master module is also given in the case study of Section 2.4

Inter-module Communication and the Yamabico Bus.

The Spur software is interrupt driven. The startup module

(../module/startup.c) that is loaded onto the locomotion board starts romance as usual,

then mfork() ’s the spur module. The Spur main function from spur.c , calls

_spur_init() then busy-wait’s in an infinite loop. The _spur_init() function carries

out the following steps in sequence .

Initialises the hardware pointers - _hwinit()

The Spur software access three types of Yamabico hardware. The communication of

locomotion commands from the master module and state information to the master module is

via Dual Port Memory (DPM). A description of this mechanism and the DPM is in section

2.4. The Programmable Timer Module (PTM) is used to deliver periodic interrupts to the

CPU and activate the interrupt routine which ultimately does the work of the locomotion

software. The 4 Channel Pulse Width Modulator Signal Generator (PWM) is used to control

the motor currents independently.

This function initialises the pointer variables ptm , dpm, pwm, mode, and cnt to point

to the respective hardware addresses. The cnt and mode variables are for wheel shaft

encoder feedback.

Initialises the software state variables - _swinit()

This function initialises the variables that represent the dynamic state of Spur. This

includes resetting the coordinate system, setting the initial acceleration and velocity to 0,

calculating initial gains for the motors from the velocity and setting the current mode to stop.

The current mode of Spur is represented by the cmode variable. This is a C

structure/union with substructures that look as follows (from ../Spur-

16/defs/mode_ctl.h)

/* for mode control structure */
struct mode_ctl_str {
 char mode; /* Control mode */
 union mode_para para;
};

union mode_para {
 struct line_para_str line_para;
 struct accel_para_str accel_para;
 struct stop_para_str stop_para;
 struct circle_para_str circle_para;
};

/* for line trace mode parameters */
struct line_para_str {
 int x_org;
 int y_org;
 int th_org;
};

/* for acceleration mode */
struct accel_para_str {
 int vel;
};

Yamabico Autonomous Mobile Robot Documentation 67

/* for stop mode parameters */
struct stop_para_str {
 int x_stop;
 int y_stop;
 int th_stop;
 int sumx;
 int sumth;
};

struct circle_para_str {
 int x_cent;
 int y_cent;
 int radi;
};

The major modes are STOP, LINE , CIRCLE, FREE, and ACCEL. The modes and

their associated parameters are self explanatory.

Sets up the table data - _tblinit()

This function initialises a table tbl[] for 2D current control. The data for the table is

different for each robot body and is included from a file in the ../table/tdata directory.

Registers an interrupt routine for the PTM - _reg_ptm()

This function registers an interrupt routine for the PTM. The routine is timirq()

from ../module/timirq.c . This will be called every 5ms.

Registers an interrupt routine for the DPM - _reg_pdm()

This function registers an interrupt routine for the DPM. The routine is dpmirq()

from ../module/dpmirq() . This will be called when the master module writes a Spur

command into the SIMP. See section 2.4 for details.

Initialises the PWM hardware - _initpwm()

This function simply initialises the PWM hardware.

Initialises the DPM hardware - _initpdm()

This function clears the DPM SIMP and command areas.

Initialises the PTM hardware - _initptm()

This function initialises the PTM to interrupt the CPU at 5 millisecond (ms) intervals.

Once initialisation is complete the main program busy waits in an infinite loop. The work

is then carried out by the timirq() and dpmirq() routines. The dpmirq() routine is

activated when the master module writes a new command into the DPM. This invokes the

appropriate command function which just modifies the current state of Spur (cmode) to reflect

the requested command action. This is explained in section 2.4.

The timirq() function calls read_cnt() to read the current wheel encoder counter

values, then calls the feedback control routine fb_ctl() (timirq.c). The fb_ctl()

Yamabico Autonomous Mobile Robot Documentation 68

function calls on other functions to calculate various values, such as the robot velocity

(cal_r_vel()), depending on the current mode. It implements the feedback control as

described in the paper [Iida91A]. The cal_r_vel() function also updates the DPM SIMP

information making it available to the master module. Hence the SIMP is updated every 5ms.

To summarise, the architecture looks as follows.

Interrupt

Yamabico Bus II

Master Module

Locomotion Module

User program linked with lib_source
...
Spur_line_GL(0,0,0)

send_com16()

dpm = command & srgs
...

Spur_get_pos_GL(&x,&y,&th)

rd_SIP()

x = dpm
...

dpm_irq()

D
P
M

com_ana()

cmode = dpm

Timer chip Motor hardware

Every 5ms
Interrupts

tim_irq()

fb_ctl()

cal_r_vel()

wt_SIP()

dpm = Spur state

mode_ctl()

switch (cmode.mode)

do_ line_track ()

pwm-> ... = ...
count = cnt[M_ xx]

Control Motors

Encoder counters

Spur locomotion software and Master module architecture

Yamabico Autonomous Mobile Robot Documentation 69

2.3.3.3 Directory

 |-DPM
 |-defs
 |-doc
 |-exp
 |-lib
 |
 |-lib_source--|-rels
 |
 |-line_tr_sim-|-data
 | |-setup
 |
 |-master------|-obj
 | |-rels
 |
 |-module------|-obj
 | |-rels
 Spur-|-obavo
 |-rom
 |-rr1
 |-rr2
 |-rr_avo
 |-sample
 |-simlib
 |-simulator
 |
 | |-mktable
 |-table-------|-setup
 | |-tdata
 | |-tempdir
 |-tosim

Yamabico Autonomous Mobile Robot Documentation 70

2.3.4 Voice generator module

The voice generation function module has the ability to say numbers in decimal and

hexadecimal21, string of romanji characters, and pre-recorded sample modules. All requests for

speech are queued and the function returns to the caller immediately. See the document ys-

kit/module/Voice/doc/library_func.txt for Japanese documentation.

A description of the available functions is given below22.

2.3.4.1 API

voice_init()

Description:

This function initialises the voice function module and must be called prior to usage

of any other voice module functions.

Parameters:

None.

Return:

Void.

voice_set(int amp, int rate)

Description:

Set the amplitude and rate of spoken voice.

Parameters:

amp Amplitude.

rate Rate.

Return:

Void.

21Only in Japanese

22The Voice module is not used at the Wollongong laboratory, hence the documentation is incomplete.

Yamabico Autonomous Mobile Robot Documentation 71

v_boadCHK(int boad)

Description:

Check the existence of the specified Board and if detected plays a recorded message

indicating the board is OK. The check is done by checking the accessibility of the board’s

DPM. The recorded message data is read from a data memory module of sampled data

with pre-defined names for each board. The pre-defined sample module names are:

sonic_ok , eye_ok , spur_ok and voice_ok .

Parameters:

boad The board to check23. This is actually the address of the board’s

DPM. These are defined in vusr.h .

Return:

Void.

Example

#include <ymbc_usr.h>
#include <vusr.h>

main()
{

/* Check sonic, ISeye, and Spur boards. Voice will announce OK message
if
 the board is OK */

v_boadCHK(SON);
v_boadCHK(ISe);
v_boadCHK(SPR);

}

sayd(int num)

Description:

Say the specified decimal.

Parameters:

num Number to say.

Return:

Void.

23Note boad is just a Japanese misspelling of Board.

Yamabico Autonomous Mobile Robot Documentation 72

sayx(int num)

Description:

Say the specified hexadecimal number.

Parameters:

num The number to say.

Return:

Void.

says(int num)

Description:

Say the pre-defined sentence stored on the voice module with index number num.

All the pre-defined sentences are currently in Japanese.

Parameters:

num Index of pre-defined sentence to say.

Return:

Void.

sayw(char *str)

Description:

Say the romanji string specified24.

Parameters:

str The romanji string to say.

Return:

Void.

24Note that the current implementation is intended to speak Japanese, hence some characters are converted.

Specifically ‘l’ -> ‘r’, ‘v’ -> ‘b’, ‘j’ -> ‘z’ and ‘c’ -> ‘s’.

Yamabico Autonomous Mobile Robot Documentation 73

speakf(char *fmt, int ag1, int ag2,...,int ag9)

Description:

Say a C printf style formatted string.

Parameters:

fmt The format string. This parameter is similar to, but more restricted

than, C’s printf() format function. The allowable format specifiers are:

• %c character

• %d integer (decimal)

• %x integer (hexadecimal)

• %a set amplitude to arg and rate to default

• %r set rate to arg and amplitude to default

agN N = [1..9], the arguments

Return:

Void.

sayp(char *str)

Description:

Play the pre-recorded sounds memory module with the specified name.

Parameters:

str The name of an existing MOSRA memory module containing the

sample data.

Return:

Void.

Yamabico Autonomous Mobile Robot Documentation 74

say_flush(int thre)

Description:

This function is for flushing the queued say requests. If the number of queued

requests is greater than thre then the oldest requests are aborted/dequeued leaving only the

newest thre requests.

Parameters:

thre The thresh-hold number of requests to leave queued.

Return:

Void.

int say_ended(int rest)

Description:

This function returns TRUE if the number of queued voice requests on the voice

module is equal to rest , FALSE otherwise.

Parameters:

rest Test number of remaining requests.

Return:

TRUE if remaining requests queued is rest , FALSE otherwise.

2.3.4.2 Implementation

The implementation of the voice module is not discussed in the document.

Yamabico Autonomous Mobile Robot Documentation 75

2.3.4.3 Directory

 |-defs
 |-doc
 |-hard
 |-lib
 |-lib_source
 |-master
 |
 | |-etc
 | |
 | |-j50--|-j50
 | |-datae7--|-num
 | | |-sent
 | | |-wd
 | |
 | | |-etc
 | | |-j50
 Voice-|-mkv--------|-datae9--|-num
 | | |-sent
 | | |-wd
 | |
 | | |-etc
 | | |
 | | |-j50--|-j50
 | |-dataea--|-num
 | |-sent
 | |-wd
 |
 |-module-----|-objs
 | |-rels
 |-pcmdata1
 |-pcmdata2
 |
 |-rom--------|-startup
 |-test

Yamabico Autonomous Mobile Robot Documentation 76

2.3.5 Timer functions

The timer functions are not implemented in a separate function module, but as an

independent process that executes on the master module. The set_timer() and

timer_wait() function interact with the TIMER process, hence blocking the process that

calls timer_wait() until the time expires. The read_SRTKEI() and compSRTKEI()

function simply read the global system timer.

2.3.5.1 API

set_timer(int count)

Description:

This function is used in conjunction with the timer_wait() function to delay

execution for a specific amount of time. Other program code may execute between the

set_timer() ...timer_wait() pair provided it does not take longer than count

1/100
Th

 of a second to execute. Note that the definition SEC==100 is available.

Parameters:

count Number of 1/100
Th

 of a second to delay.

Return:

Void.

timer_wait()

Description:

This function is used in conjunction with the set_timer() function to delay

execution for a specific amount of time. Once called the execution is delayed until the

count time has expired from when set_timer() was called.

Parameters:

None.

Return:

Void.

Yamabico Autonomous Mobile Robot Documentation 77

int readSRTKEI()

Description:

This function returns the current value of the quasi-real time clock. The units are

10 msec.

Parameters:

None.

Return:

Current time in units 10 msec.

int compSRTKEI(int t0,int time)

Description:

This function compares the value of the specified times. If time represents a time

greater that of equal to t0 TRUE is returned.

Parameters:

t0 Initial time to compare. Units are 10 msec.

time time to compare with t0 .

Return:

TRUE if time > t0 , FALSE otherwise.

2.3.5.2 Implementation

The set_timer() and timer_wait() functions can be found in the file

../ys-kit/module/mmKEI/lib/timer6340.c 25. The set_timer() function

allocates and sends a struct timess message to the TIMER process (PID TIMEMON). The

TIMER process is implemented in ../ys-kit/module/mmKEI/iomon/timer.c . The

main loop wait for incoming messages, and retains a list of timer requests. As each timer request

expires a message is sent back to the sending process. The TIMER process uses interrupts from

the timer device to efficiently wait for times to expire without busy waiting. When a process

makes a call to wait_timer() , wait_timer() just blocks waiting for a message from the

TIMER process.

25 For other Master Module versions the directory will be other than mmKEI. For example the Wollongong version

of the master module source is in the mmW directory.

Yamabico Autonomous Mobile Robot Documentation 78

The readSRTKEI() and compSRTKEI() functions are implemented in the file

../ys-kit/module/mmKEI/lib/srt_KEI.c . They simply read and compare against

the free running system timer.

2.3.6 Whisker functions

Some Yamabico robots have a number proportional passive whisker sensors26. These are

accessed by the whisker library API. This whiskers are accessed by an integer index [0..7] or by

the PCB socket numbers WJ_3 … WJ_10. Some synonyms also exist (WLeftFront ,

WLeftBack , WFrontRight and WFrontLeft).

2.3.6.1 API

ReInitWhiskers()

Description:

This function initialises or re-initialises the whisker software. It must be called prior

to calling any other whisker functions. The whisker module will not access the whisker

hardware or execute until this function is called. Hence it is acceptable to have the whisker

module in ROM and running on a robot that has no whiskers connected, as it will do

nothing until this function is called.

Parameters: None.

Return: None.

26 Currently only Flo at the Wollongong laboratory. The implementation currently connects the hardware to the

master module, and hence the whisker module is an executable module on the master module ROM.

Yamabico Autonomous Mobile Robot Documentation 79

CalibrateWhisker(int whisker)

Description:

This function calibrates the centre position of the specified whisker to it’s current

physical position. This is called to set the current physical position (usually the rest

position) to the 0 point. The readings will then be positive or negative depending on the

direction of deflection.

Parameters:

whisker The whisker number to calibrate.

Return: None.

int ReadWhisker(int whisker)

Description:

This is the main function used to read whisker values. The values returned have

been adjusted to the calibrated centre (and hence are signed values), possibly reversed in

sense and are averaged over a number of samples (set using SetNoSampAverage()).

Parameters:

whisker The whisker number to read the current averaged value of.

Return:

The whisker sensor value.

int ReadRawWhisker(int whisker)

Description:

This function returns the raw value of a whisker sensor reading as obtained from the

hardware A/D converter. It is not averaged or centre calibrated.

Parameters:

whisker The whisker number to read the current raw value of.

Return:

The whisker sensor value.

Yamabico Autonomous Mobile Robot Documentation 80

int SetSampleFreq(int FreqHz)

Description:

The whisker module samples each whisker at a fixed sampling rate (all whiskers at

the same rate). This call is used to change the default rate or to disable sampling. The

default is 20Hz and the valid range is 1Hz…60Hz. A value of 0 will turn off sampling

and the whisker module will no longer use the CPU until the frequency is reset (or

ReInitWhiskers() is called).

Parameters:

FreqHz The whisker sampling frequency in Hz or 0.

Return:

The old sampling frequency (current previous to the call).

int SetNoSampAverage(int NoSamples)

Description:

This function is sets the number of sample over which the read whisker values are

averaged. The default is 5 and the valid range is [1..50]. If the value 0 is passed the

whisker module will not do averaging at all. In this case the result of calling

ReadWhisker() will be meaningless, but the raw un-averaged values may be read

using ReadRawWhisker() .

Parameters:

NoSamples The number of samples to average over, or 0 to disable calculation of

average values.

Return: Undefined.

Yamabico Autonomous Mobile Robot Documentation 81

SetDebug(int Channel)

Description:

The whisker module can send debugging output to either the ROMANCE or

RADNET consoles. This is useful to display a continuous readings of whisker values

when calibrating hardware etc. If averaging has been disabled, only raw values will be

displayed.

Parameters:

Channel One of CON, NET or -1. To disable debugging pass -1 (the default),

to enable display of whiskers every one second specify which console.

Return: None.

SetSense(int whisker, int Sense)

Description:

It is sometimes desirable to reverse the numeric range of the sensor readings, for

example if the whisker connector was wired backwards.

Parameters:

whisker The whisker number to set the sense of.

Sense Either 1 or -1. If 1 the sense is as read from the hardware, if -1 the

sense is reversed

Return: None.

QuitWhiskers()

Description:

Calling this function causes the whisker module to exit. (Calls death() , and

hence can be unlinked or restarted with execute). Issuing whisker calls after this will cause

the caller to block forever. Even if the whisker module is restarted, client programs must

call ReInitWhiskers() again.

Parameters: None.

Return: None.

Yamabico Autonomous Mobile Robot Documentation 82

2.3.6.2 Implementation

The current implementation is just an executable module that runs on the master module.

The library calls communicate with it via message passing, with the exception of

ReadWhisker() and ReadRawWhisker() , which just read from an array of values shared

between the whisker module and the clients. The address of this array is passed from the whisker

module to a client when ReInitWhiskers() is called. The whisker module accesses a

multiplexed Analogue to Digital (A/D) converter via the master module parallel port. The

whiskers themselves are currently just variable rotary potentiometers. The sampling rate is

achieved just by using the timer module functions, and hence two messages are exchanged every

sampling period. For this reason the sampling period should not be set too high or the CPU will

be loaded with message passing between the whisker module and the timer module27. This timing

method may change in the future.

27 There seems to be a bug in the timer module software where by occasionally it doesn’t reply to a timer request

(wait_timer() never returns). This seems only to show up when messages are sent at a high rate as with the

whisker module.

Yamabico Autonomous Mobile Robot Documentation 83

2.3.7 ROMANCE & RADNET console functions

The ROMANCE and RADNET console functions are used to do Input/Output through

one of the serial ports on each CPU board. The ROMANCE functions are used for the first port

(which is usually connected using a cable to a UNIX host executing the romanceu program).

The RADNET network functions use the second port and communicate with a UNIX host

running the RADNET software. Ultimately the output goes to the radcon console utility. The

RADNET Host software is documented in a later section.

2.3.7.1 ROMANCE API

write_cons(char *form_str)

write_cons(char *form_str, int data)

write_cons(char *form_str, char *data)

Description:

This function is for output to the romance console. The function is similar to, but

more restricted than, C’s printf() function. The allowable format specifiers are:

• %c character

• %s C string

• %d integer (decimal)

• %x integer (hexadecimal)

• %b integer (binary)

Parameters:

form_str A format string in the printf() style, but write_cons() only

allows 0 or 1 format specifiers in the string.

Return:

Void.

char *read_cons(char *form_str, char *data, int *count)

Description:

This function is for input from the romance console. The function is similar to,

but more restricted than, C’s scanf() function. The allowable format specifiers are:

• %c character

• %s C string

• %d integer (decimal)

Yamabico Autonomous Mobile Robot Documentation 84

• %x integer (hexadecimal)

• %b integer (binary)

Parameters:

form_str A format string in the scanf() style. The format specifiers are

limited to those listed above.

data The address of an appropriate type of variable at which the input will

be stored.

count The address of an integer into which the number of bytes read from the

console will be stored.

Return:

Unknown.

2.3.7.2 RADNET Console API

RADNET provides two functions that closely mimic the behaviour of the ROMANCE

functions above. These functions, however, interact with the user via the radcon console utility

which may run on any UNIX machine. The radcon utility connects to the RADNET link

server, and hence the robot, via the Internet. For more details see the RADNET documentation

later in this document.

write_port(int Channel, char *form_str)

write_port(int Channel, char *form_str, int data)

Description:

This function is for output to the romance or RADNET console. The parameters

are similar to write_cons() .

Parameters:

Channel One of CON or NET. If CON the output will go to the romance console,

if NET the output will go to the RADNET console.

form_str As for write_cons() .

Return:

Void.

Yamabico Autonomous Mobile Robot Documentation 85

read_port(int Channel, char *form_str, char *data, int *count)

Description:

This function is for input from the romance or RADNET console. The

parameters are similar to read_cons() .

Parameters:

Channel One of CON or NET. If CON the input will come from the romance

console, if NET the input will come from the RADNET console.

form_str, data, count As for read_cons() .

Return:

Void.

2.3.7.3 ROMANCE Implementation

The console functions use ROMANCE to do I/O through the serial port (using the ACIA

device). ROMANCE is implemented as an independent MOSRA process. One function of

ROMANCE is to provide a menu interface via the serial port to the host computer to allow

program upload/download, memory module manipulation and other services. The other function

is to provide the console I/O described here.

The ROMANCE source code is located in the ../ys-kit/mosra/romance

directory. Communication with the user program process is via the MOSRA message passing

facility (see MOSRA API section). The console functions described above just send a MOSRA

message to the ROMANCE process, which has a pre-defined process ID. The receipt of a

message wakes the main loop in the ROMANCE process and it carries out the I/O via the serial

port. The actual serial I/O is interrupt driven. The ROMANCE process installs an interrupt

handler for the serial port when first started by the startup module.

The write_cons() and read_cons() function are available to user programs by

linking with the romancelib.l library, hence are implemented in the ../romance/lib

directory (write_cons.c and read_cons.c). These functions simply call the read/write

routines provided in the writefunc.c and readfunc.c source files. For example,

_cwritech() creates a message of type MESST (standard MOSRA message header type) and

sends it to ROMANCE.

Yamabico Autonomous Mobile Robot Documentation 86

_cwritech(dir,str,count)
char dir;
char *str;
int count;
{
 MESST *m;
 int i,l,head;

...
 m=(MESST *)malloc(10+l);
 m->ms_scid=getpid();
 m->ms_leng=l;
 m->ms_body[0]=STX;
 m->ms_body[1]='W';
 for (i=0;i<count;i++) m->ms_body[head+i]=str[i];
 m->ms_body[l-1]=NULL; /* STX W < data > NULL */
 if (dir==STDOUT){ m->ms_body[2]=SI; /* STX W SI <data> SO NULL */
 m->ms_body[l-2]=SO;
 }
 if (send_mess(ROMANCE,m)) return(1); /* send to ROMANCE */
 else return(0);
}

The ROMANCE process source is located in the directory ../romance/target .

When ROMANCE receives this message in it’s main loop in the wait() function (main.c),

it calls the message() function to process the message. If, for example, the message indicated

a write (body[1] == ‘W’), then message() calls writestr() which actually outputs

the string to the ACIA’s serial port (using writech()).

2.3.7.4 Directory

 |-lib------------|-rels
 |-os9
 |
 | |-backup
 | |
romance----| | |-doc
 |-target---------| |-common
 | |-unixft---|-get
 | |-put
 | |-work
 |
 | |-common
 |-unix-----------|-get
 |-put
 |-work

Yamabico Autonomous Mobile Robot Documentation 87

2.4 Networking

The Yamabico Radio Network RADNET28 is a software system that enables two-way

communication between any number of Yamabico's and host computers. It consists of software

components for both the Robot and host machines on a network. The current implementation

executes the robot software on the master module and communicates over point-to-point radio

modem links connected via the master module serial port. The host side of the link is a UNIX

workstation with the radio modem also connected via a serial port.

The Network API on the robot side provides user programs, currently under MOSRA,

with services for sending and receiving unreliable datagrams. Datagrams are addressed using IP

numbers, where the robots have special numbers starting at zero, and a port number. Using ports

it is possible to have a large number of independent channels of communication with another

robot or host machine. The API on the host machine is provided by a client link library. This

provides a similar datagram API as available on the robot in addition to functions for directly

accessing Spur locomotion functions remotely and up/downloading OS/9 modules over the link.

User utility programs are provided for convenient interaction and control of the robots

(downloading programs and executing them, etc.). These programs rely on the client library for

communication with the robots.

The following sections document the general RADNET architecture, the user programs,

and the robot and host side client API’s.

2.4.1 Architecture

The RADNET software supports multiple robots each with a point-to-point link between

the robot and a UNIX host. The host need not be the same machine for each robot, although if

the host supports multiple serial ports it is possible to connect multiple radio modems. The host

end of each robot link runs a copy of the RADNET program in the background. This is called

the RADNET link server. It manages the raw communication with it’s robot over the modem link

and also routes packets between RADNET Clients, other RADNET link servers and the robot.

As shown in the figure below there can be any number of RADNET clients running on the

UNIX hosts or PC’s. A client may connect to any RADNET link server and will be able to

communicate with any robot or other client. The link servers manage routing of packets to the

appropriate host for sending to a robot or a client. Note that the client’s IP address is the IP

address of the machine on which it is executing. All communication between RADNET link

servers and clients uses BSD UNIX Sockets.

28Note that RADNET was developed at Wollongong University and is an independent and unrelated system to the

CARNET networking system developed at Tsukuba University that employs broadcast technology with token

passing.

Yamabico Autonomous Mobile Robot Documentation 88

Serial
Link

Radio Modem

Serial
Link

Radio Modem

UNIX Host UNIX Host PC

Ethernet

RADNET

Client Client Client Client

RADNET

Client

Client

Client

NETSHELL

NETWORK

NETLINK

Client
Client

NETSHELL

NETWORK

NETLINK

RADNET Architecture

All the RADNET source code is located in the …/ys-kit/module/mmW/network

directory. Subdirectories exist for the robot and UNIX sides of the code, and beneath them,

subdirectories for library code, and the different OSI layers, etc.

2.4.2 Network User Utility Programs

This section describes the user utility programs available for interacting with the robots

over the network. These programs are for conveniently uploading, downloading and executing

robot programs from the UNIX host development environment. They also provide other facilities

as described below. Each program uses the UNIX client library for communication with the

robots, and hence when run each program must connect to a RADNET link server. Command

line options allow the server host and robot to be selected.

Yamabico Autonomous Mobile Robot Documentation 89

2.4.2.1 Remote

The remote program is a menu driven program for interacting remotely with a robot

over the network. The program can be run on any machine on the Internet, provided an

appropriate RADNET server host is specified and the network latency is not too high29.

Command line usage is as follows:

remote [-r <robot> -s <RADNET server host> -dk]

 -r RobotNumber (default 0 = FLO)

 -s LinkServer_Machine_Host_Name (default terumi)

 -dk Don't Spur_servo_free() or us_mask(MASK_ALL) at startup

Pressing ‘h’ for help after the program is running will display the help menu. Facilities are

available for module manipulation, checking memory, module and process status, and for driving

the robot using the numeric keypad.

If the message “Remote: Can't connect to NetShell ” is display when the

program is started it means that the NetShell module on the robot could not be contacted.

This indicates either that the robot is turned off, rebooting, the master module CPU is so heavily

loaded it can’t reply, or a problem exists with the robot’s networking software or the modem link.

The RADNET link server, however, is operating correctly. Should the message

“OpenConnection(): Can't connect to server. ” Be displayed instead, this

indicates that either the specified host has no RADNET link server, or that the server is not

running. In this case it must be started - see the documentation for RADNET below.

If the program started correctly, and ‘h’ for help is pressed, the menu looks as follows:

** Remote v1.60 **

(Q)uit [ESC] (H)elp

COMMAND: Help

(D)ownload module from UNIX (A)re you there?
Upload module to U(N)IX (C)hange robots
(R)eset robot Sensors (O)ff
(U)nlink module (S)ensors On
(Z)ero local coords (M)emory Status
(K)ill (ServoFree&SensorsOff)

(P)rocess list (L)ist modules
E(X)ecute module (!) UNIX command

Robot control:
 7 8 9 +
 \ ^ / ^
 Direction 4< 5 >6 Velocity 0
 / v \ v
 1 2 3 -

(Q)uit [ESC] (H)elp

COMMAND:

29 For example, executing remote on a machine located in Japan and connecting to a robot server in Australia

doesn’t work because the network latency is too high and the NetShell commands timeout.

Yamabico Autonomous Mobile Robot Documentation 90

2.4.2.2 Radcon (RADNET Console)

The RADNET Console utility is for standard I/O with the robot. All output written with

the robot API function write_port(NET, …) will appear on the RADNET console. Also

any keyboard input to radcon can be read via the robot command read_port(NET, …) .

The console also displays upload/download progress indicators and robot status messages. The

status of the robot link is also display when it is lost or re-established. Usage:

radcon [-r RobotNumber (default 0 = FLO)

 -s LinkServer_Machine_Host_Name (default terumi)]

2.4.2.3 DLoad

dload (Download) is a simple utility for downloading an OS/9 module from the host to

the robot, just as the remote ‘d’ command. It will overwrite any existing module with the same

name. It’s just a convenience utility to save starting and exiting remote just to download a

module. Usage:

dload [-r <robot> -s <RADNET server host>] <module file>

2.4.3 The RADNET link server

The RADNET link server is the component of the network system that manages the link

layer and network layer on the UNIX host side. One RADNET link server (the RADNET

program) must be executing for each robot link. It executes on a host that is physically

connected to a radio modem via the host serial port. Only one server may execute on any single

UNIX host30. The server listens in a pre-defined socket for connections from RADNET clients

(on UNIX, Windows ’95 or VxWorks). Once a client has established a connection to a server it

may send datagrams to the server and the server will route them to either it’s robot, another

server or another client. Clients are able to nominate a number of port numbers on which they

wish to listen. If a datagram packet is received by a server destined for a particular host, a client

executing on the specific host and listening on the appropriate port number will be send the

datagram. If no clients are listening on the specified port on the addressed machine, the packet is

simply discarded. Hence on any one host there should be only a single client listening on any

particular port number. Datagrams are addressed by an IP number, Port number pair. Client

applications need not worry about the interface to a RADNET link server directly as a client API

library is available that abstracts the interaction and it is documented below.

30 This is because the server uses a pre-defined socket on which to listen for client connections. If two servers

were executing on the same host, one would be unable to use the socket.

Yamabico Autonomous Mobile Robot Documentation 91

The radnet program is invoked from the UNIX command line as follows:

radnet [-p port] [-d] [-b baud]

The options are:

• -p The serial tty on which the radio modem is connected. (default /dev/ttyb)

• -b The baud rate. (default 9600)

• -d Show debugging information. (default off) - This shows a hex dump of

incoming and outgoing packets.

The radnet program will usually be set to run permanently in the background, and only

need be restarted if the machine is rebooted or it crashes. This can be accomplished by the

following command:

nohup radnet &

In this case all output will be directed to a file (for zsh ‘nohup.out ’).

2.4.4 Client API - Robot side

The API can be divided into two parts. These correspond to the two layers of the protocol

stack - the network layer (network module) and the link layer (netlink module). The

datagram services are provided by the network layer. This API provides a facility to send and

receive unreliable datagram packets between any two clients addressed using an IP number and a

Port number. The network layer uses the services provided by the link layer, which are also

directly available via the RawDatagram API which can be used to inject or extract raw packets at

the link layer level. This is usually used only for debugging the networking software.

Yamabico Autonomous Mobile Robot Documentation 92

int SendDatagram(int Dest, int Port, char *Data, int Length,
int BlockingMode)

Description:

This is called to send a datagram packet specified by the Data and Length

parameters, to a destination client specified by the Dest IP address and Port31 number.

Parameters:

Dest The IP Address of the machine on which the receiving client is

executing. Other robots have special addresses denoted by:

ADDR_ROBOT1, ADDR_ROBOT2, etc.32 for robots.

ADDR_VISION - for the vision system.

ADDR_HOST - for the host the robot is directly connected to.

The type is an unsigned 4 byte integer, each byte represents a

component of the standard 4 component IP address a.b.c.d .

Port The Port number you wish to send the datagram to, in the range

[1..216-1]. Do not use and special port numbers defined in the

net_usr.h header.

Data A pointer to a buffer containing the packet data to be sent.

Length A count of the number of bytes in the buffer to be sent. All packets

much be of even length.

BlockingMode One of the values BLOCKING or NONBLOCKING. If a packet is send

in blocking mode the call will not return until the packet has been

queued. This does not guarantee delivery. If the send buffer is full the

call will not return until it has emptied enough to queue the packet. In

nonblocking mode the call will return immediately but the packet may

be discarded if the send buffer is full.

Return:

If NONBLOCKING mode returns 0, in BLOCKING mode return 0 for success.

31 Note that although RADNET uses IP addresses for host addressing, the Ports are NOT TCP/IP port numbers.

32 These have synonyms for the Wollongong robots which are ADDR_FLO and ADDR_JOH.

Yamabico Autonomous Mobile Robot Documentation 93

int ReceiveDatagram(int *Src, int Port, char *Data,

int *Length, int BlockingMode)

Description:

This function receives a datagram from the specified Port and returns the IP address

of the machine on which the sending client is executing in Src . The received data

packet’s length in bytes is returned.

Parameters:

Src A pointer to a variable that upon return will contain the IP address of

the machine on which the sending client is executing.

Port The Port number you wish to receive the datagram from, in the range

[1..216-1].

Data A pointer to a buffer large enough to contain the packet data to be

received. The length of the buffer should be specified as the initial

value of the variable Length. The packet will be truncated if it is too

large for the buffer.

Length A pointer to a variable into which the received packet byte count will

be placed. All packets are of even length. The variable should initially

contain the buffer size. The packet will be truncated to this size if it is

too large. The buffer size should also be even. NB: Failure to

initialise this variable is a common error and often results in

unpredictable behaviour.

BlockingMode One of the values BLOCKING or NONBLOCKING. If in BLOCKING

mode the call will not return until a packet has been received from the

specified Port and read into the buffer. If in NONBLOCKING mode

the call will return immediately. If a packet was available for the port

it will be returned in the buffer, if no packet was available an empty

packet is returned (Length is set to 0 and the buffer is not written).

Return:

On Success returns 0.

Yamabico Autonomous Mobile Robot Documentation 94

int PeekDatagram(int *Src, int Port, char *Data, int *Length,
int BlockingMode)

Description:

This function is identical to RecieveDatagram() except that the read packet is

not removed from the network receive queue. Hence it may be repeatedly Peek’d or

subsequently Receive’d.

Parameters: As above.

Return: As above.

int SelectPort(int NoPorts, pt_set *PortSet, int TimeOut) 33

Description:

This function allows a process or thread to block while waiting for input from a number of

ports simultaneously. It is similar in concept to the UNIX select() call but only for input. It

uses a datatype pt_set which represents a set of port numbers on which your process wishes to

block. A pt_set is large and so should be used sparingly and always allocated from the heap.

See PT_ZERO() , PT_SET() , PT_CLR() and PT_ISSET() below34.

Parameters:

NoPorts The maximum port number used in the PortSet.

PortSet A pointer to a pt_set which contains a set of port numbers on which

the caller wishes to wait. On return the set will contain only those

ports on which data is ready to read using ReceiveDatagram() ,

hence the set must be reset on each call.

Timeout The number of 100ths of a second after which the call will return if no

ports have data ready for reading. In this case the port set will be

empty and 0 will be returned.

Return:

The number of ports ready for reading (number of elements in the port set upon

return). If a timeout occurred 0 is returned. A return of -1 indicates an error.

33 As of July/1996 the SelectPort() function was not fully implemented. Use PeekDatagram() on the

relevant ports instead. Use a delay to ensure your thread does not busy-wait poll and tie up the CPU.

34 Note that while PT_ZERO() is a function, PT_SET() , PT_CLR() and PT_ISSET() are C Macro’s defined

in the net_usr.h header file.

Yamabico Autonomous Mobile Robot Documentation 95

PT_ZERO(pt_set *PortSet)

Description:

Assigns PortSet to the empty set. That is, clears all elements from the set leaving

it empty.

Parameters:

PortSet A pointer to the port set to be cleared. Note that this call doesn’t

allocate storage - you much do this before calling this function.

Return:

None.

PT_SET(int Port, pt_set *PortSet)

Description:

Adds a port to the port set.

Parameters:

PortSet A pointer to the port set.

Port The port number to add to the set.

Return:

None.

PT_CLR(int Port, pt_set *PortSet)

Description:

Removes a port from the port set.

Parameters:

PortSet A pointer to the port set.

Port The port number to remove from the set.

Return:

None.

Yamabico Autonomous Mobile Robot Documentation 96

int PT_ISSET(int Port, pt_set *PortSet)

Description:

Determines if a port is in the port set.

Parameters:

PortSet A pointer to the port set.

Port The port number in which to test membership of the port set.

Return:

Returns a boolean value, TRUE if the Port was in the PortSet, FALSE if not.

int PutRawPacket(SHORT protocol, char *Data, int Length,
int BlockingMode)

Description:

This call will insert the specified data packet into the link layer hence bypassing the

network layer. It may be used for testing or for sending packets using a different protocol

than used by the network layer.35

Parameters:

protocol Currently one of PRAW_DGRAM, PSOCK_DGRAM - used for normal

packets by the link layer, PSOCK_STREAM - for future

implementation of stream connections, PKEEP_ALIVE - used by the

link layer to periodically check the modem connection is still available

or a user specified value. See the net_usr.h header file.

Data The address of data buffer containing Length bytes to be sent.

Length The number of bytes from the buffer to send.

BlockingMode As above for SendDatagram() .

Return:

Returns 0 for Success, or a non-zero error code.

35 The current implementation of the UNIX host end software will display a hex dump of the any received packet

who’s protocol is unknown.

Yamabico Autonomous Mobile Robot Documentation 97

int GetRawPacket(SHORT *protocol, char *Data, int *Length,
int BlockingMode)

Description:

This call will read the next available packet from the link layer receive queue. Note

that if the network layer is running you will not be able to obtain all incoming packets over

the link with this call because you will be competing with the network layer which also

uses this service.

Parameters:

protocol Upon return this will contain the protocol of the read packet as

described above.

Data The address of a buffer large enough to store the incoming packet.

Length The address of an integer into which the number of bytes read from the

link will be stored (the packet size). Initially this must contain the size

of the buffer. If the packet is larger that this specified size it will be

truncated.

BlockingMode As above for GetDatagram() .

Return:

Returns 0 for Success, or a non-zero error code.

int PeekRawPacket(SHORT *protocol, char *Data, int *Length,
int BlockingMode)

Description:

This function is identical to RecieveRawPacket() except that the read packet

is not removed from the link layer receive queue. Hence it may be repeatedly Peek’d or

subsequently Receive’d.

Parameters: As Above.

Return: As Above.

Yamabico Autonomous Mobile Robot Documentation 98

2.4.5 Client API - UNIX side

The UNIX side Client API is a set of functions to allow UNIX programs to communicate

among themselves and client programs executing on a number of Yamabico robots connected into

the RADNET network via radio modems. The API is divided into two portions, the

Communication API and the NetShell API. The Communication API provides an unreliable

datagram service and is similar to it’s corresponding robot side client API documented above.

The NetShell API provides additional functions for managing robot software development. The

client API is available to C or C++ UNIX programs as a link library. Simply include the

client.h header file and link to the client.o object file.

2.4.5.1 Communication

The API available to UNIX programs for communication with robots and other RADNET

clients is similar, but not identical, to the API available on the robot side36.

int OpenConnection(LONG ServerAddr, char *ServerName,

LONG Port)

Description:

Before using the SendDatagram() or ReceiveDatagram() functions a

client must open a connection to a RADNET link server and establish the Port(s) on which

it wishes to receive datagrams. OpenConnection() may be called a multiple times to

open connections for receiving datagrams on multiple ports. Each call should be matched

with a corresponding CloseConnection() before the client terminates (or when it no

longer wishes to receive datagrams on the given port). Note that at least one port

connection must be open before calling SendDatagram() - although the port number is

irrelevant. Note also that any given client can only have connections to one RADNET link

server, so all calls to OpenConnection() must specify the same server.

Parameters:

ServerAddr This parameter is used to specify the IP number of the RADNET link

server this client will connect to. If the IP number is unknown, set this

parameter to 0 and specify the string host name in ServerName

instead.

ServerName This parameter specifies the host name of the RADNET link server this

client will connect to. This should be set to NULL if the IP address

was specified in ServerAddr instead.

36 The Communication portion of the client API is also available under the VxWorks operating system (used in the

Fujitsu Vision system at the ANU Canberra).

Yamabico Autonomous Mobile Robot Documentation 99

Port The Port number on which you wish to receive datagrams, in the range

[1..216-1]. Do not use and special port numbers defined in the

net_usr.h header.

Return:

-1 on error, else the UNIX file descriptor (socket number) associated with this

connection.

int CloseConnection(int Port)

Description:

This is called to close a connection opened with OpenConnection() .

Parameters:

Port The Port number that was passed to the matching

OpenConnection() call.

Return:

0 for success, or -1 if the specified Port was never opened (or already closed).

Yamabico Autonomous Mobile Robot Documentation 100

int SendDatagram(LONG Dest, LONG Port, void *Data, int Length)

Description:

This is called to send a datagram packet specified by the Data and Length

parameters, to a destination client specified by the Dest IP address and Port number.

Parameters:

Dest The IP Address of the machine on which the receiving client is

executing. Robots have special addresses denoted by:

ADDR_ROBOT1, ADDR_ROBOT2, etc. for robots.

ADDR_VISION - for the vision system.

ADDR_HOST - for the host the robot is directly connected to.

The type is an unsigned 4 byte integer, each byte represents a

component of the standard 4 component IP address a.b.c.d .

Port The Port number you wish to send the datagram to, in the range

[1..216-1]. Do not use and special port numbers defined in the

net_usr.h header.

Data A pointer to a buffer containing the packet data to be sent.

Length A count of the number of bytes in the buffer to be sent. All packets

much be of even length.

Return:

-1 on error, or 0 for success.

int ReceiveDatagram(LONG *Src, LONG Port, void *Data,

int *Length, long timeout_sec=0,

long timeout_usec=0)

Description:

This function receives a datagram from the specified Port and returns the IP address

of the machine on which the sending client is executing in Src . The received data

packet’s length in bytes is returned. It is not possible to receive data on a Port that has not

been previously opened with OpenConnection() . This call will block until data on

the specified port is available or the timeout period elapses (if non-zero).

Parameters:

Src A pointer to a variable that upon return will contain the IP address of

the machine on which the sending client is executing.

Yamabico Autonomous Mobile Robot Documentation 101

Port The Port number you wish to receive the datagram from, in the range

[1..216-1].

Data A pointer to a buffer large enough to contain the packet data to be

received. The length of the buffer should be specified as the initial

value of the variable Length. The packet will be truncated if it is too

large for the buffer.

Length A pointer to a variable into which the received packet byte count will

be placed. All packets are of even length. The variable should initially

contain the buffer size. The packet will be truncated to this size if it is

too large. The buffer size should also be even. NB: Failure to

initialise this variable is a common error and often results in

unpredictable behaviour.

timeout_sec 37 A timeout period in seconds, upon which the call will return if no data

is available. If both timeout_sec and timeout_usec are 0 the

call will block indefinitely or until data becomes available.

timeout_usec A timeout period in micro-seconds. The call will return after the

specified seconds and micro-seconds if no data is available. If both

timeout_sec and timeout_usec are 0 the call will block

indefinitely or until data becomes available.

Return:

0 for success, -1 on error or 1 if a timeout occurred.

37 The timeout parameters are optional under C++ on UNIX, but the C version of the API under VxWorks requires

0’s be supplied if no timeout period is required.

Yamabico Autonomous Mobile Robot Documentation 102

int PortFd(LONG Port)

Description:

This function can be used to obtain the UNIX file descriptor (socket number)

associated with the specified Port. Since the current implementation of the API provides

no SelectPort() call, the client can use this function if waiting on multiple ports is

required. The UNIX select() system call can be used on the file descriptors returned as an

alternative to polling the ports with ReceiveDatagram() and a timeout. The

OpenConnection() function also returns such a file descriptor.

Parameters:

Port The Port number already opened using OpenConnection() .

Return:

-1 on error (if the Port was not open), or the UNIX file descriptor of the associated

socket.

Yamabico Autonomous Mobile Robot Documentation 103

2.4.5.2 NetShell

This portion of the API provides services that are ultimately carried out by the NetShell

module on the Yamabico. Services such as upload and download of executable and data

modules, execution and unlinking of modules. A list of modules in the robot’s memory as well as

memory status and the process table can be output to standard output. It also provides the ability

to execute any Spur locomotion command or ultrasonic sensor command directly from the client

program. These services are also used by the user utility programs remote , radcon and

dload , which are documented above.

int SetCurrentRobot(int Address)

Description:

This function must be called before any NetShell commands are issued to specify

which robot subsequent commands will be addressed to. It may be called any number of

times to change the currently addressed robot. Before client termination,

CloseConnection() should be called (only once even if SetCurrentRobot() is

called multiple times). Pass CloseConnection() the port number returned by this

function.

Parameters:

Address The (special) IP address of the robot (e.g. ADDR_ROBOT1 or

ADDR_FLO, ADDR_JOH etc.). Note that if the address specified is

not a robot, the NetShell commands will block for ever awaiting a reply

(other clients usually don’t listen for NetShell commands on the

NetShell port).

Return:

-1 if a connection to the RADNET link server could not be established, or the

NetShell port number otherwise. This port number should be passed to

CloseConnection() .

Yamabico Autonomous Mobile Robot Documentation 104

SetServer(char *ServerHostName)

Description:

This function can be used to change the default RADNET link server host38. It may

be called before a call to SetCurrentRobot() .

Parameters:

ServerHostName A C string containing the UNIX host name of the machine which

is executing a RADNET link server.

Return: None.

FlushInputQueue()

Description:

This is used to discard any packets received back from NetShell. Some times, due

to fact that datagrams are unreliable, or if the robot CPU is heavily loaded, the NetShell

commands issued from the client timeout. If after the timeout a reply is finally sent, it will

be stay in the input queue and will cause the communication to be out of synchronisation.

If strange behaviour results when using the NetShell API - try using this call, and check for

robot CPU overload or other factors that could cause large network latency.

Parameters: None.

Return: None.

38 Please Note: The current default is the Wollongong machine “terumi.cs.uow.edu.au”. If you are at a geographic

location other than Wollongong and forget to call SetServer() before SetCurrentRobot() , the software

will quite happily connect to terumi and issue commands to the Wollongong robots (if they happen to be powered

on). If this is not what was intended you may be left wondering where the commands are going!

Yamabico Autonomous Mobile Robot Documentation 105

int NetShellAreYouThere(char *RobotName)

Description:

Check if the NetShell module on the robot can be contacted, hence if the link is

operational and all networking software is running. This function can also be used just to

retrieve the ASCII string name of the robot.

Parameters:

RobotName A pointer to a string buffer that will hold the name of the robot on

return if NetShell could be contacted. The buffer should be at least 32

characters.

Return:

The IP address of the robot, or 0 if not contacted (ADDR_NONE).

int MOSRA_Execute(char *ModuleName, int pid=0,

int priority=0x70)

Description:

Starts the execution of a MOSRA executable module on the robot.

Parameters:

ModuleName The module name on the robot to execute.

pid Preferred Process ID (PID), or 0 for any. (omit under C++ for any)

priority The preferred process priority, 0x70 is normal (omit under C++ for the

default 0x70).

Return:

The PID of the started module, or 0 if not found.

Yamabico Autonomous Mobile Robot Documentation 106

int MOSRA_Upload(char *FileName)

Description:

Uploads an OS/9 robot module from the robot to the host on which the client is

executing. The module will be placed in a file in the current directory with the same name

as the robot module.

Parameters:

FileName The module name of an OS/9 executable or data module currently on

the robot. The upload progress will be displayed on standard output

(and sent to radcon).

Return:

The size of the module in bytes, or 0 if the module was not found or a network error

occurred during the upload (which causes an abort).

MOSRA_Download(char *FileName)

Description:

Downloads an OS/9 robot module from the host on which the client is executing to

the robot. The module file should be in the current directory.

Parameters:

FileName The UNIX file name of a valid OS/9 robot module. This should NOT

include the path name (change directory first if necessary). This name

will be the module name on the robot after a successful download. The

download progress will be displayed on standard output (and sent to

radcon).

Return: None.

Yamabico Autonomous Mobile Robot Documentation 107

MOSRA_Reset()

Description:

This function causes a software reset of the master module on the robot. After

issuing this command the network connection to the robot will be lost until it finishes

rebooting.

Parameters: None.

Return: None.

int MOSRA_Unlink(char *ModuleName, int ModNum)

Description:

This removes the specified robot module from the robot’s memory. The module

may be specified by name or number.

Parameters:

ModuleName The module name of an OS/9 executable or data module currently on

the robot. Set this to NULL if specifying by module number instead.

ModNum The module number of an OS/9 executable or data module currently on

the robot. Set this to 0 if specifying by module name instead.

Return:

TRUE if module found and unlinked or FALSE if not found.

MOSRA_ModuleList()

Description:

Display the list of OS/9 memory modules currently in the robots memory. The list

is displayed as a formatted output on standard output.

Parameters: None.

Return: None.

Yamabico Autonomous Mobile Robot Documentation 108

MOSRA_ProcessList()

Description:

Display the list of currently executing processes or threads on the robot. The list is

displayed as a formatted output on standard output. The output also shows PID numbers,

process status and the message source process or semaphore a process is waiting on.

Parameters: None.

Return: None.

MOSRA_MemStats()

Description:

Display the robot memory status (free memory and number of fragments). The

status is displayed as a formatted output on standard output.

Parameters: None.

Return: None.

int us_dist(int dir, USDistData *DistData = NULL)

Description:

Obtains the current distance reading of one or all of the ultrasonic sensors.

Supports the old 4 sensor HiSonic Yamabico’s and the new 16 sensor HiSonic ring

Yamabico’s39.

Parameters:

dir One of US_FRONT, US_BACK, US_LEFT, or US_RIGHT for the 16

and 4 sensor cases, or an integer sensor number [0…15] for the 16

sensor ring.

DistData If a pointer to a pre-allocated USDistData struct is supplied, the

current distance reading from all 16 sensors is returned in the structure.

This only applies to the 16 sensor ring, pass NULL for the 4 sensor

case or if the data is not required. The USDistData struct is defined

in the client.h header file.

Return:

US_NOECHO if no obstacle was detected in front of the nominated sensor, or the

range reading in cm.

39 Currently only the 16 sensor ring developed at Wollongong is supported, the 12 sensor ring developed at

Tsukuba is not (sorry).

Yamabico Autonomous Mobile Robot Documentation 109

us_mask(int mask_pattern)

Description:

Sets the ultrasonic mask pattern. For a 4 sensor HiSonic Yamabico the sensors can

be selectively enabled. If using a 16 sensor ring, only turn all the sensors on or off.

Parameters:

mask_pattern One of US_FMASK, US_BMASK, US_LMASK, or US_RMASK for the

4 sensor case, or US_NOMASK to enable all or US_MASKALL to

diable all for the 4 or 16 sensor case.

Return: None.

Spur locomotion commands

Description:

All Spur locomotion commands that are available to robot programs via the

spurlib.l library are also available to UNIX clients. Refer to the Spur documentation,

since all function prototypes and behaviour are identical. Note that issuing a Spur

command from the client is significantly slower than directly from the robot. Hence this

facility should only be used to issue interactive commands, for rapid prototyping of

programs, or for testing.

Parameters:

Identical to those described in the Spur documentation.

Return:

Identical to those described in the Spur documentation.

Yamabico Autonomous Mobile Robot Documentation 110

2.5 Inter-module Communication and the Yamabico Bus

The Yamabico Bus is a back plane bus that serves as the communication medium between

modules. The architecture is shown in the figure in section 2.1. Communication is between the

Master and function modules, never between function modules. The Yamabico Bus hardware is

explained in detail in the hardware section and also in [Yam95].

Each of the function modules contains a small amount (1Kbyte) of Dual Port

Memory (DPM) that can be addressed directly by the local CPU, and independently by the

Master Module CPU over the Yamabico Bus. This shared memory is the basis for

communication between the master and function modules. The philosophy of the Yamabico

architecture is that the master module directs the function modules by issuing commands and then

monitors their progress or state. In accordance with this there are two mechanisms for

communication via the DPM. The first mechanism is for sending a command from the master

module to the function module with arguments (upto 128 bytes). The second mechanism involves

the concept of a State Information Monitoring Panel (SIMP). The function modules periodically

update a representation of their current state in their respective SIMP’s. The user program

executing on the master module is then free to interrogate the current state of any function

module asynchronously.

 Each of the function modules is memory mapped to a specified fixed address in the

master module. The address is configurable using DIP switches on the function module boards.

The addresses of the standard function modules in the master's address space is defined in the file

../ys-kit/module/DPM/DPM.h and also in [Yam95]. The DPM hardware and protocol

is explained in the Hardware documentation folder [Yam95]. The software protocol is reiterated

below for completeness. The DPM has two sides, left and right. If data is written into the status

register on one side an interrupt signal is generated on the other side. The interrupt is not cleared

until the status register on the other side is read. The left side is the function module side and the

right side is the master module side. Currently interrupts to the master module are ignored. The

DPM is organised as follows:

DPM Address

Offset Usage

$000-$1FF LtoR SIMP - wt_SIP16() and rd_SIP16()

$200-$2FF Not used (RtoL SIMP)

$300-$37F RtoL Data area for command communication - send_com16()

$380-$3FD LtoR Data for command reply - send_reply16() (rarely used)

$3FE RtoL Status register (interrupt occurs on left side)

$3FF LtoR Status register (interrupt occurs on right side)

Dual Port Memory Usage Map

Yamabico Autonomous Mobile Robot Documentation 111

The DPM has two sides, Left and Right. If data is written into the status register on one

side an interrupt signal is generated on the other side. The interrupt is not cleared until the status

register on the other side is read. The left side is the function module side and the right side is the

master module side. Currently interrupts to the master module are ignored. The most significant

bit (MSB) of the last two addresses in the DPM ($3FE and $3FF) are interrupt flags for the

Right-to-Left and Left-to-Right sides respectively. The lower 7 bits of these registers is used as a

byte count for the command communication, since no interrupts are required for the SIMP

communication model.

INT Byte Count

D7 D0D6
$3FE
or
$3FF

Interrupt
Flag

Command Length

Structure of the status register

If the master module wishes to send a command to a function module it uses the

send_com16(module,argc,argv) function. This function and the other functions

discussed below are implemented in the source directory ../ys-kit/module/DPM . The

protocol used by this function is as follows:

START

read RtoL-SR

write RtoL-DR

write RtoL-SR
=(IRQ-flag = 1
& Byte count)

IRQ-flag == 0?

Yes

No

Protocol for Master to Function module command send.

The writing into the RtoL status register triggers an interrupt on the function module,

which is vectored to an interrupt routine that reads the command and clears the status register

before processing the command.

read RtoL-SR

copy RtoL-DR
to command buf.

write RtoL-SR = 0

END

START

Protocol for Function module interrupt routine.

Yamabico Autonomous Mobile Robot Documentation 112

If function module code wishes to write into it’s SIMP it uses the wt_SIP16() function.

This may trigger an interrupt on the master module CPU, but it is usually ignored40. The master

module may examine the current state of a function module at any time by reading the DPM

using the rd_SIP16() function.

2.5.1 Case study - The Locomotion Module

This section describes the implementation of communication between the master module

and the locomotion module specifically. Some background knowledge from the locomotion

module implementation is assumed.

The software that executes on the locomotion module is names Spur. User programs

executing on the master module make calls to a number of available Spur commands. Refer to

the Spur API section for a list of these calls. For the remainder of this discussion just two Spur

commands will be considered. Namely the Spur_line_GL() and Spur_get_pos_GL()

functions. These are representative of Spur commands because they represent to two

communication mechanisms discussed above. The Spur_line_GL command sends a command to

the locomotion module but returns no information to the user program, while the Spur_get_pos

command requests information from the SIMP without effecting Spur’s current state.

The Spur source code is located in the directory ../ys-kit/module/Spur-16 .

When a user program on the master module calls the Spur_line_GL() function it is calling a

stub function that is statically linked with the user program at compile time. The implementation

is in the Spurlib.l library. The source for this stub function is in the lib_source

directory and looks as follows:

_line_GL(x,y,th)
int x,y,th;
{
 comma[0] = Spur_LINE_GL;
 comma[1] = x<<8;
 comma[2] = y<<8;
 comma[3] = th*IN_DEGREE;
 send_com16(DPM_ADDR,16,comma);
 count_msec(10);
}

Each of the Spur command has an associated numeric command code. These are defined

in the ../defs/command.h header file. In this case the code is placing the command code

and required arguments into an array comma[] . The code then invokes the send_com16()

function discussed above to write the 16 bytes of data (4 long words) into the locomotion DPM,

hence causing an interrupt on the locomotion module board. The header file defines DPM_ADDR

as the base address for the locomotion module’s DPM. This is typical of the implementation of

command type Spur functions.

Next, the interrupt on the locomotion module is vectored to the following interrupt service

routine (../module/dpmirq.c).

40On some Yamabico Robots this interrupt line on the Yamabico Bus II has been cut.

Yamabico Autonomous Mobile Robot Documentation 113

dpmirq()
{
 int leng;
 char c;

 c = dpm->mast_csr;
 leng = c;
 leng &= 0X007F;
 rd_dr(leng);

 com_ana();
}

In this case the dpm variable is an instance of the structure dpm_str defined in

../DPM/DPM.h . This structure has members corresponding to the address usage map in the

table above. The mast_csr member is the master to function module status register. The code

extracts the number of bytes in the sent command and then calls rd_dr() with the length. The

rd_dr() function read the specified number of data bytes from the DPM into the command[]

array. Next, dpmirq() calls com_ana() (command analyse). The com_ana() source

looks as follows:

com_ana()
{
 switch(command[0]) {

.....
 case Spur_LINE_GL: line_GL_com(); break;
 case Spur_LINE_LC: line_LC_com(); break;
 case Spur_LINE_FS: line_FS_com(); break;

 case Spur_ARC_C_GL: arc_c_GL_com(); break;
 case Spur_ARC_C_LC: arc_c_LC_com(); break;

.....
 case Spur_SET_GL_ON_GL: set_GL_on_GL_com(); break;

 default: break;
 }
 clear_sr();
}

Which clearly calls the line_GL_com() function in the case of the Spur_LINE_GL

command. This function processes the new trajectory command and then returns. Next the

com_ana() function calls clear_sr() , which simply clears the status register. This clears

the interrupt and also indicates to the master module’s send_com16() function that the DPM

is no longer busy and may be written into again.

The Spur software maintains a current state or mode at all times. The commands from the

master module simply modify this mode hence changing the tracking behaviour. The mode is

maintained in the cmode variable. The implementation of line_GL_com() is as follows

(../module/command_line.c):

Yamabico Autonomous Mobile Robot Documentation 114

line_GL_com()
{
 int temp,xl,yl,thl;

 temp = command[3] - lo_th_org_in;
 thl = mul444(temp,DELTA_T);
 xl = command[1] - lo_x_org;
 yl = command[2] - lo_y_org;
 trans_cood(xl,yl,lo_th_org,&xl,&yl);
 cmode.para.line_para.x_org = xl;
 cmode.para.line_para.y_org = yl;
 cmode.para.line_para.th_org = cal_ang(thl);
 cmode.mode = LINE_MODE;

}

The main thing to notice here is that the function uses the arguments supplied in the

command[] array and changes the current mode (cmode) variable. This concludes the

processing that occurs as a result of the DPM interrupt.

The main loop of the Spur software uses the current mode to adjust the tracking and

control the motor hardware using feedback from the wheel shaft encoders. The Spur software is

driven by hardware interrupts every 5ms which are vectored to the timirq() service routine in

../module/timirq.c . This in turn calls fb_ctl() which calls cal_r_vel() to

calculate the robot velocity and also the mode_ctl() function which does a switch statement

based on the current mode (mode_ctl.c):

mode_ctl()
{
 if(cmode.mode == EXP_MODE) do_exp();
 if(cmode.mode == LINE_MODE) do_line_track();
 if(cmode.mode == STOP_MODE) do_stop();
 if(cmode.mode == ACCEL_MODE) do_accel();
 if(cmode.mode == CIRCLE_MODE) do_circle_track();
}

Which in the case of line tracking mode calls do_line_track() which implements

the line tracking algorithm. Looking back to fb_ctl() which, as mentioned, calls

cal_r_vel() which calculates the robot’s velocity:

cal_r_vel()
{
 register int temp;
 short *data_ptr;
 w_vel[M_RT] = cnt_var[M_RT]*INV_VELOCITY;
 w_vel[M_LT] = cnt_var[M_LT]*INV_VELOCITY;

....
 gl_th = cal_ang(lo_th_org + lo_th);

 if(w_flag == 0) {
 wt_SIP16((int)(dpm)+0x00,4,&r_vel); /* write to SIP */
 wt_SIP16((int)(dpm)+0x10,4,&r_angv);
 }
 else if(w_flag == 1) {
 wt_SIP16((int)(dpm)+0x20,4,&lo_x);
 wt_SIP16((int)(dpm)+0x30,4,&lo_y);
 wt_SIP16((int)(dpm)+0x40,4,&lo_th);
 }
 else if(w_flag == 2) {
 wt_SIP16((int)(dpm)+0x50,4,&gl_x);
 wt_SIP16((int)(dpm)+0x60,4,&gl_y);
 wt_SIP16((int)(dpm)+0x70,4,&gl_th);
 }
 if(++w_flag == 3) w_flag = 0;
}

Yamabico Autonomous Mobile Robot Documentation 115

This clearly calls the wt_SIP16() function to write the current state of the position and

velocity variable into the DPM. This data will then become available to the master module to

read. Hence the SIMP is updated every 5ms.

Turning back to the master module, if we look at the implementation of the library stub for

the Spur_get_pos_GL() function we find it simply uses the rd_SIP16() function to read

the current values from the DPM.

_get_pos_GL(x,y,th)
int *x,*y,*th;
{
 int xx,yy,thth;

 rd_SIP16(DPM_ADDR+0x50,4,&xx);
 rd_SIP16(DPM_ADDR+0x60,4,&yy);
 rd_SIP16(DPM_ADDR+0x70,4,&thth);

 *x = xx>>8;
 *y = yy>>8;
 *th = thth/DEGREE;
}

In conclusion, this model of communication between the locomotion and master module is

typical of other functions modules. For example the HiSonic ultrasonic module uses rd_SIP()

to retrieve the latest ultrasonic distance reading and uses send_com() to send the mask

commands to the HiSonic module.

Yamabico Autonomous Mobile Robot Documentation 116

2.6 Software Development

Section 2.5.1 describes how to develop user programs on a UNIX host, compile them,

debug them, and download them to a Yamabico robot. The robot simulators are also described.

Section 2.5.2 describes how to compile MOSRA and function module implementation code and

create ROM files for use with an EPROM programmer.

2.6.1 User program development

The sections to follow are:

• Compilation - Compiling Robol/0 and C programs

• Romance - Downloading and executing code on a robot

• Simulation - Using the (M)AMROS and Marvin robot simulators

• Tools - Other tools and utilities for program development

• Environment - The required UNIX host environment for the development

 software

2.6.1.1 Compilation

To compile a Robol/0 or C program type the following from the directory containing the

source file. This will use the MicroWare 68000 C Cross compiler, hence you will need to

execute robocc from a Sun3 UNIX machine41.

robocc -ymbc myprg .rb0

or

mcc myprg.c

This will produce a file called myprg . This file can then be downloaded to the robot

using the romanceu program described below.

41In the Wollongong Laboratory use the ‘Kanako’ machine.

Yamabico Autonomous Mobile Robot Documentation 117

2.6.1.1.1 Example programs

Example source code in Robol/0 and C can be found in the directory:

../ys-kit/ydemo

Some of the examples are:

• square.c - a naive program that drives the robot in a square (almost42)

• square.rb0 - a Robol/0 program to drive the robot in a square.

• avoid.rb0 - A very simple obstacle avoidance demo.

Can avoid a cardboard box for example.

• UScheck.c - Displays the ultrasonic sensor distances every second.

2.6.1.1.2 Robocc & mcc

Robocc is a Robol/0 to C source translator and compiler driver. After translating your

myprg.rb0 file into C (myprg.c) it invokes mcc. The mcc driver invokes the following

programs to compile and link the code.

• cc68- Compiler driver (compile only - no linking)

• cpp - C preprocessor

• c68 - C compiler

• o68 - Optimiser

• r68 - Produces OS/9 relocatable object files (.r files)

• ml68 - Linker (Produces the final OS/9 object for the robot)

2.6.1.2 Romance

The romance software (RObot and MAN’s communicating environment) is used to

interface the UNIX host with the robot. Hence romance consists of two parts - the UNIX side

and the MOSRA (robot) side. The standard startup module started by MOSRA on robot

power-on automatically starts the romance module on the robot. The UNIX side can be started

as follows.

romanceu -p serialdevice

Where serialdevice is the UNIX serial port device that is plugged into the robot’s serial

port. For example:

romanceu -p /dev/ttya

42The program waits until the robot has traversed the full distance of one side of the square before changing the

tracking to a line at 90o for the next side. Hence the robot will overshoot on the corners.

Yamabico Autonomous Mobile Robot Documentation 118

The MOSRA side provides some interactive commands for manipulating and

downloading/uploading object files to/from the robot. It displays the following menu when

started:

RObot and MANs' Communicating Environment
 ROMANCE ver 1.5a
--------Kernel interface Commands---------
 L : Module directory List
 P : Process information
 I : Interrupt table information
 S : free memory Status
 H : Help
 B : Bye 'kill ROMANCE on Yamabico'
 U : Unlink module (name)
 X : eXecute process (name)
 format := X <module name> [<pid>] [<prio>]
 D : Dump memory
 format := D <s_adrs> [<count>]
 F : Fill memory by short
 format := F <s_adr> <e_adr> <data>
 W : Write memory by short
 format := W <s_adr> (back:'^',skip:CR,end:'.')
 FTF9 : File Transfer from OS9 (F9)
 FTT9 : File Transfer to OS9 (T9)
 FTFU : File Transfer from UNIX (FU)
 FTTU : File Transfer to UNIX (TU)
 format := FT** <module name>
 SM : Send Massage
 R : Reset

*

So, for example to download your myprg object file to the robot and execute it you would

type (‘*’ is the prompt):

* fu myprg

* x myprg

If you used the ‘l ’ command to list the current OS/9 memory modules in RAM you would

see a module named myprg .

To quit the romanceu program on UNIX type CTRL-C and then press Q.

2.6.1.3 Simulation

During the development of robot programs it is inefficient to run them over and over on the

robot for testing their behaviour. A simulation system provides a powerful alternative allowing

robot programs to be validated with a much smaller turn around time and without utilising a

robot. The following sections describe the AMROS and Marvin simulators. The multiple robot

version of AMROS called MAMROS is also mentioned.

2.6.1.3.1 AMROS

The AMROS (Autonomous Mobile RObot Simulator) simulator was written in the

laboratory in Tsukuba, Japan. It simulates robot programs written in Robol/0 only, not C. It

also assumes that only one user robot program is executing, hence the MOSRA process creation

Yamabico Autonomous Mobile Robot Documentation 119

calls cannot be used. It also assumes a Robol/0 WAIT loop executes every 50ms. The robot

program is compiled to run as a native process on the UNIX host. So the simulation is not quite

realistic. AMROS still provides a good idea of a robot program's behaviour. If your program

fails on AMROS it will surely fail on the real robot, but if it performs correctly on AMROS it

may perform correctly on the robot.

AMROS has also been extended to simulate Multiple robots. For information on Multiple

AMROS (MAMROS) refer to [Naum93].

Compiling

To compile your Robol/0 program for use with AMROS you need to use a UNIX host that

has the GNU gcc compiler installed43. Type the following:

robocc -sim myprg .rb0

This will compile the source program and produce an executable in your directory called

a.out . This executable includes the AMROS program and your robot program linked together.

Ensure your X Windows DISPLAY variable is set and execute a.out to run the simulation.

The simulator also has the ability to read in map files to represent the environment around the

robot. These are .vm files and are described in the following section. For example:

a.out -vm roboken91.vm

Would start AMROS with a map of Tsukuba's Roboken Laboratory as it was in 1991.

This assumes the map file is in the current directory. A full path may be specified.

Map files

The map files represent the environment as a simple 2D line drawing. The map can also

store information about the surface reflectivity for the ultrasonic sensors. The 2D line drawings

can be converted from the Interviews 3.1 IDraw drawing program files into map files using the

utility id2vm . The format of vm map files is detailed in an appendix.

2.6.1.3.2 Marvin

The Marvin (Multiple Autonomous Robot VIrtual eNvironment) simulator allows the

simulation of multiple Yamabico robot in realistic simulation time. It is modular in construction

so that sensor and actuator simulation can be added incrementally.

Marvin is still under development in the Wollongong Laboratory. Refer to Marvin

documentation.

43In the Wollongong laboratory use the 'Terumi' machine.

Yamabico Autonomous Mobile Robot Documentation 120

2.6.1.4 Tools

2.6.1.4.1 Robocon

Robocon is a utility to allow the graphical editing of Robol/0 programs. It displays a

graphical representation of the Robol/0 action states and allows them to be manipulated using the

mouse and menu’s.

It is invoked as follows44:

robocon myprg.rb0

Note that robocon works by embedding information as comments into the Robol/0 source

code. Hence you should not edit these comments directly. Also the Robol/0 program must have

been initially created with robocon, otherwise the existing action modes will all be placed at the

same default location on the robocon display when robocon is used for the first time.

2.6.1.4.2 Roboemon

To be completed.

2.6.1.4.3 Robotra

To be completed.

2.6.1.5 Environment

This section details the environment that must be present on the UNIX host for the

software development tools to work correctly. This includes the appropriate installation

directories, necessary symbolic links, and environment variables.

To be completed.

44In the Wollongong laboratory use the ‘Terumi’ machine.

Yamabico Autonomous Mobile Robot Documentation 121

2.6.2 Building the Yamabico software

2.6.2.1 Compiling the MOSRA Kernel

To compile the MOSRA kernel for the master module or a function module follow these

steps:

1) Edit both the files Config.h and Config.a in the

../ys-kit/mosra/config directory. Just un-comment the line for the module

you wish to build.

2) Change to the ../ys-kit/mosra/kernel directory and type:

make -f Makefile.sun all

This produces a file called mosra.rom in the ../kernel/objs directory. It consists

of some boot code to get the board started and an OS/9 format object module called mosra68k

which is the kernel code. Since the 68000 CPU requires the start of execution vector to in low

memory and the Yamabico ROM’s typically map into higher memory, the boards contain a

circuit that temporarily maps the ROM to address 0 upon reset. So the boot code contains the

initial execution address. The mosra.rom file is the minimum required to make a ROM to

execute MOSRA. When started MOSRA will look for a module named startup , and if found

will mfork() it. Typically startup will fork any required modules and then exit (with

death()).

2.6.2.2 Making a Master Module ROM image

A simple master module ROM image would consist of the MOSRA kernel image, a startup

module which mfork() ’s TIMER and ROMANCE, the timer module and the romance

module. Other modules may be included in the ROM image as desired. Because MOSRA

locates the memory module’s by searching memory for them (they begin with a special magic

number $4afc), modules may be added to the ROM by simple concatenation. There are a number

of different master module configurations represented by subdirectories of

../ys-kit/module beginning with mm. Suppose we wish to build mmW45. Follow these

steps:

1) Build the MOSRA kernel as described in the last section, remembering to configure for

the required master module.

2) Change to the ../ys-kit/module/mmW directory and type:

make -f Makefile.sun all

45 The standard master module used by the typical Yamabico is mmKEI. mmW is a modification of mmKEI used

in Wollongong that adds the Radio Modem Network (RAD NET) and some minor kernel modifications.

Yamabico Autonomous Mobile Robot Documentation 122

3) Change to the ../ys-kit/module/mmW/rom directory and type: cp.mosra

This copies the MOSRA kernel image built in step 1 and the romance module into the

file mosra.mmW

4) Type make.rom

This copies the mosra.mmW, startup module, network module, and timer

module into the final ROM image file rom.mmW.

Next the ROM image rom.mmW can be programmed using a ROM programmer. Note

that since the ROM is built for a 68000 CPU which has a 16Bit data bus, the ROM will be

16bits wide. This means that the computer driving a ROM programmer must interpret the image

as a stream of 16bit words (pairs of bytes). So the CPU of the computer driving the ROM

programmer must be of the same endian as the 68000 or the ROM image file must have the

endian reversed by swapping byte pairs (for example if the ROM programmer was connected to

an Intel 80x86 based computer).

2.6.2.3 Compiling function module code

To be completed. Similar to above, but build an appropriate MOSRA kernel first, then

compile the function module code and build a ROM image.

2.6.2.4 Changing robot library code

All functions available to user robot programs come from a set of link libraries that are

linked with the final OS/9 executable module after compilation. In many cases these are simple

stubs that communicate with a function module via DPM or cause a TRAP to the kernel (for

system calls). The link libraries can be found in the ../local/os9/yamabico/lib

directory. Some of these libraries are concatenations of smaller libraries for specific parts of the

API. OS/9 library modules may be simply concatenated to form larger libraries (using the UNIX

cat command for example).

The procedure for updating or modifying a library function is best illustrated with an

example. The example will show how to modify the us_dist() command that obtains a

distance range reading from an ultrasonic sensor.

The implementation of the HiSonic library code can be found in the directory ../ys-

kit/module/HiSonic/lib . The function we wish to modify is in the file us_dist.c .

Suppose we have modified the function, now from the directory re-compile to generate the new

libSONic.l link library by using the command make -f Makefile.sun . Once this is

complete change into the directory ../ys-kit/ground/install and type makelib to

execute the makelib script file. This script concatenates all the link libraries from the various

module directories into the ymbclib.l link library that is linked into user programs from the

lib directory. If you wish to actually add another link library to this, modify the script. This is

Yamabico Autonomous Mobile Robot Documentation 123

not necessary for this example. This takes care of the modification to the us_dist()

implementation, and may be all you wished to do.

If in addition to change the implementation you also wished to add some extra definitions

or declarations that the user programs will require, you will also need to update the

HiSonic_usr.h header file that is included into user programs from the defs directory

(../local/os9/yamabico/defs/ymbc). You should not edit this file directly as there

are two copies of these header files. The original source is usually kept in the module defs

directory. Change into the directory ../ys-kit/module/HiSonic/defs where you will

find the correct HiSonic_usr.h header to edit. Now this modified header should be updated

into the OS/9 defs directory. This is also achieved using a script from the

../ys-kit/ground/install directory as with updating the library. Change to this

directory and execute the makedefs script. This will copy all the header files from their

respective module defs directories into the OS/9 defs directory. That completes necessary the

changes. Of course user programs will need to be re-compiled and re-linked to use the updated

version of the library function.

Yamabico Autonomous Mobile Robot Documentation 124

2.7 Implementation of a Robot Simulator

This section discusses the implementation of the AMROS and Marvin robot simulators.

Specifically what follows is a brief overview and comparison of how the robot function module

and master module code interacts in three contexts: a Yamabico robot, the AMROS simulator and

the Marvin simulator. Then some aspects of the implementation of AMROS and Marvin are

discussed.

2.7.1 Overview of Yamabico architecture

The Yamabico robots consist of a collection of single board computers interconnected by a

bus (the Yamabico II bus). One of the CPU boards is named the master module and it

conceptually directs the functions of the remaining function modules. The function modules

typically implement the function of a particular sensor or actuator system, while the master

module executes user level code to implement the higher level behaviour of the robot.

On the Yamabico robots, each of the module boards runs an operating system called

MOSRA. The user programs that run on the master module have an number of API sets available

to them. Specifically, the MOSRA system call API, which is implemented by linking stub

routines with the user code, which cause a software TRAP #0 which is then vectored to the

MOSRA system call dispatch code. The API sets for accessing each of the function modules are

implemented using a set of stub routines which read and write a Dual Port Memory (DPM) on

the appropriate function module. A write causes an interrupt on the function module CPU board

which then triggers the appropriate action. If the user function being called only requires current

state information, often the DPM is asynchronously read from the master module without the

intervention of the function module, which is just required to periodically update the state

information in the DPM. This concept is called a State Information Monitoring Panel (SIMP).

As is the case with the Spur locomotion module, function module code is often largely

interrupt driven, being tied closely with the robot hardware. See section 2.5 for a detailed

explanation of the communication between Spur and the master module. The locomotion

algorithms implemented on the Spur locomotion module are driven by interrupts from the

hardware and from a timer device that delivers interrupts every 5ms. The algorithms use

feedback from the motors and wheel encoders to adjust the motor currents based on the current

tracking mode. The tracking mode is only modified by master module commands as issued from

user program code. The mode is modified when an interrupt is received from the DPM in

response to a write from the master module.

The are a number of ways to implement the simulation of these hardware and software

components of a robot.

Yamabico Autonomous Mobile Robot Documentation 125

Execute the module software on the host operating system

The software that is normally compiled for the robot CPU target can be re-compiled to

run directly on the simulation host system. This is the approach taken by AMROS. The user

program is run directly under UNIX. A link library is provided that matches the API of the

library of routines available under the robot environment. These routines call functions in the

simulator that interact with a representation of the robot’s simulated environment.

Simulate the robot module at a hardware level

The CPU and hardware of the robot can be simulated on the host. The code compiled

for the robot target can then be interpreted and any memory accesses to hardware trapped and

simulated. The interaction with the simulated environment is then via the simulated sensor

and actuator hardware.

A hybrid of the above two approaches

Alternatively a combination of these approaches can be taken. This is the approach

taken by the Marvin simulator. Marvin interprets the user code targeted for the robot. The

MOSRA operating system, however, is not simulated in the current version. Any user code

system calls or function module commands can be caught by intercepting TRAP #0

instructions, or accesses to the DPM addresses. The code that normally executes on the Spur

locomotion module is executed directly on the UNIX host as in AMROS. The code that

normally executes on the ultrasonic function module is not executed at all, but the

functionality is simulated directly.

2.7.2 AMROS Implementation

The source code for AMROS is located in the ../ams-kit directory. Under this

directory you will find ys-amros which a duplication of the robot source code from ../ys-

kit that will now run directly on the UNIX host. Also there is an amros directory that

contains source code for simulation of the robot’s environment and gluing the user code with the

simulator. AMROS imposes a few restrictions on user robot code to be simulated. Specifically,

it assumes that only one user process is executed on the robot and that many MOSRA system

calls are not used. The only MOSRA system calls implemented for simulation are the

malloc() and mfree() memory management calls and the death() call. No process,

interrupt, memory module management46 or interprocess communication calls may be used. This

is typical of user robot code.

46 AMROS does construct a module directory and implements the MOSRA module API calls by maintaining

created modules as standard UNIX files. This facility may not be properly supported in the current version and is

rarely used in practice. See the ../ams-kit/amros/mosra.c file.

Yamabico Autonomous Mobile Robot Documentation 126

2.7.2.1 Implementation of user calls

The next few sections detail how particular user functions available in the robot target

environment are implemented when user code is executing on the UNIX host environment linked

with AMROS.

The malloc() and mfree() MOSRA calls

In the robot environment the function stubs that are linked with the user code for these two

functions cause a TRAP #0 with the appropriate code so that MOSRA will dispatch to it’s

implementation the functions. When the user code is instead linked with AMROS the functions

are implemented to simply call the equivalent UNIX malloc() and free() functions47. This

means that the simulation places no restrictions on memory usage by user robot code, as it is

allocated from the UNIX process’s heap space.

The readSRTKEI() and compSRTKEI() calls

These functions are implemented on the robot by simply reading the current value of the

free running timer chip hardware. AMROS implements them in ../ams-kit/ys-

amros/ymbclib/srt.c by accessing the global function get_timer6840() which

returns a 10ms interval count by accessing the global variable t2 which is incremented by the

environment simulation. See the ../ams-kit/amros/main.c file.

The set_timer() and timer_wait() calls

These are implemented on the robot by using the MOSRA inter-process communication

calls to send a message to the TIMER module process. AMROS implements them by again

accessing the global simulation time counter (global variable t) via the CLKget_time()

function. The implementation is contained in the file

../ams-kit/amros/ymbcfuncs.c.

The death() function

This is the only process management MOSRA system call implemented. On the robot is

terminates the current process and frees it’s static data area and process descriptor. Under

AMROS the implementation ends the simulation.

47 Since the UNIX memory allocation function has the same name as the MOSRA one (malloc()), the function

is not redefined by AMROS. AMROS only implements mfree() to call the UNIX free() function.

Yamabico Autonomous Mobile Robot Documentation 127

The write_cons() and read_cons() ROMANCE functions

These two functions are implemented on the robot with link library stubs that use inter-

process communication to communicate with the ROMANCE module process. This process in

turn uses the serial interface to communicate with the user on the UNIX host. Under AMROS

these functions simply call C standard library printf() and scanf() .

2.7.2.1.1 The UltraSonic module API calls

The HiSonic ultrasonic module is more difficult to simulate. AMROS has adopted a ray

line model, where for each firing of the simulated sensor, a fan of rays within -10o - +10o of the

sensor direction are traced out until they intersect a surface in the 2D map. The 2D map files

contain reflectance and diffusivity data for each surface, which is used to calculate the reflected

rays. If the rays eventually reflect back into the sensor, the length of the traced ray is used as the

measure of the distance the sensor detects.

The user program on the robot calls the us_dist() and us_mask() functions to

obtain range data and select the sensors. These functions just read and write the DPM on the

HiSonic board. The AMROS implementation for the functions is located in the ../ams-

kit/amros/sensor.c file. It directly implements the ray algorithm by accessing the map

data structures.

2.7.2.1.2 The Locomotion module Spur API calls

Rather than simulating the locomotion of the robot at a high level as was the case with the

ultrasonic sensor simulation, the approach taken is to execute the code that normally executes on

the robot’s locomotion function module board directly on the UNIX host. The motor and wheel

encoder hardware is then simulated and interacts with the Spur locomotion software. Please refer

back to the diagram at the end of the Spur implementation section for a summary of how Spur

works in the robot environment (section 2.3.3.2). The diagram below shows how Spur is

executed in AMROS. Compare it with the robot case.

Yamabico Autonomous Mobile Robot Documentation 128

AMROS

Call

User Robol/0 program linked with AMROS
...
Spur_line_GL(0,0,0)

send_com16()

dpm = command & srgs

...

Spur_get_pos_GL(&x,&y,&th)

rd_SIP()

x = dpm *
...

dpm_irq()

com_ana()

cmode = dpm *
tim_irq()

fb_ctl()

cal_r_vel()

wt_SIP()

dpm* = Spur state

mode_ctl()

switch (cmode.mode)

do_ line_track ()

pwm* -> ... = ...
count = cnt * [M_xx]

dpm_irq()

Robol0_main()

main()

amros_simulate()

LOCOsim(50ms)

robot_motion()

*shared global variables

... = pwm* ; cnt * [] = ...

AMROS software implementation

Yamabico Autonomous Mobile Robot Documentation 129

2.7.3 Marvin Implementation

The Marvin simulator is designed to simulate multiple robots more realistically that

AMROS. It removes some of the restrictions such as only simulating Robol/0, and only allowing

a single user process per robot48. Marvin uses an interpreter to execute the Motorola 68000

machine code that executed on the robot itself. Hence it is binary compatible with the robot. A

single UNIX process is created for each robot being simulated. These each run a copy of the

interpreter an communicate with the main Marvin process using Sockets. The main process

manages the user interface, represents the environment and manages the communications between

robots. The environment representation is object-oriented and is 3D. This will allow extra

sensor simulations to be added in a modular fashion in the future49. Marvin uses some of the

locomotion and ultrasonic sensor simulation code from AMROS.

2.7.3.1 Implementation of user calls

The next few sections detail how particular user functions available in the robot target

environment are implemented when user code is executing under the Marvin interpreter. In the

current version of Marvin any MOSRA system calls have to be caught by intercepting the TRAP

#0 instruction and simulated. In a future version the operating system executing on the robot

master module (MOSRA) will execute under the interpreter.

The malloc() and mfree() MOSRA calls

In Marvin the malloc() and mfree() system calls are caught through TRAP #0 and

implemented on the simulated memory array using the MOSRA algorithms.

The readSRTKEI() and compSRTKEI() calls

These functions are implemented under Marvin by catching memory read/write accesses to

the address of the timer chip hardware. The appropriate time it returned based in the number of

clock cycles elapsed, which is counted by the interpreter.

The set_timer() and timer_wait() calls

Marvin intercepts these calls by intercepting the MOSRA send_mess() system call.

It then checks the destination process ID (pid). If the pid is that of the TIMER process then the

calls are simulated.

48The first implementation of Marvin will only allow a single user process per robot, and will not run MOSRA.

Hence not all the MOSRA system calls are available.

49It is hoped that vision simulation will be added in the next year.

Yamabico Autonomous Mobile Robot Documentation 130

The death() function

The death() function sends a terminate message to the main process and ends the

interpreter.

The write_cons() and read_cons() ROMANCE functions

The console I/O calls are handled in a similar way to the timer calls. The user program

sends I/O requests to the ROMANCE process using the MOSRA send_mess() system call. It

is intercepted and if the process ID is that of romance then a message is sent to the main Marvin

process to input or output to either standard I/O or a robot window.

2.7.3.1.1 The UltraSonic module API calls

Marvin uses the AMROS ray model to simulate the ultrasonic sensors. The difference is

that the environment is represented in 3D in Marvin. The user program on the robot calls the

us_dist() and us_mask() functions to obtain range data and select the sensors. These

functions just read and write the DPM on the HiSonic board. Under Marvin the interpreter can

detect and intercept memory accesses to the HiSonic DPM area. It then sends the appropriate

messages to the main process where the ray model algorithm is implemented with the environment

representation.

2.7.3.1.2 The Locomotion module Spur API calls

Again, Marvin uses the code from AMROS to simulate the locomotion. Both the Spur

software that normally executes on the locomotion board and the environment simulation of

motors and wheel encoders execute on the main Marvin process. User program Spur calls just

read and write to the locomotion DPM, which is intercepted by the interpreter and the command,

arguments and results are communicated with the main process via the sockets. The diagram

below shows the architecture of Marvin executing a single robot’s code.

Yamabico Autonomous Mobile Robot Documentation 131

UNIX Sockets

68000 Interpreter

Marvin main process

User program linked with lib_source
...
Spur_line_GL(0,0,0)

send_com16()

dpm = command & srgs
...

Spur_get_pos_GL(&x,&y,&th)

rd_SIP()

x = dpm
...

dpm_irq()

com_ana()

cmode = ...

Memory access caught by
interpreter

ET++ OnIdle call back
if Socket message recieved

switch (type) (us, Spur, etc.)

case Spur: com_ana(...)

tim_irq()

fb_ctl()

cal_r_vel()

wt_SIP()

Spur state

mode_ctl()

switch (cmode.mode)

do_ line_track ()

pwm* -> ... = ...
count = cnt * [M_xx]

LOCOsim()

robot_motion()

*shared global variables
... = pwm* ; cnt * [] = ...

Marvin software implementation

Yamabico Autonomous Mobile Robot Documentation 132

2.7.3.2 Marvin multi-robot synchronisation scheme

This section briefly describes the protocol by which Marvin manages the simulation-time

synchronisation of multiple robot interpreter processes. As the user code on each robot is

simulated independently of the others and of the environment by an interpreter, we need to have a

mechanism to manage the synchronisation of their interaction. Consider the following example.

Suppose robot 1 runs it’s user program for 10 seconds with no interaction with the

environment. Then at 10 seconds it decides to read an ultrasonic sensor. At this point the

blackboard needs to simulate the environment up to the 10 second mark before calculating the

ultrasonic distance. This involves simulating the locomotion etc. of all of the robots up to 10

seconds. If this were not done, another robot may not be in the correct place when the distance

reading is taken (it could be in front of robot 1’s sensor, for example). Unfortunately it is not as

simple as just advancing the environment simulation up to 10 seconds, because is may be that

another robot, say robot 2, will take a sensor reading at 5 seconds, but the interpreter for it is

running so slow it’s only currently up to 3 seconds and hence has not requested the reading from

the blackboard yet. If when it gets to 3 seconds and requests a reading from the blackboard and

the environment had already been advanced to 10 seconds the reading would be incorrectly from

the robot’s future.

The solution to this problem used by Marvin is to use the protocol described here, briefly

at first and then in more detail with pseudo code. Basically the simulation is started with all of

the robots executing and keeping their own independent simulation time count. When a robot

wishes to perform a sensor or actuator command it sends a message to the blackboard process. If

results are to be returned, the interpreter is halted, only monitoring messages from the

blackboard. If no results are needed the interpreter continues on. The blackboard maintains a

sorted queue of requests for ‘sensor/actuator commands’ received from the robots. Upon

receiving a command message the blackboard adds it to the queue sorted on the time the

command was issued. It then sends requests to each robot except the originator of the command

message, requesting that they ‘simulate up-to’ at least the time the originator’s command was

issued. It also stores an indication that each robot has replied to the requests. Only after all

robots have replied to the ‘simulate up-to’ request can the environment be simulated up to this

time. However, as a result of the other robot processes simulating up-to the requested time, if

they were not past it already, they may have sent further ‘sensor/actuator command’ requests to

the blackboard of an earlier time. In this case the same procedure is followed when these are

received. When all replied have been received for the message on the queue with the earliest time

(since earlier ‘sensor/actuator command’ requests may have been received), the environment may

be advanced to this time and the command removed from the queue.

The robot processes only have to keep a sorted list of the ‘simulate up-to’ request times

they have been requested to simulate up to by the blackboard, so they can reply to each as their

simulation time advances past them. The robot processes always continue to simulate unless

waiting for data to be returned from a sensor command.

Yamabico Autonomous Mobile Robot Documentation 133

Algorithm for the Robot processes

Flag simulating // Are we executing or waiting for sensor/actuator requests?
Flag terminate // Have we received a terminate request from the blackboard?
SortedList simulateTo // Blackboard has requested us to simulate to these times
SimulationTime t // Current simulation time

simulating = Yes
terminate = No

Do
If (simulating)

Interpret one instruction
If (User code crashes) terminate = Yes

If (User code executes sensor/actuator command)
Send request to blackboard
If (requires a reply) simulating = No

If (t >= simulateTo[lowset t])
Remove lowest t from simulateTo list
Send simulate upto time reply

If (Received message from blackboard)
If (Sensor/actuator reply message) simulating = Yes
If (Terminate request) terminate = Yes
If (simulate upto time request message)

If (message.t >= t)
Send upto time reply immediately

Else
Put t on simulateTo list in sorted position

While (not terminate)

Yamabico Autonomous Mobile Robot Documentation 134

Algorithm for Main Process (Blackboard)

The main Marvin process is also responsible for implementing the Graphical User

Interface (GUI). The GUI is implemented using the ET++ framework. The socket

communications between the main and robot processes was implemented with the socket++

framework. In order to integrate the input models of ET++ and socket++ it was necessary to

implement the main processing of the blackboard inside the ET++ OnIdle call-back.

Type CommandType is {
CommandMessage message
Time time
Robot fromRobot
Array of Flags uptoTimeReplied[1..NoRobots]

}

SortedList of CommandType commands // Queue of commands to be processed
SimulationTime t // Current simulation time

OnIdle:
If (Robot message received)

switch (message type)
case (sensor/actuator command):

Add message to commands[] in sorted order by message.time
Send simulate uptoTime request messages to all robots*
command.uptoTimeReplied[1..NoRobots] = No*

(*except SendingRobot, and except if a robot already
replied to a future uptoTime request)

case (simulate uptoTime reply FromRobot):
commands[].uptoTimeReplied[FromRobot] = Yes

If (commands[lowest time].uptoTimeReplied[1..NoRobots] all Yes)
Simulate environment

(for 100ms or up to commands[lowest time].time,
whichever is sooner)

If (t >= commands[lowest time].time)
Process sensor/actuator command commands[lowest time].message
Remove commands[lowest time] command from list

Yamabico Autonomous Mobile Robot Documentation 135

3. Appendices

3.1 Appendix A - API Prototype Reference

This appendix summarises the API’s of MOSRA and some function modules. The

function call prototypes are listed below.

3.1.1 MOSRA

Process Control functions
 int mfork(char *mname,int pid,int priority);
 int pcreate(MOD_EXEC *mod_address,int pid,int priority);
 int death();
 int sleep();
 int wakeup(int pid);
 int getpid();
 char *get_work();

Interrupt Handling & Exception functions
 int irqtbl(int level,IRQTBL *table);
 int irqdel(int level,IRQTBL *table);
 int irqctl(int pid,int level);
 int exsect();
 int exend();
 int irqset(int level);
 int irqrst();

Interprocess Communication functions
 int send_mess(int pid,char *mes_p);
 void *recv_mess(int pid);
 int test_mess(int pid);

Memory Allocation functions
 void *malloc(int size);
 int mfree(void *address);

Memory Module functions
 int ismod(void *m_adr);
 MOD_DATA *make_mod(char *mname,int size);
 int crcgen(MOD_DATA *m_adr);
 MOD_DATA *get_mod(char *mname);
 int regmod(MOD_DATA *m_adr);
 int delmod(MOD_DATA *m_adr);

Yamabico Autonomous Mobile Robot Documentation 136

3.1.2 Miscellaneous

ROMANCE console functions
 void write_cons(char *form_str,...);
 char *read_cons(char *form_str, char *data, int *count);

robocc option function
 void _report_am_name(char *name);

Simulator
 void amros_simulate();
 void robol0_main();

3.1.3 Function Modules

US Sensor functions
 int us_dist(int dir);
 void us_mask(int mask_pattern);

Optical Sensor functions

IS eye functions
 void ISSUE_FORK(int p_name);

IS eye IAS process functions
 void IAS_thdist(int thdist[256]);
 void IAS_dist_cm(int i);
 void IAS_change_mode(int mode);
 int IAS_active_mode();
 void IAS_ld_control(int ld_mode);

IS eye PaSS process functions
 PaSS_index PaSS_can_pass(PaSS_degree,PaSS_index);
 PaSS_index PaSS_free_pass(PaSS_degree,PaSS_index,PaSS_index);
 PaSS_degree PaSS_find_patchCL(PaSS_degree,PaSS_degree,PaSS_index,int);
 PaSS_degree PaSS_find_patchL(PaSS_degree,PaSS_degree,PaSS_index,int);
 PaSS_degree PaSS_find_patchCR(PaSS_degree,PaSS_degree,PaSS_index,int);
 PaSS_degree PaSS_find_patchR(PaSS_degree,PaSS_degree,PaSS_index,int);
 int PaSS_get_dy(PaSS_index,PaSS_degree);
 int PaSS_get_x(PaSS_index);

Spur functions
 void Spur_stop_q();
 void Spur_stop_Q();
 void Spur_spin_GL(int th);
 void Spur_spin_LC(int th);
 void Spur_spin_FS(int th);
 void Spur_set_ang_vel(int angv);
 void Spur_set_ang_accel(int alpha);
 void Spur_servo();
 void Spur_servo_free();
 int Spur_near_ang_GL(int ang,int error);
 int Spur_near_ang_LC(int ang,int error);
 int Spur_near_ang_vel(int angv,int error);
 void Spur_line_GL(int x,int y,int th);
 void Spur_line_LC(int x,int y,int th);
 void Spur_line_FS(int x,int y,int th);

Yamabico Autonomous Mobile Robot Documentation 137

 void Spur_arc_c_GL(int x,int y,int r);
 void Spur_arc_c_LC(int x,int y,int r);
 void Spur_arc_c_FS(int x,int y,int r);
 void Spur_arc_t_GL(int x,int y,int th,int r);
 void Spur_arc_t_LC(int x,int y,int th,int r);
 void Spur_arc_t_FS(int x,int y,int th,int r);
 void Spur_stop_GL(int x,int y,int th);
 void Spur_stop_LC(int x,int y,int th);
 void Spur_stop_FS(int x,int y,int th);
 void Spur_adjust_pos_GL(int x,int y,int th);
 void Spur_adjust_pos_LC(int x,int y,int th);
 void Spur_adjust_pos_FS(int x,int y,int th);
 void Spur_set_LC_on_GL(int x,int y,int th);
 void Spur_set_LC_on_LC(int x,int y,int th);
 void Spur_set_GL_on_GL(int x,int y,int th);
 void Spur_set_pos_GL(int x,int y,int th);
 void Spur_set_pos_LC(int x,int y,int th);
 void Spur_set_vel(int vel);
 void Spur_set_accel(int acc);
 void Spur_get_pos_GL(int *x0,int *y0,int *th0);
 void Spur_get_pos_LC(int *x,int *y,int *th);
 void Spur_get_vel(int *vel,int *angv);
 int Spur_near_pos_GL(int xx,int yy,int r);
 int Spur_near_pos_LC(int xx,int yy,int r);
 int Spur_near_vel(int vel,int error);
 int Spur_over_line_GL(int xx,int yy,int th);
 int Spur_over_line_LC(int xx,int yy,int th);

 void Spur_line_GL_cm(int x,int y,int th);
 void Spur_line_LC_cm(int x,int y,int th);
 void Spur_line_FS_cm(int x,int y,int th);
 void Spur_arc_c_GL_cm(int x,int y,int r);
 void Spur_arc_c_LC_cm(int x,int y,int r);
 void Spur_arc_c_FS_cm(int x,int y,int r);
 void Spur_arc_t_GL_cm(int x,int y,int th,int r);
 void Spur_arc_t_LC_cm(int x,int y,int th,int r);
 void Spur_arc_t_FS_cm(int x,int y,int th,int r);
 void Spur_stop_GL_cm(int x,int y,int th);
 void Spur_stop_LC_cm(int x,int y,int th);
 void Spur_stop_FS_cm(int x,int y,int th);
 void Spur_adjust_pos_GL_cm(int x,int y,int th);
 void Spur_adjust_pos_LC_cm(int x,int y,int th);
 void Spur_adjust_pos_FS_cm(int x,int y,int th);
 void Spur_set_LC_on_GL_cm(int x,int y,int th);
 void Spur_set_LC_on_LC_cm(int x,int y,int th);
 void Spur_set_GL_on_GL_cm(int x,int y,int th);
 void Spur_set_pos_GL_cm(int x,int y,int th);
 void Spur_set_pos_LC_cm(int x,int y,int th);
 void Spur_set_vel_cm(int vel);
 void Spur_set_accel_cm(int acc);
 void Spur_get_pos_GL_cm(int *x,int *y,int *th);
 void Spur_get_pos_LC_cm(int *x,int *y,int *th);
 void Spur_get_vel_cm(int *vel,int *angv);
 int Spur_near_pos_GL_cm(int xx,int yy,int r);
 int Spur_near_pos_LC_cm(int xx,int yy,int r);
 int Spur_near_vel_cm(int vel,int error);
 int Spur_over_line_GL_cm(int xx,int yy,int th);
 int Spur_over_line_LC_cm(int xx,int yy,int th);

Voice functions
 void voice_init();
 void voice_set(int amp, int rate);
 void v_boadCHK(int boad);
 void sayd(int num);
 void sayx(int num);
 void says(int num);
 void sayw(char *str);
 void speakf(char *fmt, int ag1, int ag2, int ag3, int ag4,...,int ag9);
 void sayp(char *str);
 void say_flush(int thre);
 int say_ended(int rest);

Yamabico Autonomous Mobile Robot Documentation 138

Timer functions
 void set_timer(int count);
 void timer_wait();
 int readSRTKEI();
 int compSRTKEI(int t0,int time);

Yamabico Autonomous Mobile Robot Documentation 139

3.2 Appendix B - AMROS Map file format

To be written.

3.3 Additional Information

3.3.1 Contacts

The authors of this document can be reached by e-mail at:

David Jung djung@cs.uow.edu.au

Ben Stanley ben@cs.uow.edu.au

Please contact us if you have any comments, find errors or have suggestions on content.

Also, Prof. Shin’ichi Yuta of the Tsukuba laboratory and Dr. Alex Zelinsky of the

Wollongong laboratory may be contacted at:

Prof. Shin’ichi Yuta yuta@roboken.is.tsukuba.ac.jp

Dr. Alex Zelinsky alex@cs.uow.edu.au

3.3.2 World Wide Web (WWW)

The Wollongong laboratory home page has the URL:

http://terumi.cs.uow.edu.au/

The Tsukuba Roboken laboratory home page is:

http://roboken.is.tsukuba.ac.jp/

or

http://130.158.125.241/

Yamabico Autonomous Mobile Robot Documentation 140

3.4 Bibliography

[Yam95] Yamabico Hardware documentation folder. Intelligent Robotics Laboratory,

1995. Mostly a direct translation from the Japanese version maintained by the

Tsukuba Laboratory.

[Iida91] Iida, Shigeki and Yuta, Shin’ichi “Vehicle Command System and Trajectory

Control for Autonomous Mobile Robots”, IROS 91, Nov. 3-5 1991, Osaka,

Japan. IEEE Cat. No. 91TH0375-6.

[Iida91A] Iida, Shigeki and Yuta Shin’ichi “Control of Vehicle with Power Wheeled

Steerings Using Feedforward Dynamics Compensation”, Proceedings IECON

91, pp 2264.

[Naum93] Naumovski, Jim, “MAMROS - A Multiple Autonomous Mobile Robot

Simulator”, Masters of Computer Science Thesis, University of Wollongong.

[Ohno95] Ohno, Takayuki, Ohya, Akihisa and Yuta, Shin’ichi, “An Improved Sensory

Circuit of an Ultrasonic Range Finder for Mobile Robot’s Obstacle Detection”,

Proceedings of the 1995 National Conference of the Australian Robot Association,

Melbourne, 5-7 July. pp 178.

Yamabico Autonomous Mobile Robot Documentation 141

3.5 Document History

Date Author Comment

10/2/95 David Jung Created initial document, version 0.x

Documented Software Section

19/5/95 Ben Stanley Re-format to MS-Word 6.0 for Windows, added some parts

on hardware.

Ben Stanley Converted back to Word for the Mac.

27/6/95 David Jung Fixed formatting lost in conversion.

28/6/95 David Jung Documented more API calls.

10/7/95 Ben Stanley Split document into Hardware and Software files.

10/7/95 David Jung More format fixes. Filled out section on Software

Development.

11/7/95 David Jung Described directory structure. Added MAMROS section.

12/7/95 Ben Stanley Accidentally deleted software documentation!

13/7/95 David Jung Re-wrote section on Software development and Simulation.

14/7/95 David Jung Re-wrote and finished Spur API.

2/8/95 David Jung Added MOSRA Examples.

8/8/95 David Jung Added more Examples. Corrections.

26/8/95 David Jung Described MOSRA system calls.

28/8/95 David Jung Added section 2.4 Inter-module communication.

5/9/95 David Jung Added Spur examples/diagrams.

12/9/95 David Jung Documented ROMANCE console implementation, voice

API, and locomotion implementation.

13/9/95 David Jung Documented MOSRA interrupt API, cleaned up Hardware

section styles.

13/9/95 Ben Stanley Cleaned up and added to Hardware section.

14/9/95 Release 1.0

1/10/95 David Jung Added AMROS and Marvin implementation notes.

6/10/95 David Jung Converted to Word 6.0 and made master document, cleaned

up styles, headers, footers etc.

6/10/95 David Jung Filled out building ROM’s section.

7/10/95 David Jung Finished MOSRA & timer function implementation notes.

8/10/95 Release 1.1

10/5/96 David Jung Corrections to module API and sleep() , wakeup() .

2/7/96 David Jung Documented RADNET Networking.

6/7/96 David Jung Documented Threads, Semaphores and Whiskers API’s.

10/7/96 Release 1.5

