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Abstract. We present a sound and complete tableau calculus for a classB R egof
extended regular grammar logics which contains useful epistemic logics for rea-
soning about agent beliefs. Our calculus is cut-free and hasthe analytic superfor-
mula property so it gives a decision procedure. Applying sound global caching to
the calculus, we obtain the first optimal (EXPTime) tableau decision procedure for
B R eg. We demonstrate the usefulness ofB R eg logics and our tableau calculus
using the wise men puzzle and its modified version, which requires axiom(5) for
single agents.

1 Introduction

Context-free grammar logics are normal multimodal logics characterised by “inclusion
axioms” of the form[t]ϕ ⊃ [s1] . . . [sk]ϕ, where[t] and [si ] are modalities indexed by
memberst andsi from some fixed setM OD of indices. Such logics are useful for mod-
elling interactions between agents and groups of agents when indices fromM OD de-
note agents/groups of agents. The general satisfiability problem of context-free grammar
logics is undecidable [3], so researchers paid attention also to regular grammar logics,
which are context-free grammar logics whose set of the corresponding grammar rules
t → s1 . . .sk forms either a left/right linear grammar or is specified by finite automata
[3–5, 10]. Note that left/right linear grammars can be transformed in polynomial time to
an equivalent finite automaton that is at most polynomially larger, and checking whether
a context-free grammar generates a regular language is undecidable (see, e.g., [13]). To
avoid ambiguity, we refer to regular grammar logics specified by finite automata asreg-
ular modal logics.

Regular grammar logics cannot be directly used for reasoning about belief due to the
lack of axioms(D) and(5). It is commonly assumed that modal logics of belief invariably
utilise the following:

Belief Consistency: Since〈t〉ϕ ≡ ¬[t]¬ϕ, axiom(D) : [t]ϕ ⊃ 〈t〉ϕ states that agents can-
not believe bothϕ and¬ϕ.
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nology and the Arts and the Australian Research Council through Backing Australia’s Ability
and the ICT Centre of Excellence program.



Positive Introspection: Axiom(4) : [t]ϕ⊃ [t][t]ϕ states that agents are aware of what they
believe.

Negative Introspection: Axiom(5) : 〈t〉ϕ ⊃ [t]〈t〉ϕ, or alternatively¬[t]ψ ⊃ [t]¬[t]ψ,
states that agents are aware of what they do not believe.

In [18], Nguyen studied a multimodal logicKD4Ig5a for reasoning about belief and
common belief of agents in multi-agent systems. He adopted axioms(D) and(4) for all
agents and groups of agents, and axiom(I) : [t]ϕ ⊃ [s]ϕ for any (proper) super-groupt
of agent (group)s, but adopted axiom(5) : 〈s〉ϕ ⊃ [s]〈s〉ϕ only for single agentss. If t
is a non-singleton group ands is a single agent belonging tot, then the contra-positive
of [t]ϕ ⊃ [s]ϕ gives us〈s〉ϕ ⊃ 〈t〉ϕ. If axiom (5) were present for the proper groupt then
〈s〉ϕ would give us[t]〈t〉ϕ. But 〈s〉ϕ ⊃ [t]〈t〉ϕ states that the belief of a single agents
leads to a belief among the whole super-groupt aboutϕ. Conversely, the contra-positive
〈t〉[t]ϕ ⊃ [s]ϕ states that if the group jointly does not believe that it doesnot jointly
believeϕ, then single agentsbelievesϕ, which seems equally absurd. The logicKD4Ig5a

formalises the most important properties of belief and common belief but does not give
an exact formulation of common belief. It is similar to the well-known modal logic with
common beliefKD45C

n [12] and the modal logic with mutual belief [1] but it lacks the
induction rule for common belief.

In this paper, we study the classB R egof regular modal logics of agent beliefs, which
are regular modal logics extended with axioms(D) and(5), where axiom(5) is adopted
only for modal indices with the “terminal KD45-condition” as for the case of single
agents inKD4Ig5a (see Section 2.2 for a formal definition). We extend our tableau cal-
culus for regular modal logics [10] to a tableau calculus forB R eg logics. Our calculus
for B R eg is sound, complete, cut-free and has the analytic superformula property. Ap-
plying sound global caching [10, 10] to it, we obtain the firstoptimal (EXPTime) tableau
decision procedure forB R eg.

The rest of this paper is structured as follows. In the end of this section, we present
motivating examples and mention related works. In Section 2, we formally specifyB R eg
logics, introduce automaton-modal operators, and give definitions for tableau calculi. In
Section 3, we present our tableau calculus forB R eg, prove its soundness, and present
“closed” tableaux for the motivating examples. In Section 4, we prove completeness of
our tableau calculus. Due to the lack of space, an EXPTime decision procedure with
global caching forB R eg is left in the Appendix. Section 5 concludes this work.

1.1 Motivating Examples

We will study two motivating examples about reasoning aboutbeliefs and common be-
liefs of agents using our tableau calculus forB R eg. The first one is the wise men puzzle,
which is a famous benchmark introduced by McCarthy [17] for AI and has been previ-
ously studied in a considerable number of works (see [18] forsome of them). The puzzle
can be stated as follows (cf. [15]). A king wishes to know whether his three advisors
(a, b, c) are as wise as they claim to be. Three chairs are lined up, allfacing the same
direction, with one behind the other. The wise men are instructed to sit down in the order
a, b, c. Each of the men can see the backs of the men sitting before them (e.g.c can see
a andb). The king informs the wise men that he has three cards, all ofwhich are either
black or white, at least one of which is white. He places one card, face up, behind each
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of the three wise men, explaining that each wise man must determine the colour of his
own card. Each wise man must announce the colour of his own card as soon as he knows
what it is. All know that this will happen. The room is silent;then, after a while, wise
mana says “My card is white!”.

Forx∈ {a,b,c}, let [x]ϕ stand for “the wise manx believes inϕ” and let px stand for
“the card ofx is white”. Letg denote the group{a,b,c} and let[g] informally stand for a
certain operator of “common belief” of the groupg. Let Lwmp be theB R eg logic which
extendsKn (n = 4 andM OD = {g,a,b,c}) with the following axioms:

[x]ϕ ⊃ 〈x〉ϕ and [x]ϕ ⊃ [x][x]ϕ for x∈ {g,a,b,c},

[g]ϕ ⊃ [x]ϕ and 〈x〉ϕ ⊃ [x]〈x〉ϕ for x∈ {a,b,c}.

The wise men puzzle can be formalised as follows:

– If y sits behindx then eitherx’s card is white ory knows thatx’s card is not white:

ϕ1 = [g](pa∨ [b]¬pa) ϕ2 = [g](pa∨ [c]¬pa) ϕ3 = [g](pb∨ [c]¬pb)

– At least one of the men has a white card:

ϕ4 = [g](pa∨ pb∨ pc)

– Each ofb andc does not know the colour of his own card. In particular, each of the
men considers that it is possible that his own card is not white:

ϕ5 = [g]〈b〉¬pb ϕ6 = [g]〈c〉¬pc

– The question is whethera believes that his card is white ([a]pa). That is, whether
(ϕ1∧ . . .∧ϕ6) ⊃ [a]pa is Lwmp-valid. This is equivalent to whether the formula set
Γwmp= {ϕ1, . . . ,ϕ6,〈a〉¬pa} is Lwmp-unsatisfiable.

As we will see, the wise men puzzle is solvable in a regular modal logic without
axioms(D) and(5). More specifically,Γwmp is unsatisfiable in the logicL′

wmp obtained
from Lwmp by discarding axioms(D) and(5). So, we introduce a modified version of the
wise men puzzle for which axiom(5) is necessary3: “The wise men sit in the ordera,
b, c, all facing the same direction. Each of the men can see the backs of the men sitting
before them (e.g.c can seea andb). The king informs the wise men that he has three
cards, all of which are either black or white, at least one of which is white. He places
one card, face up, behind each of the three wise men, explaining that as soon asb or c
knows that his own card is white or that the card of the man behind is white he must
inform the man in the front about that, and as soon asa knows who has a white card
he must announce that. The question is whethera will know who has a white card.” To
formulate the new puzzle, we discard the formulaeϕ5 andϕ6 and add to the formula set
the following formulae:

ϕ′
5 = [g]([c]pc ⊃ [b]pc) ϕ′

6 = [g]([b]pb ⊃ [a]pb) ϕ′
7 = [g]([b]pc ⊃ [a]pc)

The new formula set is thus∆1 = {ϕ1,ϕ2,ϕ3,ϕ4,ϕ′
5,ϕ

′
6,ϕ

′
7}. The question is whether

∆1 ⊃ [a]pa ∨ [a]pb ∨ [a]pc is Lwmp-valid, or equivalently, whether∆wmp = ∆1 ∪
{〈a〉¬pa,〈a〉¬pb,〈a〉¬pc} is Lwmp-unsatisfiable.

3 It can be shown that the formula set∆wmp given below isL′
wmp-satisfiable.
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1.2 Related Works

In the previous work [10], we gave an analytic tableau calculus for regular modal logics
and presented an EXPTime decision procedure for such logics. The classB R egstudied
in this paper extends the class of regular modal logics with useful epistemic logics for
reasoning about agent beliefs.

In [5], Demri and de Nivelle gave a translation of the satisfiability problem for gram-
mar logics with converse into the two-variable guarded fragment GF2 of first-order logic,
and showed that the general satisfiability problem for regular grammar logics with con-
verse is in EXPTime. Adding axiom(D) to regular grammar logics with converse results
in a class larger thanB R eg. We cannot compare efficiency of the two approaches (for
B R eg) yet, but our tableau decision procedure forB R egis certainly worth studying and
experimenting. (Demri and de Nivelle wrote“It is too early to state that the transfor-
mation from regular grammar logics with converse into GF2 defined in this paper can
be used to mechanize efficiently such source logics with a prover for GF2. . . ” [5, page
293].)

Other related works are works on regular grammar logics [3, 4], works on PDL-like
logics (e.g. [11, 5, 2]), and works on epistemic logics (e.g.[12, 1]). However, the first two
groups often lack axioms(D) and(5) and are not devoted to reasoning about epistemic
states of agents, while the third group often adopts only some specific axioms but not the
wide range of inclusion axioms. The class of “incestual multimodal logics” studied by
Baldoni in [3] is large and contains the classB R eg, but the general satisfiability problem
for it is undecidable.

2 Preliminaries

2.1 Definitions for Multimodal Logics

Our modal language is built from two disjoint sets:M OD is a finite set of modal indices
andP R O P is a set of primitive propositions. We usep andq for elements ofP R O P and
uset ands for elements ofM OD . Formulae of our primitive language are recursively
defined using the BNF grammar below:

ϕ ::= p | ¬ϕ | ϕ∧ϕ | ϕ∨ϕ | ϕ ⊃ ϕ | [t]ϕ | 〈t〉ϕ.

A Kripke frameis a tuple〈W,τ,(Rt )t∈M OD 〉, whereW is a nonempty set of possible
worlds, τ ∈ W is the current world, and eachRt is a binary relation onW, called the
accessibility relation for[t] and〈t〉. If Rt(w,u) holds then we say that the worldw sees
world u via Rt .

A Kripke modelis a tuple〈W,τ,(Rt)t∈M OD ,h〉, where〈W,τ,(Rt)t∈M OD 〉 is a Kripke
frame andh is a function mapping worlds to sets of primitive propositions. Forw∈ W,
the set of primitive propositions “true” atw is h(w).

A model graphis a tuple〈W,τ,(Rt)t∈M OD ,H〉, where〈W,τ,(Rt)t∈M OD 〉 is a Kripke
frame andH is a function mapping worlds to formula sets. We sometimes treat model
graphs as models with the range ofH restricted toP R O P .

Given a Kripke modelM = 〈W,τ,(Rt )t∈M OD ,h〉 and a worldw∈W, thesatisfaction
relation |= is defined as usual for the classical connectives with two extra clauses for the
modalities as below:
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M,w |= [t]ϕ iff ∀v∈W. Rt(w,v) impliesM,v |= ϕ
M,w |= 〈t〉ϕ iff ∃v∈W. Rt(w,v) andM,v |= ϕ.

We say thatϕ is satisfied at w in Mif M,w |= ϕ. We say thatM satisfiesϕ and callM
a model ofϕ if M,τ |= ϕ.

If we consider only Kripke models, with no restrictions onRt , we obtain a normal
multimodal logic with a standard Hilbert-style axiomatisation Kn.

Note: We now assume that, if not stated otherwise, formulae are innegation normal
form, where⊃ is translated away and¬ occurs only directly before primitive proposi-
tions. It is well-known that every formulaϕ has a logically equivalent formulaϕ′ which
is in negation normal form. We treat a finite set of formulae asthe conjunction of its
formulae.

2.2 A ClassB R egof Regular Modal Logics of Agent Beliefs

A B R eg logic is a normal multimodal logicL extendingKn with:

Inclusion Axioms: a setIA(L) of inclusion axioms[t]ϕ ⊃ [s1] . . . [sk]ϕ with k≥ 0 whose
corresponding grammar rulest → s1 . . .sk jointly form a grammarRG(L) specified
by finite automata(As)s∈M OD such thatAs for s∈M OD recognises the set of words
derivable fromsusing the rules ofRG(L);4

Seriality Axioms: a setD I (L) ⊆ M OD of D-indices with corresponding seriality ax-
ioms[t]ϕ ⊃ 〈t〉ϕ for everyt ∈ D I (L);

Terminal KD45-Condition: a setE I (L) ⊆ D I (L) of E-indices with corresponding ax-
ioms[t]ϕ ⊃ [t][t]ϕ ∈ IA(L) and〈t〉ϕ ⊃ [t]〈t〉ϕ for everyt ∈ E I (L) and the condition
that IA(L) contains no other inclusion axioms of the form[t]ϕ ⊃ [s1] . . . [sk]ϕ for
t ∈ E I (L).

Recall that afinite automaton Ais a tuple〈Σ,Q, I ,δ,F〉, where:Σ is the alphabet
(for our caseΣ = M OD ); Q is a finite set of states;I ⊆ Q is the set of initial states;
δ ⊆ Q× Σ ×Q is the transition relation; andF ⊆ Q is the set of accepting states. A
run of A on a words1 . . .sk is a finite sequence of statesq0,q1, . . . ,qk such thatq0 ∈ I
and δ(qi−1,si ,qi) holds for every 1≤ i ≤ k. It is an accepting runif qk ∈ F. We say
that A acceptsword w if there exists an accepting run ofA on w. The set of all words
accepted/recognised byA is L (A).

Given two binary relationsR1 andR2 overW, their relational compositionR1◦R2 =
{(x,y) | ∃y∈W.R1(x,y) & R2(y,z)} is also a binary relation overW.

TheL-frame restrictionsfor aB R eg logic L are the following restrictions:

– Rs1 ◦ . . .◦Rsk ⊆ Rt if s1 . . .sk is accepted byAt , wheret ∈M OD and(As)s∈M OD are
the finite automata specifyingRG(L);

– Rt is serial (i.e.∀u∃wRt(u,w)) for each D-indext ∈ D I (L);
– Rt is transitive and euclidean (i.e.∀u,v,wRt(u,v) ∧ Rt(v,w) → Rt(u,w) and
∀u,v,wRt(u,v)∧Rt(u,w) → Rt(w,v)) for each E-indext ∈ E I (L).

4 If k = 0 then the right hand side oft → s1 . . .sk stands for the empty wordε.
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We do not require axiom(D) for every modal index inB R eg logics, but we al-
low axiom(5) only for modal indices which satisfy the terminal KD45-condition. This
restriction can be justified from practical considerationsstated forKD4Ig5a in Introduc-
tion. It can be shown that the multimodal logics of beliefKDI4,KDI4s, KD4Ig, KD4Ig5a

studied by Nguyen in [20, 18], as well asKD45(m), belong toB R eg.
A Kripke model is anL-modelif its frame satisfies allL-frame restrictions. A formula

ϕ is L-satisfiableif there exists anL-model satisfying it. A formulaϕ is L-valid if every
L-model satisfies it.

It can be shown that for aB R eglogic L, a formulaϕ is L-valid iff it is derivable using
the axiomatisation ofL. (See [20] for the correspondence theory.)

2.3 Some Properties ofB R egLogics

Let L be aB R eg logic. Fort ∈ E I (L), logic L contains the axiom〈t〉ϕ ⊃ [t]〈t〉ϕ, which
can also be written as〈t〉[t]ψ ⊃ [t]ψ. This latter axiom is stronger than the inclusion ax-
iom [t][t]ψ ⊃ [t]ψ (becauset ∈ E I (L) ⊆ D I (L) and[t][t]ψ ⊃ 〈t〉[t]ψ is L-valid), which
corresponds to the grammar rulett → t. Let eRG(L) be the grammar extendingRG(L)
with rulestt → t for t ∈ E I (L). We calleRG(L) theextended grammarof L. Syntacti-
cally, eRG(L) is not a regular grammar.

Let L be aB R eg logic and let(At)t∈M OD be the automata specifying the regu-
lar grammarRG(L). An s-path from stateq0 to stateqn in At is a sequence of transi-
tions (q0,s,q1), (q1,s,q2), . . . , (qn−2,s,qn−1), (qn−1,s,qn) in δt , with n ≥ 1. For each
t ∈ M OD \ E I (L), let A′

t be the automaton obtained fromAt by the following modi-
fication: for everys∈ E I (L) and everys-path from stateq0 to stateqn in At , add the
transition(q0,s,qn) to A′

t . We call the resulting automataA′
t , for t ∈ M OD \E I (L), the

automata specifying eRG(L). It should be clear that, fort ∈ M OD \E I (L), the word
s1 . . .sk is accepted byA′

t iff s1 . . .sk is derivable fromt using the grammareRG(L) since
the modification simply adds “s-transitivity” for everys∈ E I (L). ThuseRG(L) can be
treated as a regular grammar for starting symbols outsideE I (L).

The logic Lwmp specified in Introduction is aB R eg logic with D I (Lwmp) =
{g,a,b,c}, E I (Lwmp) = {a,b,c}, and the extended grammareRG(Lwmp) specified by
the following finite automaton:

Ag = 〈M OD ,{0,1},{0},{(0,x,0),(0,x,1) | x∈M OD },{1}〉

Lemma 1. Let L be aB R eg logic and t∈ M OD \E I (L). Then, for every n≥ 1, and
every s1,s2, · · · ,sn ∈ M OD , if the word s1 . . .sn is derivable from t using the grammar
eRG(L) then the formula[t]ϕ ⊃ [s1] . . . [sn]ϕ is L-valid.

Proof. By induction on the length of the derivation ofs1 . . .sk from t usingeRG(L).

For a setQ of states of automatonA, the pair(A,Q) can be treated as the automaton
obtained fromA by replacing the set of initial states byQ. Thus,L (A,Q) denotes the
language generated by(A,Q).

Let A = 〈M OD ,QA, IA,δA,FA〉 and letε denote the empty word. ForQ ⊆ QA, t ∈
M OD , and a wordα over alphabetM OD , define:δA(Q,t)= {q′ |∃q∈Q.(q,t,q′)∈ δA},
δ̃A(Q,ε) = Q, δ̃A(Q,αt) = δA(δ̃A(Q,α),t). For As = 〈M OD ,Qs, Is,δs,Fs〉, we writeδs

(resp.δ̃s) instead ofδAs (resp.δ̃As).
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Lemma 2. Let L be aB R eg logic,(At)t∈M OD \E I (L) the automata specifying eRG(L),

s∈ M OD \E I (L), As = 〈M OD ,Qs, Is,δs,Fs〉, and Q= δ̃s(Is,α1)∪ . . .∪ δ̃s(Is,αh) for
some wordsα1, . . .αh over alphabetM OD . Then:

1. If t → s1 . . .sk is a rule of RG(L) thenL (As, δ̃s(Q,t)) ⊆ L (As, δ̃s(Q,s1 . . .sk)).
2. If t ∈ E I (L) thenL (As, δ̃s(Q,t)) = L (As, δ̃s(Q,tt)).
3. If L (As,Q′) ⊆ L (As,Q′′) thenL (As, δ̃s(Q′,t)) ⊆ L (As, δ̃s(Q′′,t)).

Proof. Sinceδs(Q′ ∪Q′′,t) = δs(Q′,t)∪ δs(Q′′,t) for all Q′,Q′′ ⊆ Qs, for assertions 1
and 2, we can assumeQ = δ̃s(Is,α) for some wordα.

1: Supposeβ is a word over alphabetM OD , and β ∈ L (As, δ̃s(Q,t)). Thus αtβ ∈
L (As). If t → s1 . . .sk is a rule ofRG(L), it follows thatαs1 . . .skβ ∈ L (As). Hence
β ∈ L (As, δ̃s(Q,s1 . . .sk)).

2: Sincet → tt is a rule ofRG(L) for all t ∈ E I (L), the first assertion gives one half
of the inclusion. It therefore suffices to show thatL (As, δ̃s(Q,tt)) ⊆ L (As, δ̃s(Q,t)).
Let β ∈ L (As, δ̃s(Q,tt)). Thusαttβ ∈ L (As). Becauset ∈ E I (L), we havett → t as
a grammar rule ofeRG(L). It follows thatt is derivable fromtt using the grammar
eRG(L). SinceAs recognises the language derivable fromsusingeRG(L), it follows

thatαtβ ∈ L (As). Henceβ ∈ L (As, δ̃s(Q,t)).
3: The third assertion clearly holds.

2.4 Automaton-Modal Formulae

If A is a finite automaton,Q is a subset of the states ofA, andϕ is a formula in the prim-
itive language then we call[A,Q] a (universal)automaton-modal operatorand[A,Q]ϕ a
formula in the extended language. Similar constructions were previously used in [11, 14,
10, 21].

Given a Kripke modelM = 〈W,τ,(Rt)t∈M OD ,h〉 and w0 ∈ W, define that
M,w0 |= [A,Q]ϕ if M,wk |= ϕ for every pathw0Rs1w1 . . .wk−1Rskwk with k ≥ 0 and

δ̃A(Q,s1 . . .sk)∩ FA 6= /0 (i.e. s1 . . .sk is accepted byA when starting from some state
from Q).

From now on, by aformulawe mean either a formula in the primitive language (as
defined in Section 2.1) or an automaton-modal formula. Note that an automaton-modal
operator can appear only at the beginning of a formula.

2.5 Definitions for Tableau Calculi

As in our previous works on tableau calculi [9, 16], our tableaux trace their roots to
Hintikka via [19]. A tableau ruleσ consists of a numeratorN above the line and a (finite)
list of denominatorsD1, D2, . . . , Dk (below the line) separated by vertical bars. The
numerator is a finite formula set, and so is each denominator.As we shall see later,
each rule is read downwards as “if the numerator isL-satisfiable, then so is one of the
denominators”. The numerator of each tableau rule containsone or more distinguished
formulae called theprincipal formulae. A tableau calculusC L for a logicL is a finite set
of tableau rules.
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(⊥)
X; p;¬p

⊥
(∧)

X;ϕ∧ψ
X;ϕ∧ψ;ϕ;ψ (∨)

X;ϕ∨ψ
X;ϕ∨ψ;ϕ | X;ϕ∨ψ;ψ

(D) X
X;〈t〉⊤

if t ∈ D I (L) (5)
X;〈t〉ϕ

X;〈t〉ϕ; [t]〈t〉ϕ if t ∈ E I (L)

(aut)
X; [t]ϕ

X; [t]ϕ; [At, It ]ϕ
if t /∈ E I (L) (add)

X; [At ,Q]ϕ
X; [At ,Q]ϕ;ϕ if Q∩Ft 6= /0

(trans)
X;〈t〉ϕ

trans(X,t);ϕ if t /∈ E I (L) (trans4)
X; [t]Y;〈t〉ϕ

trans(X,t);Y; [t]Y;ϕ if t ∈ E I (L)

Table 1.Tableau Rules forB R egLogics

A C L-tableau for a finite setX of formulae is a tree with rootX whose nodes carry
finite formula sets obtained from their parent nodes by instantiating a tableau rule with
the proviso that if a childscarries a setZ andZ has already appeared on the branch from
the root tos thens is anend node.

Let ∆ be a set of tableau rules. We say thatY is obtainable from X by applications
of rules from∆ if there exists a tableau forX which uses only rules from∆ and has a
node that carriesY. A node to which no rule is applicable is also an end-node. A branch
in a tableau isclosedif its end node carries only⊥. A tableau isclosedif every one of
its branches is closed. A tableau isopenif it is not closed. A finite formula setX is C L-
consistentif everyC L-tableau forX is open. If there is a closedC L-tableau forX thenX
is C L-inconsistent.

A tableau calculusC L is soundif for all finite formula setsX in the primitive lan-
guage,X is L-satisfiable impliesX is C L-consistent. It iscompleteif for all finite formula
setsX in the primitive language,X is C L-consistent impliesX is L-satisfiable. We say
that a ruleσ of C L is sound w.r.t.L if for every instanceσ′ of σ, if the numerator ofσ′ is
L-satisfiable then so is one of the denominators ofσ′. Any calculusC L containing only
rules sound w.r.t.L is sound.

3 A Tableau Calculus forB R egLogics

Fix a B R eg logic L and let(At = 〈M OD ,Qt , It ,δt ,Ft〉)t∈M OD \E I (L) be the automata
specifyingeRG(L). Recall that formulae are in negation normal form. We useX, Y to
denote formula sets, use[t]X to denote the set{[t]ϕ | ϕ ∈ X}, and use⊤ to denote the
truth constant with the usual semantics. We writeX;Y for X∪Y, write X;ϕ for X∪{ϕ},
andϕ;ψ for {ϕ,ψ}.

The transfer ofX through〈t〉, denoted bytrans(X,t), is:

trans(X,t) = {[As,δs(Q,t)]ψ | [As,Q]ψ ∈ X}.

The tableau calculusC L is given in Table 1. The last two rules(trans) and(trans4)
aretransitionalrules, while the remaining rules except(⊥) arestaticrules. The intuition
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of this sorting is that static rules keep us in the same world of the Kripke model under
construction, while transitional rules take us to a new Kripke successor world.

Note that we include the principal formula of the static rules in their denominators.5

Thus, the numerator of any static rule is a subset of every oneof its denominators. A
setX is closedw.r.t. a tableau rule if applying that rule toX gives backX as one of the
denominators. We implicitly assume that a static rule is applied to X only whenX is not
closed w.r.t. that rule and treat this as an (additional) condition for applying the rule.

A tableau calculusC has theanalytic superformulaproperty iff to every finite set
X we can assign a finite setX∗

C which contains all formulae that may appear in any
tableau forX. We writeS f(ϕ) for the set of all subformulae ofϕ, andS f(X) for the set
S

ϕ∈X S f(ϕ)∪{⊥}. Our calculusC L has the analytic superformula property, with

X∗
C L = S f(X)∪{[At ,Q]ϕ | [t]ϕ ∈ S f(X) & Q⊆ Qt}.

Lemma 3. The tableau calculusC L is sound.

Proof. We show thatC L contains only rules sound w.r.t.L as follows. Suppose that
the numerator of the considered rule is satisfied at a worldw in an L-model M =
〈W,τ,(Rt )t∈M OD ,h〉. We have to show that at least one of the denominators of the rule
is alsoL-satisfiable. For the static rules, we show that some denominator is satisfied at
w itself. For the transitional rules(trans) and(trans4), we show that its denominator is
satisfied at some world reachable fromw via Rt in the sameL-model.

(⊥),(∧),(∨),(D),(5): These cases are obvious.
(aut): Suppose thatM,w |= X; [t]ϕ. Let w0 = w,w1, . . . ,wk be worlds ofM such that

Rsi (wi−1,wi) holds for 1≤ i ≤ k ands1 . . .sk is accepted byAt . By Lemma 1,[t]ψ ⊃
[s1] . . . [sk]ψ is L-valid. HenceM,wk |= ϕ. Thus,M,w |= [At , It ]ϕ.

(add): This case follows from the semantics of automaton-modal formulae.
(trans): Suppose thatM,w |= X;〈t〉ϕ. Then there exists someu such thatRt(w,u) holds

andM,u |= ϕ. For each[As,Q]ψ ∈ X, we haveM,w |= [As,Q]ψ, and by the seman-
tics of automaton-modal formulae, it follows thatM,u |= [As,δs(Q,t)]ψ. Hence, the
denominator is satisfied atu.

(trans4): The proof for this case is similar to the proof for the case of(trans), with an
additional justification that[t]ψ ⊃ [t][t]ψ is an axiom ofL whent ∈ E I (L).

3.1 Examples

In this subsection, we present closed tableaux for the formula sets formalising the wise
men puzzle. LetL be theB R eg logic Lwmp defined in Introduction. Recall that the fol-
lowing automatonAg specifieseRG(L):

Ag = 〈M OD ,{0,1},{0},{(0,x,0),(0,x,1) | x∈M OD },{1}〉

In Figure 3.1, we give a closedC L-tableau for the formula setΓwmp, which was
specified in Introduction for formalising the wise men puzzle. In that tableau, for
1 ≤ i ≤ 6, ϕi is the formula as in Introduction,ψi is the subformula ofϕi such

5 This allows an easier proof for soundness of global caching.
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Γwmp 6(aut)

Γ1;Γ2;〈a〉¬pa (trans4)

Γ3;¬pa 2(add)

Γ3;¬pa; pa∨ [b]¬pa;〈b〉¬pb (∨)

¬pa; pa;
· · ·

⊥

Γ3;¬pa; [b]¬pa;〈b〉¬pb (trans4)

Γ3;¬pa; [b]¬pa;¬pb 3(add)

Γ3;¬pa; [b]¬pa;¬pb; pa∨ [c]¬pa; pb∨ [c]¬pb;〈c〉¬pc 2(∨)

¬pa; pa;
· · ·

⊥

¬pb; pb;
· · ·

⊥

Γ3;¬pa; [b]¬pa;¬pb; [c]¬pa; [c]¬pb;〈c〉¬pc (trans4)

Γ3;¬pa;¬pb;¬pc; [c]¬pa; [c]¬pb (add)

Γ3;¬pa;¬pb;¬pc; [c]¬pa; [c]¬pb; pa∨ pb∨ pc 2(∨)

. . . ;¬pa; pa

⊥

. . . ;¬pb; pb

⊥

. . . ;¬pc; pc

⊥

∆1;〈a〉¬pa;〈a〉¬pb;〈a〉¬pc 2(5)

∆1;∆2;〈a〉¬pa;〈a〉¬pb;〈a〉¬pc; [a]〈a〉¬pb; [a]〈a〉¬pc (trans4)

∆3;¬pa;〈a〉¬pb;〈a〉¬pc; . . . 3(add)

∆3;¬pa;〈a〉¬pb;〈a〉¬pc; . . . ; pa∨ [b]¬pa;〈b〉¬pb∨ [a]pb;〈b〉¬pc∨ [a]pc 3(res)

∆3; . . . ; [b]¬pa;〈b〉¬pb;〈b〉¬pc (5)

∆3; . . . ; [b]¬pa;〈b〉¬pb;〈b〉¬pc; [b]〈b〉¬pc (trans4)

∆3;¬pa;¬pb;〈b〉¬pc; . . . 3(add)

∆3;¬pa;¬pb;〈b〉¬pc; . . . ; pa∨ [c]¬pa; pb∨ [c]¬pb;〈c〉¬pc∨ [b]pc 3(res)

∆3; . . . ; [c]¬pa; [c]¬pb;〈c〉¬pc (trans4)

∆3; . . . ;¬pa;¬pb;¬pc (add)

∆3; . . . ;¬pa;¬pb;¬pc; pa∨ pb∨ pc 2(∨)

. . . ;¬pa; pa

⊥

. . . ;¬pb; pb

⊥

. . . ;¬pc; pc

⊥

Fig. 1. ClosedC L-Tableaux for the Wise Men Puzzle

that ϕi = [g]ψi , Γ1 = {ϕ1, . . . ,ϕ6}, Γ2 = {[Ag,{0}]ψ1, . . . , [Ag,{0}]ψ6}, and Γ3 =
{[Ag,{0,1}]ψ1, . . . , [Ag,{0,1}]ψ6}. Since the tableau calculusC L is sound, it follows
thatΓwmp is L-unsatisfiable.

For the modified version of the wise men puzzle, letϕ1, . . . ,ϕ4,ϕ′
5,ϕ

′
6,ϕ

′
7 be the for-

mulae as in Introduction. In the negation normal form, we have that:

ϕ′
5 = [g](〈c〉¬pc∨ [b]pc) ϕ′

6 = [g](〈b〉¬pb∨ [a]pb) ϕ′
7 = [g](〈b〉¬pc∨ [a]pc)

For 1≤ i ≤ 7, let ψi be the formula such thatϕi = [g]ψi if 1 ≤ i ≤ 4, andϕ′
i = [g]ψi

if i ∈ {5,6,7}. Let ∆1 = {ϕ1,ϕ2,ϕ3,ϕ4,ϕ′
5,ϕ

′
6,ϕ

′
7}, ∆2 = {[Ag,{0}]ψi | 1≤ i ≤ 7}, and

∆3 = {[Ag,{0,1}]ψi | 1≤ i ≤ 7}. Letϕ denote the negation normal form of¬ϕ. Note that
the following rule is “derivable” using the rules ofC L :

(res)
X;ϕ∨ψ;ϕ

X;ϕ∨ψ;ϕ;ψ
or

X;ψ∨ϕ;ϕ
X;ψ∨ϕ;ϕ;ψ

In Figure 3.1, we also give a closedC L-tableau using the tableau rule(res) for the
formula set∆wmp= ∆1∪{〈a〉¬pa,〈a〉¬pb,〈a〉¬pc}, which was specified in Introduction
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for formalising the modified version of the wise men puzzle. Since the tableau calculus
C L is sound, it follows that∆wmp is L-unsatisfiable.

4 Completeness

4.1 Proving Completeness via Model Graphs

Let L be aB R eglogic. We prove completeness of our calculus via model graphs follow-
ing [19, 9, 15, 16, 10] by giving an algorithm that accepts a finite C L-consistent formula
setX in the primitive language and constructs anL-model graph (defined below) forX
that satisfies each of its formulae at the appropriate world.

For a finiteC L-consistent formula setX, a formula setY is called aC L-saturation
of X if Y is a maximalC L-consistent set obtainable fromX by applications of the static
rules ofC L.

Lemma 4. Let X be a finiteC L-consistent formula set and Y aC L-saturation of X.
Then X⊆ Y ⊆ X∗

C L and Y is closed w.r.t. the static rules ofC L. Furthermore, there is
an effective procedure that, given a finiteC L-consistent formula set X, constructs some
C L-saturation of X.

Proof. It is clear thatX ⊆Y ⊆ X∗
C L. Observe that if a static rule ofC L is applicable toY,

then one of the corresponding instances of the denominatorsis C L-consistent. SinceY is
aC L-saturation,Y is closed w.r.t. the static rules ofC L.

We construct aC L-saturation ofX as follows: letY = X; while some static rule ofC L
is applicable toY and has a corresponding denominator instanceZ which isC L-consistent
and strictly containsY, setY = Z. At each iteration,Y ⊂ Z ⊆ X∗

C L, so this process always
terminates. Clearly, the resulting setY is aC L-saturation ofX.

A model graph is anL-model graphif its frame is anL-frame. AnL-model graph
〈W,τ,(Rt )t∈M OD ,H〉 is saturatedif everyw∈W satisfies:

– if ϕ∧ψ ∈ H(w) then{ϕ,ψ} ⊆ H(w);
– if ϕ∨ψ ∈ H(w) thenϕ ∈ H(w) or ψ ∈ H(w);
– if [t]ϕ ∈ H(w) andRt(w,u) holds thenϕ ∈ H(u);
– if 〈t〉ϕ ∈ H(w) then∃u∈W with Rt(w,u) andϕ ∈ H(u).

A saturated model graph isconsistentif no world contains⊥, and no world contains
{p,¬p}. Our model graphs are merely a data structure, while Rautenberg’s are required
to be saturated and consistent.

Lemma 5. If M = 〈W,τ,(Rt )t∈M OD ,H〉 is a consistent saturated L-model graph, then
M satisfies all formulae of H(τ) which are in the primitive language.

Proof. By provingϕ ∈ H(w) impliesM,w |= ϕ via induction on the length ofϕ.

Given a finiteC L-consistent setX in the primitive language, we construct a consistent
saturatedL-model graphM = 〈W,τ,(Rt)t∈M OD ,H〉 such thatX ⊆ H(τ), thereby giving
anL-model forX.
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4.2 Constructing Model Graphs

GivenX, the compact formcompact(X) of X is the least set such that:

– if ϕ ∈ X andϕ is not of the form[At ,Q]ψ thenϕ ∈ compact(X);
– if [At ,Q]ψ ∈ X andQ1, . . . ,Qk are all the sets such that[At ,Qi ]ψ ∈ X for 1≤ i ≤ k,

then[At ,Q1∪ . . .∪Qk]ψ ∈ compact(X).

Observe that the compact form does not affect the essence ofC L-tableaux. More specif-
ically, if applying a C L-tableau rule toX gives denominatorsY1, . . . ,Yk, then apply-
ing that rule tocompact(X) gives denominatorsZ1, . . . ,Zk such thatcompact(Zi) =
compact(Yi) for 1 ≤ i ≤ k. In particular, “compacting” preservesC L-consistency and
C L-inconsistency.

For t ∈ E I (L) and〈t〉ϕ ∈ X, define

trans4(X,〈t〉ϕ) = trans(X,t)∪{ψ, [t]ψ | [t]ψ ∈ X}∪{ϕ}.

For t ∈ E I (L), define

core5(X,t) = {[t]ϕ | [t]ϕ ∈ X}∪{〈t〉ϕ | 〈t〉ϕ ∈ X}∪

{[As,Q]ϕ | ∃α,Q′.[As,Q
′]ϕ ∈ X andQ = δ̃s(Is,αt) ⊆ Q′}.

As shown in the next lemma,core5(X,t) can be treated as the subset ofX consisting of
formulae that are preserved when travelling through edges of Rt , including edges forced
by the euclidean frame restriction.

Lemma 6. Let X be aC L-saturation of some formula set and Y be aC L-saturation of
trans4(X,〈t〉ϕ) for some〈t〉ϕ ∈ X with t∈ E I (L). Thencore5(X,t) ⊆ core5(Y,t).

Proof. Due to the static rule(5), it suffices to show that if[As,Q]ξ ∈ core5(X,t) then
[As,Q]ξ ∈ core5(Y,t). Suppose that[As,Q]ξ∈ core5(X,t). Thus, there existα andQ′ such
that Q = δ̃s(Is,αt) ⊆ Q′ and [As,Q′]ϕ ∈ X. By definition of the settrans4, there exists
[As,Q′′]ϕ ∈ Y such thatδs(Q′,t) ⊆ Q′′. It follows that δ̃s(Is,αtt) ⊆ Q′′. By Lemma 2,
δ̃s(Is,αt) = δ̃s(Is,αtt), hence[As,Q]ξ ∈ core5(Y,t).

A C L-consistent setX is core5(t)-saturatedif for every 〈t〉ϕ ∈ X and everyC L-
saturationY of trans4(X,〈t〉ϕ) we havecore5(Y,t) = core5(X,t).

Algorithm 1 given below constructs a consistent saturatedL-model graph for a finite
C L-consistent setX. In this algorithm, for eacht ∈ E I (L): we find acore5(t)-saturated
setU which is obtainable fromH(w) by applications of staticC L-rules and rule(trans4)
with the principal formula of the form〈t〉ψ; we then create successors ofw via R′

t to
satisfy〈t〉-formulae usingcore5(U,t) as the content ofw. But we do this in two differ-
ent ways depending upon whetherw has anR′

t -predecessor at this iteration. The intu-
itions for this dichotomy are based on the following insightfrom [9, Fig. 13] and [9,
Pages 334-335]: the logicKD45 is sound and complete w.r.t. the class of finite frames
where each frame consists of a root which sees a possibly empty but finite strongly-
connected-component or cluster.

To prove correctness of Algorithm 1, we use a data structure denoted bycore∗
5

to
storecore5(U,t) in core∗

5
(w,t). Note thatcore5 is a function, whilecore∗

5
is a table. In the

algorithm, the worlds of the constructed model graph are marked either asunresolvedor
asresolved.

12



Algorithm 1
Input: a finiteC L-consistent setX of primitive language formulae.
Output: anL-model graphM = 〈W,τ,(Rt )t∈M OD ,H〉 of X.

1. LetW = {τ} andR′
t = /0 for all t ∈M OD .

LetY be aC L-saturation ofX and letH(τ) = compact(Y).
Mark τ as unresolved.

2. While there are unresolved worlds, take one, sayw, and do:
(a) For every formula〈t〉ϕ in H(w) with t /∈ E I (L):

i. LetU = trans(H(w),t)∪{ϕ} be the result of applying rule(trans) to H(w),
let Y be aC L-saturation ofU , and letZ = compact(Y).

ii. If ∃u∈W on the path from the root tow with H(u) = Z, then add the pair
(w,u) to R′

t . Otherwise, add a new worldu with contentZ to W, mark it as
unresolved, and add the pair(w,u) to R′

t .
(b) For everyt ∈ E I (L) such thatR′

t(v,w) does not hold for anyv:
i. Let U be aC L-saturation oftrans4(H(w),〈t〉⊤).
ii. While there exist〈t〉ϕ ∈ U and aC L-saturationV of trans4(U,〈t〉ϕ) such

thatcore5(U,t) ⊂ core5(V,t), letU = V.
iii. Let core∗

5
(w,t) = core5(U,t).

iv. For every〈t〉ϕ ∈ core∗
5
(w,t):

– LetY be aC L-saturation oftrans4(core
∗
5
(w,t),〈t〉ϕ).

– Let Z = compact(Y).
– Do the same as Step 2(a)ii.

(c) For everyt ∈ E I (L) such thatR′
t(v,w) holds for somev:

Let core∗
5
(w,t) = core5(H(w),t).

(d) Markw as resolved.
3. Let (Rt)t∈M OD be the least extension of(R′

t)t∈M OD for t ∈ M OD such that
〈W,τ,(Rt)t∈M OD 〉 is anL-frame (note that the seriality conditions are cared by the
tableau rule(D) and need not to be considered here).

This algorithm always terminates: eventually, for everyw, eitherw contains no〈t〉-
formulae, or there exists an ancestor withH(u) = Z at Step 2(a)ii because allC L-
saturated sets are drawn from the finite and fixed setX∗

C L.

4.3 Completeness Proof

Lemma 7. The following assertions are invariants during execution of Step 3 of Algo-
rithm 1 (when(R′

t)t∈M OD are extended to(Rt)t∈M OD ).

1. If Rt(w,u) holds and t∈ E I (L) thencore∗
5
(w,t) = core∗

5
(u,t) = core5(H(u),t).

2. If Rt(w,u) holds then for every formula[As,Q]ϕ∈H(w), there exists[As,Q′]ϕ∈H(u)
such thatL (As,δs(Q,t)) ⊆ L (As,Q′).

Proof. We first prove that ift ∈ E I (L) then the first assertion implies the second one. As
a consequence, we need to prove the second assertion only forthe caset /∈ E I (L).

Supposet ∈ E I (L), that the first assertion holds, and[As,Q]ϕ ∈ H(w). Hence there
exist wordsα1, . . . ,αk such thatQ = δ̃s(Is,α1)∪ . . .∪ δ̃s(Is,αk). By the computation of
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core∗
5
(w,t), we have[As, δ̃s(Is,αit)]ϕ∈ core∗

5
(w,t), for 1≤ i ≤ k. Hence[As, δ̃s(Is,αit)]ϕ∈

core5(H(u),t) for every 1≤ i ≤ k. It follows that there exists[As,Q′]ϕ ∈ H(u) such that
δs(Q,t) ⊆ Q′, and thusL (As,δs(Q,t)) ⊆ L (As,Q′).

We prove the assertions of the lemma by induction on the number of steps executed
when extendingR′

t for t ∈M OD to Rt .
Consider the base case, whenR′

t(w,u) holds. For the first assertion, assume thatt ∈
E I (L). Henceu must have been created fromw via Step 2b. We have thatcore∗

5
(w,t) =

core5(H(u),t), becausecore∗
5
(w,t) is core5(t)-saturated andu is created fromw via R′

t
using core∗

5
(w,t) as the content ofw. Whenu is resolved, we have thatcore∗

5
(u,t) =

core5(H(u),t) due to Step 2c. Hence the first assertion holds. The second assertion clearly
holds for the caset /∈ E I (L).

Consider the inductive step for the first assertion. IfRt(w,u) is created fromRt(w,v)
andRt(v,u) then, by the inductive assumption,core∗

5
(w,t) = core∗

5
(v,t) andcore∗

5
(v,t) =

core∗
5
(u,t) = core5(H(u),t), which imply the first assertion. IfRt(w,u) is created from

Rt(v,w) and Rt(v,u) then, by the inductive assumption,core∗
5
(v,t) = core∗

5
(w,t) and

core∗
5
(v,t) = core∗

5
(u,t) = core5(H(u),t), which imply the first assertion.

Consider the inductive step for the second assertion and thecase whent /∈ E I (L).
Suppose thatRt(w,u) is created from edgesRsi (wi−1,wi) with 1 ≤ i ≤ k, w = w0,
u = wk, due to an inclusionRs1 ◦ . . . ◦Rsk ⊆ Rt . Let [As,Q]ϕ ∈ H(w). By Lemma 2(1),

L (As,δs(Q,t))⊆ L (As, δ̃s(Q,s1 . . .sk)). LetQ0 = Q. For i = 1, . . . ,k, by the inductive as-
sumption, there exists[As,Qi ]ϕ∈H(wi) such thatL (As,δs(Qi−1,si))⊆L (As,Qi). Fori =
2. . .k, by Lemma 2(3),L (As, δ̃s(Q,s1 . . .si))⊆ L (As,Qi) sinceL (As, δ̃s(Q,s1 . . .si−1))⊆

L (As,Qi−1) andδ̃s(Q,s1 . . .si) = δs(δ̃s(Q,s1 . . .si−1),si). HenceL (As, δ̃s(Q,s1 . . .sk)) ⊆
L (As,Qk). It follows thatL (As,δs(Q,t)) ⊆ L (As,Qk). ChooseQ′ = Qk.

Lemma 8. Let X be a finiteC L-consistent set of formulae in the primitive language and
M = 〈W,τ,(Rt)t∈M OD ,H〉 be the model graph for X constructed by Algorithm 1. Then
M is a consistent saturated L-model graph satisfying X.

Proof. It is clear thatM is anL-model graph and for anyw ∈ W, the setH(w) is C L-
consistent. We want to show thatM is a saturated model graph. It suffices to show that:

1. For allw,u∈W, if [t]ϕ ∈ H(w) andRt(w,u) holds thenϕ ∈ H(u).
2. For everyw∈ W, if 〈t〉ϕ ∈ H(w) andt ∈ E I (L) then there existsu ∈ W such that

Rt(w,u) holds andϕ ∈ H(u).

For the first assertion, suppose[t]ϕ ∈ H(w) andRt(w,u) holds.

Caset /∈ E I (L): Since [t]ϕ ∈ H(w), there exists[At ,Q]ϕ ∈ H(w) with Q ⊇ It . By
Lemma 7, there exists[At ,Q′]ϕ ∈ H(u) such thatL (At ,δt(It ,t)) ⊆ L (At ,Q′). Since
t ∈ L (At), we have thatε ∈ L (At ,δt(It ,t)). Henceε ∈ L (At ,Q′), which means
Q′∩Ft 6= /0. Since[At ,Q′]ϕ ∈ H(u), it follows thatϕ ∈ H(u) by rule(add).

Caset ∈ E I (L): Since[t]ϕ∈H(w), we have that[t]ϕ∈ core∗
5
(w,t). SinceRt(w,u) holds,

there existsv such thatR′
t(v,u) holds. By Lemma 7,core∗

5
(w,t) = core∗

5
(u,t) =

core∗
5
(v,t). Hence[t]ϕ ∈ core∗

5
(v,t). SinceR′

t(v,u) holds, it follows thatϕ ∈ H(u).

We now prove the second assertion. Suppose〈t〉ϕ ∈ H(w) andt ∈ E I (L). If R′
t(v,w)

does not hold for anyv when w is resolved thenw is connected viaR′
t to a world u
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with ϕ ∈ H(u) at Step 2b since〈t〉ϕ ∈ core∗
5
(w,t). Alternatively, supposeR′

t(v,w) does
hold for somev whenw is resolved (at Step 2c). Since〈t〉ϕ ∈ H(w), we have〈t〉ϕ ∈
core5(H(w),t) = core∗

5
(v,t) by Lemma 7. Nowv must have been considered at Step 2b

in a previous iteration since this is the only way that an edgelike R′
t(v,w) is created.

Since〈t〉ϕ ∈ core∗
5
(v,t), this iteration must also create a worldu with R′

t(v,u) such that
ϕ ∈ H(u). ThenRt(w,u) must hold after Step 3 by euclideaness.

The following theorem follows from Lemmas 3 and 8.

Theorem 1. The calculusC L for B R eg logics is sound and complete.

We use Algorithm 1 only to prove completeness of the calculusC L for a B R eg
logic L. It assumes that the input setX is C L-consistent and is inefficient due to the
naive computation of saturations and the limited caching. In the Appendix, we present
Algorithm 2 with global caching for checkingC L-consistency of formula sets. Since
the calculusC L is sound and complete,C L-consistency coincides withL-satisfiability.
Algorithm 2 explores the search space by building an and-or graph using the tableau
rules ofC L. The content (label) of a node in the graph is a formula set in the compact
form. Global caching means that for each possible content, at most one node with that
content in the search space is expanded, and such an expansion is done at most once for
that content. Global caching is one of the most useful optimisations for tableau decision
procedures for modal logics. Due to global caching and the compact form of nodes,
Algorithm 2 has the optimal EXPTime complexity.

5 Conclusions

We have given an analytic cut-free tableau calculus for a large classB R egof epistemic
logics for reasoning about agent beliefs. As demonstrated for the wise men puzzle and
its modified version,B R eg logics are very useful for reasoning about mutual beliefs
of agents. The classB R egenssentially extends the class of regular grammar logics by
allowing axioms(D) and (5) which are useful and sometimes necessary for practical
applications. Our tableau calculus forB R eg seems a simple extension of our tableau
calculus for regular grammar logics [10] using standard tableau rules to deal with axioms
(D) and (5). But, note that non-trivial complications lie in the use of finite automata
specifying the extended grammareRG(L) instead ofRG(L). Our completeness proof for
B R eg is also more sophisticated than for the case of regular grammar logics. Applying
global caching to our calculus, we obtain the first optimal (EXPTime) tableau decision
procedure forB R eg, which does not use cut rules. Furthermore, it is easy to showthat
most of the well-known optimisation techniques for tableaudecision procedures (as dis-
cussed in [11]) are applicable to this decision procedure.
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Appendix: An EXPTime Decision Procedure with Global Caching
for B R egLogics

Algorithm 2

Input: a finite setX of primitive language formulae and anB R eg logic L with finite automata
(At)t∈M OD \E I (L) specifying the extended grammareRG(L)

Output: an and-or graphG = 〈V,E〉 with τ ∈V as the initial node such that
τ.status= cons iff X is C L-consistent

Remark: We use “rule” to refer to aC L-tableau rule.

1. create a new nodeτ with τ.content:= X andτ.status:= unexpanded;
letV := {τ} andE := /0;

2. whileτ.status/∈ {cons,incons} and we can choose an unexpanded nodev∈V do:
(a) D := /0;
(b) if no rule is applicable tov.contentthenv.status:= cons

(c) else if the rule(⊥) is applicable tov.contentthenv.status:= incons

(d) else if some static rule with only one denominator is applicable tov.contentgiving de-
nominatorY thenv.kind := and-node, D := {Y}

(e) else if the rule(∨) is applicable tov.contentgiving denominatorsY1 andY2 (both different
from v.content) thenv.kind := or-node, D := {Y1,Y2}

(f) else
i. v.kind := and-node,

ii. for every transitional rule applicable tov.contentand for every possible application
of the rule tov.contentgiving denominatorY, addY toD ;

(g) for every denominatorY ∈ D do
i. let Z = compact(Y),

ii. if somew∈V hasw.content= Z then add edge(v,w) to E
iii. else letw be a new node, setw.content:= Z, w.status:= unexpanded, addw to V,

and add edge(v,w) to E;
(h) if (v.kind = or-node and one of the successors ofv has statuscons)

or (v.kind = and-node and all the successors ofv have statuscons) then
v.status:= cons, propagate(G,v)

(i) else if (v.kind = and-node and one of the successors ofv has statusincons)
or (v.kind = or-node and all the successors ofv have statusincons) then

v.status:= incons, propagate(G,v)
(j) elsev.status:= expanded;

3. if τ.status/∈ {cons,incons} then
for every nodev∈V with v.status6= incons, setv.status:= cons;

Fig. 2.CheckingC L-Consistency Using Global Caching

In this sectionL denotes anB R eglogic. In Figure 2 we give an algorithm for check-
ing C L-consistency which creates an and-or graph using the tableau rules ofC L and
global caching. A node in the constructed graph is a record with three attributes:

content: the formula set carried by the node
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Procedure propagate(G,v)
Parameters: an and-or graphG = 〈V,E〉 andv∈V with v.status∈ {cons,incons}
Returns: a modified and-or graphG = 〈V,E〉

1. queue:= {v};
2. whilequeueis not empty do
3. (a) extractx from queue;

(b) for everyu∈V with (u,x) ∈ E andu.status= expanded do
i. if ( u.kind = or-node and one of the successors ofu has statuscons)

or (u.kind = and-node and all the successors ofu have statuscons) then
u.status:= cons, queue:= queue∪{u}

ii. else if (u.kind = and-node and one of the successors ofu has statusincons)
or (u.kind = or-node and all the successors ofu have statusincons) then

u.status:= incons, queue:= queue∪{u};

Fig. 3. Propagating Consistency and Inconsistency Through an And-Or Graph

status: {unexpanded,expanded,cons,incons}

kind: {and-node,or-node}

To check whether a given finite formula setX is C L-consistent, the initial nodeτ has
contentX and statusunexpanded. The main while-loop continues processing nodes until
the status ofτ is determined to be in{cons,incons}, or until every node is expanded,
whichever happens first.

The algorithm gives a preference to the rule(⊥), then any one of the static unary
rules, then the static binary rule(∨). If none of these are applicable, then it applies the
transitional rules simultaneously.

When a rule is applied, the algorithm categorises the numerator as either anor-node
or anand-node with anor-node being inconsistent if every child is inconsistent and an
and-node being inconsistent if at least one child is inconsistent.

The main difference with traditional methods appears at Step 2g: here, for every
denominator, we first check whether an already existing nodecan act as a proxy for that
denominator. If so, then we do not create that denominator, but merely insert an edge
from the numerator to the existing proxy.

If these steps cannot determine the status ofv ascons or incons, then its status is
set toexpanded. But if these steps do determine the status of a nodev to becons or
incons, this information is itself propagated to the predecessorsof v in the and-or graph
G via the routinepropagate(G,v), explained shortly.

The main loop ends when the status of the initial nodeτ becomescons or incons
or all nodes of the graph have been expanded. In the latter case, all nodes with status
6= incons are given statuscons (effectively giving the statusopento tableau branches
which loop).

The procedurepropagateused in the above algorithm is specified in Figure 3. As
parameters, it accepts an and-or graphG and a nodev with (irrevocable) statuscons or
incons. The purpose is to propagate the status ofv through the and-or graph and alterG
to reflect the new information.
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Initially, the queue contains onlyv. While the queue is not empty: a nodex is ex-
tracted; the status ofx is propagated to each predecessoru of x in an appropriate way;
and if the status ofu becomes (irrevocably)cons or incons thenu is inserted into the
queue for further propagation.

This construction thus uses both caching and propagation techniques.

Lemma 9. It is an invariant of Algorithm 2 that for every v∈V:

1. if v.status= incons then
– the(⊥)-rule ofC L is applicable to v.content,
– or v.kind= and-node and there exists(v,w) ∈ E such that w6= v and w.status=
incons,

– or v.kind = or-node and for every(v,w) ∈ E, w.status= incons;
2. if v.status= cons then

– no rule ofC L is applicable to v.content,
– or v.kind = or-node and there exists(v,w) ∈ E with w.status= cons,
– or v.kind = and-node and for every(v,w) ∈ E, w.status= cons.

(Since a static rule is applied to X only when X is not closed w.r.t. the rule, if v.kind =
or-node and(v,w) ∈ E then w6= v since w.content6= v.content.)

Proof. Lemma 9(1) clearly holds since these are the only three ways for a node to get
statusincons. For Lemma 9(2) there is the possibility that the node gets statuscons via
Step 3 of Algorithm 2.

For a contradiction, assume thatv.statusbecomescons because of Step 3 of Algo-
rithm 2 and that all three clauses of the “then” part of Lemma 9(2) fail:

1. First, the rule assumed to be applicable tov.contentcannot be the(⊥)-rule as this
would have putv.status= incons, contradicting our assumption thatv.status=
cons. Hencev.kind = or-node or v.kind = and-node after this rule application.

2. Second, ifv.kind = or-node thenv must have two successors created by the rule
(∨). If none of the successors has statuscons then they must all have statusincons.
But Algorithm 2 and procedurepropagatealways ensure thatincons is propagated
whenever it is found. As soon as theincons status of the lattest of the children is
found, the ensuing call topropagatewould have ensured thatv.status= incons,
contradicting our assumption thatv.status= cons.

3. Third, if v.kind= and-node thenv has at least one successorw (say) with(v,w) ∈ E.
If w.status6= cons, then we must havew.status= incons. Again, whenw gets status
incons, procedurepropagatewould ensure thatv.status= incons too, contradict-
ing our assumption thatv.status= cons.

Lemma 10. Let G= 〈V,E〉 be the graph constructed by Algorithm 2 for X usingC L. If
τ.status= incons then X isC L-inconsistent.

Proof. Using Lemma 9, we can construct a closedC L-tableau forX by induction on the
way a node depends on its successors and by copying nodes so that the resulting structure
is a (tree) tableau rather than a graph.
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Let G = 〈V,E〉 be the graph constructed by Algorithm 2 forX usingC L. For v ∈V
with v.status= cons, we say thatv0 = v,v1, . . . ,vk with k≥ 0 is asaturation path of v in
G if for each 1≤ i ≤ k, we havevi .status= cons, the edgeE(vi−1,vi) was created by an
application of a static rule, andvk.contentis closed w.r.t. the static rules. Observe that if
v0, . . . ,vk is a saturation path ofv0 in G thenv0.content⊆ . . .⊆ vk.content. By Lemma 9,
if v.status= cons then there exists a saturation path ofv in G.

Lemma 11. Let G= 〈V,E〉 be the graph constructed by Algorithm 2 for X usingC L. If
τ.status= cons then everyC L-tableau for X is open.

Proof. Let T be an arbitraryC L-tableau forX. We maintain acurrent node cnof T that
will follow edges ofT to pin-point an open branch ofT. Initially we setcn to be the root
of T. We also keep a (finite) saturation pathσ of the formσ0, . . . ,σk for someσ0 ∈ V
and callσ the current saturation path in G. At the beginning, setσ0 := τ and letσ be
a saturation path forσ0 in G: such a saturation path exists sinceτ.status= cons. We
maintain the invariantcn.content⊆ σk.content, wherecn.contentis the set carried bycn.

Remark 1.By the definition of saturation path,σk.status= cons. The invariant thus
implies that the(⊥)-rule is not applicable tocn.

Clearly, the invariant holds at the beginning sinceσ0 = τ andτ.content= cn.content
andσ0.content⊆ σk.content. Depending upon the rule applied tocn in the tableauT,
we maintain the invariant by changing the value of the current nodecnof T and possibly
also the current saturation pathσ in G:

1. Case the tableau rule applied tocn is a static rule. Sincecn.content⊆ σk.contentand
σk.contentis closed w.r.t. the static rules,cnhas a successoru in T with u.content⊆
σk.content. By settingcn := u, the invariant is maintained without changingσ.

2. Case the tableau rule applied tocn is a transitional rule and the successor isu∈ T.
By the invariant, the rule can be applied toσk.contentin the same way, creating a
successor nodew∈V with w.content⊇ u.content. Moreover,σk is an and-node with
σk.status= cons, hencew.status6= incons, meaning thatw.status= cons. Setting
cn := u and settingσ to be a saturation path ofw in G maintains the invariant.

By Remark 1, the branch formed by the instances ofcn is an open branch ofT.

Theorem 2. Let L be anB R eg logic whose extended grammar is specified by finite
automata(At)t∈M OD , X a finite set of primitive language formulae, and G= 〈V,E〉 the
graph constructed by Algorithm 2 for X usingC L, with τ ∈V as the initial node. Then X
is C L-consistent iffτ.status= cons.

This theorem immediately follows from Lemmas 10 and 11.

Corollary 1. Algorithm 2 is an EXPTime decision procedure forB R eg logics.

Proof. Let L be anB R eg logic andX a finite formula set in the primitive language.
SinceC L is sound and complete (Theorem 1),X is L-satisfiable iffX is C L-consistent,
and iff the execution of Algorithm 2 forX andL returns a graph withτ.status= cons

(by Theorem 2).
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Let n be the sum of the sizes of the formulae inX and the sizes of the automata
specifyingeRG(L). Assume thatn > |M OD |. There are at mostn subformulae ofX
sinceX contains no automaton-modal operators, and there are at most 2O(n) different
automaton-modal operators. Due to the compact form, for each subformula[t]ϕ of X, a
node contains at most one formula of the form[At ,Q]ϕ. Thus, counting formulae gen-
erated by rule(5), a node contains at most 3n i.e. O(n) formulae. Hence there are at
most(2O(n))O(n) = 2O(n2) different node contents. Due to global caching, each node in
the constructed and-or graph has a unique content, so the graph has at most 2O(n2) nodes.

Every v ∈ V is expanded (by Steps (2a)–(2j)) only once and such a task takes
2O(n2) time units without counting the execution time of the procedurepropagate. When
v.statusbecomescons or incons, the procedurepropagateexecutes 2O(n2) basic steps
directly involved withv. Hence the total time of the executions ofpropagateis of rank
2O(n2). The time complexity of Algorithm 2 is therefore of rank 2O(n2).
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