
Cut-free Single-pass Tableaux for

the Logic of Common Knowledge

Pietro Abate1, Rajeev Goré1, and Florian Widmann2

1 The Australian National University
Canberra ACT 0200, Australia

{Pietro.Abate|Rajeev.Gore}@anu.edu.au

2 The Australian National University and NICTA⋆

Canberra ACT 0200, Australia
Florian.Widmann@anu.edu.au

Abstract. We present a cut-free tableau calculus with histories and var-
iables for the EXPTIME-complete multi-modal logic of common know-
ledge (LCK). Our calculus constructs the tableau using only one pass, so
proof-search for testing theoremhood of ϕ does not exhibit the worst-case
EXPTIME-behaviour for all ϕ as in two-pass methods. Our calculus also
does not contain a “finitized ω-rule” so that it detects cyclic branches as
soon as they arise rather than by worst-case exponential branching with
respect to the size of ϕ. Moreover, by retaining the rooted-tree form from
traditional tableaux, our calculus becomes amenable to the vast array of
optimisation techniques which have proved essential for “practical” auto-
mated reasoning in very expressive description logics. Our calculus forms
the basis for developing a uniform framework for the family of all fix-point
logics of common knowledge. However, there is still no “free lunch” as,
in the worst case, our method exhibits 2EXPTIME-behaviour. A pro-
totype implementation can be found at twb.rsise.anu.edu.au which
allows users to test formulae via a simple graphical interface.

1 Introduction and Motivation

The logic of common knowledge LCK is a multi-modal logic where for a fi-
nite number of agents a1, . . . , an, the expressions [i]ϕ captures that “agent ai

knows ϕ”; [E]ϕ captures that “every agent knows ϕ”; and [C]ϕ captures that “ϕ
is common knowledge”. LCK is a fix-point logic since the equivalence [C]ϕ ↔
[E](ϕ∧ [C]ϕ) is valid, capturing the fact that the denotation of [C]ϕ is the great-
est fix-point of the recursive equation νX.([E](ϕ∧X)) [5]. The decision problem
for LCK is known to be EXPTIME-complete [9] and automated reasoning in
LCK is of fundamental importance in the area of intelligent agents.

⋆ NICTA is funded by the Australian Government’s Department of Communications,
Information Technology and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Centre of Excellence program.

The traditional decision procedure for LCK is a two-pass tableau method de-
rived from similar procedures for temporal logics [4, 8] which also have a fix-point
nature. Given a formula ϕ, the first pass builds a cyclic graph where each node
in the graph contains a subset of the Fisher-Ladner closure of ϕ. The second pass
then prunes nodes of the graph that contain obvious contradictions like {p,¬p},
and also prunes nodes that contain “eventualities” like 〈C〉ψ which remain “un-
fulfilled” because no path from the node contains a node that contains ψ. The
formula ϕ is unsatisfiable iff the root node is pruned. The disadvantage of such
two-pass methods is that the first pass builds a graph which is always of expo-
nential size relative to the size of the given formula ϕ. Thus, two-pass methods
always exhibit the worst-case EXPTIME behaviour.

Because of its fix-point nature, it should be possible to extend the optimal
resolution-based methods [3] and optimal automata-based [14] methods for fix-
point temporal logics to LCK. But we know of no actual resolution methods
or automata-based methods for LCK itself, although the resolution method of
Dixon and Fisher [6] comes close since it includes a fix-point modality [C]ϕ, but
does not seem to actually allow [C]ϕ as an object level connective.

There is a also a decision procedure for LCK using a cut-free Gentzen-style
sequent calculus [13]. Soundness, completeness and cut-elimination is proved
by first using a Gentzen-style calculus containing an ω-rule with an infinite
number of premises. Using the finite model property for LCK, the ω-rule is
then “finitized” to have a finite number k of premises, where k ≈ O(2|ϕ|) and |ϕ|
is the size of the given formula ϕ. Although the resulting calculus is cut-free, the
“finitized ω-rule” always has an exponential number of premises with respect to
the size of the given formula ϕ, even when this is not necessary.

Thus, we know of no decision procedure for LCK which does not exhibit the
worst-case exponential behaviour for all formulae.

Here we present a tableau-based decision procedure for LCK with the fol-
lowing properties: it is cut-free; the average-case behaviour is not necessarily
exponential in the size of the given formula; the tableau is a finite rooted tree
rather than a cyclic graph; the decision procedure requires only a single pass of
the tableau which can be done as it is created; there is potential for parallelisa-
tion where each branch is farmed out to a different processor; and the method
is amenable to the vast array of optimisations [11] which have led to “practical”
tableau-based decision procedures for very expressive description logics [10].

Our tableaux require standard extra devices like “histories” to detect cyclic
branches and slightly non-standard “variables” to pass information from children
to parents in the tableau. But the only extra operations are those of set member-
ship, set intersection, and the usual min/max operations on sets of integers.

The price we pay is that, in the worst-case, our tableaux require O(22|ϕ|

)-
time rather than O(2|ϕ|)-time relative to the size |ϕ| of the given formula ϕ. We
have implemented our procedure using the Tableau WorkBench (twb.rsise.
anu.edu.au), a system for rapid prototyping of tableau/sequent calculi [1].

2

2 Syntax, Semantics and Hintikka Structures

Definition 1. Let AP denote the set {p0, p1, p2, . . . } of propositional variables
and AG the finite set {0, 1, . . . , NAG} of agents. The set Fml of all formulae of
the logic LCK is inductively defined as follows:

1. AP ⊂ Fml ;
2. if ϕ and ψ are in Fml, then so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, [C]ϕ, and 〈C〉ϕ;
3. if ϕ is in Fml, then so are [a]ϕ and 〈a〉ϕ for every a ∈ AG.

Additionally, we define [E]ϕ :=
∧

a∈AG[a]ϕ and 〈E〉ϕ :=
∨

a∈AG〈a〉ϕ. A for-
mula of the form 〈a〉ϕ, [a]ϕ, or 〈C〉ϕ is called an 〈−〉-, [−]-, or 〈C〉-formula,
respectively. Let Fml〈C〉 denote the set of all 〈C〉-formulae.

Implication, equivalence, and ⊤ are not part of the core language but can be
defined as ϕ→ ψ := ¬ϕ ∨ ψ, ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ), and ⊤ := p0 ∨ ¬p0.

Definition 2. A transition frame is a pair (W,R) where W is a non-empty
set of worlds and R is a function that assigns to each agent a ∈ AG a binary
relation Ra over W . We define RAG :=

⋃

a∈AGRa.

Definition 3. Let (W,R) be a transition frame. A transition sequence σ in
(W,R) is a finite or infinite sequence of worlds in W with the following proper-
ties: if σ is an infinite sequence σ0, σ1, σ2, . . . , then σi RAG σi+1 for all i ∈ IN;
if σ is a finite sequence σ0, σ1, . . . , σn, then σi RAG σi+1 for all i < n and there
is no w ∈ W such that σn RAGw. A w-sequence σ in (W,R) is a transition se-
quence in (W,R) with σ0 = w. Let B(w) be the set of all w-sequences in (W,R)
(we assume that (W,R) is clear from the context).

Definition 4. A model M = (W,R,L) is a transition frame (W,R) and a la-
belling function L : W → 2AP which associates with each world w a set L(w) of
propositional variables true at world w.

Definition 5. Let M = (W,R,L) be a model. The satisfaction relation
 is
defined inductively as follows for each a ∈ AG:

M,w
 p iff p ∈ L(s), for p ∈ AP
M,w
 ¬ψ iff M,w 1 ψ

M,w
 ϕ ∧ ψ iff M,w
 ϕ & M,w
 ψ

M,w
 ϕ ∨ ψ iff M,w
 ϕ or M,w
 ψ

M,w
 [a]ϕ iff ∀v ∈W. wRa v ⇒ M, v
 ϕ

M,w
 〈a〉ϕ iff ∃v ∈W. wRa v & M, v
 ϕ

M,w
 [C]ϕ iff ∀σ ∈ B(w). ∀i ∈ IN>0. M, σi
 ϕ

M,w
 〈C〉ϕ iff ∃σ ∈ B(w). ∃i ∈ IN>0. M, σi
 ϕ .

Traditionally, the semantics of [C]ϕ is given with the help of iterations of the
formula [E]ϕ [7]. It is easy to show that both definitions are equivalent [2].

3

Table 1. Smullyan’s α− and β−notation to classify formulae

α α1 α2

ϕ ∧ ψ ϕ ψ

[C]ϕ [E]ϕ [E][C]ϕ

β β1 β2

ϕ ∨ ψ ϕ ψ

〈C〉ϕ 〈E〉ϕ 〈E〉〈C〉ϕ

Definition 6. A formula ϕ ∈ Fml is satisfiable iff there is a model M =
(W,R,L) and some w ∈ W such that M,w
 ϕ. A formula ϕ ∈ Fml is valid
iff ¬ϕ is not satisfiable.

Definition 7. A formula ϕ ∈ Fml is in negation normal form if the sym-
bol ¬ appears only immediately before propositional variables. For every for-
mula ϕ ∈ Fml, we can obtain a formula nnf(ϕ) in negation normal form by
pushing negations inward as far as possible (e.g. by using de Morgan’s laws)
such that ϕ↔ nnf(ϕ) is valid.

Proposition 8. In the notation of Table 1, the formulae of the form α↔ α1∧α2

and β ↔ β1 ∨ β2 are valid.

Definition 9. Let ϕ ∈ Fml be a formula in negation normal form. The clo-
sure cl(ϕ) of ϕ is the least set of formulae such that:

1. each subformula of ϕ, including ϕ itself, is in cl(ϕ);
2. if [C]ψ ∈ cl(ϕ), then [E]ψ ∈ cl(ϕ) and [E][C]ψ ∈ cl(ϕ);
3. if [E]ψ ∈ cl(ϕ), then [a]ψ ∈ cl(ϕ) for every a ∈ AG;
4. if 〈C〉ψ ∈ cl(ϕ), then 〈E〉ψ ∈ cl(ϕ) and 〈E〉〈C〉ψ ∈ cl(ϕ);
5. if 〈E〉ψ ∈ cl(ϕ), then 〈a〉ψ ∈ cl(ϕ) for every a ∈ AG.

Definition 10. A structure (W,R,L) [for ϕ ∈ Fml] is a transition frame (W,R)
and a labelling function L : W → 2Fml which associates with each world w ∈W

a set L(w) of formulae [and has ϕ ∈ L(v) for some world v ∈ W].

Definition 11. A pre-Hintikka structure H = (W,R,L) [for ϕ ∈ Fml] is a
structure [for ϕ] that satisfies the following conditions for every w ∈W where α
and β are formulae as defined in Table 1 and a ∈ AG:

H1 : ¬p ∈ L(w) and p ∈ AP ⇒ p 6∈ L(w) ;
H2 : α ∈ L(w) ⇒ α1 ∈ L(w) & α2 ∈ L(w) ;
H3 : β ∈ L(w) ⇒ β1 ∈ L(w) or β2 ∈ L(w) ;
H4 : [a]ϕ ∈ L(w) ⇒ ∀v ∈ W. wRa v ⇒ ϕ ∈ L(v) ;
H5 : 〈a〉ϕ ∈ L(w) ⇒ ∃v ∈W. wRa v & ϕ ∈ L(v) ;
H6 : [E]ϕ ∈ L(w) ⇒ ∀a ∈ AG. [a]ϕ ∈ L(w) ;
H7 : 〈E〉ϕ ∈ L(w) ⇒ ∃a ∈ AG. 〈a〉ϕ ∈ L(w) .

A Hintikka structure H = (W,R,L) [for ϕ ∈ Fml] is a pre-Hintikka structure
[for ϕ] that additionally satisfies the following conditions:

H8 : 〈C〉ϕ ∈ L(w) ⇒ ∃σ ∈ B(w). ∃i ∈ IN>0. ϕ ∈ L(σi) .

4

Proposition 12. A formula ϕ ∈ Fml in negation normal form is satisfiable iff
there exists a Hintikka structure for ϕ.

3 A One-pass Tableau Algorithm for LCK

A tableau algorithm is a systematic search for a model of a formulae φ. Its data
structures are single-rooted finite trees – called tableaux – where each node is
labelled with a set of formulae that is derived from the formula set of its parent
according to some given rules (unless it is the root, of course). The algorithm
starts with a single node that is labelled with the singleton set {φ} and in-
crementally expands the tableau by applying the rules mentioned before to its
leaves. The result of the tableau algorithm is a tableau where no more rules can
be applied. Such tableaux are called expanded. On any branch of the tableau, a
node t is an ancestor of a node s iff t lies above s on the unique path from the
root down to s.

An expanded tableau can be associated with a pre-Hintikka structure H

for φ, and φ is satisfiable if and only if H is a Hintikka structure for φ. To be able
to determine whether H is a Hintikka structure, the algorithm stores additional
information with each node of the tableau using histories and variables. A history
is a mechanism for collecting extra information during proof search and passing
it from parents to children. A variable is a mechanism to propagate information
from children to parents.

In the following, we restrict ourselves to the tableau algorithm for LCK.

Definition 13. A tableau node x is of the form (Γ :: HAg,HCr :: mrk, uev)
where:

Γ is a set of formulae;
HAg is a partial function from formulae to agents;
HCr is a list of the formula sets of some designated ancestors of x;
mrk is a boolean valued variable indicating whether the node is marked; and
uev is a partial function from formulae to IN>0.

The list HCr and the partial function HAg are histories, i.e. their values in a
node are determined by the parent node, whereas mrk and uev are variables, i.e.
their values in a node are determined by the children. In the following we call
tableau nodes just nodes when the meaning is clear.

We postpone the definition of a rule for a moment and proceed with the
definition of a tableau.

Definition 14. A tableau for a set Γ ⊆ Fml and a list of formula sets HCr is
a tree of tableau nodes with root (Γ :: HAg,HCr :: mrk, uev) where the children
of a node x are obtained by a single application of a rule to x (i.e. only one rule
can be applied to a node). A tableau is expanded if no rules can be applied to
any of its leaves.

Note that mrk and uev in the definition are not given but are part of the result
as they are determined by the children of the root.

5

Definition 15. The partial function uev⊥ : Fml ⇀ IN>0 is the constant func-
tion that is undefined for all formulae (i.e. uev⊥(ψ) = ⊥ for all ψ ∈ Fml).
Analogously, the partial function HAg⊥ : Fml ⇀ AG is undefined everywhere.

Note 16. In the following, we use Λ to denote a set containing only propositional
variables or their negations (i.e. ϕ ∈ Λ ⇒ ∃p ∈ AP.ϕ = p or ϕ = ¬p). To focus
on the “important” parts of the rule, we use “· · · ” for the “unimportant” parts
which are passed from node to node unchanged (e.g. (Γ :: · · · :: · · ·)).

3.1 The Rules

Terminal Rule.

(id)
(Γ :: · · · :: mrk, uev)

{p,¬p} ⊆ Γ for some p ∈ AP

with mrk := true and uev := uev⊥. The intuition is that the node is “closed”
so we pass this information up to the parent by putting mrk to true, and
putting uev as undefined for all formulae.

Linear (α) Rules.

(∧)
(ϕ ∧ ψ ; Γ :: · · · :: · · ·)

(ϕ ; ψ ; Γ :: · · · :: · · ·)

([E])
([E]ϕ ; Γ :: · · · :: · · ·)

([1]ϕ ; [2]ϕ ; . . . ; [NAG]ϕ ; Γ :: · · · :: · · ·)

([C])
([C]ϕ ; Γ :: · · · :: · · ·)

([E]ϕ ; [E][C]ϕ ; Γ :: · · · :: · · ·)

The ∧-rule is standard and the [E]-rule just unfolds the definition of [E]ϕ. The
[C]-rule capture the fix-point nature of the corresponding formulae according to
Prop. 8. These rules do not modify the histories or variables at all.

Universal Branching (β) Rules.

(∨)
(ϕ1 ∨ ϕ2 ; Γ :: · · · :: mrk, uev)

(ϕ1 ; Γ :: · · · :: mrk1, uev1) | (ϕ2 ; Γ :: · · · :: mrk2, uev2)

(〈E〉)
(〈E〉ϕ ; Γ :: HAg, · · · :: mrk, uev)

〈1〉ϕ ; Γ
:: HAg1, · · · :: mrk1, uev1

| · · · |
〈NAG〉ϕ ; Γ
:: HAgNAG

, · · · :: mrkNAG , uevNAG

(〈C〉)
(〈C〉ϕ ; Γ :: · · · :: mrk, uev)

(〈E〉ϕ ; Γ :: · · · :: mrk1, uev1) | (〈E〉〈C〉ϕ ; Γ :: · · · :: mrk2, uev2)

6

with:

HAgi(ψ) :=

{

i if ψ ∈ Fml〈C〉 & ψ = ϕ

HAg(ψ) otherwise

for i = 1, . . . , NAG in the 〈E〉-rule only;

n :=

{

NAG for the 〈E〉-rule
2 otherwise

mrk := mrk1 & . . . & mrkn

exclφ(f)(ψ) :=

{

⊥ if ψ = φ

f(ψ) otherwise

uev′
1 :=

{

excl〈C〉ϕ(uev1) for the 〈C〉-rule
uev1 otherwise

uev′
i := uevi for i = 2, . . . , n

min⊥{f1, . . . , fk}(ψ) :=







l if k > 0 & ∀i ∈ {1, . . . , k}. fi(ψ) 6= ⊥ &
l = min{f1(ψ), . . . , fk(ψ)}

⊥ otherwise

uev := min⊥{uev′
i | i ∈ {1, . . . , n} & mrki = false}

The ∨-rule is standard and the 〈E〉-rule just unfolds the definition of 〈E〉ϕ. The
〈C〉-rule captures the fix-point nature of the 〈C〉-formulae, according to Prop. 8.
The intuitions of the definitions of the histories and variables are:

HAgi: in the 〈E〉-rule, if the principal formula 〈E〉ϕ is 〈E〉〈C〉χ (i.e. we have ϕ ∈
Fml〈C〉), the value of ϕ in HAgi is set to the corresponding agent ai of the
child to indicate that this child is “tracking” 〈E〉〈C〉χ;

mrk: the value of the variable mrk is true if the node is “closed”, so the definition
of mrk just captures the “universal” nature of these rules whereby the parent
node is closed if all children are closed;

excl: the definition of exclφ(f)(ψ) just ensures that exclφ(f)(φ) is undefined;
uev′

1: the definition of uev′
1 ensures that its value is undefined for the principal

formulae of the 〈C〉-rule since the first child is charged with fulfilling 〈C〉ϕ;
the other uev′

i for i > 1 are just there to avoid a case distinction in the
definition of uev;

min⊥: the definition of min⊥ ensures that we take the minimum of all fi(ψ) only
when all functions are defined for ψ;

uev: we only consider the uev′
i of unmarked (i.e. unclosed) children. If all chil-

dren are “closed”, then the argument to min⊥ is the empty set with k = 0,
so uev is undefined everywhere. Otherwise, for a given formula ψ, we de-
fine uev(ψ) by first ensuring that uev′(ψ) is defined for every unclosed child,
which means that none of the children “fulfil” ψ, and then assigning uev(ψ)
to be their minimum value, which ensures that we keep the “highest” loop-
ing non-fulfilling path. In particular, if the first child is unmarked in the
〈C〉-rule, then the first child fulfils 〈C〉ϕ, so uev(〈C〉ϕ) is undefined for the
principal formula 〈C〉ϕ via the definition of uev′

i.

7

Existential Branching Rule.

(〈a〉)

〈a1〉ϕ1; . . . ; 〈an〉ϕn ; 〈an+1〉ϕn+1; . . . ; 〈an+m〉ϕn+m ;
[1]∆1; . . . ; [NAG]∆NAG ; Λ
:: HAg,HCr :: mrk, uev

ϕ1 ; ∆a1

:: HAg⊥,HCr1 :: mrk1, uev1
| · · · |

ϕn ; ∆an

:: HAg⊥,HCrn :: mrkn, uevn

where:

(1) {p,¬p} 6⊆ Λ

(2) n+m ≥ 0
(3) ∀i ∈ {1, . . . , n+m}. ai ∈ AG
(4) ∀i ∈ {1, . . . , n}. ∀j ∈ {1, . . . , len(HCr)}. {ϕi} ∪∆ai

6= HCr[j]
(5) ∀k ∈ {n+ 1, . . . , n+m}. ∃j ∈ {1, . . . , len(HCr)}. {ϕk} ∪∆ak

= HCr[j]

with:

HCri := HCr @ [{ϕi} ∪∆ai
] for i = 1, . . . , n

mrk :=
∨n

i=1 mrki or
∃i ∈ {1, . . . , n}. ∃ψ ∈ {ϕi} ∪∆ai

.⊥ 6= uevi(ψ) > len(HCr)

uevk(·) := j ∈ {1, . . . , len(HCr)} such that {ϕk} ∪∆ak
= HCr[j]

for k = n+ 1, . . . , n+m

uev(ψ) :=







uevi(ψ) if ψ ∈ Fml〈C〉 & ψ = ϕi & HAg(ψ) = ai

for an i ∈ {1, . . . , n+m}
⊥ otherwise

Some intuitions are in order:

(1) The 〈a〉-rule is applicable if the parent node contains no α- or β-formulae
and Λ, which contains atoms and their negations only, contains no atomic
contradictions.

(2) Both n and m can be zero.
(4) If n > 0 then each 〈ai〉ϕi for 1 ≤ i ≤ n is not “blocked” by an ancestor, and

has a child containing ϕi;∆ai
, thereby generating the required 〈−〉-successor.

(5) If m > 0 then each 〈ak〉ϕk for n+ 1 ≤ k ≤ m is “blocked” from creating its
required child ϕk;∆ak

because some ancestor does the job.
HAgi: we reset the partial functions HAgi of the children so that they are un-

defined for all formulae since we no longer need to “track” them.
HCri: is just the HCr of the parent but with an extra entry to extend the

“history” of nodes on the path from the root down to the ith child.
mrk: captures the “existential” nature of this rule whereby the parent is marked

if some child is closed or if some child contains a formula whose uev is defined
and “loops” lower than the parent. Moreover, if n is zero, then mrk is set
to false to indicate that this branch is “open” (i.e. not “closed”).

8

uevk: for n+ 1 ≤ k ≤ n+m the kth child is blocked by a proxy child higher in
the branch. For every such k we set uevk to be the constant function which
maps every formula to the level of this proxy child. Note that this is just a
temporary function used to define uev as explained next.

uev(ψ): for a 〈C〉-formula ψ = 〈C〉χ, we check whether there is a principal
formula 〈ai〉ϕi so that ϕi = ψ and ai = HAg(ψ) indicating that ψ is being
tracked by the ith child and hence this ith child has the responsibility to
fulfil 〈C〉χ. If no such formulae exist, we put uev to be undefined. Otherwise,
we take uev of ψ from the corresponding child if 〈ai〉ϕi is “unblocked”, or set
it to be the level of the proxy child higher in the branch if it is “blocked”.
For all other formulae, put uev to be undefined. The intuition is that a
defined uev(ψ) tells us that there is a “loop” which starts at the parent
and eventually “loops” up to some blocking node higher up on the current
branch. The actual value of uev(ψ) tells us the level of the proxy because we
cannot distinguish whether this “loop” is “good” or “bad” until we backtrack
up to that level.

Note that the 〈a〉-rule and the id-rule are mutually exclusive since their side-
conditions cannot be simultaneously true.

3.2 Fullpaths, Virtual Successors and Termination of Proof Search

Definition 17. Let G = (W,R) be a directed graph (e.g. a tableau where R is
just the child-of relation between nodes). A [full]path π in G is a finite [infinite]
sequence x0, x1, x2, . . . of nodes in W such that xi Rxi+1 for all xi except the
last node if π is finite. An x-[full]path π in G is a [full]path in G that has x0 = x.

Definition 18. Let x = (Γ :: HAg,HCr :: mrk, uev) be a tableau node, ϕ a
formulae, and ∆ a set of formulae. We write ϕ ∈ x [∆ ⊆ x] to denote ϕ ∈ Γ [∆ ⊆
Γ]. The elements HAg, HCr, mrk, and uev of x are denoted by HAgx, HCrx,
mrkx, and uevx, respectively. The node x is marked iff mrkx is set to true.

Definition 19. Let x be an 〈a〉-node in a tableau T (i.e. an 〈a〉-rule was applied
to x). Then x is also called a state and the children of x are called pre-states.
Using the notation of the 〈a〉-rule, a 〈−〉-formula 〈ai〉ϕi ∈ x is blocked iff n+
1 ≤ i ≤ n+m. For every blocked 〈ai〉ϕi ∈ x there exists a unique pre-state y on
the path from the root of T to x such that {ϕi} ∪∆ai

equals the set of formulae
of y. We call y the virtual successor of 〈ai〉ϕi. For every not blocked 〈ai〉ϕi

of x, the successor of 〈ai〉ϕi is the ith child of the 〈a〉-rule.

Note that a state is just another term for an 〈a〉-node, whereas a pre-state can
be any type of node (it may even be a state).

Proposition 20 (Termination). Let φ ∈ Fml be a formula in negation normal
form. Any tableau T for a node ({φ} :: · · · :: · · ·) is a finite tree, hence the
procedure that builds a tableau always terminates.

9

Proof. It is obvious that T is a tree, that every node in T can contain only
formulae of the closure cl(φ), and that cl(φ) is finite. Hence, there are only a finite
number of different sets that can be assigned to the nodes, in particular the pre-
states. As the 〈a〉-rule guarantees that all pre-states on a path possess different
sets of formulae, there can only be a finite number of pre-states on a path.
Furthermore, from any pre-state, there are only a finite number of consecutive
nodes on a path until we reach a state. As every state in a path is followed by a
pre-state and there are only a finite number of pre-states, all paths in T must be
finite. This, the obvious fact that every node in T has finite degree, and König’s
lemma complete the proof. ⊓⊔

3.3 Soundness

Let φ ∈ Fml be a formula in negation normal form and T an expanded tableau
with root r = ({φ} :: HAg⊥, [] :: mrk, uev): that is, the initial formula set is {φ},
the initial HAg is undefined everywhere, and the initial HCr is the empty list.

Theorem 21. If r is not marked then there exists a Hintikka structure for φ.

Proof. By construction, T is a finite tree. Let Tp (“p” for pruned) be the sub-
graph that consists of all nodes x having the following property: there is a path
of unmarked nodes from r to x inclusive. The edges of Tp are exactly the edges
of T that connect two nodes in Tp. Clearly, Tp is also a finite tree with root r.
Intuitively, Tp is the result of pruning all subtrees of T that have a marked root.

As id-nodes are marked by construction, all leaves of Tp must be states
where all 〈−〉-formulae (if any) are blocked. Hence every 〈−〉-formula 〈a〉ϕ of
every leaf x has a virtual successor, which lies on the path from r to x. We
extend Tp to a finite cyclic tree Tl (“l” for looping) by doing the following for
every leaf x: for every 〈−〉-formula 〈a〉ϕ ∈ x, we add the edge (x, y) where y is
the virtual successor of 〈a〉ϕ. These new edges are called backward edges.

Following Ben-Ari [4], the finite cyclic tree Tl is then “unwound” to a finite
cyclic tree Tu as described next. The nodes of Tu are instances of nodes of Tl. We
denote the nodes of Tu by x′, x′′, . . . when they are instances of x ∈ Tl. Let r′

be the root of Tu. We define Tu inductively by applying the following procedure
to every node in Tu exactly once (starting with the only possibility r′).
Notation: Following Ben-Ari [4], we call a node x ∈ Tl an alternative node iff it
is a β-node that still has more than one unmarked child. To keep things simple,
we assume in the rest of this proof that we have only two agents. This allows us
to treat all β-rules equally. It should be obvious that the following procedure can
easily be extended to 〈E〉-nodes with higher degrees (i.e. with NAG > 2 agents).
If π is a path and x is a node that appears exactly once in π, then π(x) denotes
the suffix path of π starting at x.

Let x′ be a node in Tu that has not been processed yet and π be the path
from r′ down to x′ (including r′ but excluding x′). If we stipulate that every node
in Tu appears at most once in π, then π is unique. If there is an x′′ on π (i.e. x′′

is another instance of x) such that every alternative node y ∈ Tl which has an

10

instance y′ on π(x′′) has at least two instances on π(x′′), then we identify x′

with x′′ by removing x′ and redirecting all edges incident on x′ to x′′. Otherwise
we distinguish whether or not x ∈ Tl is an alternative node.

If x ∈ Tl is not an alternative node, then for every child xi ∈ Tl of x, create
the ith child of x′ in Tu as the new node instance x′i. If x ∈ Tl is an alternative
node, let x1 ∈ Tl and x2 ∈ Tl be the children of x and let k be the number of
instances of x on π (remember that π excludes x′). If k = 0 then create the new
node x′1 as the (only) child of x′ in Tu (the choice to insert an instance of x1 is
arbitrary). If k > 0 then let x′′ be the k − 1’st instance of x on π. If x′′1 (x′′2) is
the child of x′′ then create the new node x′2 (x′1) as the (only) child of x′ in Tu:
that is, we alternate choices [4].

Since there are only a finite number of alternative nodes in Tl, it is not too
hard to see that we only insert a finite number of nodes in Tu. In particular, all
β-nodes in Tu have exactly one child, and every fullpath πu in Tu canonically
yields a fullpath πl in Tl with the following property: if an alternative node x ∈ Tl

occurs infinitely often on πl, then both children of x occur infinitely often in πl

too. We call πl the projection of πu.
Finally, following Ben-Ari [4], the cyclic tree Tu is used to generate a structure

H = (W,R,L) as described next. Let W be the set of all states of Tu. For
every a ∈ AG and every s, t ∈ W , let sRa t iff s contains a 〈−〉-formula 〈a〉ψ
and there exists a path x0 = s, x1, . . . , xk+1 = t in Tu such that x1 is the
(possibly virtual) successor of 〈a〉ψ and each xi, 1 ≤ i ≤ k is an α- or a β-node.
Note that sRa t and sRb t is possible for a 6= b, because a pre-state might be
the virtual successor of more than one 〈−〉-formula in s.

If we consider the root of Tu as a pre-state for a moment, it is not hard
to see that for every state s of Tu there exists a unique pre-state x such that
there is a (unique) path τ of the form x0 = x, x1, . . . , xk+1 = s in Tu where
each xi, 0 ≤ i ≤ k is an α- or a β-node. We set L(s) to be the union of all
formulae of all nodes on τ . Intuitively, we form L(s) by adding back all the
principal formulae of the α- and β-rules which were applied to x to obtain s.

It is not too hard to check that H is a pre-Hintikka structure for φ. Moreover,
it is an easy consequence from Lemma 22 that H is even a Hintikka structure
for φ. This concludes our proof. ⊓⊔

Lemma 22. Let 〈C〉ϕ ∈ y ∈ Tu. Then there exists a y-fullpath π0 in Tu with
the following property: there exists a node x0 ∈ π0 such that ϕ ∈ x0 and there
exists a state s0 ∈ π0 which appears strictly before x0 in π0.

Proof. We inductively construct an y-(full)path π0. Note that y is not a state as
it contains 〈C〉ϕ. Also remember that states are the only nodes in Tu that offer
us a choice.
Step 1: We start at y and follow the (unique) path in Tu until we reach the first
state s. At some point in between, we pass the β-node z that deals with 〈C〉ϕ.
According to the construction of Tu, the (only) child of z is either a left β-child z1
where 〈C〉ϕ is deconstructed into 〈E〉ϕ, or a right β-child z2 where 〈C〉ϕ is built-
up into 〈E〉〈C〉ϕ. In the first case, since z1 contains 〈E〉ϕ, it is easy to see that s

11

must contain a 〈−〉-formula 〈a〉ϕ for some a ∈ AG. Hence, we can choose the
(possibly virtual) successor xs of 〈a〉ϕ as the successor of s in π0. As xs contains ϕ
by construction, let x0 := xs and s0 := s and we are done. In the second case
where z2 contains 〈E〉〈C〉ϕ, we choose the successor of s in π0 as described next.

Since 〈E〉〈C〉ϕ ∈ z2, we must pass at least one β-node dealing with 〈E〉〈C〉ϕ
between z and s on the path π0. The last such node guarantees that there is
a 〈−〉-formula 〈aj〉ϕj in s such that 〈C〉ϕ = ϕj and HAgs(〈C〉ϕ) = aj by the
definition of the 〈E〉-rule. We take the (possibly virtual) successor xs of 〈aj〉ϕj

as the successor of s on π0. This means that uevs(〈C〉ϕ) is either the “level” of xs

if xs is a virtual successor, or we have uevs(〈C〉ϕ) = uevxs
(〈C〉ϕ) otherwise.

As xs contains 〈C〉ϕ by construction, we repeat Step 1 for xs and keep
on repeating Step 1 as long as we end up at a node containing 〈C〉ϕ. There
are two possibilities: either we stop eventually because we find a left β-child
that deconstructed 〈C〉ϕ into 〈E〉ϕ, or we get a fullpath π0 with the following
properties: (†) every pre-state on π0 contains 〈C〉ϕ and every state s on π0 has
a pre-state xs as successor on π0 such that uevs(〈C〉ϕ) is either the “level”
of xs if xs is a virtual successor (of the corresponding 〈−〉-formula in s), or we
have uevs(〈C〉ϕ) = uevxs

(〈C〉ϕ) otherwise. In the first possibility, we set x0

and s0 as described above and we are done; in the second possibility, let s0 be
the first state that appears on π0 (i.e. there is no other state appearing strictly
before s0 on π0). There are two further possibilities: if some node on π0 that
appears after s0 contains ϕ, we set x0 to be that node and are obviously done;
otherwise we derive a contradiction as shown next.

Let the fullpath π be the projection of π0 in Tl where the first nodes up to
the first occurrence of s0 inclusive have been removed. By assumption, none of
the nodes on π contains ϕ. Furthermore, π inherits the properties (†) of π0 that
we have stated above.

For a node x ∈ Tl, let πr
x denote the unique path from the root r to x in Tl

that does not use backward edges (i.e. πr
x is also a path in the original tree T).

It is not too hard to see that HCrx contains the formula sets of all pre-states
on πr

x in the correct order. As the formula sets are different for different pre-
states in πr

x by construction of the tableau, we can essentially view HCrx as a
list of pre-states on πr

x.
Due to the construction of Tl, the fullpath π must use infinitely many back-

ward edges. Hence, at least one of the finitely many pre-states in Tl must appear
infinitely often on π. Let xh ∈ Tl be such a pre-state but such that no pre-state
on πr

xh
that is different from xh appears infinitely often on π. Intuitively, xh is the

“highest” state that appears infinitely often, and its existence is guaranteed by
the fact that πr

x is finite for every x ∈ Tl by construction. Let h0 := len(HCrxh
)

denote the length of HCrxh
. From what we have said above, it follows that h0

equals the number of pre-states on πr
xh

.
We now consider the subtree T0 of Tp rooted at xh (i.e. we ignore the back-

ward edges) and show the following claim:

Claim: for every node x ∈ T0 that appears infinitely often on π, there exists a
number kx ≥ h0 such that uevx(〈C〉ϕ) = kx.

12

In particular, this yields uevxh
(〈C〉ϕ) ≥ h0; but this and the fact that h0 =

len(HCrxh
) means that the parent s of xh, which is a state with len(HCrs) =

h0−1, would have been marked by the second clause in the evaluation of mrk in
the 〈a〉-rule. Hence, we have derived a contradiction to the fact that xh is in Tl.
The proof of the claim proceeds by structural induction on T0 as shown next.

Proof of claim: Let x be a leaf of T0 that appears infinitely often on π.
Then x is a state where all 〈−〉-formulae are blocked and it contains at least
one 〈−〉-formula. Furthermore, let x1 be an immediate successor of x on π that
appears infinitely often, too. To be able to use the notation of the 〈a〉-rule, we
assume that x1 is the virtual successor of the 〈−〉-formula 〈ak〉ϕk ∈ x such
that 〈C〉ϕ = ϕk, HAgx(〈C〉ϕ) = ak, and hence, uevx(〈C〉ϕ) = uevk(·). The
existence of 〈ak〉ϕk is guaranteed by the construction of π0 – and hence π – at
the beginning of this proof.

By construction both xh and x1 are on πr
x. Because of the properties of xh,

the node x1 is either equal to xh or appears after xh on πr
x. Remembering our

connection between HCrx and πr
x, the application of the 〈a〉-rule on x gives us the

constant function uevk(·) = h′ ≥ h0; but this implies uevx(〈C〉ϕ) = uevk(·) ≥
h0, which is exactly our claim.

If x is an α-node in T0 that appears infinitely often on π, its child appears
infinitely often on π also. As uevx is obtained from the child unmodified, the
claim follows directly from the induction hypothesis.

Let x be a β-node in T0 that appears infinitely often on π. We know from the
construction of Tp that every child of x which is not marked appears infinitely
often in π since π is the projection of π0 in Tu. Hence we can apply the induction
hypothesis to all unmarked children of x. If x does not deconstruct 〈C〉ϕ, our
claim follows by looking at the β-rule. If x does deconstruct 〈C〉ϕ, we additionally
have to use the fact that the first child of x in T must be marked (i.e. it is not
in Tl), because we would have stopped constructing π0 in the first part of the
proof otherwise. This is needed to ensure that 〈C〉ϕ is defined in uevx.

If x is an 〈a〉-node (i.e. a state) that appears infinitely often on π, it must
have a child x1 in Tl that appears infinitely often on π, too. To be able to use
the notation of the 〈a〉-rule, we assume that x1 is the (possibly virtual) successor
of the 〈−〉-formula 〈ak〉ϕk ∈ x such that 〈C〉ϕ = ϕk, HAgx(〈C〉ϕ) = ak, and
hence uevx(〈C〉ϕ) = uevk(〈C〉ϕ). The existence of 〈ak〉ϕk is guaranteed by the
construction of π0 – and hence π – at the beginning of this proof.

The edge between x and x1 can either be a forward edge (i.e. an edge that
is already present in T) or a backward edge. In the first case, x1 is also in T0.
Hence, we can apply the induction hypothesis for x1 to obtain uevx1(〈C〉ϕ) ≥ h0.
As uevx1 = uevk in our notation of the 〈a〉-rule, this implies uevx(〈C〉ϕ) =
uevx1(〈C〉ϕ) ≥ h0. In the second case we have already proven the claim in the
“leaf case”. This concludes the proof. ⊓⊔

13

3.4 Completeness

Let φ ∈ Fml be a formula in negation normal form and T an expanded tableau
with root r = ({φ} :: HAg⊥, [] :: mrk, uev): that is, the initial formula set is {φ},
the initial HAg is undefined everywhere, and the initial HCr is the empty list.

Theorem 23. For every marked node x = (Γ :: · · · :: · · ·) in T , the formula
∧

ϕ∈Γ ϕ is not satisfiable. In particular, if r is marked, then φ is not satisfiable.

Proof. We use structural induction on T .
If a leaf x ∈ T is marked, it must be an id-node as a state with no children

is always unmarked. Hence, our theorem follows from the fact that {p,¬p} ⊆ x

for some p ∈ AP.
If x is a marked α-node, then its child is marked as well so we can apply the

induction hypothesis and the claim follows from the definition of [E] or the fact
that – in the sense of Table 1 – the formulae of the form α↔ α1 ∧ α2 are valid
(Prop. 8).

If x is a marked β-node, then both children are marked as well so we can
apply the induction hypothesis and the claim follows from the definition of 〈E〉
or the fact that – in the sense of Table 1 – the formulae of the form β ↔ β1 ∨β2

are valid (Prop. 8).
If x is a marked 〈a〉-node (i.e. a marked state), then it has at least one child

and there are two possibilities, for why it has been marked by the 〈a〉-rule:

(1) Some child x0 of x is marked;
(2) Some unmarked child x0 of x contains a 〈C〉ϕ such that uevx0(〈C〉ϕ) > h :=

len(HCrx);

In the rest of the proof, let Γy denote the set of formulae of the node y. We
say that a finite set of formulae Γ is satisfiable iff

∧

ϕ∈Γ ϕ is satisfiable. The
induction hypothesis can be written as:

IH: for every node y in the subtree rooted at x0 including x0, if y is marked
then Γy is not satisfiable.

Case 1. In the first case, it is not too hard to see that the satisfiability of Γx

implies the satisfiability of Γx0 since the 〈a〉-rule preserves satisfiability from
parent to child. By the induction hypothesis, we know that Γx0 is not satisfiable,
hence Γx cannot be satisfiable.

Case 2. In the second case, we assume that Γx0 is satisfiable and derive a con-
tradiction. We can then prove the claim as in the first case.

So, for a contradiction, let M = (W,R,L) be a model and w ∈ W a world
such that (M,w) satisfies Γx0 : that is, M,w
 χ for all χ ∈ Γx0 . In particular,
we have M,w
 〈C〉ϕ by assumption since 〈C〉ϕ ∈ x0. By definition of the
semantics of 〈C〉ϕ, there must be a w-sequence σ of the form w = σ0, σ1, . . . and
some k ∈ IN>0 such that M,σk
 ϕ. It is easy to see that we also have M,σj

〈C〉ϕ for all j < k.

14

Notation: For every i ∈ IN, let bi ∈ AG be an agent such that σiRbi
σi+1.

Our plan is to show M,σj 1 〈E〉ϕ for all j < k; in particular, we then
have M,σk−1 1 〈E〉ϕ which contradicts our assumption that M,σk
 ϕ since
it implies that M,σk−1
 [E]¬ϕ and hence that M,σk
 ¬ϕ. We do this by
“walking down” the tableau T starting from x0 and maintaining the following
invariant for every node y which we meet:

Invariant: The node y is unmarked, the set of formulae Γy is satisfied by (M,w),
and uevy(〈C〉ϕ) > h.

If x0 is an α-node, then its child y must be unmarked. Therefore, it must have
uevy(〈C〉ϕ) > h. Since all formulae of the form α ↔ α1 ∧ α2 are valid and due
to the definition of [E], we also have that Γy is satisfied by (M,w) since Γx0 is
satisfied by assumption.

If x0 is a β-node, then it must have more than one child, and any marked
child is unsatisfiable since it falls under the induction hypothesis. Moreover, due
to the definition of 〈E〉, the fact that all formulae of the form β ↔ β1 ∨ β2

are valid, and the fact that x0 is satisfied by (M,w), there must exist at least
one unmarked child y of x0 such that Γy is satisfied by (M,w). Due to the
construction of uevx0 , this child has uevy(〈C〉ϕ) > h.

We can repeat these steps until we arrive at a 〈C〉-node y which obeys the
invariant and deals with 〈C〉ϕ. Note that this must happen before we encounter
a state on our “walk”. We also know that the first child y1 of y must be marked,
as otherwise, uevy(〈C〉ϕ) would be undefined by the 〈C〉-rule. Hence, we have
already shown that the second child y2 must obey the invariant. We also know
by construction that y2 contains 〈E〉〈C〉ϕ. By the induction hypothesis, Γy1 is
unsatisfiable. But as Γy1 \ {〈E〉ϕ} is a subset of Γy, which is satisfied by (M,w),
this entails M,w 1 〈E〉ϕ and thus M,σ0 1 〈E〉ϕ since σ0 = w.

If 0 = k−1, we are done. Otherwise, we continue to “walk down” by repeating
the steps as above from y2 which contains 〈E〉〈C〉ϕ.

On our way down, we must pass at least one 〈E〉-node z that obeys the
invariant and deals with 〈E〉〈C〉ϕ before we reach a state. Of course, we could
use the “normal” arguments for β-nodes to obtain some child of z that obeys
the invariant, but for these nodes, we can even choose a specific child as shown
next.

Let z0 be the child of z that corresponds to the agent b0. In the following, we
show that z0 obeys the invariant: as 0 < k−1 (see above), we have M,σ1
 〈C〉ϕ
by our assumptions about σ. Together with σ0 Rb0 σ1 and σ0 = w, this gives
us M,w
 〈b0〉〈C〉ϕ. Moreover, we have Γz0 \ {〈b0〉〈C〉ϕ} ⊆ Γz. Hence, Γz0

is satisfied by (M,w) as Γz is satisfied by (M,w). In particular, the node z0
is unmarked because otherwise, it would be unsatisfiable due to the induction
hypothesis. A glance at the definition of uev in the 〈E〉-rule reveals that this
implies uevz0(〈C〉ϕ) > h, or else uevz(〈C〉ϕ) would be undefined. We conclude
that z0 indeed obeys the invariant and we can select it as successor of z on our
“walk down”.

15

Our choice of z0 and the definitions of the rules imply that – additionally
to the invariant – the following properties hold for every node y that appears
after z on our “walk”: the node y contains 〈b0〉〈C〉ϕ and has HAgy(〈C〉ϕ) = b0.

Eventually, we arrive at an unmarked state s whose formulae Γs are satisfied
by (M,w) and has uevs(〈C〉ϕ) > h. As we must have passed at least one node
that deals with 〈E〉〈C〉ϕ, we also have 〈b0〉〈C〉ϕ ∈ s and HAgs(〈C〉ϕ) = b0.

Next, we use the information about the state s to proveM,σ1 1 〈E〉ϕ. Let x1

be the (possibly virtual) successor of 〈b0〉〈C〉ϕ ∈ s. If x1 is a virtual successor, a
glance at the definition of uevs in the 〈a〉-rule reveals that x1 must lie on the path
from x0 to s (it could be x0) as we have uevs(〈C〉ϕ) > h and h := len(HCrx)
and HAgs(〈C〉ϕ) = b0. Thus, x1 is unmarked and has uevx1(〈C〉ϕ) > h as we
have established these facts for all nodes on our way from x0 down to s. If x1 is a
child of s (i.e. not a virtual successor), it follows directly from the facts about s
and the definition of the 〈a〉-rule that x1 is unmarked and has uevx1(〈C〉ϕ) > h.
Another crucial point is that x1 – whether a virtual successor or not – is still in
the subtree rooted at x0 in which the induction hypothesis holds.

What is more, we can deduce that (M,σ1) satisfies Γx1 as follows. By def-
inition of the 〈a〉-rule, Γx1 is of the form 〈C〉ϕ ∪ ∆ where [b0]∆ ⊆ Γs. We
know M,σ1
 〈C〉ϕ by assumption (remember 0 < k − 1). We also know
that (M,σ0) in particular satisfies [b0]∆ since we have established that Γs ⊇
[b0]∆ is satisfied by (M,w) and σ0 = w. As σ1 is a b0-successor world of σ0

(i.e. σ0Rb0 σ1), this implies that (M,σ1) satisfies ∆, and hence Γx1 .
Putting together the properties of (M,σ1) and x1 reveals that we are in

exactly the same position as for (M,σ0) and x0. Hence, we can “walk down” T
from x1, repeat all the arguments to maintain the invariant and derive M,σ1 1

〈E〉ϕ.
Iterating the procedure (rather than setting up an inner induction) gives us

thatM,σ2 1 〈E〉ϕ, . . . ,M, σk−1 1 〈E〉ϕ, which concludes the proof of the second
case. That is, by “walking down” the path from x0, we have shown that no M
can contain a world w and a w-sequence containing a world σk that satisfies ϕ.

⊓⊔

3.5 A Fully Worked Example

As an example, consider the statement “(p ∨ ¬p) is common knowledge” which
can be written as the formula [C](p∨¬p). This formula is obviously valid; hence
its negation 〈C〉(p ∧ ¬p) is not satisfiable and the root of an expanded tableau
for 〈C〉(p ∧ ¬p) should be marked.

Figure 1 and Figure 2 show such a tableau where the root node is node (1)
in Figure 1 and where Figure 2 shows the sub-tableau rooted at node (4). Each
node is classified as a ρ-node if rule ρ is applied to that node in the tableau.
The edges labelled with 〈1〉 and 〈2〉 go from states to pre-states. Dotted frames
indicate that the sub-tableaux at these nodes are not shown because they are
very similar to sub-tableaux of other nodes: that is node (5a) and (4′) are treated
the same way as node (1a) and (4), respectively. We have also omitted the
history HAg as it does not play a role in this simple example. Dots “· · · ” indicate

16

that the corresponding values are not important for this example. The partial
function uev maps 〈C〉(p ∧ ¬p) to 1 and is undefined otherwise as explained
below.

The marking of the nodes in Figure 1 with true is fairly straightforward,
starting from the leaves (2b) and (2c) and flowing upwards, except for node (4).
Our procedure constructs the tableau shown in Figure 2 for node (4). The leaf (6)
is an 〈a〉-node, but it is “blocked” from creating the desired successor contain-
ing {〈C〉(p ∧ ¬p)} because there is a j such that HCr6[j] = {〈C〉(p ∧ ¬p)}:
namely j = 1. Thus the 〈a〉-rule computes uev(〈C〉(p∧¬p)) = 1 as stated above
and also puts mrk := false. The leaf node (6’) behaves in exactly the same
way, so node (5b) does not change the value of uev in taking their minimum,
and also computes mrk = false ∨ false = false. Node (5a) has a dotted border
since it behaves exactly as does node (1a), meaning that the β1-child of node (5)
is “closed”. Since node (5b) is not “closed”, node (5) inherits its uev and mrk

values.

The crux of our procedure happens at node (4) which is an 〈a〉-node with
HCr4 = [] and hence len(HCr4) = 0. The 〈a〉-rule therefore finds a child node (5)
and a formula 〈C〉(p ∧ ¬p) in it, which jointly satisfy 1 = uev5(〈C〉(p ∧ ¬p)) >
len(HCr4) = 0. That is, node (4) “sees” a child that “loops lower”, meaning that
node (5) is the root of an “isolated” subtree which does not fulfil its eventual-
ity 〈C〉(p ∧ ¬p). Thus the 〈a〉-rule sets mrk4 = true, marking (4) as “closed”.

Returning to Figure 1, we find that the node (4’) behaves in exactly the
same way as does (4), which forces node (1b) to evaluate mrk1b = true. Since
node (1) now has two “closed” β-children, it also gets marked as “closed”.

3.6 The One-Pass Algorithm and its Complexity

Most tableau-based algorithms apply the rules in a particular order: namely,
apply all the α- and β-rules until none are applicable, and then apply the 〈a〉-
rule once. Of course, no rules are applied if the id-rule is applicable to close the
branch. We have designed the rules so that they naturally capture this strat-
egy, thereby giving a non-deterministic algorithm for constructing/traversing
the tableau by just applying any one of the applicable rules. By fixing an arbi-
trary rule order and an arbitrary formula order, we can safely determinise this
algorithm.

The use of histories and variables gives rise to an algorithm that constructs
and traverses a tableau (deterministically) at the same time. On its way down
the tableau, it constructs the set of formulae and the histories of a node by using
information from the parent node; and on its way up, it synthesises the variables
of a node according to the values of its children. Both steps are described by the
rule that is applied to the node.

As soon as the algorithm has left a node on its way up, there is no need to
keep the node in memory, it can safely be reclaimed as all important information
has been passed up by the variables. Hence, the algorithm requires just one pass.
Moreover, at any time, it only has to keep the current branch of the tableau in

17

(1a) 〈E〉-node
〈E〉(p ∧ ¬p)

[] :: true,uev⊥

β1

��
β2

$$I
I

I
I

I
I

I
I

I
I

(1) 〈C〉-node
〈C〉(p ∧ ¬p)

[] :: true,uev⊥

β1oo
β2 //

(1b) 〈E〉-node
〈E〉〈C〉(p ∧ ¬p)
[] :: true,uev⊥

β1

��

β2

{{

(2) 〈a〉-node
〈1〉(p ∧ ¬p)

[] :: true,uev⊥

〈1〉

��

(3) 〈a〉-node
〈2〉(p ∧ ¬p)

[] :: true,uev⊥

〈2〉

��

(4) 〈a〉-node
〈1〉〈C〉(p ∧ ¬p)
[] :: true, · · ·

(2a) ∧-node
p ∧ ¬p

· · · :: true,uev⊥

α

��

(3a) ∧-node
p ∧ ¬p

· · · :: true,uev⊥

α

��

(4’) 〈a〉-node
〈2〉〈C〉(p ∧ ¬p)
[] :: true, · · ·

(2b) id-node
p ; ¬p

· · · :: true,uev⊥

(3b) id-node
p ; ¬p

· · · :: true,uev⊥

Fig. 1. An example: a tableau for 〈C〉(p ∧ ¬p)

(4) 〈a〉-node
〈1〉〈C〉(p ∧ ¬p)
[] :: true, · · ·

〈1〉
//

(5) 〈C〉-node
〈C〉(p ∧ ¬p)

[{〈C〉(p ∧ ¬p)}] :: false, uev

β1

vvmmmmmmmmmmmmm

β2

��

(5a) 〈E〉-node
〈E〉(p ∧ ¬p)

[{〈C〉(p ∧ ¬p)}] :: true,uev⊥

(5b) 〈E〉-node
〈E〉〈C〉(p ∧ ¬p)

[{〈C〉(p ∧ ¬p)}] :: false, uev

β1

vvmmmmmmmmmmmmm

β2

��

(6) 〈a〉-node
〈1〉〈C〉(p ∧ ¬p)

[{〈C〉(p ∧ ¬p)}] :: false, uev

〈1〉

��

(6’) 〈a〉-node
〈2〉〈C〉(p ∧ ¬p)

[{〈C〉(p ∧ ¬p)}] :: false, uev

〈2〉

��

blocked by node (5) blocked by node (5)

Fig. 2. An example: a tableau for 〈C〉(p ∧ ¬p) (continued)

18

memory. The final result of the decision procedure can be obtained by looking
at the variable mrk of the root which is the last node that has its variables set.

Of course, it is not always necessary to build the entire tableau. If, for exam-
ple, the first child of an 〈a〉-rule is marked, the algorithm can mark the parent
without having to look at the other children. Dually, if one child of a β-node is
unmarked and has uev⊥ then there is no need to explore the other children since
we can safely say that the parent is unmarked and has uev⊥. Other optimiza-
tions are possible and some of them are incorporated in our implementation in
the Tableau Work Bench (http://twb.rsise.anu.edu.au/twbdemo), a generic
tableau engine designed for rapid prototyping of (propositional) tableau cal-
culi [1]. The high-level code of the prover for LCK – for two agents – is also
visible there using the special input language designed for the TWB.

For analysing the complexity of our algorithm, we define the size |ϕ| of a
formula ϕ ∈ Fml as the number of symbols in ϕ where we regard 〈a〉, [E], etc.
as single symbols. To avoid indices, we set k := NAG.

Let φ ∈ Fml be a formula in negation normal form of size n := |φ| and T a
tableau for the node ({φ} :: HAg⊥, [] :: · · ·).

It is easy to see that |cl(φ)| ∈ O(kn) and |ϕ| ∈ O(n) for all ϕ ∈ cl(φ). Hence,
the number of different sets of formulae that can be assigned to the nodes of a
tableau is in 2O(kn). This means that the number of pre-states – and thus states
– on a path in T is in 2O(kn) too.

Proposition 24. Let π be a path in T and let s1 and s2 be two (consecutive)
states on π such that there is no state on π between s1 and s2. Then the number
of nodes on π between s1 and s2 is in O(n2).

Proof. We can ignore the id-rule because it can only be the last node of a path.
Furthermore, we regard the special case first where the pre-state following s1
in π contains only one formula ϕ.

The ∧ and ∨-rules generate only proper subformulae of their principal for-
mula; the [E] and 〈E〉-rules generate only 〈−〉- and [−]-formulae which we can
ignore because they are only considered by the 〈a〉-rule; the [C] and 〈C〉-rules
generate formulae that can only be processed by the [E] or 〈E〉-rules. Therefore,
there can only be O(n) many such nodes in a row as the size of all formulae
in cl(φ) is in O(n). Thus, we have – in the special case – that the number of
nodes on π between s1 and s2 is in O(n).

It is easy to see that the number of formulae in cl(φ) which are not 〈−〉- or
[−]-formulae is in O(n). Hence, it is easy to see that the number of nodes on π

between s1 and s2 is in O(n) ·O(n) ⊆ O(n2). ⊓⊔

As the number of states on a path is in 2O(kn), and the number of nodes between
two consecutive states is in O(n2), we have that the total number of nodes on a
path is in 2O(kn) ·O(n2) ⊆ 2O(kn).

The maximum degree in the tableau is clearly bounded by k and cl(φ) and
thus in O(m) where m := max(k, n). Hence, the total number of nodes in T is

in O(m)2
O(n)

⊆ 22O(m)

. This follows from n ≤ m and the fact that, for r, s ∈ IN>0:

(rm)2
sm

= 2log2((rm)2
sn

) = 22sn·log2(rm) ≤ 22(s+r)m

.

19

The time that the algorithm spends in a node is clearly dominated by the test
whether the formula set of a pre-state is already in HCr. Due to the restriction on
the length of a path, this can obviously be done in 2O(n). Hence, our algorithm

has a total running time in 2O(n) · 22O(m)

⊆ 22O(m)

.

Theorem 25. For a fixed NAG, the tableau algorithm for LCK outlined in this
paper runs in double exponential deterministic time and needs exponential space.

Proof. We have already shown that the algorithms runs in double exponential
deterministic time. As our algorithm is a one-pass algorithm that does a traversal
on the tree and stores information only in the nodes, the space that is needed
depends on the length of a path; but we already know that every path in the
tableau has at most exponential length, which concludes the proof. ⊓⊔

References

1. P. Abate. The Tableau Workbench: a framework for building automated tableau-
based theorem provers. PhD thesis, The Australian National University, 2006.

2. L. Alberucci. The Modal µ-Calculus and the Logic of Common Knowledge. PhD
thesis, Universität Bern, 2002.

3. A. Basukoski and A. Bolotov. A clausal resolution method for branching time logic
ECTL+. Annals of Mathematics and Artificial Intelligence, 46(3):235–263, 2006.

4. M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. In
Proceedings of Principles of Programming Languages, 1981.

5. J. Bradfield and C. Stirling. Modal logics and mu-calculi. Handbook of Process
Algebra, pages 293–332. Elsevier Science Publishers, Amsterdam, 2001.

6. C. Dixon and M. Fisher. Resolution-based proof for multi-modal temporal logics
of knowledge. In Proc. TIME 2000, pages 69-78.

7. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
The MIT Press, Cambridge, Massachusetts, 1995.

8. G. Gough. Decision procedures for temporal logics. Master’s thesis, Dept. of
Computer Science, University of Manchester, England, 1984.

9. J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal
logics of knowledge and belief. In Artificial Intelligence 54, pages 319–379, 1992.

10. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In Proc. LPAR’99, LNCS 1705:161–180. Springer, 1999.

11. I. Horrocks and P. F. Patel-Schneider. Optimising description logic subsumption.
Journal of Logic and Computation, 9(3):267–293, 1999.

12. U. Hustadt and B. Konev. TRP++: A temporal resolution prover. In Collegium

Logicum, pages 65–79. Kurt Gödel Society, 2004.
13. G. Jäger, M. Kretz, and T. Studer. Cut-free common knowledge. To appear http:

//www.iam.unibe.ch/til/publications/to appear/jaeger kretz studer 06

14. M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of
programs. Journal of Computer Systems and Science, 1986.

20

