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Abstract. We present a sound and complete tableau calculus for aglagg of
extended regular grammar logics which contains usefultepis logics for rea-
soning about agent beliefs. Our calculus is cut-free andh@analytic superfor-
mula property so it gives a decision procedure. Applyingnsbglobal caching to
the calculus, we obtain the first optimal (EXPTime) tableacision procedure for
3% eg We demonstrate the usefulness@k eglogics and our tableau calculus
using the wise men puzzle and its modified version, whichireguaxiom(5) for
single agents.

1 Introduction

Context-free grammar logics are normal multimodal logikaracterised by “inclusion
axioms” of the form[t] D [s1]...[s]$, where[t] and [s] are modalities indexed by
memberg ands from some fixed setr 0 D of indices. Such logics are useful for mod-
elling interactions between agents and groups of agents \vitkces froma/ 0D de-
note agents/groups of agents. The general satisfiabilitylem of context-free grammar
logics is undecidable [3], so researchers paid attentism t regular grammar logics,
which are context-free grammar logics whose set of the spmeding grammar rules
t — s1...5 forms either a left/right linear grammar or is specified bytéirautomata
[3-5, 10]. Note that left/right linear grammars can be tfamaed in polynomial time to
an equivalent finite automaton that is at most polynomialitgér, and checking whether
a context-free grammar generates a regular language icidadée (see, e.g., [13]). To
avoid ambiguity, we refer to regular grammar logics spetibg finite automata a®g-
ular modal logics

Regular grammar logics cannot be directly used for reagpaiout belief due to the
lack of axiomg D) and(5). Itis commonly assumed that modal logics of belief invagiab
utilise the following:

Belief Consistency: Sincé)¢ = —[t]—¢, axiom(D) : [t]¢ D (t)¢ states that agents can-
not believe bothp and—¢.

* NICTA is funded by the Australian Government’s Dept of Conmigations, Information Tech-
nology and the Arts and the Australian Research CounciltjindBacking Australia’s Ability
and the ICT Centre of Excellence program.



Positive Introspection: Axiord) : [t]d D [t][t]d states that agents are aware of what they
believe.

Negative Introspection: Axiont5) : (t)¢ D [t](t)¢, or alternatively—[t]y D [t]-[t]y,
states that agents are aware of what they do not believe.

In [18], Nguyen studied a multimodal logikD4ly45, for reasoning about belief and
common belief of agents in multi-agent systems. He adoptexires (D) and(4) for all
agents and groups of agents, and axidin [t]¢ D [s|$ for any (proper) super-group
of agent (group}, but adopted axionf5) : (s)¢ D [g](s)$ only for single agents. If t
is a non-singleton group argis a single agent belonging tothen the contra-positive
of [t]d D [g¢ gives us(s)d D (t)¢. If axiom (5) were present for the proper graughen
(s)¢ would give usft](t)d. But (s)$ D [t](t)$ states that the belief of a single agent
leads to a belief among the whole super-grbapoutd. Conversely, the contra-positive
(t)t]d D [s]¢ states that if the group jointly does not believe that it dnes jointly
believed, then single agerstbelieves), which seems equally absurd. The lokiD4l¢5a
formalises the most important properties of belief and camipelief but does not give
an exact formulation of common belief. It is similar to thellkanown modal logic with
common belieKK D455 [12] and the modal logic with mutual belief [1] but it lackseth
induction rule for common belief.

In this paper, we study the clagx egof regular modal logics of agent beliefahich
are regular modal logics extended with axiofBy and(5), where axiom(5) is adopted
only for modal indices with the “terminal KD45-conditionsdor the case of single
agents irKD4ly5; (see Section 2.2 for a formal definition). We extend our taibleal-
culus for regular modal logics [10] to a tableau calculus#ay eglogics. Our calculus
for 8% egis sound, complete, cut-free and has the analytic supetiarproperty. Ap-
plying sound global caching [10, 10] to it, we obtain the faptimal (EXPTime) tableau
decision procedure fas 8 eg

The rest of this paper is structured as follows. In the endhisfdection, we present
motivating examples and mention related works. In SectjaveXormally specifys % eg
logics, introduce automaton-modal operators, and giveidiefias for tableau calculi. In
Section 3, we present our tableau calculus4da eg prove its soundness, and present
“closed” tableaux for the motivating examples. In Sectigrvé prove completeness of
our tableau calculus. Due to the lack of space, an EXPTimé&idacprocedure with
global caching fom % egis left in the Appendix. Section 5 concludes this work.

1.1 Motivating Examples

We will study two motivating examples about reasoning atimliefs and common be-
liefs of agents using our tableau calculusfa eg The first one is the wise men puzzle,
which is a famous benchmark introduced by McCarthy [17] fomAd has been previ-
ously studied in a considerable number of works (see [18done of them). The puzzle
can be stated as follows (cf. [15]). A king wishes to know whigethis three advisors
(a, b, c) are as wise as they claim to be. Three chairs are lined ufaaiig the same
direction, with one behind the other. The wise men are icgtdito sit down in the order
a, b, c. Each of the men can see the backs of the men sitting befame (#g.c can see
a andb). The king informs the wise men that he has three cards, alhiach are either
black or white, at least one of which is white. He places ond,dace up, behind each



of the three wise men, explaining that each wise man mustrdate the colour of his
own card. Each wise man must announce the colour of his ovehasasoon as he knows
what it is. All know that this will happen. The room is siletitien, after a while, wise
mana says “My card is white!”.

Forx € {a,b,c}, let[x]¢ stand for “the wise mar believes inp” and let px stand for
“the card ofx is white”. Letg denote the groupa, b, c} and let|g] informally stand for a
certain operator of “common belief” of the grogpLet Lymp be thes ® eglogic which
extendX, (n=4 andw 0D = {g,a,b,c}) with the following axioms:

X D (x)¢ and [x|¢p D [X|[X|¢ forxe {g,ab,c},
[0l D [X¢ and (xX)¢ D [X|(x)¢ forx e {a,b,c}.
The wise men puzzle can be formalised as follows:

— If y sits behindk then eithex’s card is white oy knows thatx's card is not white:

¢1=[0l(paV[b]-pa)  d2=[d](PaV[c]-pPa) &3 =1[g](PoV [C]—Pb)

— At least one of the men has a white card:

ba=1[9](PaV PbV Pc)

— Each ofb andc does not know the colour of his own card. In particular, eddhe
men considers that it is possible that his own card is notevhit

s = [g](b)—~pb 6 = [9](Cc)~Pe

— The question is whethex believes that his card is whitéa{p,). That is, whether
(d1A...Abs) D [a]pa is Lwumgvalid. This is equivalent to whether the formula set
Fwmp={d1,..., 6, (8)—pPa} iS Lumpunsatisfiable.

As we will see, the wise men puzzle is solvable in a regular ahémbic without
axioms(D) and(5). More specifically] wmp is unsatisfiable in the logity,,,, obtained
from Lwmp by discarding axioméD) and(5). So, we introduce a modified version of the
wise men puzzle for which axiorts) is necessafy “The wise men sit in the orde,

b, c, all facing the same direction. Each of the men can see thesldhe men sitting
before them (e.gc can seea andb). The king informs the wise men that he has three
cards, all of which are either black or white, at least one bicl is white. He places
one card, face up, behind each of the three wise men, expdgihat as soon dsor ¢
knows that his own card is white or that the card of the manrukrs white he must
inform the man in the front about that, and as soom &snows who has a white card
he must announce that. The question is wheth&ill know who has a white card.” To
formulate the new puzzle, we discard the formupgeanddg and add to the formula set
the following formulae:

05 =[g]([c]pc O [blpe)  d5=[gl([blpp D [alpy) &7 = [g]([b]pc O [a]pe)
The new formula set is thus; = {¢1,92, 93,94, 05, b5, 9% }. The question is whether
A1 D [a]pa Vv [@]pp V [@]pc is Lwmgrvalid, or equivalently, whethet\ymp = A1 U
{{(a)—Pa, (@)= Pp, (&) —Pc} is Lump-unsatisfiable.

3 It can be shown that the formula s&tmp given below isLymprsatisfiable.



1.2 Related Works

In the previous work [10], we gave an analytic tableau calsdibr regular modal logics
and presented an EXPTime decision procedure for such lofiesclasss ® egstudied
in this paper extends the class of regular modal logics wsfwl epistemic logics for
reasoning about agent beliefs.

In [5], Demri and de Nivelle gave a translation of the sattsfity problem for gram-
mar logics with converse into the two-variable guardedritagt GF of first-order logic,
and showed that the general satisfiability problem for reggiammar logics with con-
verse is in EXPTime. Adding axiofD) to regular grammar logics with converse results
in a class larger tham ® eg We cannot compare efficiency of the two approaches (for
B R eg) yet, but our tableau decision procedurefax egis certainly worth studying and
experimenting. (Demri and de Nivelle wroth is too early to state that the transfor-
mation from regular grammar logics with converse into Géfefined in this paper can
be used to mechanize efficiently such source logics with eepfor GF?...” [5, page
293].)

Other related works are works on regular grammar logics][3ydrks on PDL-like
logics (e.g. [11, 5, 2]), and works on epistemic logics (EL8, 1]). However, the first two
groups often lack axiom@) and(5) and are not devoted to reasoning about epistemic
states of agents, while the third group often adopts onlyesgpecific axioms but not the
wide range of inclusion axioms. The class of “incestual imddal logics” studied by
Baldoni in [3] is large and contains the clag® eg but the general satisfiability problem
for it is undecidable.

2 Preliminaries

2.1 Definitions for Multimodal Logics

Our modal language is built from two disjoint se4s:0 D is a finite set of modal indices
and? ® 0 is a set of primitive propositions. We upeandq for elements ofr % 02 and
uset ands for elements ofwr 0 ». Formulae of our primitive language are recursively
defined using the BNF grammar below:

¢u=pl=0[dAd|OVI OO [[tlo](t)o.

A Kripke frameis a tuple(W, T, (Rt )icas 00 )» WhereW is a nonempty set of possible
worlds, T € W is the current world, and eadR is a binary relation oW, called the
accessibility relation foft] and(t). If R(w,u) holds then we say that the wondsees
worlduvia R.

A Kripke models a tuple(W, T, (R )icar 0 s ), Where(W, T, (Rt)icar 00 ) i @ Kripke
frame andh is a function mapping worlds to sets of primitive proposisoForw € W,
the set of primitive propositions “true” at is h(w).

A model graphis a tuple(W, T, (R )icar 00 - H), Where(W, T, (R)icar 00 ) 1S @ Kripke
frame andH is a function mapping worlds to formula sets. We sometimeattmodel
graphs as models with the rangetbfestricted tar g 0 7.

Given a Kripke modeM = (W, T, (Ri)icar 00 - ) @nd a worldw € W, thesatisfaction
relation = is defined as usual for the classical connectives with twaetauses for the
modalities as below:



M,wEtjle  iff  YweW. R(wv)impliesM,v = ¢
M,wk ()¢ iff IveW. R(wv)andM,v = ¢.

We say that is satisfied at w in Mf M, w |= ¢. We say thaM satisfieshp and callM
amodel ofp if M, T E ¢.

If we consider only Kripke models, with no restrictions By we obtain a normal
multimodal logic with a standard Hilbert-style axiomatiea K.

Note: We now assume that, if not stated otherwise, formulae anegation normal
form, whereD is translated away and occurs only directly before primitive proposi-
tions. It is well-known that every formuli has a logically equivalent formull which
is in negation normal form. We treat a finite set of formuladhes conjunction of its
formulae.

2.2 A Classs g egof Regular Modal Logics of Agent Beliefs
A B eglogic is a normal multimodal logit extendingK,, with:

Inclusion Axioms: a sefA(L) of inclusion axiomst]¢ D [s1]...[s]$ with k > 0 whose
corresponding grammar rulés— s; ... ¢ jointly form a grammaRG(L) specified
by finite automatdAs)g. 4, ,» SUch thaits for s€ ¢ 0D recognises the set of words
derivable froms using the rules oRG(L);*

Seriality Axioms: a set (L) C # oD of D-indices with corresponding seriality ax-
ioms|t]¢ D (t)¢ foreveryt € D1 (L);

Terminal KD45-Condition: a set 71(L) C »1(L) of E-indices with corresponding ax-
ioms|[t]d O [t][t]¢ € IA(L) and(t)$ D [t](t)¢ for everyt € £ 1(L) and the condition
that IA(L) contains no other inclusion axioms of the fofthp O [sq]...[s]$ for
tezr(L).

Recall that dinite automaton As a tuple(Z,Q,l,6,F), where:X is the alphabet
(for our case2 = ¢ 0D); Q is a finite set of stated; C Q is the set of initial states;
0 C Q x Z x Q is the transition relation; ang C Q is the set of accepting states. A
run of A on a words; ... S is a finite sequence of stateg,qs, .. .,0k such thatgg € |
and d(qi—1,S,0i) holds for every 1< i < k. It is anaccepting runif g € F. We say
that A acceptsvord w if there exists an accepting run fon w. The set of all words
accepted/recognised Byis £ (A).

Given two binary relation®; andR; overW, their relational compositioR; o R, =
{(%,y) | Iy e W.R1(x,y) & Rz(y,2)} is also a binary relation ovéy.

TheL-frame restrictiondor a 8 ® eglogic L are the following restrictions:

— Rg0...0Rg CRif s1...5¢is accepted by, wheret € & 0D and(As)scqs 0 are
the finite automata specifyirf@G(L);

— R is serial (i.eYu3wR, (u,w)) for each D-index € D 1 (L);

— R is transitive and euclidean (i.e/u,v,wR(u,v) A R(v,w) — R(u,w) and
Vu,v,WR (u,v) AR (u,w) — R (w,v)) for each E-index € £ 1(L).

41f k=0 then the right hand side 6f— s, ..., stands for the empty worgl



We do not require axiontD) for every modal index ins % eg logics, but we al-
low axiom (5) only for modal indices which satisfy the terminal KD45-cdtiwh. This
restriction can be justified from practical consideratistaged folkK D45, in Introduc-
tion. It can be shown that the multimodal logics of beKed1 4, KDI4s, KD4lg, KD4lg54
studied by Nguyen in [20, 18], as well &D45,,, belong tos % eg

A Kripke model is arl.-modelif its frame satisfies all-frame restrictions. A formula
¢ is L-satisfiableif there exists ah.-model satisfying it. A formula is L-valid if every
L-model satisfies it.

It can be shown that fora® eglogicL, a formulad is L-valid iff it is derivable using
the axiomatisation of. (See [20] for the correspondence theory.)

2.3 Some Properties of8 ® egLogics

Let L be aB % eglogic. Fort € £ (L), logic L contains the axiont)$ D [t](t)$, which
can also be written a&)[t]y D [t]. This latter axiom is stronger than the inclusion ax-
iom [t]{t]y D [ty (because € £1(L) C 1 (L) and[t][t]y D (t)[t]y is L-valid), which
corresponds to the grammar rute— t. Let eRGL) be the grammar extendirigG(L)
with rulestt —t fort € £7(L). We calleRGL) the extended grammaof L. Syntacti-
cally,eRGL) is not a regular grammar.

Let L be a3 eglogic and let(A s 0p b€ the automata specifying the regu-
lar grammaRG(L). An s-path from stateyp to stateqy, in A is a sequence of transi-
tions (qo,s,d1), (41,5,02)s -+, (On-2,S,0n-1), (Gn-1,5,0n) in &, with n > 1. For each
tea oo\ £1(L), let Al be the automaton obtained frof by the following modi-
fication: for everys € £1(L) and everys-path from stateyp to stateq, in A, add the
transition(do, s,gn) to A\. We call the resulting automa#y, fort € a1 0o \ £1(L), the
automata specifying eRG). It should be clear that, fare a#r oo \ £1(L), the word
s1...5 is accepted by iff s;...s¢ is derivable front using the grammaRGQL) since
the modification simply addss*transitivity” for everyse £ 1(L). ThuseRGL) can be
treated as a regular grammar for starting symbols outsidg.).

The logic Lwmp specified in Introduction is a % eg logic with D1 (Lwmp) =
{g9,a,b,c}, £1(Lwmp) = {a,b,c}, and the extended grammaRQLwmp) specified by
the following finite automaton:

Ag= (v 0D,{0,1},{0},{(0,x,0),(0,x,1) [ xe a0 0D },{1})

Lemma 1. Let L be aB % eg logic and tc 4 0o \ £1(L). Then, for every »> 1, and
every $,9,---,5 € M 0D, if the word g...s, is derivable from t using the grammar
eRGL) then the formuldt]d O [s1]. .. [sn]¢ is L-valid.

Proof. By induction on the length of the derivation &f... s fromt usingeRGL).

For a seQ of states of automatof, the pair(A, Q) can be treated as the automaton
obtained fromA by replacing the set of initial states I6y. Thus, 2 (A, Q) denotes the
language generated %, Q).

Let A= (M 0D,Qa,la,0n,Fa) and lete denote the empty word. F& C Qa, t €
M 0D, and awordx over alphabets 0D, defineda(Q,t) = {d |39€ Q.(q,t,q’) € da},

gA(Qas) = Q! gA(Qaat) = 6A(6~A(Qaa)at) ForAS = <M ODaQSa'Saé& FS>’ we Writeés

(resp.ds) instead o®a (resp.da,).



Lemma 2. Let L be aB® eg logic, (A )icar o0\ (L) the automata specifying eRG,

seMoD\EI(L), As= (M 0D,Qs,ls,0s,Fs), and Q= és(ls,al)u...ugs(ls,ah) for
some wordsiy, ... ay over alphabetv 0. Then:

1. Ift—s...sis arule of RGL) thenz (As, gs(Q,t)) C L(As, gs(Q,sl...sk)).
2. Ifte £1(L) thenL (As,8s(Q,t)) = L (As,85(Q,tt)).

3. If £(As,Q) C £(As, Q") thens (As,05(Q',1)) C £ (As, gs(Q”,t)).

Proof. Sinceds(Q/ UQ”,t)N: 0s(Q,t) Uds(Q”,t) for all @,Q" C Qs, for assertions 1
and 2, we can assun@@= ds(ls,a) for some worda.

1: SupposeB is a word over alphabetr 0, and € £ (As, gs(Q,t)). Thusatp €
L(Ag). Ift — s1...5¢is a rule ofRG(L), it follows thatas; ... B € £ (As). Hence

B L(As,05(Q;81..-%))-
2: Sincet — tt is a rule ofRG(L) for all t € £1(L), the first assertion gives one half

of the inclusion. It therefore suffices to show thgiAs, ds(Q,tt)) C £ (As, 0s(Q,t)).
Let B € £(As,0s(Q,tt)). Thusattp € £ (As). Becausé € £ (L), we havett — t as
a grammar rule oRQGL). It follows thatt is derivable frontt using the grammar
eRQ@L). SinceAs recognises the language derivable fremsingeRGL), it follows
thatatP € £ (As). Hencef € £ (As,8(Q,t)).

3: The third assertion clearly holds.

2.4 Automaton-Modal Formulae

If Ais a finite automatorQ is a subset of the states Af and¢ is a formula in the prim-
itive language then we cdl, Q] a (universalputomaton-modal operat@nd[A, Q|¢ a
formula in the extended language. Similar construction®gweeviously used in [11, 14,
10, 21].

Given a Kripke modelM = (W,T,(R)icar00-h) and wp € W, define that
M,wo = [A,Ql¢ if M,wi = ¢ for every pathwoRs,ws ... Wk_1Rs Wi with k > 0 and
0a(Q,s1...%) NFa # 0 (i.e. s1...& is accepted byA when starting from some state
from Q).

From now on, by dormulawe mean either a formula in the primitive language (as
defined in Section 2.1) or an automaton-modal formula. N &n automaton-modal
operator can appear only at the beginning of a formula.

2.5 Definitions for Tableau Calculi

As in our previous works on tableau calculi [9, 16], our talie trace their roots to
Hintikka via [19]. Atableau ruleo consists of a numeratdt above the line and a (finite)
list of denominatord, Dy, ..., Dy (below the line) separated by vertical bars. The
numerator is a finite formula set, and so is each denominA®mwe shall see later,
each rule is read downwards as “if the numeratdr-gatisfiable, then so is one of the
denominators”. The numerator of each tableau rule contaiesor more distinguished
formulae called th@rincipal formulae A tableau calculug L for a logicL is a finite set

of tableau rules.



(1) X;Fj;_ﬁp (N) X0AY (V) Xovy

TONAY; 0, X;oVu; b [ X0V
0 w5 fteni(L) (5) % iftezr(L)
(aut) % ift¢ (L) (add) % if QMR 0
(trans) w ftger(l)  (transs) ——dDC OO e e

trans(X,t); ¢ trans(X,t);Y; [t]Y; ¢

Table 1. Tableau Rules fos £ egLogics

A cL-tableau for a finite seX of formulae is a tree with rooX whose nodes carry
finite formula sets obtained from their parent nodes by ingiting a tableau rule with
the proviso that if a child carries a seZ andZ has already appeared on the branch from
the root tos thensis anend node

Let A be a set of tableau rules. We say tNais obtainable from X by applications
of rules fromA if there exists a tableau fof which uses only rules from and has a
node that carrie¥. A node to which no rule is applicable is also an end-node.akbin
in a tableau i<losedif its end node carries only.. A tableau isclosedif every one of
its branches is closed. A tableawigenif it is not closed. A finite formula seX is cL-
consistentf every c L-tableau forX is open. If there is a closedL-tableau foiX thenX
is cL-inconsistent

A tableau calculugL is soundif for all finite formula setsX in the primitive lan-
guageX is L-satisfiable implieX is ¢ L-consistent. It isompletsf for all finite formula
setsX in the primitive languageX is ¢ L-consistent implieX is L-satisfiable. We say
that a ruleg of cL is sound w.r.tL if for every instance’ of o, if the numerator ob’ is
L-satisfiable then so is one of the denominators’ofAny calculuscL containing only
rules sound w.r.L_ is sound.

3 A Tableau Calculus for 8 ® egLogics

Fix a 3% eglogic L and let(Ac = (M 0D, Q. 1t,&,R))tear 00\z (1) PE the automata
specifyingeRGL). Recall that formulae are in negation normal form. We ¥s& to
denote formula sets, uggX to denote the sef[t]¢ | $ € X}, and useT to denote the
truth constant with the usual semantics. We wXt& for X UY, write X; ¢ for XU {¢},

and; y for {¢, y}.
The transfer oK through(t), denoted bytrans(X,t), is:

trans(X,t) = {[As, 3s(Q,1)]W | [As, QU € X }.

The tableau calculuslL is given in Table 1. The last two rulgsrans) and(trans,)
aretransitionalrules, while the remaining rules excedpt) arestaticrules. The intuition



of this sorting is that static rules keep us in the same wdflthe® Kripke model under
construction, while transitional rules take us to a new Keipuccessor world.

Note that we include the principal formula of the static sile their denominator3.
Thus, the numerator of any static rule is a subset of everyobrits denominators. A
setX is closedw.r.t. a tableau rule if applying that rule ¥ gives backX as one of the
denominators. We implicitly assume that a static rule idiaggo X only whenX is not
closed w.r.t. that rule and treat this as an (additionalga@mn for applying the rule.

A tableau calculug: has theanalytic superformulgroperty iff to every finite set
X we can assign a finite st which contains all formulae that may appear in any
tableau forX. We write Sf(¢) for the set of all subformulae df, andS f(X) for the set
Upex ST(d) U{L}. Our calculusL has the analytic superformula property, with

cL=STX)U{[A,Ql¢ | [t]¢ € SF(X) & QC Qt}-
Lemma 3. The tableau calculusL is sound.

Proof. We show thatcL contains only rules sound w.rit as follows. Suppose that
the numerator of the considered rule is satisfied at a warlth an L-modelM =
W, T, (R)tear 0m» ). We have to show that at least one of the denominators of tee ru
is alsoL-satisfiable. For the static rules, we show that some deratoniis satisfied at
w itself. For the transitional rule@rans) and (trans,), we show that its denominator is
satisfied at some world reachable frenvia R; in the samé_-model.

(1),(N),(V),(D),(5): These cases are obvious.

(aut): Suppose thaM,w = X;[t]¢. Let wo = w,wy, ..., Wk be worlds ofM such that
Rs (Wi—1,w;) holds for 1<i < kands; ...s is accepted by. By Lemma 1]t]y D
[s1]...[sq]w is L-valid. HenceM,w = ¢. Thus,M,w = [A, It]$.

(add): This case follows from the semantics of automaton-modatidae.

(trans): Suppose thatl,w = X; (t)¢. Then there exists somesuch thaR;(w,u) holds
andM,u = ¢. For eachAs, Q)Y € X, we haveM, w = [As, Q]y, and by the seman-
tics of automaton-modal formulae, it follows thdt u = [As, 0s(Q,t)]y. Hence, the
denominator is satisfied at

(transg): The proof for this case is similar to the proof for the casétefns), with an
additional justification thalt]y > [t][t]y is an axiom ofL whent € £ 1(L).

3.1 Examples

In this subsection, we present closed tableaux for the ftamets formalising the wise
men puzzle. Let be thes % eglogic Lwmp defined in Introduction. Recall that the fol-
lowing automatorhy specifieeeRGL):

Ag= (M 0D,{0,1},{0},{(0,x,0),(0,x,1) | xe M 0D },{1})

In Figure 3.1, we give a closedL-tableau for the formula sdtymp which was
specified in Introduction for formalising the wise men pezzin that tableau, for
1<i <6, ¢ is the formula as in Introductiony; is the subformula ofp; such

5 This allows an easier proof for soundness of global caching.



rwmp 6(3Ut)
M1;T2;(@)—pa (transs)
[3;—Ppa 2(add)
[3; ~Pa; Pa V [b]~pa; (D) —pp (V)

—Pa; Pa; I"3; —Pa; [0]—Pa; ( )ﬂpb (transg)
I'3;—Pa; [b]—pa; —pp 3(add)
L '3, —Pa; [b] = Pa; ~Pb; Pa V [C]—Pa; Pb V [¢]=Pb; (€)~Pc 2(V)

—Pa; Pa; | —Pb; Po; | T35 = Pa; [0]=Pa; = Po; [C] = Pa; [C] = Po; (C)—Pc (transs)
I 3;—Pa; ~Po; —Pc; [€]~Pa; [€]-Ppp (add)

1 1 I"3; ~Pa; = Pp; ~Pc; [C]—Pa; [ —~Po; PaV P V Pc 2(V)
-3 Pai Pa -3 7Poi Po <++37Pc; Pe
1 1 1
Ag; (@) Pa; ()~ Po; (@—pc 2(5)
Aq;A7; (@)= Pa; (&) —Po; < a)—pc; [a] (@) ~pp; [a](8) ~pc_(transs)
A3;—pa; (@) —Pp; (@) —Pc; - .- 3(add)

Ag; —Pa; ()~ Pp; (@ Pc; - - -3 PaV [D]—Pa; <b>ﬁpr[ aPpy; (b)—pc v [apc_3(res)
Ag; . ..; [b]—Pa; (b)=Py; (b)—pc (5)
Ag; ...; [b]~Pa; (b) ~Pp; (b)—pc; [b](b) =pc_(transs)
Az; = Pa; —Pp; (0)7Pc; ... 3(add)
Ag; —Pa; —Po; (0)—Pc; - -3 Pa V [C]—Pa; pr[C] —Po; (€)pc V [ pc3(res)
Agz;...; [~ Pa; [c]~Pp; (€) P _(transs)
Agz;...;—Pa; —Pp; ~Pc_(add)
Ag; ... 2 Pa; 7 Pp; 7Pc; PaV PV Pe 2(V)
-3 7Pa; Pa -+ 7Pbi Po -++37Pe; Pe
1 1 1

Fig. 1. ClosedcL-Tableaux for the Wise Men Puzzle

that ¢i = [gYi, 1 = {d1,...,96}, T2 = {[Ag,{O}W1,...,[Ag, {O}]We}, and 'z =
{[Ag, {0, 1}]W1,...,[Ag,{0,1}]Ps}. Since the tableau calculusL is sound, it follows
thatl"wmpis L-unsatisfiable.

For the modified version of the wise men puzzledlet.. ., ¢4, d5, b5, $% be the for-
mulae as in Introduction. In the negation normal form, weehhat:

05 = [g]((c)~pcV[olpc) 96 =[g]((D)~PoV[a]pn)  ¢7 =[g]({b)=pcV [a]pc)
For 1<i <7, lety; be the formula such that = [g]y; if 1 <i < 4, andd = [g]y;
if i €{56,7}. LetAy = {b1,02,93,04,5,95,07}, L2 = {[Ag, {O}]Wi | L <i <7}, and
Az ={[Ag,{0,1}]y; | 1 <i < 7}. Letd denote the negation normal form-e. Note that
the following rule is “derivable” using the rules ofL :

XioVy;o XYV o

(res) X;o Vo of X;WV o0,y

In Figure 3.1, we also give a closed_-tableau using the tableau ruless) for the
formula sethwmp= A1 U {(a)—pa, (8) =P, (&) ~pc}, Which was specified in Introduction
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for formalising the modified version of the wise men puzzlecs the tableau calculus
cL is sound, it follows thaf\wmpis L-unsatisfiable.

4 Completeness

4.1 Proving Completeness via Model Graphs

LetL be aB % eglogic. We prove completeness of our calculus via model gsdpltow-
ing [19,9, 15, 16, 10] by giving an algorithm that accepts adigL-consistent formula
setX in the primitive language and constructslamodel graph (defined below) fot
that satisfies each of its formulae at the appropriate world.

For a finite c L-consistent formula seX, a formula setY is called acL-saturation
of X if Y is a maximalc L-consistent set obtainable froxhby applications of the static
rules ofcL.

Lemma 4. Let X be a finitecL-consistent formula set and Y @L-saturation of X.
Then XCY C X% andY is closed w.rt. the static rules of.. Furthermore, there is
an effective procedure that, given a finit&-consistent formula set X, constructs some
cL-saturation of X.

Proof. Itis clear thaiX CY C X7, . Observe that if a static rule afL is applicable tor,
then one of the corresponding instances of the denominiatots-consistent. Sinc¥ is
acL-saturationy is closed w.r.t. the static rules ofL.

We construct & L-saturation o as follows: lety = X; while some static rule of L
is applicable t& and has a corresponding denominator instahwhich isc L-consistent
and strictly contain¥, setY = Z. At each iterationy C Z C X? |, so this process always
terminates. Clearly, the resulting &ts a cL-saturation oiX.

A model graph is arb-model graphif its frame is anL-frame. AnL-model graph
W, T, (Ri)tear 0m - H) IS saturatedf everyw € W satisfies:

if AP e H(w)then{¢,p} C H(w);

if & Ve H(w)thend € H(w) orp € H(w);

if [t]¢ € H(w) andR(w,u) holds thenp € H(u);

— if (t)¢ € H(w) then3u € W with R;(w,u) and¢ € H(u).

A saturated model graph @nsistentf no world containsL, and no world contains
{p,—p}. Our model graphs are merely a data structure, while Raatgisare required
to be saturated and consistent.

Lemmab. If M = (W, T, (R )icar 00, H) iS @ consistent saturated L-model graph, then
M satisfies all formulae of k) which are in the primitive language.

Proof. By proving¢ € H(w) impliesM,w |= ¢ via induction on the length df.
Given a finitec L-consistent seX in the primitive language, we construct a consistent

saturated.-model graptM = (W, T, (R )icar 00, H) such thatX C H(t), thereby giving
anL-model forX.

11



4.2 Constructing Model Graphs
GivenX, the compact forrmompact(X) of X is the least set such that:

— if ¢ € X and¢ is not of the form/A, Q|W thend € compact(X);
— if [A, QY € X andQq,...,Q are all the sets such thp, Qi € X for 1 <i <Kk,

then[A;,Q1U...UQy]W € compact(X).

Observe that the compact form does not affect the essence-tdbleaux. More specif-
ically, if applying a cL-tableau rule toX gives denominatoryy,..., Y, then apply-
ing that rule tocompact(X) gives denominator&y,...,Zx such thatcompact(Z;) =
compact(Y;) for 1 <i < k. In particular, “compacting” preservesL-consistency and
cL-inconsistency.

Fort € £1(L) and(t)¢ € X, define

transs (X, (1)) = trans(X,t) U{y, [t]Y | [t]p € X} U{d}.
Fort € £1(L), define

cores(X,t) = {[t]¢ | [t}p € X}U{{t)d | (t)p € X} U ~
{[As,Ql¢ | Ja, Q" .[As, Q] € X andQ = 35(Is,at) € Q'}.

As shown in the next lemmapres(X,t) can be treated as the subseotonsisting of
formulae that are preserved when travelling through ed§&g, ancluding edges forced
by the euclidean frame restriction.

Lemma 6. Let X be acL-saturation of some formula set and Y be b-saturation of
transs (X, (t)d) for some(t)d € X witht e £ 1(L). Thencores(X,t) C cores(Y,t).

Proof. Due to the static ruléb), it suffices to show that ifAs, Q| € cores(X,t) then
[As, QJE € cores(Y,t). Suppose thgfs, QIE € cores (X, t). Thus, there exist andQ’ such
thatQ = gs(ls, at) C Q and[As, Qo € X. By definition of the setrans,, there exists
[As,Q"]0 €Y such thatds(Q',t) € Q. It follows thatgs(ls, att) C Q. By Lemma 2,
ds(ls,at) = (ls, att), henceAs, QJE € cores (Y, t).

A cL-consistent seKX is cores(t)-saturatedif for every (t)¢ € X and everycL-
saturation of transs (X, (t)$) we havecores(Y,t) = cores(X,t).

Algorithm 1 given below constructs a consistent saturatedodel graph for a finite
cL-consistent seX. In this algorithm, for each e = 1(L): we find acores(t)-saturated
setU which is obtainable fronH (w) by applications of static' L-rules and ruldtrans,)
with the principal formula of the forndt)y; we then create successorsvolvia R to
satisfy (t)-formulae using-ores(U,t) as the content ofv. But we do this in two differ-
ent ways depending upon whetherhas anR/-predecessor at this iteration. The intu-
itions for this dichotomy are based on the following insifgfum [9, Fig. 13] and [9,
Pages 334-335]: the logkkD45 is sound and complete w.r.t. the class of finite frames
where each frame consists of a root which sees a possiblyyeptfinite strongly-
connected-component or cluster.

To prove correctness of Algorithm 1, we use a data structer@td bycoref to
storecores (U, t) in coref (w,t). Note thatcores is a function, whilecoref is a table. In the
algorithm, the worlds of the constructed model graph are&ketheither asinresolvedr
asresolved

12



Algorithm 1
Input: a finitec L-consistent seX of primitive language formulae.
Output: anL-model graptM = (W, T, (R )icqs 00, H) Of X.

1. LetW = {1} andR =0forallt € 4 0D.
LetY be acL-saturation oiX and letH (1) = compact(Y).
Mark T as unresolved.
2. While there are unresolved worlds, take one,wsagnd do:
(a) Forevery formuldt)¢ in H(w) witht ¢ £ 1(L):
i. LetU =trans(H(w),t)U{¢} be the result of applying rulgrans) to H(w),
letY be acL-saturation ofJ, and letZ = compact(Y).
ii. If JueW on the path from the root tev with H(u) = Z, then add the pair
(w,u) to K. Otherwise, add a new worldwith contentZ to W, mark it as
unresolved, and add the p&w,u) to R.
(b) Foreveryt € £1(L) such thaR (v,w) does not hold for any:
i. LetU be acL-saturation otranss(H(w), (t)T).
ii. While there exist(t)¢ € U and acL-saturationV of trans,(U, (t)¢) such
thatcores (U,t) C cores(V,t), letU =V.
iii. Let coref(w,t) = cores(U,t).
iv. Forevery(t)¢p € coref(w,t):
— LetY be acL-saturation otranss(coref (wW,t), (t)d).
— LetZ = compact(Y).
— Do the same as Step 2(a)ii.
(c) Forevent € £1(L) such thaR (v,w) holds for somer:
Let coref(w,t) = cores(H(w),t).
(d) Markw as resolved.
3. Let (Ri)icar0n be the least extension diR)icq op fOr t € a0 such that
(W, T, (R)tear 0 ) is anL-frame (note that the seriality conditions are cared by the
tableau rulgD) and need not to be considered here).

This algorithm always terminates: eventually, for everyeitherw contains nat)-
formulae, or there exists an ancestor witffu) = Z at Step 2(a)ii because aftL-
saturated sets are drawn from the finite and fixesgt

4.3 Completeness Proof

Lemma 7. The following assertions are invariants during executidrstep 3 of Algo-
rithm 1 (When(R);cq 0 are extended tOR )icar 0 )-

1. If R(w,u) holds and te £ 1 (L) thencoref(w,t) = coref(u,t) = cores(H (u),t).
2. If R(w,u) holds then for every formulds, Q¢ € H(w), there exist$As, Q| € H(u)
such thatz (As,35(Q,t)) C £ (As, Q).

Proof. We first prove thatif € £ 1(L) then the first assertion implies the second one. As
a consequence, we need to prove the second assertion otthefoase ¢ = 1(L).
Supposé € £ 1 (L), that the first assertion holds, af, Q¢ € H(w). Hence there

exist wordsag, ..., ax such thatQ = ds(ls,a1) U... Uds(ls,0k). By the computation of
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coref(w;t), we havdAs, 8s(ls, ait)]d € coref (w,t), for 1 <i < k. HenceAg, ds(ls, ait)]d €
cores(H (u),t) for every 1< i < k. It follows that there existfAs, Q']¢ € H(u) such that
05(Q,t) C @, and thuss (As,85(Q,1)) C £ (As, Q).

We prove the assertions of the lemma by induction on the nuoftsteps executed
when extendingr] fort € & 0D to R;.

Consider the base case, wheiw, u) holds. For the first assertion, assume that
Z 1(L). Henceu must have been created framvia Step 2b. We have thabref(w,t) =
cores(H(u),t), becauseoref(w,t) is cores(t)-saturated and is created fromw via R}
using coref(w,t) as the content ofv. Whenu is resolved, we have thabref(u,t) =
cores(H (u),t) due to Step 2¢. Hence the first assertion holds. The secoediaa<learly
holds for the case¢ £ 1(L).

Consider the inductive step for the first assertioriR[fv, u) is created fronR; (w,v)
andR(v,u) then, by the inductive assumptiatare; (w,t) = core(v,t) andcoref(v,t) =
core(u,t) = cores(H(u),t), which imply the first assertion. R (w,u) is created from
Ri(v,w) and Ri(v,u) then, by the inductive assumptiooref(v,t) = coref(w,t) and
coref(V,t) = coref(u,t) = cores(H(u),t), which imply the first assertion.

Consider the inductive step for the second assertion andabe when ¢ = 1(L).
Suppose thaR (w,u) is created from edgeRs (wi—1,w) with 1 <i <k, w= wy,
U = W, due to an inclusiofiR, o...o Ry C R.. Let [As,Q]¢ € H(w). By Lemma 2(1),
£(As,05(Q,1)) C £(As,05(Q,S1...%)). LetQo = Q. Fori=1,...,k, by the inductive as-
sumption, there exisfé\s, Qi]¢ € H(w;) such that (As,0s(Qi—1,5)) C £ (As, Q). Fori =
2...k, by Lemm§2(3)L (As, 6S(Q,sl~.. .S)) C £(As, Qi) sincer (As, 6S(~Q,51 ...S-1)) C
L(As,Q-1) andds(Q,s1...5) = ds(8s(Q, 51 -.5-1),5). HenceL (As,85(Q,s1... %)) ©
£ (As, Q). It follows that £ (As,d5(Q,t)) C £ (As, Q«). Choose) = Q.

Lemma 8. Let X be a finiter L-consistent set of formulae in the primitive language and
M = (W, T,(R)icar 00 ,H) be the model graph for X constructed by Algorithm 1. Then
M is a consistent saturated L-model graph satisfying X.

Proof. It is clear thatM is anL-model graph and for anw € W, the setH (w) is cL-
consistent. We want to show thtis a saturated model graph. It suffices to show that:

1. Forallw,ue W, if [t]¢ € H(w) andR;(w,u) holds thenp € H(u).
2. Foreveryw e W, if (t)¢ € H(w) andt € £1(L) then there exists € W such that
R:(w,u) holds and € H(u).

For the first assertion, suppogg € H(w) andR; (w, u) holds.

Caset ¢ £1(L): Since [t]¢ € H(w), there exists|/A,Q]¢ € H(w) with Q D ly. By
Lemma 7, there existgy, Q¢ € H(u) such thate (A, & (I,t)) C £ (A, Q). Since
t € £(A), we have that € (A, &(lt,t)). Hencee € £(A,Q), which means
Q' Nk #0. Since[A,Q|d € H(u), it follows thatp € H(u) by rule (add).

Caset € £1(L): Since[t]¢p € H(w), we have thalt]d € coref (w,t). SinceR (w, u) holds,
there existsv such thatR(v,u) holds. By Lemma 7coref(w,t) = coref(u,t) =
coref(v,t). Hencelt]d € coref(v,t). SinceR{(v,u) holds, it follows thath € H (u).

We now prove the second assertion. Supgosiec H(w) andt € £ 7 (L). If R(v,w)
does not hold for any whenw is resolved therw is connected vidy to a worldu
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with ¢ € H(u) at Step 2b sincét)$ € corei(w,t). Alternatively, suppos&(v,w) does
hold for somev whenw is resolved (at Step 2c). Singg¢$ € H(w), we have(t)p
cores(H (w),t) = coref(v,t) by Lemma 7. Now must have been considered at Step 2b
in a previous iteration since this is the only way that an elilge R (v,w) is created.
Since(t)¢ € coref(v,t), this iteration must also create a wordvith R (v,u) such that

¢ € H(u). ThenR(w,u) must hold after Step 3 by euclideaness.

The following theorem follows from Lemmas 3 and 8.
Theorem 1. The calculug-L for 8 % eg logics is sound and complete.

We use Algorithm 1 only to prove completeness of the calculusfor a 3% eg
logic L. It assumes that the input skEtis cL-consistent and is inefficient due to the
naive computation of saturations and the limited cachinghk Appendix, we present
Algorithm 2 with global caching for checkingL-consistency of formula sets. Since
the calculuscL is sound and complete,L-consistency coincides with-satisfiability.
Algorithm 2 explores the search space by building an andraply using the tableau
rules of cL. The content (label) of a node in the graph is a formula setiéncompact
form. Global caching means that for each possible contémbost one node with that
content in the search space is expanded, and such an expandane at most once for
that content. Global caching is one of the most useful ogttions for tableau decision
procedures for modal logics. Due to global caching and thapaxt form of nodes,
Algorithm 2 has the optimal EXPTime complexity.

5 Conclusions

We have given an analytic cut-free tableau calculus forgelatasss % egof epistemic
logics for reasoning about agent beliefs. As demonstraiethe wise men puzzle and
its modified version % eg logics are very useful for reasoning about mutual beliefs
of agents. The clasg ® eg enssentially extends the class of regular grammar logics by
allowing axioms(D) and (5) which are useful and sometimes necessary for practical
applications. Our tableau calculus farg eg seems a simple extension of our tableau
calculus for regular grammar logics [10] using standarte@irules to deal with axioms
(D) and (5). But, note that non-trivial complications lie in the use dfité automata
specifying the extended grammeRRGL) instead oRG(L). Our completeness proof for

B R egis also more sophisticated than for the case of regular gaartogics. Applying
global caching to our calculus, we obtain the first optimaXPEime) tableau decision
procedure fors ® eg which does not use cut rules. Furthermore, it is easy to shatv
most of the well-known optimisation techniques for tabldaaision procedures (as dis-
cussed in [11]) are applicable to this decision procedure.
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Appendix: An EXPTime Decision Procedure with Global Cachirg
for 8% eglLogics

Algorithm 2

Input: a finite setX of primitive language formulae and ang eg logic L with finite automata
(At)tear op\z 1 (L) SPecifying the extended gramnmeRGL)

Output: an and-or grapB = (V,E) with T € V as the initial node such that
T.status= cons iff X is cL-consistent

Remark: We use “rule” to refer to@alL-tableau rule.

1. create a new nodewith T.content:= X andt.status:= unexpanded;
letV := {1} andE :=0;
2. whilet.status¢ {cons, incons} and we can choose an unexpanded nodé&/ do:
(@ 2 :=0;
(b) if no rule is applicable te.contentthenv.status:= cons
(c) elseifthe rulg L) is applicable tos.contentthenv.status:= incons
(d) else if some static rule with only one denominator is egglle tov.contentgiving de-
nominatorY thenv.kind := and-node, » :={Y}
(e) elseifthe rulgV) is applicable tor.contentgiving denominator¥; andy, (both different
from v.conten) thenv.kind := or-node, » := {Y1,Y>}
(f) else
i. v.kind := and-node,
ii. for every transitional rule applicable tocontentand for every possible application
of the rule tov.contentgiving denominatol, addY to o ;
(g) for every denominator € » do
i. letZ=compact(Y),
i. if somew €V hasw.content= Z then add edgév,w) to E
ii. else letwbe a new node, setcontent:= Z, w.status.= unexpanded, addwtoV,
and add edgév,w) to E;
(h) if (vkind = or-node and one of the successorswdfias statugons)
or (v.kind = and-node and all the successors whave statugons) then
v.status;= cons, propagat€G,v)
(i) else if (vkind = and-node and one of the successorswdfias statusncons)
or (v.kind = or-node and all the successors whave statugncons) then
v.status;= incons, propagatéG,v)
() elsev.status:= expanded;
3. if T.status¢ {cons,incons} then
for every noder € V with v.status# incons, setv.status:= couns;

Fig. 2. Checkingc L-Consistency Using Global Caching

In this sectiorl denotes arB  eglogic. In Figure 2 we give an algorithm for check-
ing cL-consistency which creates an and-or graph using the talldas ofcL and
global caching. A node in the constructed graph is a recottd thiree attributes:

content the formula set carried by the node
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Procedure propagatéG,v)
Parameters: an and-or grafh= (V,E) andv € V with v.statuse {cons,incons}
Returns: a modified and-or gragh= (V,E)

1. queue= {v};
2. whilequeueis not empty do
3. (a) extrack from queue
(b) for everyu eV with (u,x) € E andu.status= expanded do
i. if (ukind = or-node and one of the successorswolfias statugons)
or (u.kind = and-node and all the successors ohave statugons) then
u.status:= cons, queue= queueJ{u}
ii. else if (u.kind = and-node and one of the successorsiofias statusncons)
or (u.kind = or-node and all the successors ohave statusncons) then
u.status:= incons, queue= queueJ{u};

Fig. 3. Propagating Consistency and Inconsistency Through an@mn@+raph

status {unexpanded, expanded,cons,incons}
kind: {and-node,or-node}

To check whether a given finite formula séfs cL-consistent, the initial nodehas
contentX and statusnexpanded. The main while-loop continues processing nodes until
the status of is determined to be ifcons,incons}, or until every node is expanded,
whichever happens first.

The algorithm gives a preference to the rle), then any one of the static unary
rules, then the static binary ru(&). If none of these are applicable, then it applies the
transitional rules simultaneously.

When a rule is applied, the algorithm categorises the nuimesia either avr-node
or anand-node with anor-node being inconsistent if every child is inconsistent and an
and-node being inconsistent if at least one child is inconsistent.

The main difference with traditional methods appears ap Qg here, for every
denominator, we first check whether an already existing madeact as a proxy for that
denominator. If so, then we do not create that denominatdriierely insert an edge
from the numerator to the existing proxy.

If these steps cannot determine the statug a$cons or incons, then its status is
set toexpanded. But if these steps do determine the status of a nottebe cons or
incons, this information is itself propagated to the predecessbvsn the and-or graph
G via the routinepropagat€G, v), explained shortly.

The main loop ends when the status of the initial nodecomes:ons or incons
or all nodes of the graph have been expanded. In the latter aisnodes with status
# incons are given statusons (effectively giving the statuspento tableau branches
which loop).

The procedurgropagateused in the above algorithm is specified in Figure 3. As
parameters, it accepts an and-or gr&and a noder with (irrevocable) statusons or
incons. The purpose is to propagate the statug ihirough the and-or graph and alter
to reflect the new information.
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Initially, the queue contains only. While the queue is not empty: a nogés ex-
tracted; the status of is propagated to each predecessaf x in an appropriate way;
and if the status ofi becomes (irrevocablyjons or incons thenu is inserted into the
queue for further propagation.

This construction thus uses both caching and propagatitmigues.

Lemma 9. Itis an invariant of Algorithm 2 that for everye V:

1. if vstatus= incons then
— the(L)-rule of cL is applicable to wcontent,
— orv.kind = and-node and there existév,w) € E such that w# v and wstatus=
incons,
— or v.kind = or-node and for every(v,w) € E, wstatus= incons;
2. if vstatus= cons then
— no rule ofcL is applicable to wcontent,
— or vkind = or-node and there exist$v,w) € E with wstatus= cons,
— or v.kind = and-node and for every(v,w) € E, wstatus= cons.

(Since a static rule is applied to X only when X is not closed.\ihe rule, if vkind =
or-node and(v,w) € E then w v since wcontent£ v.content.)

Proof. Lemma 9(1) clearly holds since these are the only three watya iode to get
statusincons. For Lemma 9(2) there is the possibility that the node getisistons via
Step 3 of Algorithm 2.

For a contradiction, assume thastatusbecomes:ons because of Step 3 of Algo-
rithm 2 and that all three clauses of the “then” part of Lemrt®) €ail:

1. First, the rule assumed to be applicable.tmntentcannot be thé_L)-rule as this
would have putv.status= incons, contradicting our assumption thastatus=
cons. Hencev.kind = or-node or v.kind = and-node after this rule application.

2. Second, ifv.kind = or-node thenv must have two successors created by the rule

(V). If none of the successors has statuss then they must all have statiiscons.
But Algorithm 2 and procedurpropagatealways ensure thatcons is propagated
whenever it is found. As soon as thecons status of the lattest of the children is
found, the ensuing call tpropagatewould have ensured thatstatus= incons,
contradicting our assumption thastatus= cons.

3. Third, if v.kind = and-node thenv has at least one successofsay) with(v,w) € E.
If w.status# cons, then we must hawe.status= incons. Again, whenw gets status
incons, procedurgpropagatewould ensure thatstatus= incons too, contradict-
ing our assumption thatstatus= cons.

Lemma 10. Let G= (V,E) be the graph constructed by Algorithm 2 for X using. If
1.status= incons then X iscL-inconsistent.

Proof. Using Lemma 9, we can construct a clogedtableau forX by induction on the
way a node depends on its successors and by copying noded Hrethesulting structure
is a (tree) tableau rather than a graph.
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Let G = (V,E) be the graph constructed by Algorithm 2 férusingcL. Forv eV
with v.status= cons, we say thatp = v, v1,..., vk with k > 0 is asaturation path of v in
Gif for each 1< i <k, we havey;.status= cons, the edgeE(vi_1,V;) was created by an
application of a static rule, angi.contentis closed w.r.t. the static rules. Observe that if
Vo, - - ., Vk iS @ saturation path af in G thenvg.contentC ... C v.content By Lemma 9,
if v.status= cons then there exists a saturation pathvah G.

Lemma 11. Let G= (V,E) be the graph constructed by Algorithm 2 for X usin. If
T.status= cons then everyL-tableau for X is open.

Proof. Let T be an arbitrary L-tableau forX. We maintain aurrent node crof T that
will follow edges ofT to pin-point an open branch @f. Initially we setcnto be the root
of T. We also keep a (finite) saturation pattof the formay,...,ox for somegg € V
and callo the current saturation path in GAt the beginning, setip := T and letc be
a saturation path foop in G: such a saturation path exists sincstatus= cons. We
maintain the invariantn.contentC og.content wherecn.contentis the set carried bgn.

Remark 1.By the definition of saturation patlmy.status= cons. The invariant thus
implies that thg L )-rule is not applicable ton.

Clearly, the invariant holds at the beginning simmge= T andt.content= cn.content
andap.contentC og.content Depending upon the rule applied ¢a in the tableaur,
we maintain the invariant by changing the value of the cumexdecn of T and possibly
also the current saturation pattin G:

1. Case the tableau rule appliecttois a static rule. Sincen.contentC og.contentand
ok.contentis closed w.r.t. the static rulesnhas a successarin T with u.contentC
ok-content By settingen := u, the invariant is maintained without changiag

2. Case the tableau rule applieddois a transitional rule and the successounis T.
By the invariant, the rule can be applieddg.contentin the same way, creating a
successor nod& € V with w.contentD u.content Moreovergy is an and-node with
Ok.Status= cons, hencew.status# incons, meaning thatv.status= cons. Setting
cn:=u and setting to be a saturation path @f in G maintains the invariant.

By Remark 1, the branch formed by the instancesraé an open branch &f.

Theorem 2. Let L be an3{ eg logic whose extended grammar is specified by finite
automata(A)icqar 00, X a finite set of primitive language formulae, and-GV, E) the
graph constructed by Algorithm 2 for X usiad., witht €V as the initial node. Then X

is c L-consistent ifft.status= cons.

This theorem immediately follows from Lemmas 10 and 11.
Corollary 1. Algorithm 2 is an EXPTime decision procedure foR eg logics.

Proof. Let L be an3 % eglogic andX a finite formula set in the primitive language.
SinceclL is sound and complete (Theorem X)js L-satisfiable iffX is cL-consistent,
and iff the execution of Algorithm 2 foX andL returns a graph with.status= cons
(by Theorem 2).
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Let n be the sum of the sizes of the formulaeXnand the sizes of the automata
specifyingeRGL). Assume thah > | oD|. There are at most subformulae ofX
sinceX contains no automaton-modal operators, and there are at2/@s different
automaton-modal operators. Due to the compact form, fdn sabformuldt]¢ of X, a
node contains at most one formula of the foia Q]¢. Thus, counting formulae gen-
erated by rulg5), a node contains at mosh3.e. O(n) formulae. Hence there are at
most (20O — 20(*) gifferent node contents. Due to global caching, each node in
the constructed and-or graph has a unique content, so thb bees at most2") nodes.

Everyv € V is expanded (by Steps (2a)—(2j)) only once and such a tass tak
29(") time units without counting the execution time of the pragexpropagate When
v.statusbecomesons or incons, the procedur@ropagateexecutes 9 pasic steps
directly involved withv. Hence the total time of the executionsmbpagateis of rank
29(") The time complexity of Algorithm 2 is therefore of ranR(®”).
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