
Cut-elimination for provability logics and

some results in display logic

D. R. S. Ramanayake

June 22, 2011

A thesis submitted for the degree of Doctor of Philosophy

of the Australian National University

To my parents

Declaration

The work in this thesis is my own except where otherwise stated.

D. R. S. Ramanayake

Acknowledgements

I am deeply grateful to my supervisor Rajeev Goré for all the time and energy

he has devoted to me, and for his excellent advice and direction, in research

and outside of it. I am also very thankful to Alwen Tiu for his attentive and

insightful comments and discussions on many areas of my work. I would like to

thank John Lloyd for his perceptive advice whenever I approached him. I was

introduced to logic at the DoM ANU, and I am thankful to Martin Ward for

making this introduction so very fascinating. I am grateful to Giovanni Sambin

for the instructive discussions and his continued interest and to Marcus Kracht for

his always attentive and thoughtful correspondence. Thanks to Dale Miller and

Gerhard Jäger for the invitations to present my work, and to Abhijit Kallapur

for his helpful comments on a draft of my thesis.

I would like to thank Amrita for her amazing support over all these years and

for always caring. Thanks to Suv, Nige and Mahesh for their friendship and for

large amounts of the right sort of distraction, to all my wonderful friends who

have made my memories here so unforgettable, to Anand, Danny, Divya, Dulsh,

Greg, Iman, Kartik, Nalini, Neha, Prathapen, Sarojini, Shane, Somil, Varun,

Vineet. Thanks to Dilsiri, Niran, Rajindh, Senura and Dan for being ready to

drop their work whenever I came on holiday and for giving me some amazing

holidays.

Life would be so completely different if not for Aiya and nangi, and the joy,

and encouragement, and support that they have given me. thank you. Finally, I

thank God for his gifts, most of all for my parents, for their incredible support,

for being an inspiration and an example and to whom I dedicate this thesis.

vii

Abstract

A syntactic proof of cut-elimination yields a procedure to eliminate every instance

of the cut-rule from a derivation in the sequent calculus thus leading to a cut-

free derivation. This is a central result in the proof-theory of a logic. In 1983,

Valentini [71] presented a syntactic proof of cut-elimination for the provability

logic GL for a traditional Gentzen sequent calculus built from sets, as opposed

to multisets, thus avoiding an explicit rule of contraction. From a syntactic point

of view it is more satisfying and formal to explicitly identify the applications of

the contraction rule that are hidden in such calculi. Recently it has been claimed

that the cut-elimination procedure does not terminate when applied to the corre-

sponding sequent calculus built from multisets. Here we show how to resolve this

issue in order to obtain a syntactic proof of cut-elimination for GL. The logics

Grz and Go have a syntactically similar axiomatisation to GL which suggests

that it might be possible to extend the proof to these logics. This is borne out

by an existing proof for Grz. However, no proof has been presented for Go. We

fill this gap in the literature by presenting a proof of syntactic cut-elimination for

this logic. The transformations for Go require a deeper analysis of the derivation

structures than the proofs for the other logics.

Next we examine Kracht’s syntactic characterisation for the class of logics

that can be presented via cutfree modal and tense display calculi. Recently it has

been shown that the characterisation for modal display calculi is incorrect. In this

work we significantly extend the class of modal logics that can be presented using

cutfree modal display calculi. We utilise this result to give a proof theory for a

syntactically-specified class of superintuitionistic logics. Then we take a semantic

approach and show how to construct display calculi for superintuitionistic logics

specified by suitable frame conditions.

Finally, we introduce the natural maps between tree-hypersequent and nested

sequent calculi, and a proper subclass of labelled sequent calculi that we call la-

belled tree sequent calculi. Then we show how to embed certain labelled sequent

ix

x

calculi into the corresponding labelled tree sequent systems. Using the existing

soundness and completeness and cut-admissibility results for the labelled sequent

calculus G3GL we then obtain the corresponding results for Poggiolesi’s [58] tree-

hypersequent calculus CSGL, thus alleviating the need for independent proofs

and answering a question posed in that paper. Next, we generalise a scheme for

obtaining labelled tree sequent rules corresponding to modal axioms and investi-

gate the possibility of using this method to obtain modular cutfree nested sequent

systems for a large class of modal logics. Although the general result remains to

be proved, we consider some concrete cases and show that the scheme leads to

cutfree systems.

Contents

Acknowledgements vii

Abstract ix

1 Introduction 1

1.1 Cut-elimination for sequent calculi 3

1.1.1 Cut-elimination for GL . 5

1.1.2 Extending the cut-elimination result to Go 6

1.2 Display calculi for modal and superintuitionistic logics 6

1.3 Importing results from labelled sequent calculi 8

1.4 Organisation of material . 8

I Cut-elimination for sequent calculi 9

2 Cut-elimination for GL resolved 11

2.1 Problems with cut-elimination for GL 12

2.2 Basic definitions and notation . 15

2.3 Technical devices and basic results 18

2.3.1 Generalising the notion of derivation 18

2.3.2 Invertibility of the logical rules for GLS 24

2.4 Cut-elimination for GLS . 28

2.5 A comparison with Valentini’s original proof 37

2.6 Moen’s Val-II(core) is not Valentini’s reduction 39

2.7 Incorporating multiplicative binary rules 39

2.8 A decision procedure for Ip using GLS 40

2.8.1 Terminology and basic results 41

2.8.2 Decision and countermodel procedure for GL 42

2.8.3 Lifting the method to intuitionistic logic 46

xi

xii CONTENTS

2.8.4 Related work . 50

2.9 Adapting the proof for some other logics 51

3 Syntactic Cut-elimination for Go 55

3.1 Introduction . 55

3.2 Basic definitions and notation . 57

3.2.1 Preliminary results . 59

3.3 Cut-elimination for Go . 64

3.4 Conclusion . 72

II Display calculi 73

4 Preliminaries 75

4.1 Introducing modal and tense logics 75

4.1.1 Hilbert calculi for modal and tense logic 78

4.1.2 Defining the logics KH and KtH semantically 80

4.2 Some results in correspondence theory 85

4.2.1 Basic definitions . 86

4.2.2 From Sahlqvist formulae to first-order formulae 92

4.2.3 From Kracht formulae to Sahlqvist formulae 98

4.2.4 The Sahlqvist completeness theorem 107

4.3 Introducing the Display Calculus 110

4.3.1 The display calculus DLM 112

4.3.2 Motivation for the modal and tense rules 117

4.3.3 Belnap’s cut-elimination theorem 118

4.3.4 Structural rule extensions of DLM 121

5 Displaying tense and modal logics 127

5.1 Displaying tense logics . 128

5.1.1 Syntactic characterisation for tense logics 128

5.1.2 A semantic characterisation for primitive tense formulae . 131

5.2 Displaying modal logics . 136

5.2.1 Kracht’s claim . 136

5.2.2 A counterexample to Kracht’s claim 138

5.2.3 Identifying the error in ‘Display Theorem II’ 145

5.2.4 A syntactic characterisation of Ar′f∃r′x 147

5.2.5 Towards a complete characterisation 151

CONTENTS xiii

6 Displaying superintuitionistic logics 161

6.1 Introducing superintuitionistic logics 162

6.1.1 A Hilbert calculus for intuitionistic logic 162

6.1.2 Semantics for intuitionistic logic 162

6.1.3 Superintuitionistic logics and the Gödel translation 165

6.2 The calculus DLI . 166

6.3 Structural rule extensions of DLI and DLS4 171

6.4 Displaying GD; recovering Cp . 177

6.5 Logics characterised by semantic conditions 178

6.5.1 Applications . 182

III Importing results from labelled sequent calculi 187

7 Labelled tree sequent calculi 189

7.1 Introduction . 190

7.1.1 THS, nested sequents and LTS 190

7.1.2 Basic definitions . 192

7.2 Maps between THS and LTS . 199

7.3 Poggiolesi’s CSGL and Negri’s G3GL 208

7.3.1 The calculus CSGL and TLCSGL 209

7.3.2 Negri’s calculus G3GL . 210

7.3.3 Results . 211

7.4 Generalised Hein’s scheme . 216

7.5 Conclusion . 224

8 Conclusion 227

A Additional results for Chapter 5 229

A.1 A model-theoretic proof of Lemma 5.7 229

A.2 M-formulae from primitive modal formulae 231

Bibliography 234

Chapter 1

Introduction

David Hilbert [47] initiated the branch of Logic called proof theory as a part of

his investigation into the foundation of mathematics. Hilbert’s original intention

was to prove the consistency of axiomatisations for mathematics by elementary

means. This agenda called for a complete formalisation of various parts of math-

ematics. In particular, mathematical proofs as well as the steps of reasoning

employed in a logical argument were to be formalised using a proof-system called

the Hilbert calculus [16]. The Hilbert calculus consists of a number of axioms

or ‘truths’ and some number of inference rules which specify how to obtain new

‘truths’ from existing ones. The point is that a proof in the Hilbert calculus (let

us call this a derivation) is a well-defined object, as opposed to the informal and

imprecise notion employed in ordinary discourse. Indeed, most real-world math-

ematical proofs fall into the latter category, for instance, due to the omission of

‘obvious’ steps and trivial cases. By precisely formalising the notion of proof, it

became possible to undertake a serious study of proofs, or proof theory. Although

Hilbert’s original aim of an elementary proof of consistency for mathematical the-

ories was shown to be unattainable due to Gödel’s [27] famous incompleteness

theorems, variations of this programme have been a driving force for the devel-

opment of proof theory [70]. Furthermore, the results and techniques of proof

theory have been fruitfully employed in areas such as automated reasoning [34]

and linguistics [14].

A drawback with the Hilbert calculus is the fact that derivations in this system

seem to lack a discernible structure, making them difficult to analyse. Moreover,

derivations in the Hilbert calculus are very different to the proofs written by

mathematicians in terms of the style of reasoning that is used. In response,

Gerhard Gentzen [25] introduced the system of natural deduction. As the name

1

2 CHAPTER 1. INTRODUCTION

suggests, the formal inference rules in this system mimic (formalise) the sort of

deductive reasoning that is employed in practice. In order to study the proper-

ties of this system, Gentzen then constructed yet another proof-system called the

sequent calculus. Gentzen’s Hauptsatz or main theorem for the sequent calculus

is the cut-elimination theorem which shows how to obtain a standard form for

derivations using a special type of sequent calculus called a cutfree sequent cal-

culus. Derivations in a cutfree sequent calculus have a particularly nice structure

making cutfree calculi an excellent tool for proof-theoretical study. In addition,

the cut-elimination theorem often leads to simple proofs of consistency and inter-

polation [70]. This work established the branch of study called structural proof

theory which is concerned with the structure and properties of proofs and proof-

systems. Structural proof theory focusses on syntactic structures, which means

that it is concerned primarily with the syntax of formal systems as opposed to

the interpretation or meaning that is attached to them.

Broadly speaking, since Logic is concerned with systems of reasoning (‘logics’),

a major objective of proof theory is to construct proof-systems that formalise

these logics. Cutfree sequent calculi have been presented for a large class of

logics. Nevertheless, there are logics that have defied treatment as a cutfree

(Gentzen) sequent calculus, for example the modal logic S5 [66, 20, 36, 56]. In

part, this is due to the fact that the proofs of cut-elimination tend to be highly

sensitive to minor alterations in the form of the inference rules — this is an

important consideration because new proof-systems are most easily constructed

by the addition or alteration of existing inference rules. Many variants/refinement

proof-systems have been proposed in an effort to address the shortcomings in

Gentzen’s sequent calculus, although it should be noted that each of these systems

has its own shortcomings. Examples of proof-systems that we will encounter in

this thesis include the display calculus [5] and labelled sequent calculi [24, 52].

Structural proof-theory encompasses the study of these proof-systems as well as

the logic-specific results that can be obtained through their analysis.

The work in this thesis broadly concerns the following areas:

(i) cut-elimination for some sequent calculi,

(ii) display calculi for modal and superintuitionistic logics,

(iii) importing results from labelled sequent calculi into other proof-systems.

The common theme is that all these areas pertain to structural proof-theory,

although it goes without saying that the solutions draw from techniques in other

1.1. CUT-ELIMINATION FOR SEQUENT CALCULI 3

fields as well.

In the following we provide a brief introduction to each problem and present

the contributions of this thesis. A historical introduction to each problem is given

in its respective chapter.

1.1 Cut-elimination for sequent calculi

Gentzen [25] introduced the sequent calculus as a tool for studying his system of

natural deduction for classical and intuitionistic logic. The sequent calculus is

built from ordered pairs (X, Y) (these ordered pairs are called sequents and are

written X ⇒ Y) where X and Y are sets or multisets (Gentzen originally used

ordered lists) of logical formulae. The logical formulae are constructed using vari-

ables and logical symbols such as ¬ (“not”), ∨ (“disjunction”), ∧ (“conjunction”)

and ⊃ (“implication”). The sequent X ⇒ Y is intended to correspond to the

formula
∧
X ⊃

∨
Y where the notation

∧
X (resp.

∨
Y) denotes the conjunction

(disjunction) of all formulae in X (Y). The sequent calculus typically consists of

(i) a set of (‘initial’) sequents and (ii) inference rules. Each inference rule specifies

how to obtain a new sequent from an appropriate set of sequents. A derivation

is obtained by repeatedly applying the inference rules beginning with the initial

sequents. A sequent is said to be derivable if there is a derivation concluding with

that sequent. It is usual to view a logic, under a suitable interpretation for the

variables and logical symbols, in terms of some set L of logical formulae. Then

a sequent calculus is said to present the logic L if the derivable sequents in the

calculus correspond exactly to the formulae in L.

One sequent calculus inference rule that receives special attention is the cut-

rule. In the following we use the standard convention of writing X,A to mean

the set (resp. multiset) X ∪ {A} for some set (multiset) X and formula A. The

cut-rule states that if X ⇒ Y,A and A,U ⇒ V are derivable sequents then so is

the sequent X,U ⇒ Y, V . In the usual notation for sequent calculi, the cut-rule

is presented as follows:

X ⇒ Y,A A,U ⇒ V
cut

X,U ⇒ Y, V

The sequents above the line are called the premises, the sequent below the line

is called the conclusion of the rule, and A is called the cut-formula. The name

“cut-rule” can be motivated by noting that in the above, the formula A has been

‘cut’ away from the premises to obtain the conclusion of the rule. The cut-rule is

4 CHAPTER 1. INTRODUCTION

analogous to the modus ponens rule in Hilbert calculi. Not surprisingly, the pres-

ence of this rule is helpful in establishing completeness results between a sequent

calculus and the corresponding Hilbert calculus. At the same time, the presence

of the rule in the sequent calculus is undesirable as well. One reason is that the

cut-rule causes a formula (when viewed downwards from the premises) to disap-

pear, violating the so-called subformula property which states that every formula

appearing in the premise of an inference rule appears as a subformula in the

conclusion. If every inference rule in the sequent calculus obeys the subformula

property, then every formula appearing in a derivation appears as a subformula

in the final sequent. This facilitates the possibility of constructing a derivation

(should it exist) for a given sequent by beginning with this sequent and exhaus-

tively applying the inference rules backwards, from conclusion sequent to premise

sequents — this approach is often called backward proof search. The presence of

the cut-rule makes it difficult to conduct backward proof search because we would

need to deduce the cut-formula first, in order to apply the cut-rule backwards,

and it is usually not clear how to do this.

One way to have our cake and eat it too is to show that it is always possi-

ble to eliminate instances of the cut-rule from a given derivation, transforming

the given derivation into a cutfree derivation of the same sequent. A syntactic

proof of cut-elimination, or syntactic cut-elimination for short, is a proof that it

is always possible via constructive transformation to eliminate the cut-rules in

a given derivation in order to obtain a cutfree derivation of the same sequent.

This is one of the most important results in the proof theory of a logic and the

existence of such a transformation is a highly desirable property for a sequent

calculus. The first such proof was given by Gentzen [25] who recognised the im-

portance of a constructive procedure in his celebrated Hauptsatz where syntactic

cut-elimination is presented for the classical and intuitionistic sequent calculi LK

and LJ respectively. From the onset it was noted that the cut-elimination result

is highly dependent on the form and structure of the rules in the sequent calculus.

Moreover, Gentzen observed that the use of sequents built from multisets rather

than sets can create further complications — in his proof of the Hauptsatz he

introduced a new multicut rule to handle the ensuing cases.

Let us expand on some of the consequences of the cut-elimination result. A

logic is inconsistent if it contains a false or ‘absurd’ statement. If some sequent

calculus presents this logic, then there must be a derivation of the absurd state-

ment. The cut-elimination theorem tells us that if there is a derivation of the

absurd, then there must be a cutfree derivation of the absurd. In practice, for

1.1. CUT-ELIMINATION FOR SEQUENT CALCULI 5

most sequent calculi, it is easy to check that there cannot be a cutfree proof of

the absurd, thus establishing consistency. Under these circumstances, the cut-

elimination result is at least as strong as consistency of the logic.

Gentzen’s original use of the cut-elimination result was to prove the nor-

malisation result for the natural deduction system for intuitionistic logic. The

correspondence between cut-elimination and normalisation has been extended to

many other logics. We have already noted that suitable cutfree sequent calculi

can be used for backward proof search.

If we interpret each formula in a sequent as a mathematical statement, then

an instance of the cut-rule in a derivation can be viewed as an occurrence of a

lemma within a mathematical proof. The syntactic cut-elimination theorem says

that whenever lemmata are employed in the proof of some statement there is a

constructive procedure for rewriting the proof in order to obtain a new proof,

containing no lemmata, of the same statement.

1.1.1 Cut-elimination for GL

We begin by looking at syntactic cut-elimination for provability logic GL. The

logic GL is obtained by the addition of Löb’s axiom �(�A ⊃ A) ⊃ �A to

the basic normal modal logic K. The history of syntactic cut-elimination for

GL is rather convoluted. In 1981, the first proof was presented by Leivant [42].

Valentini [71] found an error in that proof and presented a new proof of cut-

elimination. These proofs were presented for sequent calculi where the sequents

were built from sets as opposed to multisets. Subsequently Moen [51] claimed that

Valentini’s arguments break down when lifted to a sequent calculus for sequents

built from multisets. Because Moen used a non-constructive argument, it was not

possible to determine if the problem was with Valentini’s original proof, the proof

for a sequent calculus built from multisets, or if Moen’s claim was incorrect. The

resulting confusion and continued interest in the problem is reflected by the fact

that it has motivated several new solutions for a variety of different proof-systems

(see [8, 65, 52, 49, 58]), although none of these works address Moen’s claim.

Here, we successfully translate Valentini’s original set-based arguments for

cut-elimination to a sequent calculus built from multisets. A new transformation

is required to handle the contraction rules that need to be included in the calculus

to handle the transition from sets to multisets. Moreover, the transformation

needs to be stated precisely in order to prove that the induction measure justifying

the proof of cut-elimination is well-founded. Under these conditions, we show that

6 CHAPTER 1. INTRODUCTION

Valentini’s argument can be applied to a sequent built from multisets. Finally,

we have identified a specific error in Moen’s work. Thus this work lays to rest

the controversy surrounding Valentini’s cut-elimination for GL.

Aside from the cut-elimination, we describe also how to use the decision and

countermodel procedure for GL (Sambin and Valentini [64]) to obtain a new

decision procedure for intuitionistic propositional logic [16]. A novelty in this work

is the usage of proof-theoretic methods to prove that the resulting countermodel

has the persistence property of intuitionistic models.

1.1.2 Extending the cut-elimination result to Go

The logics Grz (Grzegorczyk’s logic [46]) and Go [44] can be obtained by the

addition to the basic modal logic K [7] of the axiom

�(�(A ⊃ �A) ⊃ A) ⊃ �A (1.1)

as well as the reflexivity axiom �A ⊃ A (for Grz) or the transitivity axiom

�A ⊃ ��A (for Go) Notice the similarity in form between Löb’s axiom and

the formula (1.1). In fact, the inference rules for sequent calculi for these logics

are very similar as well. This raises the obvious question — can we exploit the

similarity of the inference rules to obtain cut-elimination procedures for Grz and

Go? For Grz there is an existing proof of syntactic cut-elimination due to Borga

and Gentilini [9]. Indeed, the transformations for that proof bear a similarity to

the proof of cut-elimination for GL. However, no proof has been presented for

Go. In this work, we will fill this gap in the literature by presenting a proof of

cut-elimination for Go. We observe that the proof for Go is significantly more

complicated than the proofs for GL and Grz, and the transformations require

a greater generality and a deeper analysis of the derivation structures than the

proofs for the other logics.

1.2 Display calculi for modal and

superintuitionistic logics

Belnap’s [5] Display Calculus is a proof-system that is capable of capturing a

large class of logics. Roughly speaking, the display calculus can be obtained from

the Gentzen sequent calculus by augmenting the logical connectives with a set

of metalevel connectives (‘structural connectives’). Inference rules specify the

1.2. DISPLAY CALCULI FORMODAL AND SUPERINTUITIONISTIC LOGICS7

behaviour of these structural connectives as well as the logical connectives. Typ-

ically, the subformula property is enforced for inference rules introducing logical

connectives but not for inference rules dealing with structural connectives. This

lattitude with respect to structural connectives permits nice properties such as

the so-called display property, and the general cut-elimination theorem, which ap-

plies whenever the rules of the calculus satisfy some well-defined criteria. Indeed,

if we focus on extensions of a given display calculus via structural rules (these

are inference rules that do not contain logical connectives) then these criteria can

be verified directly. A logic that can be presented using suitable structural rule

extensions of the display calculus is said to be properly displayable.

Kracht [39] presented an elegant result characterising the axiomatic extensions

of the basic tense logic Kt that are properly displayable. Kracht also claimed an

analogous characterisation for axiomatic extensions of the basic modal logic K.

A counterexample to this claim has been suggested [80]. However, the validity of

the counterexample rests on the statement that the logic in question cannot be

expressed using a certain axiomatisation, and we are not aware of any existing

proof of this statement. Here, we show that the counterexample is indeed valid

by proving this non-trivial result. Next, we propose a new characterisation of ax-

iomatic extensions over K that are properly displayable. Although the complete

characterisation for properly displayable modal logics rests on a conjecture that

has yet to be proved1, even without this conjecture our work extends significantly

the class of modal logics that are properly displayable.

The logics between intuitionistic propositional logic and classical propositional

logic are called superintuitionistic logics [16]. It is well-known that the Gödel

translation [27] induces a map between the class of superintuitionistic logics and

modal logics. We apply our results to construct display calculi for superintuition-

istic logics that are axiomatised by formule of a certain syntactic form. We note

that this method is limited in scope due to the difficulty of expressing a given su-

perintuitionistic logic in the required syntactic form. Next, we utilise a semantic

characterisation of properly displayable modal logics and show how to construct

display calculi for superintuitionistic logics specified by suitable semantic frame

conditions. Using this technique we are able to properly display a large class of

superintuitionistic logics.

1M. Kracht has given a ‘proof’ for the conjecture, but we have shown that his proof is

incomplete. He completely agrees with our analysis regarding this problem and concedes that

it is not clear how to obtain the result: personal correspondence by email dated 13/Dec/2010.

8 CHAPTER 1. INTRODUCTION

1.3 Importing results from labelled

sequent calculi

Labelled sequent calculi [24, 52], tree-hypersequent calculi [57] and nested sequent

calculi [37, 11] are examples of variant proof-systems of the Gentzen sequent cal-

culus that have been studied in recent years. Here, we identify a subclass of

labelled sequent calculi called labelled tree sequent calculi and show how to con-

struct maps between labelled tree sequent, tree-hypersequent and nested sequent

calculi. These maps allow us to translate derivations faithfully between these sys-

tems. We can exploit this translation to answer a question posed as future work

by Poggiolesi [58] concerning the relationship between the tree-hypersequent cal-

culus CSGL for provability logic GL and the labelled sequent calculus G3GL [52]

for GL. In particular, this allows us to import results such as soundness and com-

pleteness for GL, and cut-admissibility from G3GL to CSGL.

Next we generalise a scheme by Hein [35] for constructing labelled tree sequent

calculi for modal logics axiomatised over K using 3/4 Lemmon-Scott formulae.

Hein has conjectured that the resulting calculi have cut-elimination but does not

present a proof. Here we show that cut-elimination holds for these calculi for

some concrete modal logics, by utilising existing results [12] for nested sequent

calculi. Although we do not yet have a general proof of cut-elimination, the work

here indicates how this problem can be phrased in terms of importing results

from suitable labelled sequent calculi into labelled tree sequent calculi.

1.4 Organisation of material

The thesis is organised as follows. In Chapter 2 we present cut-elimination for

GL. In Chapter 3 we present cut-elimination for Go. In Chapter 4 we introduce

some preliminary results in correspondence theory and introduce the display cal-

culus. In Chapter 5 we present the characterisation for display calculi for modal

and tense logics. In Chapter 6 we discuss how to construct display calculi for

superintuitionistic logics. Finally, in Chapter 7 we study how to import results

for labelled sequent calculi into labelled tree sequent calculi and other notational

variant systems. In Chapter 8 we present the Conclusion. The chapters have been

organised into Parts I, II and III. Each part is self-contained. Finally, to maintain

the flow of the text, certain proofs and results have been placed in Appendix A.

Part I

Cut-elimination for sequent

calculi

9

Chapter 2

Cut-elimination for provability

logic GL resolved

In this chapter, we first introduce the provability logic GL and discuss some

problems with existing proofs of cut-elimination for GL (Section 2.1). In Sec-

tion 2.2 we formally introduce the sequent calculus GLS together with some

basic definitions and terminology. Next, we introduce the technical device we

call the stub-derivation (Section 2.3.1). Informally, a stub-derivation is obtained

from a derivation τ by replacing one or more subderivations in τ with a stub

(’hole’). The stub-derivation will help us to model the changing derivation under

the cut-elimination transformations. We then prove invertibility results for the

logical rules of GLS (Section 2.3.2). In Section 2.4 we present the new proof of

cut-elimination.

In the final three sections we discuss extensions of this work. In Section 2.7 we

show that the cut-elimination argument can be adapted to handle a multiplicative

L⊃ rule instead of the additive L⊃ rule in GLS. Section 2.8 extends our work in a

different direction. We obtain a decision/countermodel construction procedure for

intuitionistic logic, building on a decision/countermodel construction procedure

for GL described in [64]. Finally, in Section 2.9 we discuss how the cut-elimination

procedure can be adapted to sequent calculi for some other logics bearing a similar

axiomatisation to GL. The final section serves as a lead-in to Chapter 3 where a

proof of cut-elimination for Go is presented.

11

12 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

2.1 Problems with cut-elimination for GL

The provability logic GL is obtained by adding Löb’s axiom �(�A ⊃ A) ⊃ �A

to the standard Hilbert calculus for propositional normal modal logic K [64].

Interpreting the modal operator �A as the provability predicate “A is provable in

Peano arithmetic”, it can be shown that GL is complete with respect to the formal

provability interpretation in Peano arithmetic (see [68]). For an introduction to

provability logic see [69].

In 1981, Leivant [42] proposed a syntactic proof of cut-elimination for a se-

quent calculus for GL. Valentini [71] soon described a counter-example to this

proof, proposing a more complicated proof for the sequent calculus GLSV for

GL. The calculus GLSV is a sequent calculus for classical propositional logic

together with a single modal rule GLR. Valentini’s proof appears to be the first

proof of cut-elimination for a sequent calculus for GL and relies on a complicated

transformation justified by a Gentzen-style induction on the degree of the cut-

formula and the cut-height, as well as a new induction parameter — the width

of a cut-formula. Roughly speaking, the width of a cut-instance is the number

of GLR rule instances above that cut which contain a parametric ancestor of the

cut-formula in their conclusion. However, Valentini’s proof is very brief, infor-

mal and difficult to check. For example, he only considers a cut-instance where

the cut-formula is left and right principal by the GLR rule (the Sambin Normal

Form), noting that “the presence of the new parameter [width] does not affect

the [remainder of the standard cut-elimination proof]” [71]. While it is true that

the standard transformations appropriately reduce the degree and/or cut-height,

he fails to observe that these transformations can sometimes increase the width

of lower cuts, casting doubt on the validity of the induction. A careful study of

the proposed transformation is required to confirm that the proof is not affected

(see Section 2.5).

Several other solutions for cut-elimination have been proposed. Borga [8]

presented one solution, while Sasaki [65] described a proof for a sequent calculus

very similar to GLSV , relying on cut-elimination for K4. Note that only Leivant

and Valentini used traditional Gentzen-style methods involving an induction over

the degree of the cut-formula and the cut-height.

All four authors used sequents X ⇒ Y where X and Y are sets, so these calculi

did not require a rule of contraction as there is no notion of a set containing an

element multiple times (unlike a multiset where the number of occurrences is

important). Thus the following instance of the L∧ rule is legal in GLSV even

2.1. PROBLEMS WITH CUT-ELIMINATION FOR GL 13

though it ‘hides’ a contraction on A ∧B:

A ∧B,A,X ⇒ Y
L∧

A ∧B,X ⇒ Y

From a syntactic viewpoint, it is more satisfying and formal to explicitly identify

the contractions that are ‘hidden’ in these set-based proofs of cut-elimination.

The appropriate formalisation to understand the reliance on contraction is to use

multisets. Gentzen [25] in his original proof of the Hauptsatz for the classical

sequent calculus LK, introduced a ‘multicut’ rule to deal with a complication

in the case of contractions above cut. Recent investigations into cut-elimination

(especially in structural proof-theory) recognise the fact that the multicut rule

combines the structural rules of contraction and cut. This is undesirable as it hin-

ders our ability to analyse the independent ‘effect’ of each rule. Syntactic proofs

of cut-elimination for classical logic without the use of additional rules such as

the multicut rule have appeared in the literature, for example see [77, 10, 6]. This

is despite the existence of numerous sequent calculi built from sets for classical

logic. Since a syntactic proof of cut-elimination for a calculus built from sets can

be used to induce cutfree derivations in the corresponding calculus, these works

indicate the independent proof-theoretical interest in how the cutfree derivations

are obtained. In particular, with syntactic cut-elimination, the interest is in direct

proofs of cut-elimination. Inducing a proof for calculi built from multisets from a

calculus built from sets is essentially equivalent to the use of the multicut rule and

hence this is considered unsatisfactory as a method of syntactic cut-elimination.

More broadly, we should note here that proof theory is concerned not just with

the logic, but also with specific proof calculi for the logic. Hence questions such

as the data structure of the sequent (lists, sets, multisets, for example), the form

of its rules (are the rules invertible? do they have the subformula property?), and

its properties (such as cut-elimination) are of great interest to the proof-theorist.

In the case of GL, it turns out that additional complications also arise when

formulating Valentini’s arguments in a multiset setting, for example, due to the

interplay between weakening and contraction rules (see Remark 2.16). Thus

the move to a proof of cut-elimination for sequents built from multisets is not

straightforward. Moen [51] attempted to lift Valentini’s set-based arguments to

obtain a proof for sequents built from multisets before concluding that this was

not possible. Specifically, he presents a concrete derivation ε containing cut, and

claims that a multiset formulation of Valentini’s argument does not terminate

when applied to ε. This claim has ignited the search for new proofs of purely

syntactic cut-elimination in a Gentzen-style multiset setting for GL.

14 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

In response, Negri [52] and Mints [49] proposed two different solutions. Negri

uses a non-standard multiset sequent calculus in which sequents are built from

multisets of labelled formulae of the form x : A, where A is a traditional formula

and x is an explicit name for a state in the frame semantics [16]. She shows

that contraction is height-preserving admissible in this calculus and uses this to

handle contractions above cut in her cut-elimination argument. In our view, the

use of semantic information in the calculus deviates from a purely proof theoretic

approach. Mints [49] solves the problem using a sequent calculus similar to the

multiset-formulation of GLSV , but does not specify how to handle the case of

contractions above cut.

Recently, Poggiolesi [58] presented a proof of syntactic cut-elimination for

a tree-hypersequent calculus for GL. A tree-hypersequent is built using some

number of (Gentzen) sequents that are ordered and nested using new meta-level

symbols ‘/’ and ‘;’, and yields a structure that can be read in terms of a tree.

In particular, the order of the sequents (as determined by the ‘/’, ‘;’ symbols)

is important. This contrasts with hypersequents [3] which are built from some

number of traditional sequents separated by ‘/’ where the order of the sequents

is not important. Poggiolesi claims that the tree-hypersequent calculus for GL

has all the advantages of Negri’s calculus and in addition does not make use of

any semantic elements. However, it appears that tree-hypersequents ‘hide’ the

labelling for frame states by making use of the ordering and nesting induced by

‘/’ and ‘;’. In other words, the reliance on the ordering of the sequents means

that tree-hypersequents contain similarly explicit semantic information, although

disguised through the use of less suggestive symbols.

So there are two issues to consider:

1. formalise “width” more precisely to clarify Valentini’s original definition,

and check whether it is a suitable induction measure, and

2. determine whether Valentini’s arguments can be used to obtain a purely

syntactic proof of cut-elimination in a multiset setting.

Our contribution is as follows: we have successfully translated Valentini’s set-

based arguments for cut-elimination to the corresponding sequent calculus built

from multisets. To this end, we have formalised the notion of parametric ancestor

and width to correspond intuitively with Valentini’s original definition. With this

formalisation we show that Valentini’s arguments can be applied in the multiset

setting, noting that although certain transformations may increase the width

2.2. BASIC DEFINITIONS AND NOTATION 15

of lower cuts, this does not affect the proof. In the case where the last rule

in either premise derivation of the cut-rule is a contraction on the cut-formula,

we avoid the multicut rule by using von Plato’s arguments [77] when the cut-

formula is not boxed, and a new argument for the case when the cut-formula is

boxed. Thus we obtain a purely syntactic proof of cut-elimination in a multiset

setting. We also believe that we have identified an error in Moen’s claim that

Valentini’s arguments (in a multiset setting) do not terminate. It appears that

Moen has not used a faithful representation of Valentini’s arguments for the

inductive case, but instead a transformation he titles Val-II(core) that is already

known to be insufficient [64]. We discuss this further in Section 2.6. Of course,

the incorrectness of Moen’s claim does not imply the correctness of Valentini’s

arguments in a multiset setting. Indeed, the whole point is that complications do

arise in the multiset setting, and that these have to be dealt with carefully.

We remind the reader that it is trivial to show that the cut-rule is redundant

for both set and multiset sequent calculus formulations for GL by proving that

the calculus without the cut-rule is sound and complete for the frame semantics

of GL. However, our purpose here is to resolve the claim about the failure of

syntactic cut-elimination based on Valentini’s arguments for the corresponding

sequent calculus built with multisets. A formalisation of the cut-elimination result

based on the proof presented here and using the proof assistant Isabelle appears

in Dawson and Goré [19].

The proof of cut-elimination presented in this chapter is based on our work

reported in [32].

2.2 Basic definitions and notation

We use the letters p, q, . . . to denote propositional variables. Formulae are defined

in the usual way [16] in terms of propositional variables, the logical constant ⊥
and the logical connectives ∧ (conjunction), ∨ (disjunction), ⊃ (implication) and

� (necessity, or in this context, provability). Formulae are denoted by A,B,

Multisets of formulae are denoted by X, Y, U, V,W,G and also as a list of comma-

separated formula enclosed in “〈” and “〉”. A formula A is said to be boxed if it

is of the form �B for some formula B and is not boxed otherwise. The relation

‘≡’ is used to denote syntactic equality. Let X be the multiset 〈A1, . . . , An〉. By

a slight abuse of notation, X,B denotes the multiset 〈A1, . . . , An, B〉 Also define

the multiset �X to be 〈�A1, . . . ,�An〉. Furthermore B ∈ X iff B ≡ Ai for some

16 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

Initial sequents: A⇒ A for each formula A

Logical rules:

X ⇒ Y,A
L¬

X,¬A⇒ Y
A,X ⇒ Y

R¬
X ⇒ Y,¬A

Ai, X ⇒ Y
L∧

A1 ∧ A2, X ⇒ Y
X ⇒ Y,A1 X ⇒ Y,A2

R∧
X ⇒ Y,A1 ∧ A2

A1, X ⇒ Y A2, X ⇒ Y
L∨

A1 ∨ A2, X ⇒ Y

X ⇒ Y,Ai
R∨

X ⇒ Y,A1 ∨ A2

X ⇒ Y,A B,X ⇒ Y
L⊃

A ⊃ B,X ⇒ Y
A,X ⇒ Y,B

R⊃
X ⇒ Y,A ⊃ B

Modal rule: �X,X,�A⇒ A
GLR�X ⇒ �A

Structural rules:

X ⇒ Y
LW

A,X ⇒ Y
X ⇒ Y

RW
X ⇒ Y,A

A,A,X ⇒ Y
LC

A,X ⇒ Y
X ⇒ Y,A,A

RC
X ⇒ Y,A

Cut-rule: X ⇒ Y,A A,U ⇒ W
cut

X,U ⇒ Y,W

Table 2.1: The sequent calculus GLS. Note: i ∈ {1, 2} in the rules L∧ and R∨.

1 ≤ i ≤ n. The negation of B ∈ X is denoted by B /∈ X. The notation (A)m or

Am denotes m comma-separated occurrence of A.

A sequent is a tuple (X, Y) of multisets X and Y of formulae and is written

X ⇒ Y . Sequents are denoted using S,S ′. The multiset X (resp. Y) is called the

antecedent (succedent). The multiset sequent calculus we use here is called GLS

(Table 2.1). For the logical and structural rules inGLS, the multisetsX and Y are

called the context. In the conclusion of each of these rules, the formula occurrence

not in the context is called the principal formula. This follows standard practice

(see [70]). For the GLR rule, each formula in �X,X,�A,A is called a principal

formula. The �A in the succedent of the conclusion of the GLR rule is called

the diagonal formula (and is of course boxed). In the cut-rule, the formula A is

called the cut-formula. A rule with one premise (resp. two premises) is called a

2.2. BASIC DEFINITIONS AND NOTATION 17

unary (binary) rule.

A binary rule where the context in both premises is required to be identical

is called an additive binary rule (eg: L∨, R∧). A binary rule where the context

in each premise need not be identical is called a multiplicative binary rule (eg:

cut). The term context-sharing (context-independent) is also used to refer to an

additive (multiplicative) rule (see [70]).

Note, we have deleted the initial sequent ⊥ ⇒ ⊥ and the ⊥-rule that appears

in GLSV . As observed in [69], it is not necessary to include the symbol⊥ although

its presence can be convenient from a semantic viewpoint. Since our interest here

is proof-theoretic we shall not require it. We have also replaced the multiplicative

L⊃ in GLSV with an additive version. As all the other logical rules in GLS are

additive, it seems appropriate to use an additive L⊃. In every other respect,

the inference rules in GLS have the identical form to the rules in the calculus

GLSV . We observe that the definitions and proofs in this paper apply, with slight

amendment, to a sequent calculus built from multisets that is obtained directly

from GLSV .

A derivation (in GLS) is defined recursively with reference to Table 2.1 as:

(i) an initial sequent A⇒ A for any formula A is a derivation, and

(ii) an application of a logical, modal, structural or cut-rule to derivations con-

cluding its premise(s) is a derivation.

This is the standard definition. Viewing a derivation as a tree, we call the root

of the tree the end-sequent of the derivation. If there is a derivation with end-

sequent X ⇒ Y we say that X ⇒ Y is derivable in GLS. Let
∧
X (

∨
Y) denote

the conjunction (disjunction) of all formula occurrences in X (Y). Interpreting

the sequent X ⇒ Y as the formula
∧
X⊃

∨
Y , from [64] we see that derivability

in GLS is sound and complete wrt GL.

We write {π}r1/ρX ⇒ Y to denote the following derivation, where ρ is a rule

with r premises:

π1 . . . πr ρ
X ⇒ Y

Intuitively, the above reads “from π1 to πr obtain X ⇒ Y via rule ρ”. We refer

to π1, . . . , πr as the premise derivations of ρ. If ρ is unary (binary) then r = 1

(r = 2). Rather than {π}1
1 and {π}2

1, we write, respectively, “π1” and “π1 π2”.

Let ρ be some rule-occurrence in a derivation τ . Then ρ(A) indicates that the

principal formula is A, while ρ∗(X) denotes some number (≥ 0) of applications

18 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

of ρ that make each formula occurrence (including multiple formula occurrences)

in the multiset X a principal formula. To identify a rule-occurrence in the text

we occasionally use subscripts, eg: GLR1, cut0.

A derivation τ is cut-free if τ contains no instances of the cut-rule. A cut-

instance is said to be topmost if its premise derivations are cut-free.

Definition 2.1 (n-ary GLR rule) Given a derivation τ , an instance ρ of the

GLR rule appearing in τ is n-ary if there are exactly n − 1 GLR rule instances

on the path between ρ and the end-sequent of τ .

Let GLR(n, τ) denote the number of n-ary GLR rules in τ . Next we define the

height, cut-height, and degree of a formula in the standard manner.

Definition 2.2 (height, cut-height, degree) The height s(τ) of a derivation

τ is the greatest number of successive applications of rules in it plus one. The

cut-height h of an instance of the cut-rule with premise derivations τ1 and τ2 is

s(τ1)+s(τ2). The degree deg(A) of a formula A is defined as the number of symbol

occurrences in A from {�,¬,∧,∨,⊃} plus one.

2.3 Technical devices and basic results

2.3.1 Generalising the notion of derivation

To formalise the notion of width we need a more general structure than a deriva-

tion. The structure we have in mind can be obtained from a derivation τ by

deleting a proper subderivation τ ′ in τ . We call this structure a stub-derivation.

To emphasise the point of deletion we use the annotation stub.

Formally a stub-derivation (in GLS) is defined recursively with reference to

Table 2.1 as follows:

(i) an initial sequent A⇒ A for any formula A is a stub-derivation, and

(ii) for any sequent S and stub-derivation π, each of

(a) stub/S (b) stub π/S (c) π stub/S

is a stub-derivation, and

(iii) an application of a logical, modal, structural or cut-rule to stub-derivations

concluding its premise(s) is a stub-derivation.

2.3. TECHNICAL DEVICES AND BASIC RESULTS 19

Viewing a stub-derivation τ as a tree, we call the root of the tree the end-sequent

of the stub-derivation (denoted ES(τ)). The leaves of the tree are called the top-

sequents. Clearly a derivation is a stub-derivation in which every top-sequent is

an initial sequent. Thus a stub-derivation generalises the notion of a derivation.

We use the term ‘stub-instance’ to refer to an occurrence of either stub/S or

stub π/S or π stub/S. An sstub-derivation (read: single stub-derivation) is a

stub-derivation containing exactly one stub-instance. We write d[stub] instead of

d, to remind the reader that the structure contains exactly one stub-instance.

Let d′ be a derivation with end-sequent S ′, let d[stub] be an sstub-derivation

with an occurrence of one of the following:

stub/S stub π/S π stub/S

and suppose that

S ′/ρS S ′ ES(π)/S ES(π) S ′/S

respectively is a legal instance of some logical or structural rule ρ. We say that

d[stub] and d′ are compatible and write d[stub]←[d′ to denote, respectively

d′ ρ
S

d′ π ρ
S

π d′ ρ
S

obtained by “attaching” the tree d′ to the tree d[stub] at the node stub under

rule ρ. We refer to ρ as a binding rule for d[stub] and d′.

By permitting formula occurrences in a (stub-)derivation to contain ∗ or ◦
decorations, we define an annotated (stub-)derivation. The forgetful map b·c
maps an annotated stub-derivation to the stub-derivation obtained by erasing all

∗ and ◦ decorations. Clearly b·c maps an annotated derivation to a derivation.

A transformed (stub-)derivation τ ′ is a (stub-)derivation that is obtained from

some existing (stub-)derivation τ by syntactic transformation. We write A◦n or

A∗n to mean n occurrences of the formula A◦ or A∗ respectively.

Formally a stub-derivation and an annotated stub-derivation are different

structures. Because these structures are very similar, for economy of space we will

introduce definitions and prove results for stub-derivations alone and note, when-

ever applicable, that the definitions and results can be extended to annotated

stub-derivations.

Example 2.3 Let us denote the sstub-derivation at below left by d[stub] and the

derivation at below right by d′:

20 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

stub
B ⇒ A ⊃ B A ⊃ B ⇒ A ⊃ B

L∨
B ∨ (A ⊃ B)⇒ A ⊃ B

B ⇒ B
LW

A,B ⇒ B

Observe that d[stub] has a stub-instance of type stub/S, with S ≡ B ⇒ A ⊃ B,

and d′ has endsequent S ′ ≡ A,B ⇒ B. Because S ′/S is an instance of R⊃, the

structures d[stub] and d′ are compatible. The derivation d[stub]←[d′ is:

B ⇒ B
LW

A,B ⇒ B
R⊃

B ⇒ A ⊃ B A ⊃ B ⇒ A ⊃ B
L∨

B ∨ (A ⊃ B)⇒ A ⊃ B

and the binding rule is R⊃.

Example 2.4 Let us denote the sstub-derivation at below left by d[stub] and the

derivation at below right by d′:

stub A ⊃ B ⇒ A ⊃ B
B ∨ (A ⊃ B)⇒ A ⊃ B

B ⇒ B
LW

A,B ⇒ B
R⊃

B ⇒ A ⊃ B

Observe that d[stub] has a stub-instance of type stub τ/S, with S ≡ B ∨ (A ⊃
B)⇒ A ⊃ B, and d′ has endsequent S ′ ≡ B ⇒ A ⊃ B.

Since S ′ A ⊃ B ⇒ A ⊃ B/S is an instance of L∨, the structures d[stub]

and d′ are compatible. The derivation d[stub] ←[d′ is identical to that obtained

in Example 2.3, although here the binding rule is L∨.

Definition 2.5 Let τ be a stub-derivation and G a formula multiset. The an-

tecedent operator ⊕ : stub-derivation × formula multiset 7→ stub-derivation is

defined as follows:

Case G = 〈〉: let τ ⊕G = τ

Case G 6= 〈〉: define τ ⊕G recursively on τ as follows

1. initial sequent: (A⇒ A)⊕G = (A⇒ A/LW
∗(G)A,G⇒ A)

2. stub-instance:

(a) (stub/X ⇒ Y)⊕G = (stub/X,G⇒ Y)

(b) (stub π/X ⇒ Y)⊕G = (stub π ⊕G/X,G⇒ Y)

(c) (π stub/X ⇒ Y)⊕G = (π ⊕G stub/X,G⇒ Y)

3. unary non-GLR rule: (π/X ⇒ Y)⊕G = (π ⊕G/X,G⇒ Y)

4. GLR rule: (π/GLRX ⇒ Y)⊕G = (π/GLRX ⇒ Y)/LW
∗(G)X,G⇒ Y

2.3. TECHNICAL DEVICES AND BASIC RESULTS 21

5. binary additive rule: (π1 π2/X ⇒ Y)⊕G = (π1 ⊕G π2 ⊕G/X,G⇒ Y)

6. cut-rule: (π1 π2/
cutX ⇒ Y)⊕G = (π1 ⊕G π2/

cutX,G⇒ Y).

That ⊕ maps into the set of stub-derivations follows by inspection of the defini-

tion. Notice that the recursion terminates at an initial sequent, stub-instance or

a GLR rule. The operator ⊕ will bind stronger that ←[.

Lemma 2.6 If d is a stub-derivation and G is a formula multiset, then d ⊕ G
is a stub-derivation. Furthermore, if d is in fact an sstub-derivation d[stub], then

d[stub]⊕G is an sstub-derivation.

Proof. The result follows immediately from Definition 2.5. Q.E.D.

Example 2.7 Refer to the sstub-derivation d[stub] in Example 2.3. If G is a

non-empty formula multiset, then d[stub]⊕G is the stub-derivation:

stub
B,G⇒ A ⊃ B

A ⊃ B ⇒ A ⊃ B
LW ∗(G)

A ⊃ B,G⇒ A ⊃ B
L∨

B ∨ (A ⊃ B), G⇒ A ⊃ B

By observation, we can confirm that d[stub]⊕G is a sstub-derivation as pre-

dicted by Lemma 2.6. Notice that d[stub]⊕G and d′ (from Example 2.3) are not

compatible, because there is no logical or structural inference rule that can take

us from the premise sequent A,B ⇒ B to the conclusion sequent B,G⇒ A ⊃ B.

Definition 2.5 can be extended in the obvious way to apply to annotated stub-

derivations. It is easy to verify that Lemma 2.6 holds under the uniform substi-

tution of the term “annotated (s)stub-derivation” for “(s)stub-derivation” in the

statement of the lemma.

Cut-elimination often involves tracing the “parametric ancestors” of the cut-

formula. The following definition uses the symbols ◦ and ∗ as annotations to help

trace the parametric ancestors.

Definition 2.8 (fC [·]: annotated derivation wrt C).

Let τ be a cut-free derivation with endsequent X ⇒ Y , and C a formula.

1. if C is not boxed then let fC [τ] = τ .

2. if C is boxed (C ≡ �B) and �B /∈ X then let f�B[τ] = τ .

22 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

3. if C is boxed (C ≡ �B) and �B ∈ X. Then τ must be a derivation of the

form �B ⇒ �B or {π}r1/ρX ′,�B ⇒ Y .

Set f�B[τ] as Φ�B[(�B)∗ ⇒ �B)] or Φ�B[{π}r1/X ′, (�B)∗ ⇒ Y] respec-

tively, where Φ�B (see Table 2.2 page 53) is defined on the class of cut-free

annotated derivations.

Observe that the annotation operator fC [·] is a total function mapping derivations

to annotated derivations.

Remark 2.9 Let τ be a derivation with endsequent X ⇒ Y . If �B ∈ X then

the formula occurrences (�B)◦ and (�B)∗ in f�B[τ] are each called a paramet-

ric ancestor of the formula occurrence �B ∈ X in the endsequent. Intuitively,

the annotation ◦ denotes the final parametric ancestor when tracing ancestors

upwards. That is, the �B is introduced at that point.

Definition 2.10 Define ∂◦(B, τ) for a formula B and an annotated derivation

τ , as the number of occurrences of the GLR rule in τ whose conclusion contains

an occurrence of the annotated formula B◦ in the antecedent.

Lemma 2.11 Let d[stub] be an annotated sstub-derivation and G a formula mul-

tiset. Then

(a) ∂◦(B, d[stub]⊕G) = ∂◦(B, d[stub])

(b) Let d′ be a derivation such that d[stub] and d′ are compatible. Then

∂◦(B, d[stub]←[d′) = ∂◦(B, d[stub]) + ∂◦(B, d′)

Proof.

(a) Because ∂◦(B, ·) counts the number of instances of the GLR rule with con-

clusion sequents containing the formula occurrence B◦, the result is an im-

mediate consequence of the fact that ⊕ does not introduce formulae into the

conclusion sequent of an instance of the GLR rule (see Definition 2.5(4)).

(b) By the definition of compatibility, the binding rule for d[stub] and d′ cannot

be GLR. Thus if an instance ρ of the GLR rule appears in d[stub]← [d′, then

ρ must appear in one of d[stub] or d′. Also, if an instance ρ of the GLR rule

appears in either d[stub] or d′, then ρ must appear in d[stub]←[d′. The result

follows immediately.

2.3. TECHNICAL DEVICES AND BASIC RESULTS 23

Q.E.D.

Remark 2.12 Lemma 2.11(a) holds even if G contains decorated formulae.

Definition 2.13 (width) Let cut0 be a topmost cut as shown below:

{π}r1 ρ
X ⇒ Y,B

{σ}s1
B,U ⇒ W

cut0X,U ⇒ Y,W

Then, the width of cut0 is defined as:

width(cut0) =

∂◦(B, fB[π1]) if ρ = GLR (so {π}r1 = π1)

GLR(2, {π}r1/X ⇒ Y,B) otherwise

Remark 2.14 (i) The width has been defined only for a topmost cut as this

context is sufficient for our purposes.

(ii) width(cut0) is independent of the right premise derivation of cut0.

Example 2.15 Let us calculate width(cut0) in the following derivation:

{π}r1
�C,C,��B,�B,�B ⇒ B

GLR
�C,��B ⇒ �B

{σ}s1
�D ⇒ �B

LW
�D,��B ⇒ �B

L∨
�C ∨ �D,��B ⇒ �B

LW
�(�C ∨ �D),�C ∨ �D,��B ⇒ �B

GLR
�(�C ∨ �D)⇒ ��B ��B,U ⇒W

cut0
�(�C ∨ �D), U ⇒W

Writing the left premise derivation of cut0 as µ/�(�C ∨ �D) ⇒ ��B, we

get width(cut0) = ∂◦(��B, f��B[µ]) where f��B[µ] is

{π}r1
�C,C,��B,�B,�B ⇒ B

GLR
�C, (��B)◦ ⇒ �B

{σ}s1
�D ⇒ �B

LW
�D, (��B)◦ ⇒ �B

L∨
�C ∨ �D, (��B)∗ ⇒ �B

LW
�(�C ∨ �D),�C ∨ �D, (��B)∗ ⇒ �B

Because f��B[µ] contains only one GLR rule whose conclusion contains the

formula occurrence (��B)◦ in its antecedent, we have width(cut0) = 1.

Remark 2.16 Let µ be the left premise derivation of cut0 from Definition 2.13.

Valentini [71, pg 473] defines the width as the cardinality of GLR(2), where GLR(2)

in our notation is the set of all instances ρ of GLR such that:

24 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

(a) ρ is a 2-ary GLR rule in µ, and

(b) B is the diagonal formula of every 1-ary GLR rule in µ below ρ, and

(c) B is not introduced by weakening below ρ.

Applying Valentini’s original definition to the following derivation in GLS we

compute the width of cut0 as 0 (due to condition (c)):

{π}r1
��X,�X,�X,X,��C,�C,�C ⇒ C

GLR
��X,�X,��C ⇒ �C

LW (��C)
��X,�X,��C,��C ⇒ �C

LC(��C)
��X,�X,��C ⇒ �C

GLR
��X ⇒ ��C ��C,U ⇒W

cut0��X,U ⇒W

Using the definition in this paper we have width(cut0) = 1. Our definition

considers the interplay of the weakening and contraction rules, and is required

to obtain the cut-elimination result for GLS. In GLSV however, there are no

contraction rules so Valentini’s original definition suffices.

Thus Moen is certainly justified in asking whether Valentini’s arguments can

be lifted to multiset-based sequents. However, we will see that Moen’s claims about

failure of cut-elimination in the new setting are incorrect.

2.3.2 Invertibility of the logical rules for GLS

An inference rule in the sequent calculus is called invertible if the premise se-

quents are derivable whenever the conclusion sequent is derivable. We say that a

transformation is height-preserving if the height of the transformed derivation is

≤ the height of the original derivation. In the following, we write A1, . . . , An to

mean an occurrence of a formula from A1, . . . , An, when we do not wish to spec-

ify which formula it is. For example, in the sequent A,B,X ⇒ Y , the formula

occurrence A,B could be either A or B. If this occurrence appears as an initial

sequent A,B ⇒ B, for example, then it is possible to deduce that the occurrence

A,B refers to the formula occurrence B.

The following result is a generalised version of the invertibility result for the

logical rules in GLS, in the sense that we select some number of occurrences of a

formula whose main connective is non-modal, and show how to ‘decompose’ those

occurrences into the constituent subformulae. In the statement of Lemma 2.17, if

we set m = 0 we obtain an invertibility result in the ‘flavour’ of von Plato’s [77]

2.3. TECHNICAL DEVICES AND BASIC RESULTS 25

proof for the calculusG0c for classical logic. Our statement differs slightly because

we use the ‘projective’ form of the rules for L∧ andR∨ so there is a single principal

formula in the premise sequent of these rules — rather than corresponding non-

projective form found in von Plato, shown below:

A,B,X ⇒ Y
A ∧B,X ⇒ Y

X ⇒ Y,A,B
X ⇒ Y,A ∨B

Lemma 2.17 (general invertibility for logical rules) The statements that fol-

low concern derivations in GLS. For all m ≥ 0,

(i) If (¬A)m+1, X ⇒ Y is derivable, then X ⇒ Y,Am+1 is derivable.

(ii) If X ⇒ Y, (¬A)m+1 is derivable, then Am+1, X ⇒ Y is derivable.

(iii) If (A ∧ B)m+1, X ⇒ Y is derivable, then Al, Bm−l, A,B,A ∧B,X ⇒ Y

is derivable for some l, 0 ≤ l ≤ m. Moreover, the transformations are

height-preserving.

(iv) If X ⇒ Y, (A ∧ B)m+1 is derivable, then X ⇒ Y,Am+1 and X ⇒ Y,Bm+1

are derivable. Moreover, the transformations are height-preserving.

(v) If (A ∨ B)m+1, X ⇒ Y is derivable, then Am+1, X ⇒ Y and Bm+1, X ⇒ Y

are derivable. Moreover, the transformations are height-preserving.

(vi) If X ⇒ Y, (A ∨ B)m+1 is derivable, then X ⇒ Y,Al, Bm−l, A,B,A ∨B is

derivable for some l, 0 ≤ l ≤ m. Moreover, the transformations are height-

preserving.

(vii) If (A ⊃ B)m+1, X ⇒ Y is derivable, then X ⇒ Y,Am+1 and Bm+1, X ⇒ Y

are derivable.

(viii) If X ⇒ Y, (A ⊃ B)m+1 is derivable, then Am+1, X ⇒ Y,Bm+1 is derivable.

Proof. Let us illustrate the proof for (iii) and (vii). The other cases are similar.

Proof of (iii). Suppose that τ is a derivation of (A ∧ B)m+1, X ⇒ Y . Proof

by induction on the height of τ . We need to obtain a derivation of

Al, Bm−l, A,B,A ∧B,X ⇒ Y

for some l such that 0 ≤ l ≤ m.

First suppose that τ is the initial sequent A ∧ B ⇒ A ∧ B. Then there is

nothing to do since this is already in the form A,B,A ∧B ⇒ A ∧ B, where

A,B,A ∧B is an occurrence of A ∧B.

26 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

Next, consider when A∧B is not principal in the lowest rule ρ in τ (we show

when ρ is unary, the binary case is similar). Then τ is of the form:

...
(A ∧B)m+1, X ′ ⇒ Y ′

ρ
(A ∧B)m+1, X ⇒ Y

Notice that it must be the case that ρ 6= GLR, since A ∧ B cannot occur

in the conclusion sequent of a GLR rule as every formula in that sequent is

necessarily boxed. Also, we do not exclude the possibility that the sequent

(A ∧ B)m+1, X ′ ⇒ Y ′ is an initial sequent. Denote the height of this deriva-

tion by h+ 1, so the height of the premise derivation of ρ is h. By the induction

hypothesis we obtain a derivation of Al, Bm−l, A,B,A ∧B,X ′ ⇒ Y ′ of height h,

for some l, 0 ≤ l ≤ m. Applying the rule ρ to the this sequent we obtain a

derivation of Al, Bm−l, A,B,A ∧B,X ⇒ Y of height h+ 1 as required.

Finally, suppose that A∧B is principal in the lowest rule ρ in τ . If ρ = L∧(A)

(the case when ρ = L∧(B) is similar) then τ has the form

...
A, (A ∧B)m, X ⇒ Y

L∧
(A ∧B)m+1, X ⇒ Y

Denote the height of this derivation by h + 1. If m = 0, then the sequent

A, (A ∧ B)m, X ⇒ Y is simply A,X ⇒ Y and this is the required derivation

so there is nothing more to do. Else, if m > 0, by the induction hypothesis we

obtain a derivation of A,Al, Bm−l−1, A,B,A ∧B,X ⇒ Y of height h, for some l,

0 ≤ l ≤ m − 1. This is a derivation of the required form of height h, so there is

nothing more to do. The remaining possibility to consider is when ρ = LC(A∧B).

Then τ has the following form

{π}r1
(A ∧B)m+2, X ⇒ Y

LC(A ∧B)
(A ∧B)m+1, X ⇒ Y

Denote the height of this derivation by h + 1. By the induction hypothesis

we obtain a derivation of Al, Bm+1−l, A,B,A ∧B,X ⇒ Y of height h, where

0 ≤ l ≤ m+ 1. If l = 0 then we can apply the rule LC(B) to obtain the sequent

Bm, A,B,A ∧B,X ⇒ Y . Otherwise apply the rule LC(A) to obtain the sequent

Al−1, Bm+1−l, A,B,A ∧B,X ⇒ Y . In each case, the derivation is of the required

form and has height h+ 1 so we are done.

2.3. TECHNICAL DEVICES AND BASIC RESULTS 27

Proof of (vii). Suppose that τ is a derivation of (A ⊃ B)m+1, X ⇒ Y . Proof

by induction on the height of τ . We will show how to obtain a derivation of

Bm+1, X ⇒ Y . The transformations to X ⇒ Y,Am+1 are analogous.

If τ is the initial sequent A ⊃ B ⇒ A ⊃ B then the following derivation

suffices:

B ⇒ B LW (A)
A,B ⇒ B

R⊃
B ⇒ A ⊃ B

Incidentally, notice that this transformation is not height-preserving.

Next, consider when A ⊃ B is not principal in the last rule ρ in τ (we show

when ρ is unary, the binary case is similar). Then τ is of the form:

{π}r1
(A ⊃ B)m+1, X ′ ⇒ Y ′

ρ
(A ⊃ B)m+1, X ⇒ Y

Notice that it must be the case that ρ 6= GLR. By the induction hypothesis

we obtain a derivation of Bm+1, X ′ ⇒ Y ′. Applying the rule ρ to the sequent

Bm+1, X ′ ⇒ Y ′ we obtain a derivation of Bm+1, X ⇒ Y as required.

Finally, suppose that A ⊃ B is principal in the final rule ρ in τ . If is the case

that ρ = L⊃(A ⊃ B) then τ has the form

{π}r1
(A ∧B)m, X ⇒ Y,A

{σ}s1
B, (A ∧B)m, X ⇒ Y

L⊃
(A ⊃ B)m+1, X ⇒ Y

If m = 0, then the sequent B, (A ⊃ B)m, X ⇒ Y is simply B,X ⇒ Y so there is

nothing more to do. Else, if m > 0, by the induction hypothesis applied to the

right premise of L⊃ we obtain a derivation of Bm+1, X ⇒ Y . Once again, this is

the required derivation so there is nothing more to do. The remaining possibility

to consider is when ρ = LC(A ⊃ B). Then τ has the form

{π}r1
(A ⊃ B)m+2, X ⇒ Y

LC(A ⊃ B)
(A ⊃ B)m+1, X ⇒ Y

By the induction hypothesis we obtain a derivation of Bm+2, X ⇒ Y . Now apply

the rule LC(B) to obtain a derivation of Bm+1, X ⇒ Y as required. Q.E.D.

28 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

Note that the above results are not height-preserving in general. However, they

are height-preserving for (iii)—(vi). This fact will crucial for obtaining the cut-

elimination result. If we use the non-projective form of the rules for L∧ and R∨
then the corresponding transformations will no longer be height-preserving.

Embedded inside the induction in the above proof is the notion of tracing the

formula A • B (for • ∈ {∧,∨,⊃}) or ¬A upwards from the end-sequent. The

presence of the GLR rule does not cause a problem when tracing this formula

as it is impossible to encounter, along this path, a GLR rule instance before the

introduction rule for the principal connective in A • B or ¬A. This is because

every formula in the conclusion sequent of a GLR rule is necessarily boxed.

Note that proving the result for m ≥ 0 rather than just m = 0 actually

simplifies matters. For example, in the proof of item (vii) when the last rule ρ

in the derivation is LC(A ⊃ B), we applied the induction hypothesis directly. In

contrast, von Plato has to explicitly trace the formula A ⊃ B upwards from the

endsequent in order to obtain the result.

2.4 Cut-elimination for GLS

The main task for cut-elimination is to show that if �X,X,�B ⇒ B is cut-free

derivable in GL, then there is a cut-free derivation of �X,X ⇒ B. This is the

content of Lemma 2.20. The cut-elimination theorem follows immediately from

this lemma.

Before proceeding with the technical details let us provide an outline of the

proof of Lemma 2.20. Let τ be a cut-free derivation of �X,X,�B ⇒ B. Then

we define the width n(τ) as the number of occurrences of the following schema,

where no GLR rule occurrences appear between GLR1 and the endseqent.

�G,G, (�B)n, Bn,�C ⇒ C
GLR1�G, (�B)n ⇒ �C

...
�X,X,�B ⇒ B

If n(τ) = 0 this indicates that the �B formula occurrence in the endsequent

of τ has either been introduced by LW (�B) or can be traced to the initial

sequent �B ⇒ �B. In the former case, the weakening rule is deleted. In the

latter case, the required result can be obtained by substituting the derivation

τ/GLR�X ⇒ �B in place of the initial sequent.

2.4. CUT-ELIMINATION FOR GLS 29

If n(τ) = k + 1, each occurrence of the above schema in τ is transformed so

that the GLR1 rule occurrence is deleted. Observe that the conclusion of the

GLR1 rule can almost be obtained by the derivation

�C ⇒ �C LW (�G,�B)
�G,�B,�C ⇒ �C

There is now an unwanted �C formula occurrence in the antecedent that has

to be removed by the appropriate transformations. After k + 1 such transforma-

tions we obtain the base case.

We are now ready to formalise this argument. We begin with the following

decomposition lemma.

Lemma 2.18 Let τ be a cut-free derivation of the form {π}r1/ρX,�B ⇒ Y and

suppose that ∂◦(�B, f�B[τ]) > 0. If

(i) ρ = GLR then f�B[τ] = {π}r1/GLRX, (�B)◦ ⇒ Y .

(ii) ρ 6= GLR then we can write the annotated derivation f�B[τ] in the form

d[stub]←[d′ such that

∂◦(�B, d[stub]← [d′) = ∂◦(�B, d[stub]) + ∂◦(�B, d′).

Furthermore, denote the endsequent of d′ as U ⇒ W . Then for any mul-

tiset M , and any derivation d′′ with endsequent U,M ⇒ W , we have that

d[stub]⊕M and d′′ are compatible.

Proof. If ρ = GLR then it follows immediately from Definition 2.8 that f�B[τ] =

{π}r1/GLRX, (�B)◦ ⇒ Y .

Now suppose that ρ 6= GLR.

Because ∂◦(�B, f�B[τ]) > 0, f�B[τ] must have the following form, where

(1) n ≥ 1, and

(2) �G contains no annotated formulae, and

(3) GLR1 is a 1-ary GLR rule in f�B[τ], and

(4) η may contain branches:

{π′}s1
�G,G, (�B)n, Bn,�A⇒ A

GLR1
�G, (�B)◦n ⇒ �A

η

X, (�B)∗ ⇒ Y

30 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

We remind the reader that since η is allowed to contain branches, the last

rule in η may be either unary or binary. We can identify the annotated deriva-

tion f�B[τ] with d[stub] ← [d′ where d[stub] (below left) is an annotated sstub-

derivation and d′ (below right) is an annotated derivation:

stub
η

X, (�B)∗ ⇒ Y

{π′}s1
�G,G, (�B)n, Bn,�A⇒ A

GLR
�G, (�B)◦n ⇒ �A

From Lemma 2.11(b) we have

∂◦(�B, f�B[τ]) = ∂◦(�B, d[stub]←[d′) = ∂◦(�B, d[stub]) + ∂◦(�B, d′).

Write the endsequent of d′ as U ⇒ W . Since GLR1 is a 1-ary GLR rule in

f�B[τ] the path (through η) between the leaf stub in d[stub] and the endsequent

X, (�B)∗ ⇒ Y of d[stub] contains no GLR rule instances. From Definition 2.5

and the compatibility of d[stub] and d′, for any multiset M and any derivation d′′

with endsequent U,M ⇒ W , it follows that d[stub] ⊕M and d′′ are compatible.

Q.E.D.

Definition 2.19 (rank of a cut) For a topmost cut cut0 the rank rk(cut0) is

the triple (d, n, h) where d is the degree of the cut-formula, n is the width of cut0,

and h is the cut-height of cut0.

Lemma 2.20 Let τ be the following derivation where cut0 is a topmost cut:

{π}r1
�X,X,�B ⇒ B

GLR
�X ⇒ �B

{σ}s1
�B,U ⇒W

cut0�X,U ⇒W

and suppose (?): for any derivation δ, every topmost cut in δ with rank <

rk(cut0) is eliminable.

Then there is a transformed cut-free derivation τ ′ of X,�X ⇒ B.

Proof. Let µ denote the subderivation {π}r1/�X,X,�B ⇒ B of τ .

Case width(cut0) = 0 : Hence ∂◦(�B, f�B[µ]) = 0. Then the annotated

derivation f�B(µ) must have final parametric ancestors of the form (�B)◦ ⇒ �B

or X ′ ⇒ Y ′/LW (�B)X ′, (�B)◦ ⇒ Y ′ only.

Let �B(∗|◦) stand for an annotated occurrence of �B where the annotation

is not known. Consider the substitution (f�B[µ]){�B(∗|◦) := �X} obtained by

replacing every occurrence

2.4. CUT-ELIMINATION FOR GLS 31

1. of (�B)∗ with �X, and

2. of (�B)◦ ⇒ �B with a derivation of �X ⇒ �B (the left premise derivation

of cut0), and

3. of X ′ ⇒ Y ′ LW (�B)
X ′, (�B)◦ ⇒ Y ′

with X ′ ⇒ Y ′ LW ∗(�X)
X ′,�X ⇒ Y ′

As the endsequent of f�B[µ] was �X,X, (�B)∗ ⇒ B we have that

(f�B[µ]){�B(∗|◦) := �X}

is a cut-free derivation of �X,X,�X ⇒ B. Applying repeated left contraction

gives a cut-free derivation of �X,X ⇒ B.

Case width(cut0) > 0 : Hence ∂◦(�B, f�B[µ]) > 0. First suppose that the

last rule in µ is GLR. Then µ must be of the form:

{π′}s1
��X ′,�X ′,�X ′, X ′,��A,�A,�A⇒ A

GLR
��X ′,�X ′,��A⇒ �A

where X = �X ′ and B ≡ �A.

Then the following is a derivation of �X,X ⇒ B, with deg(cut1) = deg(cut0)

and width(cut1) = 0 < width(cut0):

�A⇒ �A LW ∗(A,��A)
�A,A,��A⇒ �A

GLR
�A⇒ ��A

{π′}s1
��X ′,�X ′,�X ′, X ′,��A,�A,�A⇒ A

cut1
�A,��X ′,�X ′,�X ′, X ′,�A,�A⇒ A

LC∗(�A)
��X ′,�X ′,�X ′, X ′,�A⇒ A

GLR
��X ′,�X ′ ⇒ �A

The required derivation is obtained by using (?) to eliminate cut1.

If the last rule in µ is not GLR, we can write f�B[µ] as d[stub] ←[d′, where

d[stub] and d′ (below left and right respectively) are constructed as in the proof of

Lemma 2.18, so n ≥ 1, �G does not contain annotated formulae, and the path in

d[stub] through η from the top-sequent stub to the end-sequent �X,X, (�B)∗ ⇒
B contains no occurrence of the GLR rule:

stub
η

�X,X, (�B)∗ ⇒ B

{π′}t1
�G,G, (�B)n, Bn,�A⇒ A

GLR
�G, (�B)◦n ⇒ �A

By Lemma 2.18, ∂◦(�B, d[stub]←[d′) = ∂◦(�B, d[stub]) + ∂◦(�B, d′).

Let d′′ be the annotated derivation

32 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

�A⇒ �A LW ∗(A,�G, (�B)n)
A,�A,�G, (�B)◦n ⇒ �A

Then d[stub] ⊕ 〈A,�A〉 and d′′ are compatible (Lemma 2.18). Note that

∂◦(�B, d′) = 1 and ∂◦(�B, d′′) = 0. Let Λ11 be the derivation:

bd[stub]⊕ 〈A,�A〉 ←[d′′c
GLR

�A,�X ⇒ �B
{π}r1

�X,X,�B ⇒ B
cut1(�B)

�A,�X,�X,X ⇒ B
LC∗

�A,�X,X ⇒ B

Let Λ12 be the derivation

bd[stub]⊕ 〈A,�A〉 ←[d′′c
GLR

�A,�X ⇒ �B
{π′}t1

LC∗(Bn−1, (�B)n−1)
�G,G,�B,B,�A⇒ A

cut2(�B)
�A,�A,�X,�G,G,B ⇒ A

LC
�A,�X,�G,G,B ⇒ A

Consider the derivation Λ1:

Λ11 Λ12 cut3(B)
�A,�X,X,�A,�X,�G,G,B ⇒ A

LC∗
�A,�X,X,�G,G,⇒ A

GLR
�X,�G⇒ �A

For i ∈ {1, 2}, observe that deg(cuti) = deg(cut0). Furthermore,

width(cuti) = ∂◦(�B, f�B(bd[stub]⊕ 〈A,�A〉 ←[d′′c)) Def. of width

= ∂◦(�B, d[stub]⊕ 〈A,�A〉 ←[d′′) By inspection

= ∂◦(�B, d⊕ 〈A,�A〉[stub]) + ∂◦(�B, d′′) Lemma 2.11(b)

< ∂◦(�B, d⊕ 〈A,�A〉[stub]) + ∂◦(�B, d′)

= ∂◦(�B, d[stub]) + ∂◦(�B, d′) Lemma 2.11(a)

= ∂◦(�B, d[stub]←[d′) Lemma 2.11(b)

= width(cut0)

Because deg(cuti) = deg(cut0) and the premises of both cut1 and cut2 are cut-

free, by appealing twice to (?) we can in turn eliminate cut1 and cut2. In the

resulting derivation, since deg(cut3) < deg(cut0) we can eliminate cut3 by (?).

We thus obtain a cut-free derivation Λ2 of �X,�G⇒ �A.

Let Λ3 be the annotated derivation

f�B

[
Λ2 LW ∗((�B)n)

�X,�G,�B ⇒ �A

]
Clearly ∂◦(�B,Λ3) = 0. Furthermore, by Lemma 2.18, d[stub] ⊕ �X and

Λ3 are compatible. Recall that b·c is the forgetful map. The endsequent of

b(d[stub]⊕X)←[Λ3c is thus �X,�X,X,�B ⇒ B. Consider the derivation Λ4:

2.4. CUT-ELIMINATION FOR GLS 33

b(d[stub]⊕�X)← [Λ3c
LC∗(�X)

�B,�X,X ⇒ B
GLR

�X ⇒ �B
{π}r1

�X,X,�B ⇒ B
cut4(�B)

X,�X,�X ⇒ B
LC∗(�X)

X,�X ⇒ B

By a similar calculation to the above we obtain width(cut4) < width(cut0).

Because deg(cut4) = deg(cut0) and the premises of cut4 are cut-free, appealing to

(?) we can eliminate cut4. We thus obtain a cut-free derivation of X,�X ⇒ B

as required. Q.E.D.

Without loss of generality it suffices to consider a derivation concluded by a

cut-rule with cut-free premise derivations.

Theorem 2.21 (Cut-elimination) Let τ be a derivation concluded by an in-

stance cut0 of the cut-rule with cut-free premise derivations. Then there is a

transformed cut-free derivation τ ′ with identical endsequent.

Proof. Induction on the rank (d, n, h) of cut0 under the standard lexicographic

ordering. We say that the cut-formula is left principal if an occurrence of the

cut-formula in the succedent of the left premise is a principal formula. The term

right principal is defined analogously. This follows standard practice.

1 Cut with an initial sequent as premise. This is the base case. The

transformations are standard (see [54, 70]).

2 Cut with neither premise an initial sequent.

(a) Cut-formula is left and right principal.

First suppose that the cut-formula is boxed. There are several possibilities:

(i) the cut-formula is left and right principal by the GLR rule. The derivation

must then be in SNF:

{π}r1
�X,X,�B ⇒ B

GLR
�X ⇒ �B

{σ}s1
�B,�U,B,U,�C ⇒ C

GLR
�B,�U ⇒ �C

cut0�X,�U ⇒ �C

The induction hypothesis implies that for any derivation δ, any topmost cut

in δ with rank < rank(cut0) is eliminable. This is precisely condition (?) in

Lemma 2.20. Hence we can obtain a cut-free derivation of �X,X ⇒ B. Consider

the derivation

�X,X ⇒ B

{π}r1
�X,X,�B ⇒ B

GLR
�X ⇒ �B

{σ}s1
�B,�U,B,U,�C ⇒ C

cut1�X,�U,B,U,�C ⇒ C
cut2�X,X,�X,�U,U,�C ⇒ C

GLR
�X,�U ⇒ �C

34 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

Observe that rk(cut1) = (d, n, h − 1). By the induction hypothesis we can

eliminate cut1. In the resulting derivation, since deg(cut2) < d, the result follows

from another application of the induction hypothesis.

(ii) the cut-formula �B is left principal by the GLR rule and right principal

by LC(�B).

Then τ is as below where both premises of cut0 are cut-free and m ≥ 0:

{π}r1
�X,X,�B ⇒ B

GLR
�X ⇒ �B

{σ}s1 ρ
(�B)m+2, U ⇒W

LCm+1(�B)
�B,U ⇒W

cut0�X,U ⇒W

In general ρ need not be the GLR rule. However if ρ 6= GLR then either (1)

ρ = LW (�B) and we delete ρ and the LC(�B) rule that follows, or (2) �B is

not principal by ρ.

In the former case the result is immediate. In the latter case the result is

obtained by applying ρ after cut0 (as opposed to before the LCm+1(�B) rules as

it currently stands) and invoking the induction hypothesis. Observe that this is

possible even if ρ is a binary rule.

If ρ = GLR it follows that U ≡ �V and W ≡ �C for some multiset V and

formula C, and s = 1 and σ1 ≡ {σ′}s
′

1 /(�B)m+2, Bm+2,�V, V,�C ⇒ C. Thus τ

must be of the form

{π}r1
�X,X,�B ⇒ B

GLR
�X ⇒ �B

{σ′}s′1
(�B)m+2, Bm+2,�V, V,�C ⇒ C

ρ = GLR
(�B)m+2,�V ⇒ �C

LCm+1(�B)
�B,�V ⇒ �C

cut0�X,�V ⇒ �C

A derivation of �X,X ⇒ B is obtained as in (i) using Lemma 2.20. Consider

the derivation:

�X,X ⇒ B

�X ⇒ �B

{σ′}s′1
(�B)m+2, Bm+2,�V, V,�C ⇒ C

LCm+1(�B)
�B,Bm+2,�V, V,�C ⇒ C

cut1
�X,Bm+2,�V, V,�C ⇒ C

LCm+1(B)
�X,B,�V, V,�C ⇒ C

cut2�X,X,�X,�V, V,�C ⇒ C
LC∗

�X,X,�V, V,�C ⇒ C
GLR

�X,�V ⇒ �C

2.4. CUT-ELIMINATION FOR GLS 35

Now cut1 has identical degree and width compared to cut0, and smaller cut-

height. Hence, we can eliminate cut1 using the induction hypothesis. In the

resulting derivation deg(cut2) < d so the result follows from the induction hy-

pothesis.

(iii) the cut-formula �B is left principal by RC(�B) and right principal by

the GLR rule.

Then τ has the following form where both premises of cut0 are cut-free:

{π}r1
X ⇒ Y,�B,�B

RC1X ⇒ Y,�B
σ1

GLR
�B,�U ⇒ �C

cut0
X,�U ⇒ Y,�C

Because the conclusion of (any) GLR rule has exactly one formula in the

succedent, it follows that at least one of the �B formula occurrences in the

succedent of the premise of RC1 can be traced upwards in {π}r1 to RW (�B) rule

application(s). In particular, when tracing upwards, it is impossible to encounter

a GLR rule application before encountering a RW (�B) rule application. Deleting

these RW (�B) rule applications and the RC1 contraction rule certainly preserves

the derivation structure because all the binary rules excluding the cut-rule are

additive. This new derivation contains a single instance of cut with identical

degree of cut-formula and reduced cut-height compared to cut0. Furthermore,

observe that it must be the case that the width is ≤ n. The result follows from

the induction hypothesis.

If the calculus uses multiplicative binary rules instead, the result still holds,

although the transformations are slightly more complicated.

In each instance, the proof can be formalised using an annotation function

similar in structure to f�B. See Section 2.7.

(iv) the cut-formula �B is left and right principal by RC(�B) and LC(�B)

respectively. A combination of the strategies in (ii) and (iii) suffice.

(v) the cut-formula �B is either left or right principal by RW (�B) or

LW (�B) respectively. Trivial.

Next, suppose that the cut-formula is not boxed.

(vi) the cut-formula B is is left and right principal by the respective left

and right introduction rules. The transformations are standard (see [54, 70]) —

derivation τ is transformed to a derivation τ ′ containing cuts {cuti}i≥1 on strictly

smaller cut-formulae (i.e. deg(cuti) < d for i ≥ 1).

(vi) the cut-formula B is right principal by LC(B). Then τ has the following

form, where B is principal by ρ:

36 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

{π}r1 ρ(B)
X ⇒ Y,B

{σ}s1
B,B,U ⇒W

LC(B)
B,U ⇒W

cut0
X,U ⇒ Y,W

Since we have assumed that B is not boxed, it follows that ρ 6= GLR. This

is the well-known case of ‘contractions above cut’ that arises in cut-elimination

for Gentzen’s [25] sequent calculus LK. Gentzen’s solution was to introduce a

new multicut rule. There are several approaches for obtaining cut-elimination for

classical sequent calculi avoiding Gentzen’s multicut rule (for example [77, 10, 6]).

We adapt the transformations proposed by von Plato [77] for the classical calculus

G0c. The transformations there relied on the invertibility of all logical rules in

G0c. The analogous results for GLS were proved in Lemma 2.17. We illustrate

with a few cases.

Suppose B = C ∧D. Consider the following derivation.

{π}r1 ρ(C ∧D)
X ⇒ Y,C ∧D

{σ}s1
C ∧D,C ∧D,U ⇒W

LC(C ∧D)
C ∧D,U ⇒W

cut0
X,U ⇒ Y,W

Let h1 and h2 (> 1) denote the heights of the left and right premise derivations

respectively. Applying Lemma 2.17 to the sequent C ∧ D,C ∧ D,U ⇒ W we

obtain a derivation of C l, D1−l, C,D,C ∧D,U ⇒ W of height h2− 1, for some l,

0 ≤ l ≤ 1; from the sequent X ⇒ Y,C ∧ D we obtain derivations of X ⇒ Y,C

and X ⇒ Y,D, each of height h1.

If C,D,C ∧D is the formula occurrence C∧D and l = 0 we proceed as follows

(the case when l = 1 is similar):

X ⇒ Y,D

X ⇒ Y,C ∧D D,C ∧D,U ⇒W
cut0

D,X,U ⇒ Y,W
cut1

X,X,U ⇒ Y, Y,W
LC∗

X,U ⇒ Y,W

Notice that cut0 has height h1 +h2−1 < h1 +h2, and cut1 has reduced degree

compared to cut0. If C,D,C ∧D is the formula occurrence D (the case when it

is C is similar) and l = 0 (the case when l = 1 is similar) then we proceed as

follows, where each instance of the cut-rule in the following has reduced degree

compared to cut0:

X ⇒ Y,D

X ⇒ Y,D D2, U ⇒W

D,X,U ⇒ Y,W

X,X,U ⇒ Y, Y,W
LC∗

X,U ⇒ Y,W

2.5. A COMPARISON WITH VALENTINI’S ORIGINAL PROOF 37

Next, suppose B = C ⊃ D. Consider the following derivation:

{π}r1 ρ(C ⊃ D)
X ⇒ Y,C ⊃ D

{σ}s1
C ⊃ D,C ⊃ D,U ⇒W

LC(C ⊃ D)
C ⊃ D,U ⇒W

cut0
X,U ⇒ Y,W

Applying Lemma 2.17 to the sequent C ⊃ D,C ⊃ D,U ⇒ W we obtain

derivations of U ⇒ W,C2 and D2, U ⇒ W . From RC(C) and LC(D) respec-

tively, we obtain U ⇒ W,C and D,U ⇒ W . Applying Lemma 2.17 to the

sequent X ⇒ Y,C ⊃ D we obtain a derivation of C,X ⇒ Y,D. Then the fol-

lowing derivation suffices, where each instance of the cut-rule has reduced degree

compared to cut0.

U ⇒W,C C,X ⇒ Y,D
cut

X,U ⇒ Y,W,D D,U ⇒W
cut

X,U, U,⇒ Y,W,W
LC∗, RC∗

X,U ⇒ Y,W

The remaining cases can be resolved in a similar fashion.

(b) Cut-formula is left principal only.

(c) Cut-formula neither left nor right principal.

We analyse the last inference rule in the right (left) premise derivation of cut0.

The standard transformations suffice here (for example [54, 70]). In particular,

observe that for any instance cut1 of the cut-rule appearing in a transformed

derivation, it must be the case that width(cut1) ≤ n. Q.E.D.

2.5 A comparison with Valentini’s original proof

We have already noted in Remark 2.16 that the move from sequents built from

sets to sequents built from multisets necessitates a sharpening of the definition

of width, in particular, to account for the interplay between weakening and con-

traction rules. To achieve this we used the notion of an annotated derivation, to

trace upwards from the end-sequent.

An aspect of Valentini’s proof that is unclear is whether the width is non-

increasing in all introduced cuts. When eliminating cuts from a derivation δ

containing multiple instances of the cut-rule (as occurs following an application

of Valentini’s move to a topmost cut where the cut-formula is left and right

principal by the GLR rule), we always choose to eliminate a topmost cut (with

conclusion sequent S, say). Suppose that we then obtain a cutfree derivation δ′

38 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

of S. Inserting the derivation δ′ at S in δ we obtain a new derivation δ′′. Now, to

ensure that it is possible to (ultimately) eliminate those cuts below S in δ′′, it is

essential to know that the width of those cuts has not increased. In other words,

we want to ensure that the width of a lower (non-topmost) cut does not increase

under the cut-elimination transformations to topmost cuts.

In general, it is possible for the width of a lower cut — ie a non-topmost cut

— to increase under the cut-elimination transformations. For example, consider

a transformation that reduces some topmost cut instance cutb (for “before”) to

the derivation below containing the cut instance cuta (for “after”) where {π}r1
and {σ}s1 need not be cut-free:

{π}r1 {σ}s1 cuta
G⇒ H

The cut-elimination transformations which ultimately turn cuta into a top-

most cut may produce a derivation where width(cuta) > width(cutb).

In the proof of Lemma 2.20, cut4 is the only lower cut that relies on width for

elimination. Observe that width(cut4) does not increase despite the reductions

above it. This is because the cut4 in that proof is ‘shielded’ by the GLR instance

concluding Λ1.

To see this, observe that derivation Λ4 in Lemma 2.20 can be written as

follows, where σ, η are cutfree:

σ GLR2�X,�G⇒ �A
LW ∗((�B)n)

�X,�G, (�B)n ⇒ �A

bηc ⊕�X
LC∗(�X)

�B,�X,X ⇒ B
GLR1�X ⇒ �B

{π}r1
�X,X,�B ⇒ B

cut4(�B)
X,�X,�X ⇒ B

LC∗(�X)
X,�X ⇒ B

Crucially, because GLR2 is a 2-ary GLR rule in the left premise derivation

of cut0, the width of cut4 is independent of the structure of σ. In other words, if

we substituted σ with any other cutfree derivation σ′ with identical end-sequent,

the width of cut4 would remain unchanged. This shielding provided by the GLR2

rule is crucial for the success of the proof.

We conclude by noting that it has long been recognised that the contraction

rule poses special problems for cut-elimination. Hence, it is of independent inter-

est to find syntactic proofs of cut-elimination for the calculus built from multisets,

even when cut-admissibility is known for the calculus without cut. This is one

2.6. MOEN’S VAL-II(CORE) IS NOT VALENTINI’S REDUCTION 39

reason for the numerous syntactic proofs of cut-elimination for GL that have been

proposed, in many different proofs systems. The present work uses the traditional

sequent calculus, and the intention is that the results can be extended to new

logics and new calculi. Indeed in Chapter 3 we will see a generalisation of this

proof applied to the logic Go.

2.6 Moen’s Val-II(core) is not Valentini’s

reduction

We have carefully examined Moen’s slides titled “The proposed algorithms for

eliminating cuts in the provability calculus GLS do not terminate” [51].

Moen sets out to reduce a cut in SNF using the transformation he titles Val-

II(core). Moen claims that Val-II(core) is the “. . . core of Valentini’s reduction”

[51]. Yet Val-II(core) does not appear in [71]. However it appears in [64, page 322]

with the comment “this reduction is not sufficient”.

Thus Moen is incorrect in claiming that he has demonstrated that Valentini’s

algorithm does not terminate — Moen is using the wrong algorithm. In fact,

for his concrete derivation ε, the width of the cut-formula is 1 so the reduction

is immediate. Applying the base case transformations, and then the classical

transformations, we obtained a cut-free derivation of the end-sequent of ε.

2.7 Incorporating multiplicative binary rules

Excluding the cut-rule, the sequent calculus GLS (Table 2.1) contains only ad-

ditive binary rules. However, in Valentini’s original sequent calculus GLSV , the

rule L⊃m introducing the connective ⊃ in the antecedent is multiplicative:

X ⇒ Y,A B,U ⇒ W
L⊃mA ⊃ B,X,U ⇒ Y,W

Let GLSm be the sequent calculus obtained from GLS by substituting the addi-

tive rule L⊃ with the multiplicative rule L⊃m rule (the subscript is for “multi-

plicative”). It is easy to pass between these rules using the appropriate weakening

and contraction rules. Thus GLSm is sound and complete for GL. In fact, the

proof of cut-elimination for GLS can easily be adapted to GLSm.

Given a derivation in GLSm it is clear that we can obtain a cutfree derivation

as follows: first convert each instances of L⊃m to L⊃, then use Theorem 2.21 to

40 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

obtain a cutfree derivation in GLS. Finally, obtain a cutfree derivation in GLSm

by replacing each instance of L⊃ in the cutfree derivation in GLS with L⊃m.

Alternatively, we could extend the annotation function fC (Definition 2.8)

to handle the multiplicative binary rule by inserting the following case into Ta-

ble 2.2 (recall that Table 2.2 describes the helper function Φ�B; fC invokes Φ�B

in Definition 2.8.3): Suppose the annotated derivation δ has the form

{π}r1
G′, (�B)k ⇒ H ′

{π′}s1
G′′, (�B)l ⇒ H ′′

L⊃m
G, (�B)∗n ⇒ H

If k ≥ n, then let Φ�B[δ] be the derivation

Φ�B

[
{π}r1

G′,(�B)∗n,(�B)(k−n)⇒H′

]
{π′}s1

G′′,(�B)l⇒H′′
L⊃m

G, (�B)∗n ⇒ H

If k < n, then let Φ�B[δ] be the derivation

Φ�B

[
{π}r1

G′,(�B)∗k⇒H′

]
Φ�B

[
{π′}s1

G′′,(�B)∗(n−k),(�B)l−n+k⇒H′′

]
L⊃m

G, (�B)∗n ⇒ H

It is now straightforward to adapt the cut-elimination proof for the GLS calculus

to the new setting.

2.8 A decision procedure for Ip using GLS

G. Sambin suggested1 that it might be possible to use the decision and counter-

model construction procedure [64] for GL to obtain the corresponding procedure

for propositional intuitionistic logic Ip [16]. We demonstrate that this is indeed

the case. Of course, such procedures for Ip are well-known. The novelty here is

the use of the Gödel translation [27, 16] and the decision procedure for GL. Our

main contribution is showing that the countermodel obtained using the auxiliary

calculus GLS ′ introduced below has the persistence property (Lemma 2.23). The

proof of the intuitionistic countermodel (Theorem 2.25) follows from this result.

1Personal correspondence.

2.8. A DECISION PROCEDURE FOR IP USING GLS 41

2.8.1 Terminology and basic results

Before we proceed, let us introduce some standard terminology.

Propositional intuitionistic logic Ip is defined using the propositional lan-

guage L [16]. We obtain the modal language ML by augmenting the proposi-

tional language L with the modal operator �. Let ForL (resp. ForML) and

VarL (VarML) denote the set of well-formed formulae and propositional vari-

ables of the language L (ML).

A frame is a pair (W,R) whereW is a non-empty set of states and R is a binary

relation on W . If u, v ∈ W such that Ruv then we say that v is above u (in F).

A frame (W,R) has the property P (think reflexivity, transitivity, antisymmetry

etc.) if the binary relation R has the property P . If a frame F = (W,R) contains

some sequence of (not necessarily distinct) points w1, w2, . . . wn from W such

that Rw1w2, Rw2w3, . . . , Rwn−1wn then we say that F contains an R-chain. If F

contains an R-chain for arbitrarily large n, we say that F contains an ∞-R-

chain. A proper R-chain is an R-chain where the points are distinct. When R is

transitive, a cluster C is a maximal subset of W such that for all distinct states

w,w′ ∈ C we have Rww′ and Rw′w. A cluster is proper if it consists of two or

more states.

Let F be a frame. A model based on F is the pair (F, V) where V is a valuation

function assigning a subset V (p) ⊆ W to each propositional variable p. Define

the satisfaction relation M,w |= D (read as ‘D is satisfiable in M at state w’) by

induction on the structure of the formula D ∈ ForML as follows:

M,w |= p iff w ∈ V (p)

M,w |= ¬A iff not M,w |= A

M,w |= A ∨B iff M,w |= A or M,w |= B

M,w |= A ∧B iff M,w |= A and M,w |= B

M,w |= A ⊃ B iff M,w |= A implies M,w |= B

M,w |= �A iff for all v ∈ W , if Rwv then M, v |= A

The negation of M,w |= D is written M,w 6|= D. We say that D is falsifiable on

a model M if there is some state w such that M,w 6|= D.

Let F be a frame. A formula A is valid at a state w in F (written F,w |= A)

if it is the case that M,w |= A for every model M based on F . A formula is

valid on a frame (written F |= A) if it is valid at each state on the frame. Also,

a formula A is valid on a class F of frames (written F |= A) if that formula is

42 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

valid on each frame in the class. Finally, a logic L is sound for F if A ∈ L implies

F |= A, and a logic L is complete for F if F |= A implies A ∈ L.

It is well-known [64] that GL is sound and complete for the class of frames that

are transitive and contain no∞-R-chains. Such frames are necessarily irreflexive.

A model whose underlying frame is transitive and contains no ∞-R-chains will

be called a GL-model.

Suppose that L1 and L2 are logics in the languages L1 and L2 respectively. A

function f : ForL1 7→ ForL2 is called an embedding of L1 into L2 if

∀A ∈ ForL1.A ∈ L1 iff f(A) ∈ L2

Consider the following function T taking ForL into ForML: for all p ∈ VarL
and all A,B ∈ ForL:

T (p) = �p

T (¬A) = �¬T (A)

T (A ∨B) = T (A) ∨ T (B)

T (A ∧B) = T (A) ∧ T (B)

T (A ⊃ B) = �(T (A) ⊃ T (B))

This function is called the Gödel translation [27, 16]. It is well-known that T is

an embedding of Ip into S4 and Ip into Grz (see [16]). Notice that for every

occurrence of the propositional variable q in T (A) for A ∈ ForL, it must be

the case that q appears in T (A) as the subformula �q. In other words, all

propositional variables in T (A) are boxed.

For A ∈ ForML, let T�(A) be the formula obtained by simultaneous replace-

ment of all occurrences of � in A with �, where �B is abbreviation for B ∧�B.

The map T� is known to be an embedding of Grz into GL (see [16]). It follows

that TGL = T�T is an embedding of Ip into GL. Notice that for every occurrence

of the propositional variable q in TGL(A) for A ∈ ForL, it must be the case that q

appears in TGL(A) as the subformula q ∧�q.

2.8.2 Decision and countermodel procedure for GL

Sambin and Valentini [64, pg 326-7] have presented the following decision and

countermodel procedure forGL. We begin by defining the auxiliary calculusGLS ′

— adapted from the version appearing in [64] in order to incorporate sequents

built from multisets — obtained from GLS (Table 2.1) as follows:

2.8. A DECISION PROCEDURE FOR IP USING GLS 43

(i) In GLS ′, initial sequents are of the form P,�W ⇒ Q where P and Q are

multisets of propositional variables, and W is a multiset of formulae. If

P ∩Q 6= ∅ then we call this sequent an axiom.

(ii) The GLR rule is replaced with the following rule, where P and Q are finite

sets of propositional variables and Y = {A1, . . . , Am}:

X,�X,�A1 ⇒ A1 . . . X,�X,�Am ⇒ Am
RR

P,�X ⇒ �Y,Q

Its meaning is that if one of the premises is derivable, then the conclusion

in derivable. Observe that RR is not a rule in the usual sense (hence the

dashed line). The rule RR is admissible in GLS because the conclusion of

RR is derivable in GLS whenever one of the premises of RR is derivable

in GLS. Also, RR is invertible in GLS in the sense that if the conclusion

sequent is derivable in GLS, then at least one of the premises is derivable

in GLS.

(iii) Replace the rules L∧ and R∨ in GLS with the following rules:

A,B,X ⇒ Y
L∧′

A ∧B,X ⇒ Y
X ⇒ Y,A,B

R∨′
X ⇒ Y,A ∨B

(iv) Delete the weakening rules LW and RW , and delete the contraction rules

LC and RC.

(v) Delete the cut-rule.

The idea is to use the calculus GLS ′ for backward proof search in GL. By

backward proof search we mean repeated backward application of the rules of

GLS ′ (ie. matching the conclusion sequent to obtain the premise sequents) until

an axiom is obtained or no further backward application is possible. The resulting

object is called a searchtree. A search is obtained by choosing a particular branch

of the searchtree at each application of RR. We use the term proper search to

refer to a search whose every initial sequent is an axiom. A sequent is said to be

derivable in GLS ′ if there is a proper search for that sequent. See Sambin and

Valentini [64] for the proof that there can be no repetition of a sequent along any

branch of a searchtree. Since GLS ′ can produce only finitely many sequents for

a given input, it follows that the GLS ′ calculus terminates under backward proof

search for any input.

44 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

The calculi GLS and GLS ′ derive the same set of sequents

The first thing to do is show that derivations in GLS and proper searches in

GLS ′ derive the same set of sequents. That is, a sequent S is derivable in GLS

iff there is a proper search of some searchtree in GLS ′ with endsequent S. (If)

From a proper search in GLS ′ it is straightforward to obtain a derivation of the

identical endsequent in GLS.

To prove the (Only-if) it suffices to show that the steps (i)–(v) for obtaining

GLS ′ from GLS do not reduce the set of derivable sequents. Clearly every initial

sequent of GLS is derivable in GLS ′. Furthermore, it is clear that GLR is a

special case of RR so replacing the former rule with the latter does not reduce

the set of derivable sequents. Similar comments apply to the rules L∧′ and R∨′.
Notice that weakening has been absorbed into the initial sequents and the RR

rule. Although only propositional variables (as opposed to arbitrary formulae) can

be introduced into a sequent via weakening in GLS ′, observe that this does not

reduce the set of derivable sequents. Neither does deletion of the cut-rule reduce

the set of derivable sequents because of the cut-elimination result for GLS.

It remains to show that the deletion of the contraction rules does not reduce

the set of derivable sequents. This result is facilitated by (i) the dispensing of the

initial sequents A⇒ A in GLS — in contrast, an axiom in GLS ′ has a common

propositional variable in the antecedent and succedent, (ii) absorbing weakening

into the initial sequents and the RR rule, and (iii) replacing the rules L∧ and R∨
with L∧′ and R∨′. Due to these changes, by a standard induction on the height

of the derivation, we can show height-preserving invertibility of the logical rules

and hence admissibility of the contraction rules as required. We omit the details.

Decision and countermodel procedure for GL

For a given input X ⇒ Y , if the searchtree contains a proper search, then we can

directly obtain a derivation of X ⇒ Y in GLS. On the other hand, suppose that

the searchtree contains no proper search. It follows that X ⇒ Y is not derivable

in GLS. The task then is to construct a GL-model M such that
∧
X ⊃

∨
Y

is falsifiable on M . Such a model is called a countermodel for
∧
X ⊃

∨
Y (to

simplify the notation we will continue to write this formula as X ⇒ Y). In this

manner a decision and countermodel procedure for GL is obtained.

Sambin and Valentini [64] present the following method for constructing a

countermodel. First observe that an initial sequent in the searchtree that is not an

axiom must have the form L,�W ⇒M where L and M are sets of propositional

2.8. A DECISION PROCEDURE FOR IP USING GLS 45

variables. Given a searchtree containing no proper search, for each initial sequent

L,�W ⇒ M in the searchtree that is not an axiom (so L ∩M = ∅), obtain a

valuation falsifying that sequent at a state x such that Rxy for no y by setting

x ∈ V (p) iff p ∈ L. Then descend the searchtree, extending the countermodel

where necessary to falsify each successive sequent. The proof is by induction on

the height of the searchtree.

The existing model suffices when logical rules are encountered. However, it

becomes necessary to add new states to the model when the RR rule is encoun-

tered. Let us illustrate this step. Consider an instance of RR with premise

sequents �X,X,�Ai ⇒ Ai (1 ≤ i ≤ m) and conclusion sequent P,�X ⇒ �Y,Q

where Y = {A1, . . . , Am}. By the induction hypothesis we have that x1, . . . xm

are the roots of m finite irreflexive transitive antisymmetric frames F1, . . . , Fm

with valuations V1, . . . , Vm such that Fi, xi 6|= �X,X,�Ai ⇒ Ai for 1 ≤ i ≤ m.

Let us construct a GL-model falsifying the sequent P,�X ⇒ �Y,Q. Consider

the transitive closure F of the frame obtained by setting a new node y below

each of the frames with root xi so Ryxi. A frame has the antisymmetry property

if the binary relation R satisfies Rxy ∧ Ryx → x = y for all states x, y. By

construction, we observe that F is antisymmetric. To see this, intuitively, all the

arrows point in the same general ’direction’, upwards from y, so the antecedent

of the antisymmetry condition is never true for any instantiation of states, and

hence antisymmetry holds trivially.

Let V be the valuation that agrees with Vi on all states of the subtree with

root xi and such that P ⇒ Q is falsified at y (ie. set y ∈ V (p) for those

propositional variables p ∈ P ∩ Q⊥, where Q⊥ is the complement of Q). De-

note this model (F, V). Notice that y forces �X as each xi forces X,�X.

However (F, V), y 6|= �Ai for each i since (F, V), xi 6|= Ai. We conclude that

(F, V), y 6|= P,�X ⇒ �Y,Q. By construction, F is finite, irreflexive, transitive

and antisymmetric and hence contains no ∞-R-chains. Thus (F, V) is a GL-

model falsifying P,�X ⇒ �Y,Q. We will use the name GLS ′-countermodel to

refer to this model.

Motivating the termination of backward proof search

The termination of backward proof search in GLS ′ can be explained as follows.

From a syntactic viewpoint, the reason is that the diagonal formula in the con-

clusion sequent of RR reappears in the antecedent of the premise sequent. This

ensures that if we encounter the same diagonal formula again while searching

46 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

backwards on a branch, then an axiom immediately results forcing termination

(no loops). Since �X,X,�B ⇒ B is derivable iff �X,X ⇒ B is derivable (the

forward direction is the key result for Valentini’s cut-elimination — see [71] and

[32]), the diagonal formula that appears in the antecedent of the premise of the

RR rule can be viewed as an artifice to ensure a finite frame (equivalently, to

ensure termination without loop-check).

An explanation can also be given via the GLS ′-countermodel construction.

Consider the following instance of the RR rule:

�A⇒ A
RR⇒ �A

The GLS ′-countermodel procedure constructs a model falsifying �A at a frame

rooted at y, by falsifying �A⇒ A at some state x above y. That is, by falsifying A

at x and forcing A at every v above x. Of course, to falsify �A at y it is enough

to falsify A at x, but the former construction ensures that we do not try to

repeatedly falsify A leading to a loop.

2.8.3 Lifting the method to intuitionistic logic

Propositional intuitionistic logic Ip (see [16]) is defined in the usual way in the

language L. Let us begin by presenting the semantics for Ip.

An intuitionistic frame is defined to be a reflexive, transitive and antisym-

metric frame. An intuitionistic model is defined as the pair (F, V) where F =

(W,R) is an intuitionistic frame and V is a valuation function assigning a subset

V (p) ⊆ W for each propositional variable p such that V also satisfies the follow-

ing persistence property: for all states w, v ∈ W and propositional variables p,

w ∈ V (p) and Rwv implies v ∈ V (p).

Let M = (F, V) be an intuitionistic model based on the intuitionistic frame

(W,R) and w a state in W . Define the satisfaction relation M,w |=i D by

induction on the structure of the formula D ∈ ForL as follows:

M,w |=i p iff w ∈ V (p)

M,w |=i ¬A iff for all v ∈ W , if Rwv then not M, v |=i A

M,w |=i A ∨B iff M,w |=i A or M,w |=i B

M,w |=i A ∧B iff M,w |=i A and M,w |=i B

M,w |=i A ⊃ B iff for all v ∈ W , if Rwv then M, v |=i A implies M, v |=i B

2.8. A DECISION PROCEDURE FOR IP USING GLS 47

The negation of M,w |=i D is written M,w 6|=i D. We say that the formula D

is falsifiable on an intuitionistic model M if there is some state w such that

M,w 6|=i D. The notions of validity, soundness and completeness are defined as

in Section 2.8.1 with the word “frame” substituted with “intuitionistic frame”.

It is well-known that Ip is sound and complete for the class of intuitionistic

frames [16].

Let us look at how to construct a decision/countermodel procedure for Ip.

Given a formula A ∈ ForL, compute the modal formula TGL(A). Via backward

proof search using the GLS ′ calculus obtain a searchtree for ⇒ TGL(A). If the

searchtree contains a proper search, then it follows that TGL(A) ∈ GL. Since

TGL is an embedding of Ip into GL, it follows that A ∈ Ip. On the other

hand, if the searchtreee for ⇒ TGL(A) does not contain a proper search, using

the procedure in Section 2.8.2 we can construct a GLS ′-countermodel M for

TGL(A). Of course, M is not an intuitionistic model because the underlying frame

is irreflexive. Moreover an intuitionistic model has the persistence property while

no such restriction applies to a GL-model. Nevertheless, we will show how to

construct an intuitionistic model M ′ from M such that formula A is falsifiable on

M ′. As a result we will have obtained a countermodel for A as required.

We have already observed that every occurrence of a propositional variable q

in TGL(A), for A ∈ ForL, must appear in the context q ∧ �q. This observation

is crucial for the following result.

Lemma 2.22 Let δ be a searchtree with endsequent ⇒ TGL(A) for A ∈ ForL.

Then, in every instance ρ of the rule RR (shown below) in δ:

X,�X,�A1 ⇒ A1 . . . X,�X,�Am ⇒ Am
RR

P,�X ⇒ �Y,Q

for every p ∈ P , it is the case that p ∈ X.

Proof. Let p be an arbitrary propositional variable in P .

First suppose that this formula occurrence moves to the succedent in some

sequent below the conclusion sequent P,�X ⇒ �Y,Q of ρ and prior to en-

countering another RR rule instance or the endsequent. Then the occurrence p

appears in the succedent as the subformula of some formula D(p). Note that

the occurrence p must appear in D(p), (i) under the scope of an odd number of

negation signs, and (ii) not in the scope of a �. Since the propositional variable p

must appear in the endsequent⇒ TGL(A) in the context p∧�p, due to (i) it must

be the case that p appears in D(p) as the subformula p ∧ �p and in the scope

48 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

of an odd number of negation signs (to be precise, read implications M ⊃ N

in D(p) as ¬M ∨ N). Then by (ii) it follows that p ∧ �p is not in the scope of

a � in D(p). Notice that every formula in the conclusion sequent of ρ is either a

propositional variable or a boxed formula. Hence an occurrence of �p in D(p) in

the scope of an odd number of negation signs and not in the scope of a � implies

that this occurrence must have been a member of �X in the conclusion sequent

of ρ. Thus �p ∈ �X and hence p ∈ X.

Next suppose that the formula occurrence p remains in the antecedent prior

to encountering another RR rule instance, (or the endsequent in case ρ is a

bottommostRR rule). In fact, if ρ is a bottommostRR rule, then p cannot remain

in the antecedent because the endsequent is⇒ TGL(A) (there is no formula in the

antecedent). If ρ is not a bottommost RR rule, the searchtree has the following

form, where Y = {A1, . . . , Am} and Y ′ = {B1, . . . , Bn}:

�X,X,�A1 ⇒ A1 . . . �X,X,�Am ⇒ Am
RR ≡ ρ

P,�X ` �Y,Q
·

no RR rule instance
·

�X ′, X ′,�B1 ⇒ B1 �X ′, X ′,�Bn ⇒ Bn
P ′,�X ′ ` �Y ′, Q′

Since a formula cannot acquire boxes between RR rules instances, we have

�X ′ ⊆ �X. Now if p ∈ X ′, then �p ∈ �X ′ and hence p ∈ X. Else, if p 6∈ X ′,
then the formula occurrence p must have been the principal formula of some

logical rule. It follows that p appears in the subformula p ∧�p in some formula

C(p) in X ′. Moreover, the subformula p ∧ �p must be in the scope of an even

number of negation signs (as before, read implications M ⊃ N in C(p) as the

formula ¬M ∨ N) and cannot be in the scope of a �. It follows that �p ∈ �X

and hence we have that p ∈ X.

This exhausts all the possibilities, so we conclude that p ∈ X. Q.E.D.

Lemma 2.23 Suppose that A ∈ ForL such that A 6∈ Ip. Then the GLS ′-

countermodel M = (F, V) obtained according to the procedure in Section 2.8.2

has the persistence property.

Proof. Revisiting the construction in Section 2.8.2, in order to show the per-

sistence property, it suffices to consider the situation when a RR rule ρ (with

conclusion sequent P,X ⇒ Y,Q) is encountered in the searchtree. Recall that

this is the only situation where new states are added to the model. The con-

struction stipulates that we take the transitive closure of the frame obtained by

2.8. A DECISION PROCEDURE FOR IP USING GLS 49

placing a new state y under the states xi (ie. Ryxi), where Fi denotes the frame

with root xi obtained from the induction hypothesis (1 ≤ i ≤ m). The model is

obtained by setting y ∈ V (p) for p ∈ P ∩Q⊥. To prove persistence, for all states x

above y we must show that x ∈ V (p). By the construction and Lemma 2.22, ev-

ery state xi forces �p, p. Since every state above y is either xi (1 ≤ i ≤ m) or

some state above xi, the result follows. Q.E.D.

The reflexive closure Rr of R is defined as

Rrxy iff x = y or Rxy.

Given a modal frame F = (W,R) and a model M = (F, V) on it, the frame

F r = (W,Rr) and the model M r = (F r, V) are called the reflexivizations of F

and M respectively.

Theorem 2.24 [Reflexivization] For every model M , every state x in M and

every ML-formula A,

M,x |= T�(A) iff M r, x |= A.

Proof. See [16]. Q.E.D.

Theorem 2.25 Suppose that A ∈ ForL such that A 6∈ Ip. Then the reflexiviza-

tion M r of the GLS ′-countermodel M for TGL(A) is a finite intuitionistic model

falsifying A.

Proof. From Section 2.8.2 we know that the model M is a finite, irreflexive, tran-

sitive, antisymmetric model such that M, y 6|= TGL(A) for some state y. More-

over from Lemma 2.23 we know that M has the persistence property. Since

TGL = T�T , by Theorem 2.24 it follows that M r, y 6|= T (A), where M r is a finite,

reflexive, transitive, antisymmetric model with the persistence property.

Clearly M r is an intuitionistic model. It suffices to show that M r, y 6|=i A. To

show this we prove the stronger result that M r, y |=i A iff M r, y |= T (A). Proof

by induction on the structure of A.

Suppose that A is the propositional variable p. Then M r, y |=i p iff y ∈ V (p).

By the persistence property, every state above y is also in V (p). The latter occurs

iff M r, y |= �p.

If A = ¬B, then M r, y |=i ¬B iff for all z, if Ryz then M r, z 6|=i B. By the

induction hypothesis this occurs iff for all z, if Ryz then M r, z 6|= T (B). This in

turn occurs iff M r, y |= �¬T (B).

50 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

If A = B ⊃ C, then M r, y |=i B ⊃ C iff for all z, if Ryz then M r, z |=i B

implies M r, z |=i C. By the induction hypothesis, this occurs iff for all z, if

Ryz then M r, z |= T (B) implies M r, z |= T (C). This in turn occurs iff M r, y |=
�(T (B) ⊃ T (C)).

The cases when A = C ∨D and A = C ∧D are straightforward. Q.E.D.

Bounding the depth of the countermodel.

The above procedure suggests a simple bound on the height of the countermodel

for A ∈ ForL such that A 6∈ Ip. It is the maximum modal depth — in other

words, the maximum nesting of � — in A.

Finite model property.

Theorem 2.25 implies the finite model property [16] for Ip.

2.8.4 Related work

Gentzen’s [25] single-formula succedent calculus LJ for intuitionistic logic Ip con-

tains the following rule L⊃ for introducing the connective ⊃ into the antecedent:

A ⊃ B,X ⇒ A B,X ⇒ C
L⊃

A ⊃ B,X ⇒ C

Notice that the principal formula A ⊃ B is repeated in the left premise. This

ensures admissibility of the contraction rule. However, this repetition also means

that a loop check is required to obtain termination for the calculus.

In the calculus LJT [22], the above L⊃ rule is split into the following four

rules, the motivation being a fine-analysis of the structure of A:

B, p,X ⇒ A
L⊃1p ⊃ B, p,X ⇒ A

C ⊃ (D ⊃ B), X ⇒ A
L⊃2

(C ∧D) ⊃ B,X ⇒ A

C ⊃ B,D ⊃ B,X ⇒ A
L⊃3

(C ∨D) ⊃ B,X ⇒ A

D ⊃ B,X ⇒ C ⊃ D B,X ⇒ A
L⊃4

(C ⊃ D) ⊃ B,X ⇒ A

The rule of contraction is admissible in LJT (see [23] for a direct proof; only

L⊃4 is non-invertible and hence requires special care). Furthermore, it is possible

to define a measure µ under which the conclusion sequents have strictly greater

weight that the premises. Thus termination is guaranteed without the use of a

loopcheck. Intuitively, the left premise of L⊃4, (i) contains enough information to

2.9. ADAPTING THE PROOF FOR SOME OTHER LOGICS 51

ensure admissibility of contraction, and (ii) is simpler than the conclusion sequent

under the measure µ.

Note that we are not suggesting that the method of embedding Ip into GL

(Section 2.8.3) is better for proof search than the calculus LJT .

2.9 Adapting the proof of cut-elimination for

some other logics

Let K be the basic modal logic and let KA1 . . .An denote the axiomatic extension

of K obtained by the addition of axioms A1, . . . ,An to K. Consider the following

axioms:

4 : �p ⊃ ��p (transitivity)

T : �p ⊃ p (reflexivity)

G : �(�p ⊃ p) ⊃ �p (Löb’s axiom)

Grz : �(�(p ⊃ �p) ⊃ p) ⊃ p

Go : �(�(p ⊃ �p) ⊃ p) ⊃ �p

As we have already noted, the Gödel–Löb provability logic GL can be axiomatised

as KG. The logics Grz and Go are axiomatised as KGrz and KGo respectively.

The following results are well-known:

4 ∈ GL Go ∈ GL
4 ∈ Go

4 ∈ Grz T ∈ Grz Go ∈ Grz

An alternative axiomatisation for Grz is KTGo [31].

The logic GL is sound and complete for the class of frames that are transitive

and contain no ∞-R-chains [64]. It is known that Go is sound and complete

for the class F of frames that are transitive, contain no proper clusters, and

contain no proper ∞-R-chains [30]. Indeed, it is easy to see how to construct a

countermodel to show that T 6∈ Go. Finally, Grz is sound and complete for the

subclass of frames in F satisfying reflexivity [30].

The similarity of the axioms Grz and Go with Löb’s axiom G — which leads

to a similarity in the corresponding sequent rules — suggests that the proof of

cut-elimination for GL may be adapted to the logics Grz and Go. As shown

52 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

in [2], a sequent calculus GrzS for Grz can be obtained by replacing the GLR

rule in GLS with the following modal rules:

B,X ⇒ Y
GRZa�B,X ⇒ Y

�X,�(B ⊃ �B)⇒ B
GRZb�X ⇒ �B

Notice the similarity of the GRZb rule to the GLR rule — in particular, in both

rules the �B formula passes from the succedent of the conclusion sequent to the

antecedent of the premise sequent. A semantic proof of cut-elimination for this

calculus is given in [2]. Borga and Gentilini [9] present a syntactic proof of cut-

elimination for this calculus where the sequents are built from sets. This proof

bears much similarity to the proof for GLS. The extension to sequents built from

multisets is straightforward.

A sequent calculus GoS for Go is easily obtained from GLS by replacing the

GLR rule with the following:

�X,X,�(B ⊃ �B)⇒ B
GoR�X ⇒ �B

There is no existing cut-elimination procedure for Go. We present a solution

in Chapter 3. Some of the ideas in the proof for GL are employed, although

the transformations for Go seem to require a deeper analysis of the derivation

structures than the proofs for GL and Grz.

The logic GLlin is obtained by the addition of the following axiom to GL:

�(p ∧�p ⊃ �q) ∨�(q ∧�q ⊃ �p)

Valentini [72] has extended the ideas in the proof of cut-elimination for GL to

obtain cut-elimination for this logic for a calculus where the sequents are built

from sets.

The logics S4.3.1 and S4Dbr are axiomatised respectively, as KT4.3Dum and

KT4Dbr [30], where the axioms

Dum : �(�(p ⊃ �p) ⊃ p) ⊃ (3�p ⊃ �p)

Dbr : �(�(p ⊃ �p) ⊃ p) ⊃ (�3�p ⊃ �p)

have a similar form to the Go axiom. In the case of S4.3.1, Shimura [67] has

presented a proof of cut-elimination that requires a cutfree calculus for the logic

S5 as an oracle. However this is a rather strong requirement as all the existing

cutfree systems for S5 are obtained via modification of the traditional sequent

calculus [66, 20, 36, 56]. Thus it would be interesting to see if we can exploit the

syntactic similarity of the axioms to the Go axiom — which leads to a similar-

ity in the corresponding sequent rules — in order to obtain cut-elimination for

traditional sequent calculi for these logics.

2.9. ADAPTING THE PROOF FOR SOME OTHER LOGICS 53

Form of annotated derivation δ Φ�B[δ]

(�B)∗ ⇒ �B (�B)◦ ⇒ �B

{π}r1
G, (�B)n−1 ⇒ H

LW (�B)
G, (�B)∗n ⇒ H

Φ�B

[
{π}r1

G,(�B)∗n−1⇒H

]
LW (�B)

G, (�B)◦, (�B)∗n−1 ⇒ H

{π}r1
G, (�B)n+1 ⇒ H

LC(�B)
G, (�B)∗n ⇒ H

Φ�B

[
{π}r1

G,(�B)∗n+1⇒H

]
LC(�B)

G, (�B)∗n ⇒ H

{π}r1
G′, (�B)n ⇒ H ′

ρ 6= GLR
G, (�B)∗n ⇒ H

Φ�B

[
{π}r1

G′,(�B)∗n⇒H′

]
ρ

G, (�B)∗n ⇒ H

{π}r1
�G,G, (�B)n, Bn,�A⇒ A

GLR
�G, (�B)∗n ⇒ �A

{π}r1
�G,G,(�B)n,Bn,�A⇒A

GLR
�G, (�B)◦n ⇒ �A

{π}r1
G′, (�B)n ⇒ H ′

{π′}s1
G′′, (�B)n ⇒ H ′′

ρ 6= cut
G, (�B)∗n ⇒ H

Φ�B

[
{π}r1

G′,(�B)∗n⇒H′

]
Φ�B

[
{π′}s1

G′′,(�B)∗n⇒H′′

]
ρ

G, (�B)∗n ⇒ H

antecedent of ES(δ) does not

contain a (�B)∗ formula

occurrence

δ

Table 2.2: Definition of Φ�B. Multisets G and �G contain no occurrences of an-

notated formulae. An annotated derivation δ in the left column is mapped under

Φ�B to the annotated derivation in the right column. Due to space restrictions,

in the case where ρ is a binary rule, δ and Φ�B[δ] appear on separate rows.

54 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

Chapter 3

Syntactic Cut-elimination for Go

We present a syntactic proof of cut-elimination for the logic Go. The logic has

a syntactically similar axiomatisation to Grzegorczyk’s logic Grz and provability

logic GL. In fact, Go can be viewed as the non-reflexive counterpart of Grz, and

GL can be viewed as the irreflexive counterpart of Grz. Although proofs of cut-

elimination for GL and Grz have appeared in the literature, to our knowledge,

this is the first proof of cut-elimination for Go. The proof seems to require a

deeper analysis of the derivation structures than the proofs for GL and Grz, and

new transformations are developed here.

3.1 Introduction

The logic Go is the smallest normal modal logic containing K and the schemata

�p ⊃ ��p and �(�(p ⊃ �p) ⊃ p) ⊃ �p). The logic is sound and complete with

respect to the class of transitive frames with no proper clusters and no proper

∞-R-chains [30] (see Section 2.8.1 for a definition of these terms), and it is a

proper subsystem of both Gödel-Löb logic GL (also known as provability logic)

and Grzegorzyk’s logic Grz. A survey of some results on Go can be found in

Litak [44], where the logic is called the weak Grzegorczyk logic wGrz.

A sequent calculus GoS for Go (see Table 3.1) can be obtained by the addition

of the following modal rule GoR to a suitable calculus for classical propositional

logic:

�X,X,�(B ⊃ �B)⇒ B
GoR�X ⇒ �B

Observe that GoS contains the cut-rule. Showing that it is always possible via

constructive transformation to eliminate the cuts in a given derivation to obtain a

55

56 CHAPTER 3. SYNTACTIC CUT-ELIMINATION FOR GO

cutfree derivation of the same endsequent is called syntactic cut-elimination. It is

one of the most important results in the proof theory of a logic and the existence

of such a transformation is a highly desirable property for a sequent calculus.

The first such proof was given by Gentzen [25] who recognised the importance

of a constructive procedure in his celebrated Hauptsatz or ‘main theorem’ where

syntactic cut-elimination is presented for the classical and intuitionistic sequent

calculi LK and LJ respectively. A proof has been presented for Grz [9], and

while there has been some controversy [51] regarding Valentini’s [71] proof for

GL, the issues are now resolved [32]. Here we show syntactic cut-elimination for

GoS. To our knowledge, this is the first proof of syntactic cut-elimination for Go.

We observe that cut-elimination for Go is not just a simple variation of the proofs

for GL and Grz. Indeed, although Valentini’s [71] transformations for GL remain

an inspiration for our transformations, the proof presented here appears to gen-

eralise the methods used for GL and Grz. In particular, new transformations are

introduced, and the proof uses a quaternary induction measure (three induction

variables suffice for GL and Grz).

In the Hauptsatz, Gentzen relied on a primary induction on the degree of the

cut-formula and secondary induction on cut-height. Suppose that cut1 and cut2

denote two occurrences of the cut-rule in some derivation. Write cut1 < cut2 to

mean that cut1 is less than cut2 under the above measure. If we attempt a proof

for Go following the proof of the Hauptsatz we quickly find that the only case

deserving special attention is the case when the cut-formula is principal in both

premises by GoR. Consider the following derivation where we assume without

loss of generality that both premises of cut0 are cutfree:

�X,X,�(B ⊃ �B)⇒ B
GoR�X ⇒ �B

�B,B,�U,U,�(C ⊃ �C)⇒ C
GoR�B,�U ⇒ �C

cut0�X,�U ⇒ �C

It is not obvious how to proceed from here. However, making use of the cut-rule

observe that it is easy to construct a derivation of �X,X ⇒ B from the left

premise of cut0. Indeed, the following suffices:

�X ⇒ �B
LW ∗

�X,�(B ⊃ �B), B ⇒ �B
R⊃

�X,�((B ⊃ �B) ⊃ �(B ⊃ �B))⇒ B ⊃ �B
GoR

�X ⇒ �(B ⊃ �B) �X,X,�(B ⊃ �B)⇒ B
cut

�X,�X,X ⇒ B
LC∗�X,X ⇒ B

3.2. BASIC DEFINITIONS AND NOTATION 57

If we could obtain a cutfree derivation of �X,X ⇒ B then we may proceed

�X,X ⇒ B

�X ⇒ �B �B,B,�U,U,�(C ⊃ �C)⇒ C
cut1

�X,B,�U,U,�(C ⊃ �C)⇒ C
cut2

�X,�X,X,�U,U,�(C ⊃ �C)⇒ C
LC∗

�X,X,�U,U,�(C ⊃ �C)⇒ C
GoR�X,�U ⇒ �C

where, cut1 < cut0 and cut2 < cut0. The result would then follow directly

from the induction hypothesis. This situation parallels the approach to cut-

elimination for the calculi GLS for GL [71, 32, 8] and GrzS for Grz [9]. In GLS

for example, it is sufficient to obtain a derivation of �X,X ⇒ B from a derivation

of �X,X,�B ⇒ B. In GrzS, a derivation of �X ⇒ B from a derivation for

�X,�(B ⊃ �B)⇒ B suffices. Thus the obvious approach for GoS would be to

draw on the syntactic proofs of cut-elimination for GLS and GrzS. We discuss

the difficulties in adapting those proofs to GoS in Section 3.4.

Finally, we remind the reader that it is straightforward to show that the cut-

rule is redundant by proving that the calculus without the cut-rule is sound and

complete for the frame semantics of Go (see [1]). However the drawback of such

a semantic (as opposed to syntactic) proof is that we have no effective method of

constructing the cutfree derivation.

3.2 Basic definitions and notation

Formulae are constructed in the usual way from propositional variables using

the logical connectives ¬ (negation), ∧ (conjunction), ∨ (disjunction), ⊃ (im-

plication) and the modal operator �. Propositional variables are written using

p, q, . . . and formulae are denoted by A,B,C, Multisets of formulae are de-

noted by X, Y, We write �A to denote the multiset 〈�A,A〉. Let X be

the multiset 〈A1, . . . , An〉. Then we write �X and �X to mean the following

multisets respectively:

〈�A1, . . . ,�An〉 〈�A1, . . . ,�An, A1, . . . , An〉

The notation Am denotes the multiset 〈A1, . . . , Am〉. A sequent is a tuple (X, Y)

of multisets X and Y and is written X ⇒ Y . The symbols ∪ and ⊆ are used

to denote multiset union and the multiset inclusion relation respectively. The

multiset X and Y are called respectively the antecedent and succedent of the

sequent. The sequent calculus GoS is defined in Table 3.1.

58 CHAPTER 3. SYNTACTIC CUT-ELIMINATION FOR GO

Initial sequents: A⇒ A for each formula A

Logical rules:

X ⇒ Y,A
L¬

X,¬A⇒ Y
A,X ⇒ Y

R¬
X ⇒ Y,¬A

Ai, X ⇒ Y
L∧

A1 ∧ A2, X ⇒ Y
X ⇒ Y,A1 X ⇒ Y,A2

R∧
X ⇒ Y,A1 ∧ A2

A1, X ⇒ Y A2, X ⇒ Y
L∨

A1 ∨ A2, X ⇒ Y
X ⇒ Y,Ai

R∨
X ⇒ Y,A1 ∨ A2

X ⇒ Y,A B,X ⇒ Y
L⊃

A ⊃ B,X ⇒ Y
A,X ⇒ Y,B

R⊃
X ⇒ Y,A ⊃ B

Modal rule: �X,X,�(A ⊃ �A)⇒ A
GoR�X ⇒ �A

Structural rules:

X ⇒ Y
LW

A,X ⇒ Y
X ⇒ Y

RW
X ⇒ Y,A

A,A,X ⇒ Y
LC

A,X ⇒ Y
X ⇒ Y,A,A

RC
X ⇒ Y,A

Cut-rule: X ⇒ Y,A A,U ⇒ W
cut

X,U ⇒ Y,W

Table 3.1: The sequent calculus GoS. Note: i ∈ {1, 2} in the rules L∧ and R∨.

A derivation (in GoS) is defined recursively with reference to Table 3.1 in the

usual manner as follows:

(i) for any formula A, the initial sequent A⇒ A is a derivation, and

(ii) an application of a logical, modal, structural or cut-rule to derivations con-

cluding its premise(s) is a derivation.

For the logical and structural rules in GoS, the multisets X and Y are called

the context. As usual [70], in the conclusion of each of these rules, the formula

not in the context is called the principal formula. For the GoR rule in Table 3.1,

the �A in the succedent of the conclusion sequent is the principal formula. Fur-

thermore, the formula A in that rule is called the diagonal formula. A formula

occurring in some sequent in a derivation is called principal if it is the principal

3.2. BASIC DEFINITIONS AND NOTATION 59

formula of the rule deriving that sequent. We sometimes write ρ(A) to indicate

that the rule ρ makes A principal.

In the cut-rule in Table 3.1, the formula A is the cut-formula. A derivation is

said to be cutfree if it contains no instances of the cut-rule. Viewing a derivation

as a tree, we call the root of the tree the endsequent of the derivation. We use

the phrase ‘upwards’ informally to mean the direction from the endsequent to

the initial sequents. ‘Downwards’ is the direction towards the endsequent. The

phrases ‘above’ and ‘below’ are used with respect to these directions. If there is

a derivation with endsequent X ⇒ Y we say that X ⇒ Y is derivable in GoS.

Let
∧
X (
∨
Y) denote the conjunction (disjunction) of all formula occurrences

in X (Y). It is straightforward to show that a sequent X ⇒ Y is derivable in

GoS iff the formula
∧
X⊃

∨
Y is a theorem of the logic Go. In other words, GoS

is sound and complete with respect to Go and thus GoS is a sequent calculus for

Go. We observe that the cut-elimination result shows that the calculus minus the

cut-rule is sound and complete for Go.

Finally we define the height, cut-height, and degree of a formula in the stan-

dard manner.

Definition 3.1 (height, cut-height, degree) The height h(τ) of a derivation

τ is the greatest number of successive applications of rules in it plus one. The

cut-height s of an instance of the cut-rule with premise derivations τ1 and τ2 is

h(τ1) + h(τ2). The degree |A| of a formula A is defined as the number of symbol

occurrences in A from {�,¬,∧,∨,⊃}

3.2.1 Preliminary results

Lemma 3.2 (height-preserving invertibility of L⊃) Suppose that τ is a cut-

free derivation of A ⊃ B,X ⇒ Y . There there is an effective height-preserving

transformation to cutfree derivations of X ⇒ Y,A and B,X ⇒ Y .

Proof. Because GoS contains contraction rules, we actually need to prove the

stronger statement: if τ is a cutfree derivation of (A ⊃ B)m+1, X ⇒ Y then there

are cutfree derivations of Am+1, X ⇒ Y and X ⇒ Bm+1, Y . The argument is a

standard induction on the height of τ so we omit the details. Q.E.D.

Lemma 3.3 Let τ be a cutfree derivation of X,�(B ⊃ �B)m+1 ⇒ Y . Then

there is an effective transformation to a cutfree derivation τ ′ of X, (�B)m+1 ⇒ Y .

60 CHAPTER 3. SYNTACTIC CUT-ELIMINATION FOR GO

Proof. Induction on the height of τ . Consider the last rule in τ .

For example, consider the case when the last rule in τ is the GoR rule:

�X,�(B ⊃ �B)m+1, (B ⊃ �B)m+1,�(C ⊃ �C)⇒ C

�X,�(B ⊃ �B)m+1 ⇒ �C

By height-preserving invertibility of L⊃ (Lemma 3.3) we have a derivation of

�X,�(B ⊃ �B)m+1, (�B)m+1,�(C ⊃ �C)⇒ C

Applying the induction hypothesis we obtain

�X, (�B)m, (�B)m,�(C ⊃ �C)⇒ C

The result follows from repeated application of the LC rule.

As another example, consider when the last rule in τ is LC:

X,�(B ⊃ �B)m+2 ⇒ Y

X,�(B ⊃ �B)m+1 ⇒ Y

From the induction hypothesis we can obtain a derivation of X, (�B)m+2 ⇒ Y .

The result follows from an application of the LC rule.

The other cases are similar. Q.E.D.

We will use the diagonal formula as the label for a GoR rule, writing “C is

a GoR rule in τ” to refer to an occurrence of a GoR rule in τ with diagonal

formula C. Although it is certainly possible for a derivation to contain multiple

GoR rule occurrences with the identical diagonal formula, we will ensure that the

context identifies the intended occurrence. This labelling will greatly simplify the

notation.

Let C1 and C2 denote two different occurrences of the GoR rule in τ . We say

that C1 is above C2 if, tracing upwards, there is a path upwards in τ from C2

to C1.

We say that boxes persist upwards in τ if, for all occurrences C1 and C2 of

GoR in τ (with conclusion sequents �X1 ⇒ �A1 and �X2 ⇒ �A2 say), C1 is

above C2 implies that �X2 ∪ 〈�(A2 ⊃ �A2)〉 ⊆ �X1.

The rule immediately above the endsequent in a non-trivial derivation (ie the

last rule in the derivation) is called the final rule. A derivation τ ending as

�X,�(B ⊃ �B) ⇒ B/GoR�X ⇒ �B (so the final rule is GoR with diagonal

formula B) is called implication-forced if every occurrence of GoR in τ apart from

the final rule is preceeded by L⊃ (B ⊃ �B). In other words, every GoR rule

with the exception of the final rule occurs in the context

3.2. BASIC DEFINITIONS AND NOTATION 61

�(B ⊃ �B),�X,X,�(A ⊃ A)⇒ A,B �B,�(B ⊃ �B),�X,X,�(A ⊃ A)⇒ A
L⊃

�(B ⊃ �B), B ⊃ �B,�X,X,�(A ⊃ A)⇒ A
GoR

�(B ⊃ �B),�X ⇒ �A

Definition 3.4 (normal derivation) A cutfree derivation τ with final rule GoR

is called normal if boxes persist upwards and τ is implication-forced.

The following lemma shows that any cutfree derivation where the final rule is

GoR can be transformed into a normal derivation with the same endsequent.

Lemma 3.5 (normal derivation lemma) Let τ be a cutfree derivation ending

as �X,�(B ⊃ �B)⇒ B/GoR�X ⇒ �B. Then there is an effective transforma-

tion to a normal derivation τ ′ ending as �X,�(B ⊃ �B)⇒ B/GoR�X ⇒ �B.

Proof. We will transform τ to ensure that boxes persist upwards, and then

transform the resulting derivation to ensure that it is implication-forced.

To illustrate the transformation required to ensure that boxes persist upwards,

suppose that τ has the following form:

pi ⇒ pi
...

�Yr,�(Ar ⊃ �Ar)⇒ Ar
GoR�Yr ⇒ �Ar

...
�Yr−1,�(Ar−1 ⊃ �Ar−1)⇒ Ar−1

GoR�Yr−1 ⇒ �Ar−1

...
�Y1,�(A1 ⊃ �A1)⇒ A1

GoR�Y1 ⇒ �A1

The idea is to transform the proof to the following using appropriate weakening

and contraction rules — LW ∗ indicates some number of applications of the LW

rule (read the following proof diagram downwards from the initial sequent):

62 CHAPTER 3. SYNTACTIC CUT-ELIMINATION FOR GO

pi ⇒ pi
�Y1,�(A1 ⊃ �A1), . . . ,�Yr−1,�(Ar−1 ⊃ �Ar−1),�Yr, pi ⇒ pi

...
�Y1,�(A1 ⊃ �A1), . . . ,�Yr−1,�(Ar−1 ⊃ �Ar−1),�Yr,�(Ar ⊃ �Ar)⇒ Ar

GoR
�Y1,�(A1 ⊃ �A1), . . . ,�Yr−1,�(Ar−1 ⊃ �Ar−1),�Yr ⇒ �Ar

LW ∗
�Y1,�(A1 ⊃ �A1), . . . ,�Yr−1,�(Ar−1 ⊃ �Ar−1),�Yr ⇒ �Ar

...
�Y1,�(A1 ⊃ �A1), . . . ,�Yr−1,�(Ar−1 ⊃ �Ar−1)⇒ Ar−1

GoR
�Y1,�(A1 ⊃ �A1), . . . ,�Yr−1 ⇒ �Ar−1

...
�Y1,�(A1 ⊃ �A1)⇒ A1

GoR�Y1 ⇒ �A1

We omit the details as the proof is straightforward, if tedious.

In this manner, from τ we can obtain a derivation τ ′ ending as �X,�(B ⊃
�B) ⇒ B/GoR�X ⇒ �B such that boxes persist upwards in τ ′. Thus every

occurrence of GoR aside from the final rule has the form

�(B ⊃ �B), B ⊃ �B,�X,X,A ⊃ �A⇒ A

�(B ⊃ �B),�X ⇒ �A

By invertibility of L⊃ (Lemma 3.2) we can obtain cutfree derivations δ1 and δ2

of, respectively,

�(B ⊃ �B),�X,X,A ⊃ �A⇒ A,B

and

�(B ⊃ �B),�B,�X,X,A ⊃ �A⇒ A

Then replace the subderivation ending �(B ⊃ �B),�X ⇒ �A in τ with the

following derivation:

δ1

�(B ⊃ �B),�X,X,A ⊃ �A⇒ A,B

δ2

�(B ⊃ �B),�B,�X,X,A ⊃ �A⇒ A
L⊃

�(B ⊃ �B), B ⊃ �B,�X,X,A ⊃ �A⇒ A
GoR

�(B ⊃ �B),�X ⇒ �A

Apply this argument to all non-final GoR rules in τ ′ to obtain a cutfree deriva-

tion τ ′′ that is implication-forced. Observe that boxes persist upwards in τ ′′

because boxes persist upwards in τ ′. It follows that τ ′′ is a normal derivation

ending as �X,�(B ⊃ �B)⇒ B/GoR�X ⇒ �B. Q.E.D.

Let C be an arbitrary non-final GoR rule occurrence in the normal deriva-
tion τ . Because τ is implication-forced, C must appear as follows, with a L⊃ rule
immediately above the GoR rule:

3.2. BASIC DEFINITIONS AND NOTATION 63

�(B ⊃ �B),�X,X,C ⊃ �C ⇒ C,B �(B ⊃ �B),�B,�X,X,C ⊃ �C ⇒ C
L⊃

�(B ⊃ �B), B ⊃ �B,�X,X,C ⊃ �C ⇒ C
GoR

�(B ⊃ �B),�X ⇒ �C

In the above context where L⊃ is immediately above an occurrence C of the GoR

rule (remember that we use the diagonal formula C as a label for the GoR rule

occurrence), we will write SL(C) and SR(C) respectively, to denote the left and

right premise of that L⊃ rule occurrence. Now suppose that C1 is an occurrence

of the GoR rule above C. If C1 occurs above the sequent SL(C) then we say that

C1 is left-above C. Similarly, if C1 occurs above the sequent SR(C) then we say

that C1 is right-above C. If there is no GoR rule on the path between C1 and C

then we say that C1 is immediately left-above (resp. right-above) C.

Definition 3.6 (topmost sequent) Let τ be a normal derivation ending as

�X,�(B ⊃ �B) ⇒ B/GoR�X ⇒ �B. A sequent S in derivation τ is called

topmost if each �B and �(B ⊃ �B) formula occurring in the antecedent of S
is introduced in every branch above S via the initial sequents �B ⇒ �B and

�(B ⊃ �B) ⇒ �(B ⊃ �B) or weakening rules, and prior to encountering a

GoR rule.

Intuitively, tracing upwards along each branch of the derivation from the topmost

sequent, we will encounter the initial sequents or weakening rules for �B and

�(B ⊃ �B) before encountering a GoR rule. For example, consider the following

proof diagram.

...
GoR

�(B ⊃ �B),�(C ⊃ �C)⇒ C†

�(B ⊃ �B),�(C ⊃ �C)⇒ B,C

...
GoR

�(C ⊃ �C)⇒ C
LW

�(B ⊃ �B),�B,�(C ⊃ �C)⇒ C‡
L⊃

�(B ⊃ �B), B ⊃ �B,�(C ⊃ �C)⇒ C∗
GoR

�(B ⊃ �B)⇒ �C
...

The sequent marked with † is not a topmost sequent because there is a GoR rule

immediately above it — thus violating the condition that, viewed upwards, the

�(B ⊃ �B) formula in the antecedent is introduced prior to encountering a GoR

rule. However the sequent marked with ‡ is a topmost sequent because both the

�(B ⊃ �B) and �B formulae in the antecedent are introduced via weakening

and there is no GoR rule in-between ‡ and the weakening rules. Finally, the

sequent marked with ∗ is not a topmost sequent because, tracing upwards, there

is a branch above it (the left premise of L⊃) where the �(B ⊃ �B) formula is

64 CHAPTER 3. SYNTACTIC CUT-ELIMINATION FOR GO

not introduced via an initial sequent or weakening prior to encountering a GoR

rule.

Lemma 3.7 (topmost sequent lemma) Let τ be a normal derivation ending

as �X,�(B ⊃ �B) ⇒ B/GoR�X ⇒ �B and suppose that Γ ⇒ ∆ is a topmost

sequent in τ . Then there is a cutfree derivation of Γ∗ ⇒ ∆ where Γ∗ is the

multiset obtained from Γ by deleting all occurrences of �B and �(B ⊃ �B).

Proof. Since Γ ⇒ ∆ is a topmost sequent, each �B formula in Γ must have

been introduced by a LW (�B) weakening rule above Γ⇒ ∆, or it can be traced

to a �B ⇒ �B initial sequent. Similarly, each �(B ⊃ �B) formula in Γ must

have been introduced by a LW (�(B ⊃ �B) weakening rule above Γ⇒ ∆, or it

can be traced to a �(B ⊃ �B)⇒ �(B ⊃ �B) initial sequent.

A cutfree derivation of Γ∗ ⇒ ∆ can be obtained as follows.

Substitute any LW (�B) or LW (�(B ⊃ �B) weakening rules above the se-

quent Γ⇒ ∆ with LW ∗(�X), and substitute the derivation τ of �X ⇒ �B for

occurrences of the initial sequent �B ⇒ �B. Finally substitute the following

derivation in place of the initial sequent �(B ⊃ �B)⇒ �(B ⊃ �B).

�X ⇒ �B
LW ∗

B,�X,�((B ⊃ �B) ⊃ �((B ⊃ �B)))⇒ �B
R⊃

�X,�((B ⊃ �B) ⊃ �((B ⊃ �B)))⇒ B ⊃ �B
GoR

�X ⇒ �(B ⊃ �B)

By inspection, the obvious derivation that can be obtained from these transfor-

mations is a cutfree derivation of Γ∗ ⇒ ∆. Q.E.D.

3.3 Cut-elimination for Go

In this section, we consider exclusively a normal derivation τ ending as follows:

�X,�(B ⊃ �B)⇒ B
GoR�X ⇒ �B

Recall that the (GoR) rule ending τ is called the final rule.

Before we proceed, we remind the reader once more that an occurrence in τ

of a GoR rule is referred to by the diagonal formula of that rule — even if there

are multiple occurrences of GoR with identical diagonal formula in τ the context

will make it clear which occurrence is meant. For example, the final rule in τ is

a GoR rule with diagonal formula B so we refer to this occurrence as the final

rule B.

3.3. CUT-ELIMINATION FOR GO 65

× ×
L⊃×

GoR�

×

LW (�(B ⊃ �B))

× ×
L⊃×

GoR�

×

LW (�B), LW (�(B ⊃ �B)

× ×
L⊃×

GoR�

×

× ×
L⊃×

GoR�

×

× ×
L⊃×

GoR�,�

×

× ×
L⊃×

GoR�,�

×

�X,�(B ⊃ �B)⇒ B
GoR

�X ⇒ �B

Figure 3.1: A schematic representation of a fragment of a normal derivation end-

ing as �X,�(B ⊃ �B)⇒ B/GoR�X ⇒ �B. The solid lines represent portions

of the derivation that are GoR-free. The symbol � denotes a leftflush rule and �

denotes a rightflush rule (each wrt B). The symbols � and � respectively denote

a MLL rule and a MRR rule (once again wrt to B).

Definition 3.8 (leftflush, rightflush rules) Let C be some GoR rule in a nor-

mal derivation τ . The set of GoR rules that are leftflush (rightflush) rule wrt C

is precisely the set defined by the following recursive definition:

(i) any GoR rule immediately above the final rule B is leftflush and rightflush

wrt B

(ii) any GoR rule that is left-above (right-above) a GoR rule C is leftflush (right-

flush) wrt C

(iii) any GoR rule that is left-above (right-above) a rule that is itself leftflush

(rightflush) wrt C is said to to be leftflush (rightflush) wrt C

Intuitively, D is leftflush wrt C if D is encountered by repeatedly tracing through

GoR rules left-above C. The intuition for rightflush is analogous. See Figure 3.1

66 CHAPTER 3. SYNTACTIC CUT-ELIMINATION FOR GO

for an illustration of these terms.

Notice that it is never the case that C is leftflush (rightflush) wrt itself. Also

the final rule B is not leftflush (rightflush) wrt to any rule, although from (i)

every rule immediately above the final rule is both leftflush and rightflush wrt B.

The following observation is crucial for the success of the proof.

Suppose that the GoR rule C in a normal derivation τ is leftflush wrt the

final rule B. Then the rule C has a conclusion sequent of the form �Y,�(B ⊃
�B)k+1 ⇒ �C, where �Y contains no �B or �(B ⊃ �B) formulae that are

parametric ancestors of the diagonal formula in the final rule. In particular, this

means that

SL(C) = �Y,�(B ⊃ �B)k+1 ⇒ Bk+1, C

SR(C) = �Y,�(B ⊃ �B)k+1,�Bk+1 ⇒ C

Definition 3.9 (depth) The depth of a GoR rule ρ in a derivation τ is the

number of GoR rules between the premise of ρ and the endsequent of τ .

For example, for a derivation concluding with a GoR rule ρ, the depth of ρ in

that derivation is 1.

Definition 3.10 (left-, right-topmost) Suppose that τ is a normal derivation.

A GoR rule C in τ is called left-topmost (right-topmost) if the sequent SL(C)

(SR(C)) is a topmost sequent.

Definition 3.11 (MLL rule wrt C) Let C be some occurrence of the GoR rule

in a normal derivation τ and suppose that D is a leftflush rule (wrt C) and left-

topmost rule. Then D is called an MLL rule wrt C if there is no leftflush (wrt C)

and left-topmost rule below D.

The term MLL stands for ‘minimal leftflush left-topmost’. Although a normal

derivation may contain distinct MLL rules (wrt C) A and B, it must be the case

that A and B lie on different branches above C. Intuitively, an MLL rule is the

leftflush left-topmost rule closest to C. Similarly we define

Definition 3.12 (MRR rule wrt C) Let C be some occurrence of the GoR rule

in a normal derivation τ and suppose that D is a rightflush rule (wrt C) and right-

topmost rule. Then D is said to be an MLL rule wrt C if there is no rightflush

(wrt C) and right-topmost rule below C.

3.3. CUT-ELIMINATION FOR GO 67

The term MRR stands for ‘minimal rightflush right-topmost’. See Figure 3.1 for

an illustration of the terms MLL and MRR.

Definition 3.13 (leftwidth, rightwidth) The leftwidth lw(τ) is defined as the

sum of the depths of each MLL rule (wrt the final rule) in a normal derivation τ .

Similarly, define the rightwidth rw(τ) as the sum of the depths of each RLL rule

(wrt the final rule) in τ .

Definition 3.14 (width of cut) The width of an instance of cut is defined

when the left premise of cut is principal by the GoR rule, as the leftwidth lw(δ)

of the left premise derivation δ.

To simplify the notation, in the following we will omit writing the full an-

tecedent of each sequent, dropping context terms such as �X, and ignore for-

mula multiplicities. For example, instead of �X,X,�(B ⊃ �B) ⇒ B we write

�(B ⊃ �B)⇒ B. Similarly, the rule

�X,�Y,�(B ⊃ �B)m+1,�(C ⊃ �C)⇒ C

�X,�Y,�(B ⊃ �B)m+1 ⇒ �C

becomes

�(B ⊃ �B),�(C ⊃ �C)⇒ C

�(B ⊃ �B)⇒ �C

It is straightforward to extend the proof to the general case.

Let τ be a normal derivation ending as �X,�(B ⊃ �B)⇒ B/GoR�X ⇒ �B.

Part I. obtain �(C ⊃ �C)⇒ B for an arbitrary MLL rule C wrt B

First suppose that lw(τ) = 0. Then it must be the case that there are no

MLL rules wrt the final rule. This implies that the �(B ⊃ �B) formula is

introduced via weakening or initial sequents immediately above �(B ⊃ �B)⇒ B

in every branch. Thus, �(B ⊃ �B)⇒ B is already a topmost sequent. We can

immediately obtain a cutfree derivation of �X,X ⇒ B from Lemma 3.7.

Now suppose that lw(τ) > 0. We can schematically represent τ as follows —

an arbitrary MLL rule C wrt B is highlighted in bold:

(topmost sequent)

S2 = �(B ⊃ �B),�(C ⊃ �C)⇒ B,C

...
S3 = �(B ⊃ �B),�B,�(C ⊃ �C)⇒ C

B ⊃ �B,�(B ⊃ �B),�(C ⊃ �C)⇒ C
GoRS1 = �(B ⊃ �B)⇒ �C

...
�(B ⊃ �B)⇒ B

⇒ �B

68 CHAPTER 3. SYNTACTIC CUT-ELIMINATION FOR GO

First, replace the subderivation of sequent S1 in τ with the derivation

�C ⇒ �C
LW

�(B ⊃ �B),�C ⇒ �C

thus deleting an MLL rule from τ . We can then obtain a derivation τ ′ of �C ⇒
�B. Although the GoR rule ρ below �(B ⊃ �B),�C ⇒ �C in τ ′ may now

be an MLL rule (observe that ρ could not have been an MLL rule in τ because

then C would not have been an MLL), by inspection it is clear that the depth

of ρ is strictly less than the depth of the MLL rule C in τ . Thus lw(τ ′) < lw(τ).

From �(B ⊃ �B) ⇒ B we can obtain a derivation of �B ⇒ B (Lemma 3.3),

and so we have

�C ⇒ �B �B ⇒ B cut
�C ⇒ B

where the cut has width < lw(τ).

From �(B ⊃ �B),�(C ⊃ �C) ⇒ B,C (this is S2) by Lemma 3.7 we can

obtain directly a derivation of

�(C ⊃ �C)⇒ B,C

Using �C ⇒ B and the above sequent, from L⊃ we get

�(C ⊃ �C)⇒ B (3.1)

Part II. transform τ so SR(D) is a topmost sequent

To show this we will prove a stronger statement (∗):

If D is either the MLL rule C or a rightflush rule wrt to the MLL

rule C in τ , then we can transform the subderivation above D in τ so

that SR(D) is a topmost sequent.

Let δ denote the subderivation in τ deriving the conclusion sequent of D. The

proof is by induction on the rightwidth rw(δ) of δ.

Case I. Suppose that D is the MLL rule C.

If rw(δ) = 0, then it must be the case that there are no MRR rules wrt C.

This implies that every �(B ⊃ �B) formula in the antecedent of SR(C) (=S3) is

introduced via weakening or initial sequents above SR(C) in every branch. Thus,

SR(C) is already a topmost sequent.

If rw(δ) > 0, there must be a GoR rule F immediately right-above the MLL

rule C (highlighted in bold for clarity):

3.3. CUT-ELIMINATION FOR GO 69

× S4 = �B,B,�(B ⊃ �B),�(C ⊃ �C),�(F ⊃ �F)⇒ F
L⊃

�B,B,�(B ⊃ �B),�(C ⊃ �C),�(F ⊃ �F)⇒ F
GoR

�B,�(B ⊃ �B),�(C ⊃ �C)⇒ �F
...

× �(B ⊃ �B),�B,�(C ⊃ �C)⇒ C
L⊃

�(B ⊃ �B), B ⊃ �B,�(C ⊃ �C)⇒ C
GoR

�(B ⊃ �B)⇒ �C

Let δ′ be the subderivation deriving �B,�(B ⊃ �B),�(C ⊃ �C)⇒ �F . Since

rw(δ′) < rw(δ), by the induction hypothesis it follows that SR(F) (=S4) is a

topmost sequent. Hence, from Lemma 3.7 we have a derivation of B,�(C ⊃
�C),�(F ⊃ �F)⇒ F . Now, making use of the derivation of (3.1) we obtained

before, we have

�(C ⊃ �C)⇒ B B,�(C ⊃ �C),�(F ⊃ �F)⇒ F
cut

�(C ⊃ �C),�(F ⊃ �F)⇒ F
GoR

�(C ⊃ �C)⇒ �F
LW

�(B ⊃ �B),�B,�(C ⊃ �C)⇒ �F
...

× �(B ⊃ �B),�B,�(C ⊃ �C)⇒ C
L⊃

�(B ⊃ �B), B ⊃ �B,�(C ⊃ �C)⇒ C
GoR

�(B ⊃ �B)⇒ �C

Because of the left weakening rule we introduced above, the rightwidth of C in

the above derivation is < rw(δ), and so by the induction hypothesis it follows

that SR(C) is a topmost sequent.

Case II. Suppose that D is a rightflush rule wrt C. If rw(δ) = 0 then there

are no MRR rules wrt D, so SR(D) must be topmost. Else, if rw(δ) > 0, then

there must be a GoR rule G immediately right-above D:

× �B,B,�(B ⊃ �B),�(C ⊃ �C),�(D ⊃ �D),�(G ⊃ �G)⇒ G
L⊃

�B,B,�(B ⊃ �B),�(C ⊃ �C),�(D ⊃ �D),�(G ⊃ �G)⇒ G
GoR

�B,�(B ⊃ �B),�(C ⊃ �C),�(D ⊃ �D)⇒ �G
...

× �(B ⊃ �B),�B,�(C ⊃ �C),�(D ⊃ �D)⇒ D
L⊃

�(B ⊃ �B),�(C ⊃ �C),�(D ⊃ �D)⇒ D
GoR

�(B ⊃ �B),�(C ⊃ �C)⇒ �D

From the induction hypothesis and Lemma 3.7 we can obtain a derivation of

B,�(C ⊃ �C),�(D ⊃ �D),�(G ⊃ �G)⇒ G

Once again, making use of the derivation of (3.1) we obtained before, we have

70 CHAPTER 3. SYNTACTIC CUT-ELIMINATION FOR GO

�(C ⊃ �C)⇒ B B,�(C ⊃ �C),�(D ⊃ �D),�(G ⊃ �G)⇒ G
cut

�(C ⊃ �C),�(D ⊃ �D),�(G ⊃ �G)⇒ G
GoR

�(C ⊃ �C),�(D ⊃ �D)⇒ �G
LW

�(B ⊃ �B),�B,�(C ⊃ �C),�(D ⊃ �D)⇒ �G
...

× �(B ⊃ �B),�B,�(C ⊃ �C),�(D ⊃ �D)⇒ D
L⊃

�(B ⊃ �B),�(C ⊃ �C),�(D ⊃ �D)⇒ D
GoR

�(B ⊃ �B),�(C ⊃ �C)⇒ �D

Because of the left weakening rule we introduced above, the rightwidth of D in

the above derivation is < rw(δ), and so by the induction hypothesis it follows

that SR(D) is a topmost sequent.

We have proved all the cases for the inductive step and so (∗) is proved.

Part III. obtain a derivation of ⇒ �B with reduced leftwidth

In Part II we showed how to obtain a derivation where SR(C) is a topmost

sequent. Then, by Lemma 3.7 we have a derivation of �(C ⊃ �C)⇒ C. Finally,

�(C ⊃ �C)⇒ C
GoR⇒ �C
LW

�(B ⊃ �B)⇒ �C

Replace the subderivation of S1 in τ (see Part I) with the above derivation

to ultimately obtain a derivation τ ′′ of ⇒ �B where lw(τ ′′) < lw(τ). Then the

following cut has width < lw(τ):

⇒ �B �B ⇒ B cut⇒ B

We have proved the following result.

Lemma 3.15 Let τ be a normal derivation ending as �X,�(B ⊃ �B) ⇒
B/GoR�X ⇒ �B. Then there is an effective transformation to a derivation

τ ′ of �X,X ⇒ B, where each cut-rule in τ ′ has degree < |�B|, or degree |�B|
and width < lw(τ).

Theorem 3.16 Syntactic cut-elimination holds for GoS.

Proof. Without loss of generality, let τ be a derivation containing a single

instance cut of the cut-rule as the final rule. We need to show that there is a

cutfree derivation of the identical sequent.

Primary induction on the degree of the cut-formula, secondary induction on

the width of the left premise derivation of cut, and ternary induction on the cut-

height. (Observe that the proof of Lemma 3.15 uses an induction on rightwidth,

3.3. CUT-ELIMINATION FOR GO 71

so this proof implicitly uses a quaternary induction measure). In the following,

for instances cut1 and cut2 of the cut-rule, we write cut1 < cut2 to mean that

cut1 is less than cut2 under the above measure.

When the cut-formula is not a boxed-formula, the standard transformations

suffice (we explain how to deal with the contraction rules below). If the cut-

formula is a boxed-formula, first transform the left premise derivation and then

the right-premise derivation in the usual manner to obtain the situation where

the cut-formula is principal by the GoR rule in both premises. This is the case

discussed in the Introduction. Note that although the standard transformations

introduce new cuts, by inspection it is easily seen that the width of these intro-

duced cuts is < n. From Lemma 3.5 we can write the left premise derivation

as a normal derivation ending as (say) �X,�(B ⊃ �B) ⇒ B/GoR�X ⇒ �B.

Using Lemma 3.15 we can obtain a cutfree derivation of �X,X ⇒ B. Proceed

as directed in the Introduction.

Since we use sequents built from multisets, we also need to specify how to

deal with the contraction rules. In fact, there are two possible approaches for

dealing with ‘contractions above cut’. If we are prepared to use the multicut rule

(m,n > 0)

X ⇒ Y,Am An, U ⇒W
mcut

X,U ⇒ Y,W

then we can obtain a cutfree derivation by taking a detour via the calculus GoS+

mcut. This is the approach Gentzen [25] takes in his proof of the Hauptsatz. If we

wish to avoid making a detour via a new calculus, instead of using the multicut

rule we can adapt the transformations described in [77] for classical logic. The

only new case to deal with is a derivation of the following form:

�X,X,�(B ⊃ �B)⇒ B
GoR�X ⇒ �B

�B,�B,B,B,�U,U,�(C ⊃ �C)⇒ C
GoR�B,�B,�U ⇒ �C

LC�B,�U ⇒ �C
cut0�X,�U ⇒ �C

Then the following transformation suffices, where a derivation of �X,X ⇒ B

can be obtained from Lemma 3.15.

�X,X ⇒ B

�X ⇒ �B

�B,�B,B,B,�U,U,�(C ⊃ �C)⇒ C
LC

�B,B,B,�U,U,�(C ⊃ �C)⇒ C
cut1

B,B,�U,U,�(C ⊃ �C)⇒ C
LC

�X,B,�U,U,�(C ⊃ �C)⇒ C
cut2

�X,X,�U,U,�(C ⊃ �C)⇒ C
GoR�X,�U ⇒ �C

72 CHAPTER 3. SYNTACTIC CUT-ELIMINATION FOR GO

because cut1 < cut0 (reduced cut-height) and cut2 < cut0 (reduced degree of

the cut-formula). This is similar to the approach for avoiding multicut in cut-

elimination for GLS [32]. Q.E.D.

3.4 Conclusion

We fill a gap in the literature by presenting a syntactic proof of cut-elimination

for GoS. We conclude by comparing this proof to the existing proofs of cut-

elimination for Grz and GL.

The calculus GLS for GL can be obtained by substituting the GoR rule in

Table 3.1 with the GLR rule:

�X,X,�B ⇒ B
�X ⇒ �B

The calculus GrzS for Grz can be obtained by substituting the GoR rule in

Table 3.1 with the following rules:

B,X ⇒ Y
GRZa�B,X ⇒ Y

�X,X,�(B ⊃ �B)⇒ B
GRZc�X ⇒ �B

Informally, the proof for GoS appears to be more intricate than the proof for

the calculus GLS [71, 32] because of the necessity of dealing with the formula

�(B ⊃ �B) as opposed to �B in the premise of the respective modal rules.

Compared with the GrzS calculus, although the GRZc rule also contains

�(B ⊃ �B) in the premise antecedent, the presence of the GRZa rule enables

us to directly transform any sequent of the form C ⊃ �C,X ⇒ Y into �(C ⊃
�C), X ⇒ Y which greatly simplifies the proof. In GoS, we have only the GoR

rule at our disposal to ‘box’ the C ⊃ �C formula in a sequent of the form

C ⊃ �C,X ⇒ Y , and must abide by the restrictions it places on the multisets X

and Y . As a result, the proof for GoS seems to require a more detailed study of

the structure of derivations in GoS, and a quaternary induction measure, whereas

three induction variables suffice for GLS and GrzS.

Part II

Display calculi

73

Chapter 4

Preliminaries

We begin by defining the basic modal logic K and the basic tense logic Kt, and

present a semantics for these logics (Section 4.1). In Section 4.2 we introduce some

results from correspondence theory that will be used throughout the chapter. The

Display calculus [5] is a generalised sequent framework for capturing a variety of

logics. In Section 4.3 we present the display calculus DLM for the basic tense

logic Kt.

Most of the material here is standard. Our contributions here are as follows.

We have identified an error in the definition of Kracht formula given in Blackburn

et al. [7, Definition 3.58]. To obtain the desired correspondence between Kracht

formulae and Sahlqvist formulae, the definition given in [7] needs to be suitably

extended. Blackburn et al. also show how to compute a Sahlqvist formula from

a Kracht formula. We explain how to extend the given algorithm to handle the

additional cases that arise due to the new definition of Kracht formula. We have

provided a new definition of “properly displays” for display calculi. In our view,

this new definition corresponds more closely with the notion of soundness and

completeness of a calculus with respect to a logic. Moreover, our new definition

does not rely on the translation τ between display structures and tense formula.

As a result, the definition works equally well with calculi for the modal language.

We prove the equivalence of the two definitions for display calculi for the tense

language.

4.1 Introducing modal and tense logics

A formal language consists of strings of symbols. Some of these strings are taken

to be meaningful (formulae) and the remainder are taken to be meaningless.

75

76 CHAPTER 4. PRELIMINARIES

From the set of meaningful strings of the language, some strings are chosen to be

‘good’ (theorems). The set of good strings is called a logic.

There are two standard ways of specifying the theorems of a logic.

One way is to use the language to describe an object or some class of objects

(the set of natural numbers, or the class of directed graphs, for example). The

logic is defined as the set of formulae in the language that are true of the object.

Since this method relies on the meaning or semantics of the object, we say that

the logic has been defined semantically.

The other way is to choose a set of formulae as theorems (call this set the

axioms), and provide a set of inference rules which specify how to produce new

theorems from the existing ones. The logic is defined as the set of formulae that

can be produced by repeatedly applying the inference rules to already-obtained

theorems. Unlike before, the language is not used to directly describe the object,

and theorems are specified solely based on the syntax. For this reason we say

that the logic has been defined syntactically. There are many different systems

that can be used to syntactically define a logic — the Hilbert calculus [75, 16],

natural deduction and sequent calculi systems [25] and the display calculus [5],

to name just a few examples. The reason for this diversity is that each system

has advantages and drawbacks from a theoretical and computational perspective,

and also in terms of applicability to a given logic.

Let us begin by defining a formal language called the propositional language L.

This language is defined using a countably infinite set of propositional variables pi,

the propositional constants ⊥ and >, the propositional connectives ¬ (“not”),

∨ (“or”), ∧ (“and”) and ⊃ (“implication”), and the punctuation marks “(”

and “)”. The set ForL of formulae of L is given by the grammar

A ::= pi | ⊥ |> | ¬A | (A ∨B) | (A ∧B) | (A ⊃ B)

where pi ranges over the set VarL of propositional variables. We will use p, q, r, . . .

(possibly with subscripts) to denote propositional variables, and A,B, . . . to de-

note formulae (the context will determine the language in question).

For example, the string “p ⊃ (p ∧ q)” is in ForL because it is derivable using

the above grammar, whereas the string “p0⊥∨” is not derivable by the above

grammar so it is not a formula of L. Notice that it is straightforward to decide

whether or not a given string of L belongs to ForL.

Let us now define a logic called Classical propositional logic Cp. We will

define Cp syntactically using a Hilbert Calculus. A Hilbert calculus consists of a

4.1. INTRODUCING MODAL AND TENSE LOGICS 77

set of formulae (axioms) and inference rules of the following form, for formulae

A1, . . . , An, B:

A1 . . . Ai . . . An
B

The formulae A1, . . . , An are called the premises of the rule, and the formula B

is called the conclusion. This rule states that if all the premises of the rule are

theorems of the logic, then the conclusion is also a theorem of the logic. The

logic defined by a Hilbert calculus is precisely the closure of the axioms under the

inference rules. Note that we will occasionally describe the inference rules using

words when it is convenient to do so. Finally, we write A ≈ B as an abbreviation

for the formula (A ⊃ B) ∧ (B ⊃ A).

Here is a Hilbert calculus for Cp (see [16]):

Axioms:

(A1) p ⊃ (q ⊃ r)

(A2) (p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))

(A3) p ∧ q ⊃ p

(A4) p ∧ q ⊃ q

(A5) p ⊃ (q ⊃ (p ∧ q))

(A6) p ⊃ p ∨ q

(A7) q ⊃ p ∨ q

(A8) (p ⊃ r) ⊃ ((q ⊃ r) ⊃ (p ∨ q ⊃ r))

(A9) ⊥ ⊃ p

(A10) p ∨ (p ⊃ ⊥)

(A11) ¬p ≈ p ⊃ ⊥

(A12) > ≈ ¬⊥

Inference rules:

Modus ponens : if A ∈ Cp and A ⊃ B ∈ Cp, then B ∈ Cp

Uniform substitution of arbitrary formulae for propositional variables in a for-

mula

Let us introduce some basic terminology and notation. A subformula A′ of

the formula A is a formula that occurs as a substring of A. We say that A′ is a

proper subformula of A if it is a subformula and A′ is not identical to A. Also,

we write A ∈ L to denote that the formula A is a theorem of the logic L. If

A ≈ B ∈ L then we say that A and B are logically equivalent in L. We write

“iff” as shorthand for “if and only if” in the usual mathematical sense.

Examples of theorems in Cp include

p ⊃ > (p ⊃ q) ⊃ (r ∧ p ⊃ q ∨ s)
¬(p ∨ q) ≈ (¬p ∧ ¬q) (p ⊃ q) ≈ (¬p ∨ q)

(¬¬p) ≈ p ¬(p ∧ q) ≈ (¬p ∨ ¬q)

78 CHAPTER 4. PRELIMINARIES

Using (p ⊃ ⊥) ≈ ¬p, it is easy to see that (A10) is logically equivalent to p∨¬p.
First-order classical logic with equality is obtained from Classical proposi-

tional logic in the usual way by extending the language L with the quantifiers

∀ and ∃ and the equality relation =, and the addition of suitable axioms to the

Hilbert calculus for Cp to make the logic work. Specific first-order theories can

be obtained by the addition of new function and relation symbols (such as +, ×
for an arithmetic theory, for example) and axioms that capture the properties of

these symbols. Since this formulation of first-order logic is standard, we omit the

details (see [4] for example).

Theorems of the form A ≈ B in first-order classical logic and classical propo-

sitional logic are called classical equivalences. We will implicitly make use of the

result that if A is a theorem of one of these logics and B ≈ C is a classical

equivalence, then the formula A′ obtained by substituting some occurrences of

formula B in A with formula C is logically equivalent to A.

Since (A11) states that ¬A ≈ (A ⊃ ⊥) and (A12) states that > ≈ ¬⊥,

it follows that ¬ and > are redundant in the sense that any formula in Cp

containing the symbols ¬ and > is equivalent to some formula not containing

these symbols. Similarly, the conjunction connective can be defined in terms of

{¬,∨}, and the disjunction connective can written in terms of {¬,∧}. Also the

implication connective can be defined in terms of {¬,∨}. Despite this obvious

redundancy, we retain these connectives because it is convenient to be able to

use them directly, and also because their presence makes it possible to construct

formal proof systems with nice properties.

4.1.1 Hilbert calculi for modal and tense logic

The basic modal language ML can be obtained by augmenting the language L
with the modal operators 3 (‘diamond’) and � (‘box’). The formulae of the basic

modal language is the set ForML given by the grammar

A ::= pi | ⊥ |> | ¬A | (A ∨B) | (A ∧B) | (A ⊃ B) |3A |�A

where pi ranges over the set of propositional variables. Formulae in ForML are

called modal formulae. For example, �(A ∧ B) ⊃ �A and 3�p ⊃ p are modal

formulae. Below, we define syntactically the basic modal logic KH using the

following Hilbert calculus:

4.1. INTRODUCING MODAL AND TENSE LOGICS 79

Axioms: all the axioms of classical propositional logic Cp plus:

�(p ⊃ q) ⊃ (�p ⊃ �q) (Ax−�)

�p ≈ ¬3¬p (Dual −�)

Inference rules:

Modus ponens : if A ∈ KH and A ⊃ B ∈ KH then B ∈ KH

Uniform substitution of arbitrary modal formulae for propositional variables in

a formula

Necessitation: if A ∈ KH , then �A ∈ KH

Clearly Cp ⊂ KH . Next we introduce the basic temporal language T L, ob-

tained by augmenting ML with the modal operators _ (‘black diamond’) and

� (‘black box’). The formulae of the basic temporal language is the set ForT L
given by the grammar

A ::= pi | ⊥ |> | ¬A | (A ∨B) | (A ∧B) | (A ⊃ B) |3A |�A |_A |�A

where pi ranges over the set of propositional variables. Formulae in ForT L are

called tense formulae. Clearly every modal formula is a tense formula.

Define the basic tense logic KtH in the language T L using the following

Hilbert calculus:

Axioms: all the axioms of classical propositional logic Cp plus:

�(p ⊃ q) ⊃ (�p ⊃ �q) (Ax−�)

�(p ⊃ q) ⊃ (�p ⊃ �q) (Ax−�)

�A ≈ ¬3¬A (Dual −�)

�A ≈ ¬_¬A (Dual −�)

p ⊃ �_p (Converse1)

p ⊃ �3p (Converse2)

Inference rules:

Modus ponens : if A ∈ KtH and A ⊃ B ∈ KtH then B ∈ KtH

Uniform substitution of arbitrary tense formulae for propositional variables in a

formula

80 CHAPTER 4. PRELIMINARIES

Necessitation: if α ∈ KtH , then �α ∈ KtH and �α ∈ KtH .

For an example of reasoning in the Hilbert calculus, see Lemma 4.47.

Clearly KH ⊂ KtH . In the following subsection, we will see how to define the

logics KH and KtH semantically.

4.1.2 Defining the logics KH and KtH semantically

Classical propositional logic Cp defined in the previous section can also be defined

semantically using a so-called classical interpretation of the language L (see [16]).

This is sometimes called the truth-table semantics for Cp. The idea is to assign

a valuation of either true or false (but not both simultaneously) to each propo-

sitional variable. The constant ⊥ is always false, the constant > is always true,

and the formulae ¬A, A ∨ B, A ∧ B and A ⊃ B are inductively defined in the

usual manner using truth tables. For example, A ⊃ B is assigned true if and only

if A is false or B is true. It can be shown that classical propositional logic Cp

consists precisely of those formulae in ForL that are true under all valuations.

Since the modal and temporal languages contain the operators 3 and _ and

their duals, a more sophisticated semantics is required in order to incorporate

these language elements in accordance with their intended meaning. A standard

approach is to use Kripke semantics (also known as frame semantics) — see [16, 7]

for an exposition.

The abstract framework for Kripke semantics is based on frames and models.

Definition 4.1 (frame) A frame for the basic modal language (‘modal frame’)

is a pair F = (W,R) such that

1. W is a non-empty set (‘states’), and

2. R is a binary relation on W .

A modal frame is an instance of a mathematical object called a relational struc-

ture. A relational structure is simply a non-empty set W together with some

positive number of relations on W . For this reason, Kripke semantics are some-

times called relational semantics.

Definition 4.2 (model) A model for the basic modal language is a pair M =

(F, V), where F is a frame (W,R) for the basic modal language, and V is a

function (‘valuation function’) assigning to each proposition variable p a subset

V (p) of W .

4.1. INTRODUCING MODAL AND TENSE LOGICS 81

A model M is said to be based on the frame F if M = (F, V) for some

valuation V .

Now let M = ((W,R), V) be a model and w ∈ W . Define the satisfaction

relation (M,w) |= D (read as ‘D is satisfiable in M at state w’) by induction on

the structure of the formula D ∈ ForML as follows:

M,w |= p iff w ∈ V (p)

M,w |= ⊥ never

M,w |= > always

M,w |= ¬A iff not M,w |= A

M,w |= A ∨B iff M,w |= A or M,w |= B

M,w |= A ∧B iff M,w |= A and M,w |= B

M,w |= A ⊃ B iff M,w |= A implies M,w |= B

M,w |= 3A iff there exists v ∈ W such that Rwv and M, v |= A

M,w |= �A iff for all v ∈ W , if Rwv then M, v |= A

The negation of M,w |= D is written M,w 6|= D.

Definition 4.3 (validity) A formula A is valid at a state w in frame F (no-

tation: F,w |= A) if A is satisfied at w in every model (F, V) based on F . A

formula A is valid on a frame F if it is valid at every state in F (notation:

F |= A). Also, we say that A is valid on a class F of frames if F ∈ F implies

that F |= A.

A set of formulae Γ is valid on a frame F (notation: F |= Γ) if every formula

in Γ is valid on F ; and Γ is valid on a class of frames F (notation: F |= Γ) if

every formula in Γ is valid on F .

The negation of F,w |= A (F |= A) is written F,w 6|= A (F 6|= A). If F,w 6|= A

it follows that there is a model M based on F such that M,w 6|= A. In this case

we say that A is falsifiable on F at w. Moreover, it follows directly from the

definition that if F 6|= A then there is some state w in F such that F,w 6|= A. We

say that A is satisfiable on F if there is a model M based on F and state w such

that M,w |= A. Similarly, we say that A is falsifiable on F if there is a model M

based on F and state w such that M,w 6|= A. Clearly, A is falsifiable on F iff ¬A
is satisfiable on F .

It is easy to check for any frame F that F |= Cp — it suffices to verify that

each axiom of Cp is valid on F , and also that each of the inference rules preserve

82 CHAPTER 4. PRELIMINARIES

validity. Note that when Γ is a finite set of formulae, then validity of Γ on a

frame F (resp. class of frames F) is equivalent to validity of
∧

Γ on F (F),

where
∧

Γ denotes the conjunction of all formulae in Γ.

Observe that the definition of validity at a state in a frame requires quantifica-

tion over all valuation functions V . For each propositional variable p, since V (p)

is a subset of W , quantification over all valuations amounts to quantification over

all subsets of W . Quantification over sets of propositional variables as opposed

to quantifying over a propositional variable hints at the second-order nature of

frame validity, discussed in greater detail in the next section.

Define semantically the modal logic KML in the language ML as those for-

mulae in ForML that are valid in all modal frames, that is:

KML = {A ∈ ForML|F |= A for all modal frames F}

The following result is a basic result in modal logic (see [16, 7] for example).

Theorem 4.4 KML = KH .

In other words, the syntactically specified KH and the semantically specified

KML describe the same logic. From now on we will write this logic as K using

the syntactic and semantic definitions interchangeably as convenient. The logic

K is often called the basic (or minimal) propositional modal logic. The term

‘minimal’ is due to the fact that K is the weakest system for reasoning about

frames.

We would now like to give a semantic specification for the logic KtH . Gener-

ally, Kripke frames for the temporal language (‘temporal frames’) should consist

of two relations (RF and RP say) on the non-empty set W standing for future

and past respectively, corresponding to the operators 3 and _. Semantics for

formulae in the temporal language could then be obtained by replacing the final

two lines of the satisfaction relation definition above with the following:

M,w |= 3A iff there exists v ∈ W such that RFwv and M, v |= A

M,w |= �A iff for all v ∈ W , if RFwv then M, v |= A

M,w |= _A iff there exists v ∈ W such that RPwv and M, v |= A

M,w |= �A iff for all v ∈ W , if RPwv then M, v |= A

Satisfaction and validity for temporal frames can be defined analogously to the

modal case. However it is easily seen that the converse axioms in Kt are valid

on a temporal frame iff the temporal frame satisfies

∀xy.RFxy ↔ RPyx (4.1)

4.1. INTRODUCING MODAL AND TENSE LOGICS 83

If R is a binary relation, let R̆ be the converse binary relation of R defined as

R̆xy = {(x, y) |Ryx}. Clearly
˘̆
Rxy ↔ Rxy. Then (4.1) implies that RF ↔ R̆P

(and RP ↔ R̆F). As a consequence, it is enough to keep track of a single binary

relation (RF say) since the other relation can be computed from it. A non-empty

set with a single binary relation is simply a modal frame, so it follows that modal

frames contain enough information to encode the class of temporal frames on

which (Converse1) and (Converse2) are valid.

Specifically, define a tense frame to be a temporal frame on which (Converse1)

and (Converse2) — or equivalently (4.1) — is valid. From our discussion, it

follows that every tense frame has the form (W,R, R̆). This gives rise to an

obvious isomorphism between the class of tense frames and modal frames: given

the modal frame (W,R), obtain the tense frame (W,R, R̆); given the tense frame

(W,R, R̆), obtain the modal frame (W,R).

Example 4.5 Let W = {u, v, w} and R be given by {(u, v), (v, w), (w,w)}. Then

the basic modal frame F = (W,R) can be presented graphically as

u // v // w
��

The tense frame corresponding to the above relational structure is obtained by

augmenting F with the relation R̆ given by {(v, u), (w, v), (w,w)} to obtain the

F ′ = (W,R, R̆). This frame can be presented by the following picture:

u // v^^
// w^^ QQ
��

where the solid arrows correspond to the ‘future’ relation and the broken arrows

correspond to the ‘past’ relation.

From now on we will simply use the term ‘frame’ to mean either a modal frame

or a tense frame, leaving it to the context to indicate which type is meant.

Define a tense model as a pair (F, V) where F = (W,R, R̆) is a tense frame and

V is a valuation function, assigning to each propositional variable a subset V (p)

of W . We can define the satisfaction relation M,w |=t A for a tense model M

containing state w and tense formula A by extending |= in the obvious way by

the addition of the statements:

M,w |=t _A iff there exists v ∈ W such that Rvw and M, v |=t A

M,w |=t �A iff for all v ∈ W , if Rvw then M, v |=t A

Notice that we have done away with R̆ and written the above solely in terms of R

for simplicity. Following standard practice we will use the symbol |= to mean the

84 CHAPTER 4. PRELIMINARIES

satisfaction relation on the temporal language as well (dropping the subscript ‘t’),

allowing the context to determine if the formula belongs to ForML or ForT L,

except when this is likely to cause confusion.

We can now define the logic

KtT L = {A ∈ ForT L |F |= A for all frames F}.

The following is a basic result of modal logic ([16, 7]):

Theorem 4.6 KtT L = KtH .

Thus the syntactic and semantically specified KtH and the semantically specified

KtT L describe the same logic. From now on we will write this logic as Kt using

the syntactic and semantic definitions interchangeably as convenient. The logic

Kt is often called the basic (or minimal) normal propositional tense logic.

Any logic L ⊇ K (L ⊇ Kt) closed under modus ponens, substitution and

necessitation is called normal. The axiomatic extensions of K and Kt, defined

below, is one such class of normal logics.

Definition 4.7 (axiomatic extensions of K,Kt) Let ∆ be a (possibly empty)

set of modal (tense) formulae (the axioms). Then the axiomatic extension of K

(Kt) by ∆ denoted K ⊕ ∆ (Kt ⊕ ∆) is the logic obtained by the addition of ∆

to the axioms of K (Kt) and closure under the inference rules modus ponens,

substitution and necessitation.

An axiomatic extension of K (Kt) a modal (tense) logic. Observe that although

the term ‘modal logic’ is also used more generally to describe the field of logic

dealing with modalities (operators) such as 3 and _, the overloading of this term

to refer specifically to logics in the basic modal language will cause no confusion

in practice.

Notice that the axiomatic extensions of K and Kt defined above have been

syntactically specified using the Hilbert calculus. It is an obvious question to

wonder if we can semantically specify these logics (ie provide theorems analogous

to Theorem 4.4 and 4.6). The Sahlqvist correspondence and completeness theo-

rems show how such a semantic specification can be achieved for a large class of

axiomatic extensions. Before proceeding, let us introduce a few more definitions.

Definition 4.8 (weakly sound) Let F be a class of frames. A logic L is weakly

sound with respect to F if for any formula A,

A ∈ L implies F |= A.

4.2. SOME RESULTS IN CORRESPONDENCE THEORY 85

Definition 4.9 (weakly complete) A logic L is weakly complete with respect

to a class F of frames if for any formula A,

F |= A implies A ∈ L

There is in fact a more powerful notion of soundness and completeness [7] that

is encountered in the literature, sometimes referred to as “strong soundness” and

“strong completeness”. Nevertheless, the present definitions are sufficient for our

purposes. We will often drop the word ‘weakly’ and use the terms sound and

complete to refer to Definition 4.8 and 4.9 respectively.

If logic L is sound and weakly complete with respect to some class F of frames,

from the definitions it follows that

A ∈ L iff F |= A

We remind the reader that the symbol |= above is overloaded, standing for the

satisfaction relation on both modal and temporal languages. Hence, if Fall de-

notes the class of all frames, then since A ∈ K iff Fall |= A and A ∈ Kt iff

Fall |=t A, we freely say that both K and Kt are sound and weakly complete

for Fall. Of course, this does not mean that K = Kt.

4.2 Some results in correspondence theory

Our presentation of correspondence theory follows Blackburn, de Rijke and Ven-

ema [7], with the following exceptions. We have chosen to introduce Kracht’s

restricted quantifiers [38, 40] at an early stage. Although this may seem to com-

plicate the notation somewhat, it will allow us to directly obtain the first half

of Theorem 4.31. We also identify a deficiency in Definition 3.58 in [7]. Fixing

this definition makes the algorithm for the first half of Theorem 4.31 incomplete.

Here we show how to complete the algorithm, and also fix an independent error

that occurs in the proof of the algorithm. Another good reference for modal cor-

respondence theory is van Benthem [73]. In particular, this work contains some

interesting results on the preservation of first-order formulae for classes of frames

that are modally definable. We do not specifically address tense correspondence

theory here — the interested reader is directed to van Benthem [74].

We begin by introducing ‘frame languages’ that make use of frame validity

to describe classes of frames (Section 4.2.1). A formula from a frame language

‘corresponds’ to a tense formula if they each describe the same class of frames. In

86 CHAPTER 4. PRELIMINARIES

Section 4.2.2 we will see how to compute the first-order correspondents for a large

syntactically-defined class of tense formulae. Then in Section 4.2.3 we will look

at the reverse direction, and see how to compute modal and tense correspondents

for a large class of first-order formulae. Note that we limit this exposition to

cover the tools that are required for our work.

4.2.1 Basic definitions

The following definition provides us with a way of describing a class of frames

using a tense formula.

Definition 4.10 (defining a class of frames) We say that a modal or tense

formula A defines a class F of frames if for every frame F :

F ∈ F iff F |= A

A set Γ of formulae defines a class F of frames if for all frames F , F ∈ F
iff F |= Γ.

If Γ is a finite set of formulae, then Γ defines F iff
∧

Γ defines F . Formulae A

and B are called frame equivalent if for every frame F , F |= A iff F |= B.

Since a frame is simply a relational structure, we can also describe a class of

frames using non-modal languages. In this section we will define two such frame

languages. The expressiveness of the frame language determines what classes of

frames are definable. We will see that the class of frames defined by any modal or

tense formula can also be defined by a formula from an appropriate second-order

language. However, it is known that the classes of frames defined by McKinsey’s

axiom �3p ⊃ 3�p and Löb’s axiom �(�p ⊃ p) ⊃ �p cannot be defined using

a first-order language. Furthermore, the class of frames having a single reflexive

point is definable using a first-order language (∃x.Rxx), but it is not definable

using tense formulae (see [7]).

Definition 4.11 (frame languages) The first-order frame language Lf is the

first-order language equipped with equality = and a binary relation symbol R.

The monadic second-order frame language Lf2 is obtained by augmenting Lf

with a countable set of monadic predicate variables and the monadic predicate

quantifiers
∼
∀ and

∼
∃.

The first-order quantifiers ∀, ∃ range over first-order variables x, y, . . ., and the

monadic predicate quantifiers
∼
∀,
∼
∃ range over monadic predicate variables P,Q, . . .

4.2. SOME RESULTS IN CORRESPONDENCE THEORY 87

(possibly with subscripts). Here the term monadic refers to the fact that a pred-

icate variable in Lf2 ranges over sets of propositional variables only. Observe that

quantifying over monadic predicate variables, amounts to quantification over sets

of first-order variables. Full second-order logic is even more expressive (exceeding

our requirements here), containing other sorts of variables as well.

To help distinguish the frame languages from the modal and temporal lan-

guagesML and T L, implication in the frame languages will be written using →
rather than ⊃, and the logical constants for true and false are written t and f

respectively (for the other logical connectives and constants we use the same

symbols as in ML and T L). We will use α, β, . . . to denote formulae from Lf

and Lf2 . Following the standard terminology, a first-order (or monadic predicate

variable) occurring in a formula is called free if it is not bound by the quantifiers

∀,∃ (
∼
∀,
∼
∃).

For a formula α from Lf or Lf2 with free first-order variables x1, . . . xn and (in

the case of Lf2) monadic predicate variables P1, . . . , Pm, we write

α[w1/x1, . . . , wn/xn, Q1/P1, . . . , Qm/Pm]

to denote the formula obtained by uniformly substituting the first-order vari-

able wi for each free occurrence of xi (1 ≤ i ≤ n) and substituting the pred-

icate Qi for each free occurrence of the predicate variable Pi (1 ≤ i ≤ m)

in α. For brevity, we some times write the above as α[{wi/xi}][{Qi/Pi}], or

even α[w1 . . . wn][Q1 . . . Qm] when the free variables can be identified from the

context.

Following Kracht [38, 40] we introduce the so-called restricted quantifiers (∀y�
x)α(y) and (∃y � x)α(y) which are the following abbreviations:

(∃y � x)α(y) abbreviates ∃y(Rxy ∧ α(y))

(∃y � x)α(y) abbreviates ∃y(Ryx ∧ α(y))

(∀y � x)α(y) abbreviates ∀y(Rxy → α(y))

(∀y � x)α(y) abbreviates ∀y(Ryx→ α(y))

In the above, the variable x is called the restrictor of the restricted quantifier.

We refer to (∃y�x)α(y) and (∃y�x)α(y) as the existential restricted quantifiers,

writing ∃ry α(y) to avoid specifying which instance is meant, and also to avoid

naming the restrictor. Similarly, (∀y � x)α(y) and (∀y � x)α(y) are called the

universal restricted quantifiers, and we write ∀ry α(y) to denote either one of

these instances. We also use the terminology forward (resp. backward) restricted

88 CHAPTER 4. PRELIMINARIES

quantifiers to refer to (∀y � x)α(y) and (∃y � x)α(y) ((∀y � x)α(y) and (∃y �
x)α(y)).

Since each restricted quantifier abbreviates a formula in Lf , we can use the

restricted quantifiers without having to extend the languages with new symbols.

Consider the following translation from a modal formula into a formula in Lf2 .

This is called the standard translation [7].

Definition 4.12 (standard translation) Let x be a first-order variable. De-

fine the following translation STx(·) taking modal formulae to the monadic second-

order frame language Lf2 :

STx(pi) = Pix

STx(⊥) = (x 6= x)

STx(>) = (x = x)

STx(¬A) = ¬STx(A)

STx(A ∨B) = STx(A) ∨ STx(B)

STx(A ∧B) = STx(A) ∧ STx(B)

STx(A ⊃ B) = STx(A)→ STx(B)

STx(3A) = (∃y � x)STy(A)

STx(�A) = (∀y � x)STy(A)

where y is a first-order variable that has not been used so far in the translation.

Observe that STx(A) contains only x as a free variable. The standard translation

for a tense formula is obtained by the addition of the following to the above

definition:

STx(_A) = (∃y � x)STy(A)

STx(�A) = (∀y � x)STy(A)

Now we will show how to use the frame languages to describe models and

frames. Suppose that α is a formula from Lf . To construct a model for Lf ,
we need to provide an interpretation for the symbol R. Suppose that M =

((W,R), V) is a modal model (remember that the underlying frame (W,R) is

just a relational structure). By interpreting the symbol R in Lf as the symbol R
from M , we can write things such as M |= α[ww1, . . . , wn] which means that α

is satisfied in the usual sense of first-order logic on the model M when the free

variables (x, x1, . . . , xn) are substituted with the states (w,w1, . . . , wn) in W .

4.2. SOME RESULTS IN CORRESPONDENCE THEORY 89

When α is a formula from Lf2 , we need to also interpret the monadic predicate

variables. We will interpret each monadic predicate variable Pi on M as the

set V (pi). Then we can show that for any model (F, V) and modal or tense

formula A, by a straightforward induction on the structure of A [7]:

(F, V), w |= A iff (F, V) |= STx(A)[w/x][{V (pi)/Pi}] (4.2)

Under this interpretation, quantifying over all valuations is equivalent to quanti-

fying over the free monadic predicate variables P = {P1, . . . , Pn}, and thus

F,w |= A iff F |=
∼
∀P STx(A)[w/x]

Indeed, from the above, by quantifying over all states of the frame, we see that

for every frame F :

F |= A iff F |=
∼
∀P ∀xSTx(A). (4.3)

Definition 4.13 (defining a class of frames using Lf or Lf2) A formula α

from Lf or Lf2 defines a class F of frames if for every frame F :

F ∈ F iff F |= α

We will make use of the following lemma without explicit reference.

Lemma 4.14 Let {φ1, . . . , φn} be a set of (i) modal or tense formulae or (ii)

formulae from Lf or Lf2 , such that φi defines the class Fi of frames. Then ∧ni=1φi

defines ∩ni=1Fi.

Proof. For,

F ∈ ∩ni=1Fi ⇔ F ∈ Fi for 1 ≤ i ≤ n

⇔ F |= φi for 1 ≤ i ≤ n

If the {φ1, . . . , φn} are formulae from the frame languages, then the above is

equivalent to F |= ∧ni=1φi as required. If the {φ1, . . . , φn} are tense formulae,

then F |= φi iff it is the case that M,w |= φi for every model M based on F

and every state w in F . This is equivalent to M,w |= ∧ni=1φi for every model M

based on F and state w. By the definition of validity on a frame, the latter is

equivalent to F |= ∧ni=1φi so we are done. Q.E.D.

Definition 4.15 (global frame correspondent) If a class of frames can be

defined by a modal or tense formula A and a formula α from Lf or Lf2 , then we

say that A and α are global frame correspondents of each other.

90 CHAPTER 4. PRELIMINARIES

An equivalent formulation of the above definition is

A is a global correspondent of α iff for every frame F , F |= A iff F |= α

From (4.3), it follows that any modal or tense formula A is a global corre-

spondent of the Lf2 formula
∼
∀P ∀xSTx(A).

That every tense formula has a second-order global correspondent is not really

surprising. After all, the standard translation essentially rehashes the definition

of truth relation and validity. The requirement for monadic predicate quantifi-

cation is clearly due to the fact that validity is defined (Definition 4.3) using a

quantification over all valuations of a given frame. Quantifying over sets of vari-

ables (as opposed to just over variables) takes us out of the realm of first-order

logic and into monadic second-order logic.

At the beginning of the section we noted that McKinsey’s axiom and Löb’s

axiom have no first-order global correspondent. In other words, these formu-

lae define classes of frames that cannot be described using first-order formulae

(although the classes can be described using second-order formulae). What is

surprising however is why certain tense formulae do have a first-order global cor-

respondent. Consider some well-known examples. It is a standard result that the

formulae p ⊃ _p and �p ⊃ ��p respectively define the class of reflexive frames

and the class of transitive frames. These frame properties can be defined in turn

by the Lf formulae ∀xRxx and ∀xyz (Rxy ∧ Ryz → Rxz). Thus ∀xRxx is a

first-order global correspondent of p ⊃ _p, and ∀xyz (Rxy ∧ Ryz → Rxz) is a

first-order global correspondent of �p ⊃ ��p.

It would be nice if we had some syntactic conditions to determine when a for-

mula has a first-order correspondent. In Section 4.2.2 we introduce the Sahlqvist

formulae which are a large class of formulae that are known to have first-order

correspondents. In Theorem 4.31 we will see that each Sahlqvist formula corre-

sponds to a formula belonging to a fragment of the first-order language called

Kracht formulae, and also that each Kracht formula corresponds to a Sahlqvist

formula.

Kracht formulae

Consider the following recursive abbreviations:

R1xy := Rxy

Rn+1xy := (∃yn+1 � x)Rnyn+1y (n ≥ 1)

4.2. SOME RESULTS IN CORRESPONDENCE THEORY 91

Notice that the Rnxy contains n − 1 occurrences of the restricted existential

quantifier. Since Rn abbreviates a formula in Lf , usage of this symbol does not

extend the Lf language.

Let us introduce the Kracht formulae. Without loss of generality, in this

section we work with formulae in which no variable occurs as both free and

bound. Also, no distinct quantifier occurrences will bind the same variable. Such

a formula is called a clean formula.

Definition 4.16 (restrictedly positive) An Lf formula is called tense restrict-

edly positive if it is built-up from atomic formulae of the form u 6= u, u = u,

u = v and Rsuv using ∧,∨ and the restricted quantifiers only. An Lf formula

is called modal restrictedly positive if it is built-up from atomic formulae using

∧, ∨ and the forward restricted quantifiers (∃y � x) and (∀y � x) only.

Notice that a restrictedly positive formula will contain at least one free variable.

Definition 4.17 (inherently universal) An occurrence of the variable y in the

clean formula α is inherently universal if either y is free, or else y is bound by a

restricted quantifier of the form (∀y� x)β or (∀y� x)β which is not in the scope

of an existential quantifier.

When x is not free in β, since

(∃xα(x)) ∧ β = ∃x (α(x) ∧ β)

(∃xα(x))→ β = ∀x (α(x)→ β)

observe that

STx(�
m+1p) = (∀y1 � x)(∀y2 � y1) . . . (∀ym+1 � ym)Pym+1

= ∀y1(Rxy1 → ∀y2(Ry1y2 → . . . ∀ym+1(Rymym+1 → Pym+1) . . .))

= ∀y1 . . . ym+1(Rxy1 → (Ry1y2 → . . .→ (Rymym+1 → Pym+1) . . .))

= ∀y1 . . . ym+1(Rxy1 ∧Ry1y2 ∧ . . . ∧Rymym+1 → Pym+1)

= ∀ym+1(∃y1(Rxy1 ∧ (∃y2Ry1y2 ∧ ∃y3(. . .)))→ Pym+1)

= ∀ym+1(Rm+1xym+1 → Pym+1)

Definition 4.18 (modal and tense Kracht formula) A modal (resp. tense)

restrictedly positive formula α(x) containing a single free variable x is called a

modal (tense) Kracht formula if α is clean and in atomic formulae of the form

u = v and Rsuv, either u or v is inherently universal.

92 CHAPTER 4. PRELIMINARIES

This definition agrees exactly with the definition given by Kracht [40]. We

simply write Kracht formula to refer to both modal and tense Kracht formulae

— the context will determine which type is meant.

4.2.2 From Sahlqvist formulae to first-order formulae

Sahlqvist formulae are a large class of formulae that are known to have first-order

correspondents. Moreover, the first-order correspondent of a Sahlqvist formula

is effectively computable and expressible as a Kracht formula. For our purposes,

it will be sufficient to focus on a proper subclass of the Sahlqvist formulae called

the very simple Sahlqvist formulae [7]. Furthermore, although the results apply

to many different modal languages, here we will work with the basic temporal

language (which properly includes the basic modal language). Sahlqvist’s original

paper can be found at [62].

Let A6→ be the tense formula that is obtained from A by eliminating all oc-

currences of the ⊃-connective using the classical equivalence B ⊃ C ≈ ¬B ∨ C.

Definition 4.19 (positive, negative formula) A tense formula A is positive

in the propositional variable p (negative in p) if every occurrence of the monadic

predicate variable p in A6→ is in the scope of an even (odd) number of negation

signs. A formula is called positive (negative) if it is positive (negative) in all

propositional variables occurring in it.

Definition 4.20 (upward, downward monotone) A tense formula A is up-

ward monotone in p if for every valuation V ′ such that (i) V (p) ⊆ V ′(p) and (ii)

for all q 6= p, V (q) = V ′(q),

if (F, V), w |= A then (F, V ′), w |= A

A tense formula A is downward monotone in p if for every valuation V ′ such

that (i) V (p) ⊇ V ′(p) and (ii) for all q 6= p, V (q) = V ′(q),

if (F, V), w |= A then (F, V ′), w |= A

Informally, A is upward monotone in p if whenever A is satisfied on some model

at state w, then A is satisfied at w under any valuation that extends the in-

terpretation (valuation) of p and keeps constant the interpretations on all other

propositional variables.

Lemma 4.21 Let A be a tense formula. Then,

4.2. SOME RESULTS IN CORRESPONDENCE THEORY 93

(i) if A is positive in p, then it is upward monotone in p.

(ii) if A is negative in p, then it is downward monotone in p.

Proof. Straightforward. Q.E.D.

The notions of positive and negative formula, and upward and downward mono-

tonicity can be defined analogously for monadic predicate variables for formulae

in Lf2 . An analogous result to the above Lemma applies to these formulae.

Recall the definition of global frame correspondent (Definition 4.15). The

Sahlqvist correspondence theorems actually prove a stronger version of corre-

spondence called local frame correspondence. Let us introduce this notion before

proceeding to the theorem.

Definition 4.22 (local frame correspondents) Let A be a modal or tense

formula, and suppose that α(x) is a formula in Lf or Lf2 containing a single

free variable x. We say that A and α(x) are local frame correspondents of each

other if, for all frames F and states w in F :

F,w |= A iff F |= α[w/x]

It is easy to see that if A and α(x) are local frame correspondents, then it must

be the case that A and ∀xα are global frame correspondents.

We will say “A and α are frame correspondents” or simply that A and α are

each other’s correspondents to mean that A and α are local frame correspondents.

When the formula α is from Lf , we will say that α is a first-order correspondent

of A. When we wish to refer to the notion of global frame correspondenence we

will take care to explicitly use the term “global”.

As an aside we observe that global frame correspondence does not imply local

frame correspondence. For it is known that (�3p → 3�p) ∧ (33q → 3q) and

the Lf formula

(∀x∃y(Rxy ∧ ∀z(Ryz → z = y))) ∧ (∀xyz(Rxy ∧Ryz → Rxz))

are global correspondents, but it is known that the above modal formula does

not have a local frame correspondent in Lf (see [7, page 169]).

We have already noted (see the discussion following equation (4.2) in Sec-

tion 4.2.1) that for any formula A and all frames F and states w in F :

F,w |= A iff F |=
∼
∀P STx(A)[w/x]

94 CHAPTER 4. PRELIMINARIES

so A and the Lf2 formula
∼
∀P STx(A)[w/x] are local frame correspondents.

We are ready to define very simple Sahlqvist formulae and present the corre-

spondence results.

Definition 4.23 (very simple Sahlqvist formula) A very simple Sahlqvist

antecedent in the basic temporal language is a formula built up from >, ⊥ and

propositional letters, using only ∧, 3 and _. A (tense) very simple Sahlqvist

formula is an implication A ⊃ B in which B is positive and A is a very simple

Sahlqvist antecedent in the basic temporal language.

Theorem 4.24 Let D ≈ A ⊃ B be a very simple Sahlqvist formula in the basic

temporal language. Then there is a tense Kracht formula αD(x) that is effectively

computable from D such that αD(x) is a first-order correspondent of D.

We closely follow the presentation given in [7], the main deviation being the use

of the restricted quantifier notation. This enables us to directly obtain the first

half of Theorem 4.31. In [7] this has to be worked out separately.

Proof. The ‘effectively computable’ statement follows from the fact that it is

straightforward to write a program to implement the following algorithm.

The second-order translation of D is the formula
∼
∀P (STx(A) → STx(B)).

Let us denote STx(B) by POS to remind us that this formula is positive. Then

STx(D) can be written
∼
∀P (STx(A)→ POS) (4.4)

Without loss of generality, we may assume that no two quantifiers in the above

formula bind the same variable, and no quantifier binds x (pre-processing step).

Step 1. Whenever y is not free in β, we have the classical equivalences

(∃ry α(y)) ∧ β = ∃ry (α(y) ∧ β)

and

((∃ry α(y))→ β) = (∃y � x)α(y)→ β or (∃y � x)α(y)→ β

= (∃y(Rxy ∧ α(y)))→ β or (∃y(Ryx ∧ α(y)))→ β

= ∀y(Rxy ∧ α(y)→ β) or ∀y(Ryx ∧ α(y)→ β)

= ∀y(Rxy → (α(y)→ β)) or ∀y(Ryx→ (α(y)→ β))

= ∀ry (α(y)→ β)

4.2. SOME RESULTS IN CORRESPONDENCE THEORY 95

Using these equivalences (in that order) we can convert all existential restricted

quantifiers in the antecedent STx(A) to universal restricted quantifiers over the

main implication in (4.4).

Step 1 results in a formula of the form

∼
∀P ∀rx (AT → POS) (4.5)

where AT is a conjunction of (translations of) proposition letters, and x is a set

{x1, . . . , xm} of proposition variables not containing x.

Step 2. Let Pi be a unary predicate occurring in (4.5) and let Pixi1 , . . . Pixik
be all the occurrences of the predicate Pi in the antecedent AT of (4.5). Define

the predicate σ(Pi) using the following characteristic function:

σ(Pi)(ω) =

t ω ∈ {xi1 , . . . xik},

f otherwise
(4.6)

LetM be an arbitrary model, and let w,w1, . . . , wm be some arbitrary states inM .

Now suppose that M |= AT [w/x][{wi/xi}] and M |= σ(Pi)(u)[w/x][{wi/xi}] for

some state u. Due to the definition of σ(Pi)(u) it follows that u (under the

substitutions [w/x][{wi/yi}]) must be a variable in {xi1 , . . . xik}. Since each Pixij
term occurs as a conjunct in AT , from M |= AT [w/x][{wi/xi}] it follows that

M |= Piu[w/x][{wi/xi}]. We have shown that

M |= AT [w/x][{wi/yi}] implies M |= ∀u(σ(Pi)(u)→ Piu)[w/x][{wi/xi}] (4.7)

Step 3. Instantiate σ(Pi) for each Pi in (4.5). This results in a formula of the

form

∀rx (AT → POS)[{σ(Pi)/Pi}]

Since AT [{σ(Pi)/Pi}] is trivially true by the definition of σ, this is equivalent to

∀rx (POS[{σ(Pi)/Pi}]) (4.8)

Notice that the above formula is a Kracht formula. More precisely, the substitu-

tion [{σ(Pi)/Pi}] results in a formula containing terms of the form σ(Pi)(u) —

this term can be reduced to the first-order term

(u = xi1) ∨ . . . ∨ (u = xik)

Moreover POS is the formula STx(B), which is constructed using the restricted

quantifiers. Finally, every variable occurring in the formula is inherently universal

because there are no existential restricted quantifiers to worry about.

96 CHAPTER 4. PRELIMINARIES

To complete the proof, it suffices to show that (4.8) is equivalent to (4.5).

Certainly (4.5) implies (4.8) since (4.8) is an instantiation of (4.5). Now for the

other direction. Recall that (4.5) is shorthand for the formula

∼
∀P

∀rx︷ ︸︸ ︷
(∀x1 ./ y1) . . . (∀xm ./ ym)(AT → POS)

for some {y1, . . . , ym} where ./ means either � or �. With respect to this formula,

define

Si =

Rxiyi if (∀xi � yi) occurs in ∀rx

Ryixi if (∀xi � yi) occurs in ∀rx

Now observe that formula (4.5) is equivalent to the statement: for any model M

and states w,w1, . . . , wm,

M |=

(
m∧
i=1

Si[wi/xi]

)
∧ AT [ww1, . . . , wm] implies M |= POS[ww1 . . . wm]

Thus, in order to show that (4.8) implies (4.5), we assume for arbitrary model M

that

M |= ∀rx (POS[{σ(Pi)/Pi}]) (4.9)

and

M |=

(
m∧
i=1

Si[wi/xi]

)
∧ AT [ww1, . . . , wm] (4.10)

and show that M |= POS[ww1 . . . wm]. Instantiating wi for each xi in (4.9) and

expanding the ∀rx notation we get

M |= S1[w1/x1]→ (S2[w2/x2]→ (. . .→ (Sm[wm/xm]→ POS) . . .))[{σ(Pi)/Pi}]

Since M |= Si[wi/xi] for each i from (4.10), we obtain

M |= POS[ww1 . . . wm][{σ(Pi)/Pi}] (4.11)

Furthermore since we have M |= AT [ww1, . . . , wm] (4.10), from (4.7) it follows

that

M |= ∀u(σ(Pi)(u)→ Piu)[ww1 . . . wm]

What this says is that if u ∈ σ(Pi)[ww1 . . . wm] (viewing the monadic predicate as

a set), then u ∈ Pi[ww1 . . . wm]. Thus σ(Pi) is a minimal valuation in the sense

that the set V (pi) for an arbitrary model satisfying (4.9) and (4.10) extends σ(Pi).

As POS[ww1 . . . wm] is positive, it is upward monotone is all unary predicates

occurring in it, so by (4.11) and Lemma 4.21 we get M |= POS[ww1 . . . wm].

Q.E.D.

4.2. SOME RESULTS IN CORRESPONDENCE THEORY 97

Example 4.25 Consider the very simply Sahlqvist formula _3p ⊃ 3_p. The

second-order translation of this formula is

∼
∀P ((∃u� x)(∃v � u)Pv → (∃l � x)(∃m� l)Pm)

Step 1. Pushing the existential restricted quantifiers in the antecedent of the

implication outwards, we obtain the equivalent formula

∼
∀P (∀u� x)(∀v � u)(Pv → (∃l � x)(∃m� l)Pm) (4.12)

Step 2. Set σ(P)(ω) as t if ω = v and f otherwise.

Step 3. Instantiating σ(P) for the predicate P in (4.12) we obtain

(∀u� x)(∀v � u)(v = x→ (∃l � x)(∃m� l)v = m)

The above formula is equivalent to (∀u� x)(∀v� u)(∃l� x)Rvl. Notice that this

formula is a Kracht tense formula. From the proof of Theorem 4.24 we know that

it is equivalent to (4.12) and hence it is a local correspondent of _3p ⊃ 3_p.

Before proceeding, for the sake of completeness we state the definition and

result for full Sahlqvist formulae. In the following, a boxed atom in the basic

temporal language is a propositional variable preceeded by a (possibly empty)

string constructed from � and �’s. Notice that a boxed atom with an empty

string is simply a propositional variable.

Definition 4.26 (modal and tense Sahlqvist formulae) Define a Sahlqvist

antecedent in the basic temporal language to be a formula built from >, ⊥, boxed

atoms, and negative formulae, using ∧, ∨ and existential modal operators (3

and _). A Sahlqvist implication in the basic temporal language is an implication

A ⊃ B in which B is positive and A is a Sahlqvist antecedent in the basic temporal

language.

A tense Sahlqvist formula is a formula that is built from Sahlqvist implications

in the basic temporal language by freely applying boxes and conjunctions, and by

applying disjunctions only between formulae that do not share any proposition

letters.

A modal Sahlqvist formula is a tense Sahlqvist formula that does not contain

either � or _.

Although we have been working with tense Sahlqvist formulae, corresponding

results apply to modal Sahlqvist formulae in the obvious way. Note that we will

98 CHAPTER 4. PRELIMINARIES

often drop the word “modal” and “tense” prefixing the term “Sahlqvist/Kracht

formula” when the results apply by the uniform usage of either word. By inspec-

tion we see that every very simple Sahlqvist formula is also a Sahlqvist formula.

The main result is the Sahlqvist correspondence theorem.

Theorem 4.27 (Sahlqvist correspondence theorem) Let D be a tense (resp.

modal) Sahlqvist formula. Then there is a tense (modal) Kracht formula αD(x)

that is effectively computable from D such that αD(x) is a first-order correspon-

dent of D.

The proof is an extension of the proof of Theorem 4.24. See [7] for details.

Observe that if {A1, . . . , An} is a set of Sahlqvist formulae, then together

with Lemma 4.14 we can compute a set {α1, . . . , αn} of Kracht formulae, each

with the single free variable w, such that ∧iAi corresponds to ∧i∀wαi(w). Since

∧i∀wαi(w) is frame-equivalent to ∀w∧iαi(w), it follows that ∧iAi corresponds to

∀w ∧i αi(w). We can rewrite ∧iαi(w) as a (clean) Kracht formula by appropriate

renaming of bound variables in the formula to ensure that no distinct quantifier

occurrences bind the same variable.

It should be mentioned that the class of Sahlqvist formulae is not the last

word on formulae with first-order correspondents. See [7] for (i) an example of a

formula that has a local first-order correspondent, and (ii) an example of a formula

that has a global first-order correspondent but no local first-order correspondent,

where in each case, the respective formula is not equivalent to a Sahlqvist formula.

Despite such results, the class of Sahlqvist formulae is expressive enough to be

useful in many of the cases encountered in practice.

4.2.3 From Kracht formulae to Sahlqvist formulae

In the previous section we saw how to compute the local first-order correspondent

of a Sahlqvist formula. Kracht [38, 40] has identified a class of first-order formulae

(‘Kracht formulae’) such that each Kracht formula is a correspondent of some

Sahlqvist formula. In other words, Kracht’s result is a converse to the Sahlqvist

correspondence theorem.

In this section we focus on modal Kracht formulae. The generalisation to

tense Kracht formulae is straightforward. We will write ∃r′y as an abbreviation

to mean (∃y � x) for some x, and ∀r′y as an abbreviation to mean (∀y � x) for

some x. We write Qr′y when we do not want to specify whether we mean ∃r′y
or ∀r′y .

4.2. SOME RESULTS IN CORRESPONDENCE THEORY 99

Kracht [38, 40] presented a Calculus of Internal Descriptions that can be used

to compute the formula correspondent of a given Kracht formula — his calculus

uses general frames [7] rather than Kripke frames. Instead of using that calculus,

we will use the algorithm presented in Blackburn et al. [7, Theorem 3.59] to

accomplish this task. We have identified the following errors with this algorithm

— we expand on this at the end of this section.

(i) The type 1 characterisation that used in the proof cannot be obtained using

the algorithm. This is because the algorithm makes use of an equivalence

that is invalid. Consequently the type 2 characterisation is unattainable via

the algorithm as well. Here we use revised characterisations type 1′ and

type 2′ respectively.

(ii) The definition of Kracht formula used there [7, Definition 3.58] is deficient.1

The revised definition (which coincides with Kracht’s original definition)

introduces new cases for the algorithm that need to be dealt with.

Here we sketch the proof and show how to resolve the above problems. Aside

from the resolution of these issues, note that we follow closely the detailed proof

given in [7]. For this reason it may be helpful to read the following in conjunction

with that proof.

Recall that the notation β(u1, . . . , un) is used to identify the free variables

in β. Now we introduce the notation

β(Qr′

1 y1, . . . ,Q
r′

mym;u1, . . . , un)

to mean a formula β containing restricted quantifier occurrences Qr′
1 y1, . . . ,Q

r′
mym

and free variables u1, . . . , un. To simplify the notation we denote the above for-

mula as β(Qr′y;u) for sequences y = (y1, . . . , ym) and u = (u1, . . . , un).

Definition 4.28 (type 1′ formula) A type 1′ formula is a Kracht formula of

the following form containing the single free variable x0:

∀r′x1 . . . ∀r
′
xn β(Qr′

1 y1, . . . ,Q
r′

mym;x0, . . . , xn, . . . , y1, . . . , ym) (4.13)

such that n,m ≥ 0 and each variable is restricted by an earlier variable (that is,

the restrictor of any xi is some xj with j < i and the restrictor of any yi is either

some xk or some yj with j < i. Furthermore, β is a disjunction of conjunctions

of restricted quantifiers and atomic formulae of the form u 6= u, u = u, u = v

and Rsuv (ie β is in disjunctive normal form DNF).

1Thanks to M. Kracht for clarifying the shortcomings in the definition of modal Kracht*

formula (in our terminology) given in [7, Definition 3.58].

100 CHAPTER 4. PRELIMINARIES

In this section, u, zi denote arbitrary variables in {x0, . . . , xn, y1, . . . ym} and x

denotes an arbitrary variable in {x0, . . . , xn}.
The first step is to show how to rewrite a given Kracht formula α as a type 1′

formula. The idea is to use repeatedly the equivalences

(∀r′x δ)♥γ = ∀r′x (δ♥ γ)

(where ♥ uniformly denotes either ∧ or ∨) to pull out each universal restricted

quantifier in α, quantifying over an inherently universal variable, to the front.

This is possible because no universal restricted quantifier quantifying an inher-

ently universal variable can occur within the scope of an existential restricted

quantifier (see Definition 4.17). It is easy to verify that the resulting formula is

a type 1′ formula.

In the following definition, a boxed atom in the propositional variable p is a

formula of the form �tp for t ≥ 0.

Definition 4.29 (type 2′ formula) A type 2′ formula is a formula in Lf2 of

the following form containing the single free variable x0:

∼
∀P1 . . .

∼
∀Pn

∼
∀Q1,1 . . .

∼
∀Q1,r1 . . .

∼
∀Qn,rn∀r

′
x1 . . . ∀r

′
xn

(∧
0≤i≤n

STxi(σi)→ γ

)
such that each σi is a conjunction of boxed atoms in the propositional variables pi

and qi,1 . . . qi,ri, and γ is a DNF of formulae STx(B) (x ∈ {xi}) where B is a

modal formula which is positive in every propositional variable and containing

only those propositional variables occurring in ∪{σi}.

We have seen how to rewrite a Kracht formula as a type 1′ formula. The

next step is to show that every type 1′ formula can be effectively rewritten as an

equivalent type 2′ formula.

Suppose that we are given the type 1 formula ∀r′x β(Qr′y). Let β′ be the

formula obtained from β by replacing each subformula

u 6= u with STu(⊥)

u = u with STu(>)

u = xi with STu(pi)

Rnuxi with STu(3
npi)

and each occurrence (indexed by j) of Rm(i,j)xiu (m(i, j) ≥ 1) in β with STu(qi,j).

That is, the index j corresponds to the variable xi and the index r signifies the

j-th occurrence of Rmxiu in β.

4.2. SOME RESULTS IN CORRESPONDENCE THEORY 101

The claim is that ∀r′x β(Qr′y) is equivalent to

∼
∀PQ∀r′x

 ∧
0≤i≤n

STxi

pi ∧
∧

(i,j)

�m(i,j)qi,j

→ β′(Qr′y)

 (4.14)

Remark 4.30 Notice that we could simply replace Rmxiu with STu(_
mpi) in

the above (instead of introducing the STu(qi,j) terms) and proceed in the obvious

way if we are content to obtain a (tense) formula containing occurrences of _.

However our aim is to compute a modal formula from a modal Kracht formula.

Hence we are forced to introduce the � operator to handle the Rnxiu terms.

Define the predicates σ(Pi) and σ(Qi,r) using the following characteristic func-

tions:

σ(Pi)(ω) =

t ω = xi

f otherwise

and

σ(Qi,r)(ω) =

t Rm(i,r)xiω

f otherwise

(⇐) Consider the formula obtained from (4.14) by the instantiation of each

predicate Pi and Qi,r with σ(Pi) and σ(Qi,r) respectively:

∀r′x

 ∧
0≤i≤n

STxi

pi ∧
∧

(i,r)

�mi,rqi,r

→ β′(Qr′y)

 [{σ(Pi)/Pi}][{σ(Qi,r)/Qi,r}]

(4.15)

Let [S] denote the substitution [{σ(Pi)/Pi}][{σ(Qi,r)/Qi,r}]. Note that

STxi(pi)[S] = Pixi[S] = (xi = xi) = t

and

STxi(�
m(i,r)qi,r)[S] = ∀y(Rm(i,r)xiy → Qi,ry)[S]

= ∀y(Rm(i,r)xiy → Rm(i,r)xiy)

= t

Thus, under the substitution [S], the entire formula preceeding the implication

connective → in (4.15) becomes t, so that formula is equivalent to

∀r′x β′(Qr′y)[S] (4.16)

102 CHAPTER 4. PRELIMINARIES

Since

STu(>)[S] = (u = u)

STu(⊥)[S] = (u 6= u)

STu(pi)[S] = Piu[S] = (xi = u)

STzi(qi,r)[S] = Qi,rzi[S] = Rm(i,r)xizi

STu(3
npi)[S] = (∃yn � u) . . . (∃y2 � y3)(∃y1 � y2)Piy1[S]

= (∃yn � u) . . . (∃y2 � y3)∃y1(Ry2y1 ∧ y1 = xi)

= (∃yn � u) . . . (∃y2 � y3)Ry2xi

= Rnuxi

by inspection, ∀r′x β′(Qr′y)[S] is equivalent to ∀r′x β(Qr′y).

(⇒) For any model M and states w = {w,w1, . . . , wm}, it suffices to show

that

M |= ∀r′x β(Qr′y) (4.17)

and

M |=
∧

0≤i≤n

STxi

pi ∧
∧

(i,r)

�m(i,r)qi,r

 [w] (4.18)

implies

M |= β(Qr′y)[w]

Note that the above formula is positive for all predicates Pi and Qi,r and hence

upward monotone due to Lemma 4.21. We showed above that ∀r′x β′(Qr′y)[S] is

equivalent to ∀r′x β(Qr′y), and thus from (4.17) we have

M |= β′(Qr′y)[w][S]

Furthermore, for all i and j indices, (4.18) implies

M |= Pixi[w] M |= ∀y(Rm(i,j)xiy → Qi,jy)[w]

It follows for every σ(Pi) and σ(Qi,r) that

M |= ∀y(σ(Pi)(y)→ Pi(y))[w] M |= ∀y(σ(Qi,r)(y)→ Qi,r(y))[w]

It follows that every σ(Pi) and σ(Qi,r) predicate is a minimal valuation. The

result follows due to upward monotonicity.

The final step is to show that every type 2′ formula can be rewritten as a

Sahlqvist formula. First we delete the restricted quantifiers Qr′y in β′. The idea

4.2. SOME RESULTS IN CORRESPONDENCE THEORY 103

is to work from the innermost quantifier outwards as follows: delete an existential

restricted quantifier appearing in β′ as (∃u � v)STu(B) by substituting with

STv(3B); when a universal restricted quantifier (∀u� v)STu(B) is encountered,

substitute this occurrence with STv(¬3¬B). The remaining manipulations are

usually straightforward in practice, so we omit the algorithmic details.

Notice that we have taken care to map modal Kracht formulae into modal

Sahlqvist formulae (see Remark 4.30). The generalisation to tense Kracht formu-

lae is straightforward. Combining this result with Theorem 4.27 we get

Theorem 4.31 (Kracht’s theorem) Every tense (resp. modal) Sahlqvist for-

mula locally corresponds to a tense (modal) Kracht formula. Also, every tense

(modal) Kracht formula is a local first-order correspondent of some tense (modal)

Sahlqvist formula which can be effectively obtained from the Kracht formula.

Note that if {α1, . . . , αn} is some set of Kracht formulae, then we can compute

a set {A1, . . . , An} of Sahlqvist formulae such that α1 ∧ . . . αn corresponds to

A1 ∧ . . . ∧ An.

Example 4.32 Consider the Kracht formula

(∀u� x)(∀v � x)(∃z � u)(R1vz ∧R2vz) (4.19)

This is already a type 1′ formula. Following the above proof, we will replace R1vz

with STz(q1) (= Q1z) and R2vz with STz(q2) (= Q2z), so that the above formula

is equivalent to the following type 2′ formula:

∼
∀Q1

∼
∀Q2(∀u� x)(∀v � x) (STv(�q1 ∧��q2)→ (∃z � u)(STz(q1) ∧ STz(q2)))

The manipulation from here is straightforward. Since (∃z�u)STz(q1∧ q2) can be

replaced with STu(3(q1 ∧ q2)) we have

∼
∀Q1

∼
∀Q2(∀u� x)(∀v � x) (STv(�q1 ∧��q2)→ STu(3(q1 ∧ q2)))

This is equivalent to

∼
∀Q1

∼
∀Q2¬(∃u� x)(∃v � x)STv(�q1 ∧��q2) ∧ ¬STu(3(q1 ∧ q2))

This simplies to

∼
∀Q1

∼
∀Q2¬STx(3(�q1 ∧��q2) ∧3¬3(q1 ∧ q2))

104 CHAPTER 4. PRELIMINARIES

This means that (4.19) corresponds to the Sahlqvist formula

3(�q1 ∧��q2) ∧3¬3(q1 ∧ q2) ⊃ ⊥

or simply 3(�q1 ∧��q2) ⊃ �3(q1 ∧ q2).

If we are happy to compute a tense formula corresponding to (4.19), as dis-

cussed in Remark 4.30 we can then replace R1vz and R2vz respectively, with

STz(_p) and STz(__p). Then we can obtain the equivalent type 2 formula

∼
∀P1

∼
∀P2(∀u� x)(∀v � x) (STv(p)→ (∃z � u)(STz(_p) ∧ STz(__p)))

Simplifying as above we get

∼
∀P1

∼
∀P2¬STx(3p ∧3¬3(_p ∧ __p))

The corresponding (tense) Sahlqvist formula is 3p ⊃ �3(_p ∧ __p).

Example 4.33 Consider the Kracht formula

(∃u� x)R1ux ∨ (∀y � x)(∃v � y)(∀w � v)R1wx (4.20)

The inherently universal variables in the above formula are {x, y}. We can pull

out the universal restricted quantifier to obtain the equivalent type 1′ formula

(∀y � x)
(
(∃u� x)R1ux ∨ (∃v � y)(∀w � v)R1wx

)
This is equivalent to the type 2′ formula

∼
∀P (∀y � x) (STx(p)→ (∃u� x)STu(3p) ∨ (∃v � y)(∀w � v)STw(3p))

Then we simplify

∼
∀P (∀y � x) (STx(p)→ STx(33p) ∨ (∃v � y)(∀w � v)STw(3p))
∼
∀P (∀y � x) (STx(p)→ STx(33p) ∨ (∃v � y)STv(¬3¬3p))
∼
∀P (∀y � x) (STx(p)→ STx(33p) ∨ STy(3¬3¬3p))
∼
∀P¬ (STx(p ∧ ¬33p ∧3¬3¬3¬3p))

The modal correspondent of the above is

p ∧ ¬33p ∧3¬3¬3¬3p ⊃ ⊥

This simplifies to the Sahlqvist formula

p ⊃ 33p ∨�3�3p

4.2. SOME RESULTS IN CORRESPONDENCE THEORY 105

Let us expand on the errors concerning Definition 3.58 and the proof of The-

orem 3.59 in Blackburn et al. [7]:

(i) The first step in the algorithm given in [7] for obtaining a modal correspon-

dent from a Kracht formula involves transforming the given Kracht formula

into a type 1 formula, where the latter is defined as follows.

Definition 4.34 (type 1 formula [7]) A type 1 formula is a Kracht for-

mula of the following form containing the single free variable x0:

∀r′x1 . . . ∀r
′
xn Qr′

1 y1 . . .Q
r′

mymβ(x0, . . . , xn, . . . , y1, . . . , ym) (4.21)

such that n,m ≥ 0 and each variable is restricted by an earlier variable (that

is, the restrictor of any xi is some xj with j < i and the restrictor of any yi

is either some xk or some yj with j < i. Furthermore, β is a disjunction of

conjunctions of atomic formulae of the form u 6= u, u = u, u = v and Rsuv

(ie β is in disjunctive normal form DNF).

Comparing (4.13) with (4.21), the only difference is that in the latter case

the existential restricted quantifiers have been taken ‘outside’ β. In order

to achieve this, the following equivalence is quoted in [7]:

(∃r′u δ) ∨ γ = ∀r′u (δ ∨ γ) (4.22)

A simple counterexample to the above is the Kracht formula (∃u�x)(t)∨ t

where t should be read as x = x. To see this, first observe that this formula

is equivalent in first-order logic to the formula t. If the above equivalence

was valid, then (∃u � x)(t) ∨ t would be equivalent to (∃u � x)(t ∨ t) and

hence to (∃u� x)(t). Since (∃u� x)t and t are obviously not equivalent, it

follows that the above equivalence is not valid.

Of course, although the algorithm [7] for transforming a Kracht formula into

a type 1 formula is incorrect due to the invalidity of the (4.22), this does

not necessarily mean that the type 1 characterisation itself is unattainable.

After all, the counterexample (∃u� x)(t)∨ t to the algorithm is equivalent

to t, and t is a type 1 formula.

Since we do not actually need the type 1 characterisation for our work, we

do not pursue the question of whether this characterisation is attainable,

and if it is, how to obtain an algorithm that witnesses this. Nevertheless

we observe that the main obstacle seems to be the simplification of the

106 CHAPTER 4. PRELIMINARIES

expression (∃r′x δ)∨Rslm in a Kracht formula (this is a special case of the

lefthand side of (4.22)). As an illustration, consider the following Kracht

formula α:

(∀y1 � x)(∀y2 � y1)(∃u1 � x)(∃u2 � u1)
(
(∃u3 � u2)R1xu3 ∨R1xu2

)
Unlike in the previous example, it is not clear how to rewrite this formula as

an equivalent type 1 formula. In particular, observe that ∀xα is true on the

frame below left due to the R1xu2 disjunct, and ∀xα is true on the frame

below right due to the (∃u3 � u2)R1xu3 disjunct, so neither disjunct can be

deleted:

x // ""
u1

// u2 x // $$
u1

// <<u2
// !!u3

// <<// . . .

Finally, let α′ be the following formula, obtained from α by applying (4.22):

(∀y1 � x)(∀y2 � y1)(∃u1 � x)(∃u2 � u1)(∃u3 � u2)
(
R1xu3 ∨R1xu2

)
Notice that α′ is false on the frame above left, providing another example

of the incorrectness of (4.22).

(ii) According to the definition of modal Kracht formula [7, Definition 3.58]

given there (let us name formulae defined according to that definition as

modal Kracht* formulae) these formulae do not have the liberty of using

Rsuv as atomic, relying on u = v and Ruv terms instead. Specifically,

define a modal Kracht* formula as follows:

Definition 4.35 (modal Kracht* formula) A modal restrictedly positive

formula α(x) containing a single free variable x constructed from atomic for-

mulae u 6= u, u = u, u = v and Ruv is called a modal Kracht* formula if α

is clean and in atomic formulae of the form u = v and Ruv, either u or v

is inherently universal.

Now consider the formula ��p ⊃ 3p. Although we only described the

computation of modal Kracht formulae for very simple Sahlqvist formulae,

following the algorithm [7] we obtain

(∃u� x)R2xu

This is a modal Kracht formula. However, it is not a modal Kracht* formula

because of the R2xu term. If we expand it out and simplify we obtain the

4.2. SOME RESULTS IN CORRESPONDENCE THEORY 107

formula (∃u� x)(∃v � x)Rvu. This is not a modal Kracht* formula either,

because neither v nor u in Rvu is inherently universal.

Of course, it may be possible to rewrite the above as a modal Kracht*

formula, but it is not obvious how to do so. To summarise, the (full) al-

gorithm [7] mapping modal Sahlqvist formulae to first-order formulae in-

troduces Rsuv terms. However, these terms are outside the fragment of

modal Kracht* formulae, and expanding the Rsuv terms may still keep us

outside the modal Kracht* fragment. In our description of the algorithm

from modal Kracht formulae to modal Sahlqvist formulae, we have shown

how to handle the new cases arising from the use of Rsuv instead of Ruv.

4.2.4 The Sahlqvist completeness theorem

Thus far our discussion has centred around computing the first-order correspon-

dent of a Sahlqvist formula (Section 4.2.2), and computing the Sahlqvist formula

corresponding to a (first-order) Kracht formula (Section 4.2.3). In this section we

will show how to obtain soundness and completeness results for logics axioma-

tised over K and Kt by Sahlqvist formulae. It turns out that these logics are

sound and weakly complete for the class of frames defined by these formulae.

In this paragraph, let φi uniformly denote either a tense formula or a formula

from the frame languages. We write Fφi to denote the (not necessarily first-order

definable) class of frames defined by φi. Now suppose that ∆ = {φ1, . . . , φn} is

some set of formulae. From Lemma 4.14 we know that the formula
∧
i φi defines

the class
⋂
iFφi of frames. We write F∆ to denote the class

⋂
iFφi and say that ∆

defines F∆.

Of course, if ∆ is some set of Sahlqvist formulae, Theorem 4.31 tells us that

there is some conjunction α of Kracht formulae such that F∆ = F∀xα.

Let K⊕∆ be the axiomatic extension of basic modal logic K by a finite set ∆

of modal Sahlqvist formulae. Certainly we have F∆ |= K (due to Theorem 4.4)

and F∆ |= ∆. Recall that K ⊕ ∆ is the closure of K ∪ ∆ under the rules of

modus ponens, necessitation and the uniform substitution of modal formulae for

propositional variables. Thus any A ∈ K ⊕∆ can be obtained by applications of

these rules to formulae in K ∪∆. Now, for any class F of frames and formulae A

108 CHAPTER 4. PRELIMINARIES

and B, it is easy to check that

F |= A ⊃ B and F |= A implies F |= B

F |= A implies F |= �A

F |= A implies F |= A′ where A′ is a uniform substitution instance of A

Thus A ∈ K ⊕∆ implies that F∆ |= A. So K ⊕∆ is sound for F∆.

Weak completeness of K ⊕∆ for F∆ is the statement:

F∆ |= A implies A ∈ K ⊕∆

Under the assumption that ∆ is a finite set of modal Sahlqvist formulae, this

statement indeed holds, although the proof requires some work. Here we only

sketch the proof following [7]. Sahlqvist’s original proof can be found in [62].

Also see Sambin and Vaccaro [63] for a different proof of the main theorem. We

observe that analogous results apply for axiomatic extensions of the basic tense

logic Kt.

Definition 4.36 (L-consistent sets) Let L be an extension of the basic modal

logic K. A set Γ of formulae is called L-consistent if the formula (
∧

Γ ⊃ ⊥) 6∈ L
and L-inconsistent otherwise.

We have the following lemma (see [7] for a proof).

Lemma 4.37 A logic L is weakly complete with respect to a class of frames F
iff every L-consistent set is satisfiable on some model for some frame in F .

To prove that L is complete for F , from the above lemma, it suffices to find a

model in F which makes every L-consistent set satisfiable. What model should

we choose? It turns out that there is a natural choice for this purpose, aptly called

the canonical model for L. The states of this model are the maximal L-consistent

sets.

Definition 4.38 (maximal L-consistent sets) A set Γ of formulae is called

maximal L-consistent if Γ is L-consistent, and any set of formulae properly con-

taining Γ is L-inconsistent. If Γ is a maximal L-consistent set of formulae then

for short we say it is a L-MCS.

Let us define the canonical model and frame for the basic modal language.

4.2. SOME RESULTS IN CORRESPONDENCE THEORY 109

Definition 4.39 (canonical model, frame) The canonical model ML for a

normal modal logic L in the basic modal language is the triple (WL, RL, V L)

where:

(i) WL is the set of all L-MCSs.

(ii) RL is the binary relation on WL defined by RLwu if for all formulae B,

B ∈ u implies 3B ∈ w.

(iii) V L is the valuation function defined by

V L(p) = {w ∈ WL | p ∈ w}

The pair FL = (WL, RL) is called the canonical frame for L.

The relation RL is called the canonical relation, and V L the canonical valuation.

Next we state without proof the following results [7]:

Lemma 4.40 (Lindenbaum’s Lemma) If Γ is a L-consistent set of formulae,

then there is a L-MCS Γ+ such that Γ ⊆ Γ+.

Lemma 4.41 (Truth Lemma) For any normal modal logic L and set Γ of for-

mulae, ML, w |= Γ iff Γ ⊆ w.

Given any set Γ of L-consistent formulae, Lindenbaum’s lemma states that

there is an L-MCS Γ+ such that Γ ⊆ Γ+. From the Truth Lemma we have

ML,Γ+ |= Γ. What this means is that in order to show that a logic L is weakly

complete with respect to some class F of frames, it suffices to show that the

canonical frame FL ∈ F . Let us call a formula A canonical if, for any normal

modal logic L, A ∈ L implies that A is valid on the canonical frame FL.

Theorem 4.42 (Sahlqvist completeness theorem) Every Sahlqvist formula

is canonical.

Thus, for any set ∆ of modal Sahlqvist formulae, each formula in ∆ must be

valid on the canonical frame FK⊕∆ for K ⊕ ∆. Since F∆ consists of precisely

those frames that make ∆ valid, we have FK⊕∆ ∈ F∆. By our discussion above,

it follows that K ⊕∆ is weakly complete with respect to F∆. Analogous results

apply to axiomatic extensions over the basic tense logic Kt. Together with the

soundness result we discussed earlier in this section, we have

Corollary 4.43 Let ∆ be a finite set of modal (tense) Sahlqvist formulae. Then

K ⊕∆ (Kt⊕∆) is sound and weakly complete with respect to F∆.

This completes our overview of correspondence theory.

110 CHAPTER 4. PRELIMINARIES

4.3 Introducing the Display Calculus

The Display Calculus [5] is a formal proof system that can be used to present

a large class of logics.2 To motivate the display calculus, let us look at another

formal proof system that we have already encountered — Gentzen’s sequent cal-

culus [25]. Gentzen’s sequent calculus is built from (traditional) sequents of the

following form

A1, . . . , An ⇒ B1, . . . , Bm

where {Ai}i∈A and {Bi}i∈B are logical formulae from some language L (say).

The symbol ⇒ in the sequent places the A1, . . . , An on the left-hand side (the

antecedent) and and the B1, . . . , Bm on the right-hand side (the succedent). More-

over, notice how formulae in both the antecedent and succedent are separated by

a comma (,). It is important to note that the symbols ⇒ and the comma do

not belong to L. Instead these are meta-logical symbols belonging to the sequent

calculus formalism. For this reason, these symbols are called structural connec-

tives, to distinguish them from the logical connectives — think ¬, ⊃ and � for

example — in the language L. Properties of the structural connectives such as

associativity and commutativity of the comma are usually defined implicitly.

Although the structural connectives do not actually belong to L, they can

often be interpreted in L. For example, in the Gentzen sequent calculus presenting

classical propositional logic, the sequent above is intended to mean the formula

A1 ∧ . . . ∧ An ⊃ B1 ∨ . . . ∨Bm

where the⇒ has been interpreted as the implication connective ⊃ and the comma

has been interpreted as conjunction in the antecedent and disjunction in the

succedent. This relationship between the logical connectives and the structural

connectives (which lie outside the language of the logic) deserves further exami-

nation.

We can examine this relationship by writing a traditional sequent as X ⇒ Y

where X and Y are Gentzen structures composed from logical formulae using the

structural connective comma. Gentzen structures can be defined by the following

grammar, where I is a constant (the identity structure) and A denotes a logical

formula:

X := I |A |X1, X2

2Since it is a proof system rather than a logic, we prefer the term “display calculus” to

Belnap’s original “display logic”.

4.3. INTRODUCING THE DISPLAY CALCULUS 111

Now we must explicitly define the properties of the comma. There are also

other properties concerning the sequent calculus structure that we would typically

define, for example, the contraction rule (below)

A,A,X ⇒ Y
A,X ⇒ Y

These rules are called structural rules , to contrast with the logical rules of the

sequent calculus which introduce logical and modal connectives into the sequent.

Now let us consider the Display Calculus. A display calculus is built from

display sequents — each sequent is divided into an antecedent and a succedent

by the symbol ` (we use ` for display sequents and ⇒ for Gentzen sequents in

order to distinguish between these two objects). Then we can write a display

sequent as X ` Y where X and Y are display structures. Display structures

are typically more sophisticated than their Gentzen counterparts as they are en-

riched with several different types of structural connectives. The properties of

these structural connectives are then explicitly specified in such a manner that

the expressivity of the structural connectives is ‘complete’ in the sense that any

substructure in a display sequent can be displayed as the whole of the antecedent

or succedent. This is called the display property — the name Display Calculus

is due to this property. The display property makes it straightforward to prove

a cut-elimination theorem that is applicable to any display calculus whose rules

satisfying certain properties (the ‘display conditions’). Informally speaking, the

greater expressivity that is achieved due to the rich display structures — in par-

ticular, the interplay between the logical formulae and the structural connectives

— makes it possible to construct display calculi with nice properties (such as

cut-elimination and the display property) for a large class of logics.

The generality of the Display Calculus can be seen by the fact that cutfree

display calculi have been presented for a broad class of logics including sub-

structural logics [60, 29], modal and polymodal logics [78, 39] and intuitionistic

logics (see [28] and Chapter 6 of this thesis). Mints [50] and Wansing [79] have

demonstrated an embedding, respectively, from labelled sequent calculi and hy-

persequent calculi into the display calculus, and Restall [59] has presented an

embedding of the display calculus into the labelled sequent system of Negri [52].

In the following subsection, we present the display calculus DLM for the

basic tense logic Kt and then introduce Belnap’s cut-elimination theorem for

display calculi. In Section 5.1 we present Kracht’s elegant result characterising

the axiomatic extensions ofKt that can be presented as structural rules extensions

112 CHAPTER 4. PRELIMINARIES

I ` X (> `)> ` X
X ` I (` ⊥)
X ` ⊥

X ` ∗A (` ¬)
X ` ¬A

∗A ` X (¬ `)¬A ` X

X ` A Y ` B (` ∧)
X ◦ Y ` A ∧B

A ◦B ` X (∧ `)
A ∧B ` X

X ` A ◦B (` ∨)
X ` A ∨B

A ` X B ` Y (∨ `)
A ∨B ` X ◦ Y

X ◦ A ` B (`⊃)
X ` A ⊃ B

X ` A B ` Y (⊃`)
A ⊃ B ` ∗X ◦ Y

•X ` A (` �)
X ` �A

A ` X (� `)
�A ` •X

X ` A (` 3)∗ • ∗X ` 3A
∗ • ∗A ` X (3 `)
3A ` X

A ` •X (_ `)
_A ` X

X ` A (` _)•X ` _A

A ` X (� `)
�A ` ∗ • ∗X

X ` ∗ • ∗A (` �)
X ` �A

Table 4.1: Logical rules for the display calculus DLM

of DLM . There is a good reason for focusing on structural rule extensions —

it is particularly easy to verify the display conditions for structural rules. An

analogous characterisation for axiomatic extensions of the basic modal logic K

is claimed in Kracht [39] but R. Goré has recently observed that this claim is

incorrect. In Section 5.2 we examine a new characterisation.

4.3.1 The display calculus DLM

Let us now introduce the display calculus DLM [39].

The class of display structures for DLM is defined over the binary structural

connective ◦, the unary structural connectives ∗ and •, and the constant I (the

‘identity structure’) by the following grammar, where A denotes a formula from

ForT L:

X := I |A |X1 ◦X2 | ∗X | •X

We will use the letters X, Y, . . . (and later U, V, L,M , possibly with subscripts) to

4.3. INTRODUCING THE DISPLAY CALCULUS 113

denote display structures. If Y is a structure occurring in the structure X, we say

that Y is a substructure of X and write X[Y]. A proper structure is a structure

that is not a formula. The structure Z appears positively (resp. negatively) in X

if Z occurs in the scope of an even (odd) number of ∗ symbols in X[Z].

A display sequent has the form X ` Y where X and Y are display structures.

A structure Z is said to be an antecedent (resp. succedent) part of the sequent

X ` Y if Z occurs positively (negatively) in X or negatively (positively) in Y .

A rule in the display calculus consists of some number of premise sequents

and a conclusion sequent. We represent a rule in the usual way, by drawing a line

to separate the premises from the conclusion. We use a double line to indicate

that a (single-premise) rule can be read both upwards and downwards (so each

item represents a pair of rules).

The rules are often presented as rule schemata. In this context, the letters

X, Y, . . . should be treated as schematic structure variables, the letters p, q, . . .

as schematic propositional variables and A,B, . . . as schematic formula variables.

A schematic structure is constructed from these constituents and I using appro-

priate structural and formula connectives. A schematic formula is constructed

from schematic formula variables and propositional variables using the logical

connectives and constants. A rule instance is obtained from a rule schema by the

uniform substitution of structures for schematic structure variables, propositional

variables for schematic propositional variables and tense formulae for schematic

formula variables. In practice, we use the term “rule” to refer to both a rule

schema and its instance. The use of rule schemata allows us to do without a

substitution rule (compare with the Hilbert calculus).

A rule is called a logical rule if it introduces a logical connective or logical

constant into the conclusion sequent. Clearly, each rule in Table 4.1 is a logical

rule. A rule is called a structural rule if its rule schema consists of schematic

structures built from schematic structure variables X, Y, . . . and structural con-

nectives (so no schematic formula variables or logical connectives are permitted).

For example, consider the following rule schemata:

X ◦X ` Y
Cl

X ` Y
A ◦ A ` Y Clform
A ` Y

The rule schema Cl is clearly a structural rule. However, the rule schema

Clform is not a structural rule (under the definition of display structural rule

given above) because it contains the schematic formula variable A. Furthermore,

when viewed as an instance of a rule schema (rather than as a rule schema itself),

notice that

114 CHAPTER 4. PRELIMINARIES

X ◦ Y ` Z
X ` Z ◦ ∗Y

X ◦ Y ` Z
Y ` ∗X ◦ Z

X ` Y ◦ Z
X ◦ ∗Z ` Y

X ` Y ◦ Z
∗Y ◦X ` Z

∗X ` Y
∗Y ` X

X ` ∗Y
Y ` ∗X

∗ ∗X ` Y
X ` Y

X ` ∗ ∗ Y
X ` Y

X ` •Y
•X ` Y

Table 4.2: The display rules for the display calculus DLM

A ◦ A ` Y
A ` Y

is an instance of the rule schema Cl. Clearly, each rule in Table 4.3 and 4.2 is a

structural rule. Observe that no rule can be both a logical rule and a structural

rule.

The rules for the display calculus DLM are given below.

(i) initial sequents: p ` p for every propositional variable p, and the sequents

I ` > and ⊥ ` I;

(ii) the logical rules in Table 4.1;

(iii) the structural rules in Tables 4.2 and 4.3; and

(iv) the cutrule X ` A A ` Y (cut)
X ` Y

Notice that the cutrule is neither a logical rule (because it does not introduce a

logical connective or a constant) nor a structural rule (because the rule schema

contains a formula).

A derivation in the display calculus DLM is defined recursively in the usual

way as either an initial sequent p ` p or an application of the rules to derivations

concluding its premises. The last sequent in the derivation is called the end-

sequent. The sequent X ` Y is derivable if there is some derivation with end-

sequent X ` Y .

A rule in the display calculus is called invertible if the premise sequents of

a rule instance are derivable whenever the conclusion sequent is derivable. By

4.3. INTRODUCING THE DISPLAY CALCULUS 115

X ` Z
(Il)

I ◦X ` Z
X ` Z

(Ir)
X ` I ◦ Z

I ` Y
(Ql)

∗I ` Y
X ` I

(Qr)
X ` ∗I

X ` Z (Wl)
Y ◦X ` Z

X ` Z (Wr)
X ◦ Y ` Z

X1 ◦ (X2 ◦X3) ` Z
(Al)

(X1 ◦X2) ◦X3 ` Z
Z ` X1 ◦ (X2 ◦X3)

(Ar)
Z ` (X1 ◦X2) ◦X3

X ◦ Y ` Z (Pl)
Y ◦X ` Z

Z ` X ◦ Y (Pr)
Z ` Y ◦X

X ◦X ` Z (Cl)
X ` Z

Z ` X ◦X (Cr)
Z ` X

I ` Y (Ml)•I ` Y
X ` I (Mr)
X ` •I

Table 4.3: Proper structural rules for the display calculus DLM

our previous comment, we can equally say that a rule is invertible if there is a

derivation of the premise sequents of a rule instance from the conclusion sequent.

Because every rule in Table 4.2 has double lines, it is obvious that each of these

rules is invertible.

For brevity, we will often omit labelling an application of the structural rules

from Tables 4.2 or 4.3 or apply some number of these rules in a single step of the

derivation.

Notice that the rules in Table 4.3 specify the properties of the structural

connectives in the language. For example, the rules (Pl) and (Pr) respectively

specify commutativity of ◦ in the antecedent and succedent of a sequent. The rules

in Table 4.2 are called the display rules because these rules enable us to ‘display’

a substructure occuring in a sequent as the entire antecedent or succedent. The

sequents X1 ` Y1 and X2 ` Y2 are called display equivalent if each sequent is

derivable from the other using just the display rules.

Theorem 4.44 (display property) Suppose that the proper structure Z is an

antecedent (resp. succedent) part of the sequent X ` Y . Then there is a display

equivalent display sequent Z ` Y ′ (X ′ ` Z). Structure Z is said to be displayed

in the resulting sequent.

116 CHAPTER 4. PRELIMINARIES

Proof. See [5]. Q.E.D.

For example, consider the sequent • ∗ (∗(X ◦M) ◦Y) ` Z. Since the structure M

appears positively in the antecedent of this sequent, M is an antecedent part of

the sequent. Using the display rules we can display M as follows:

• ∗ (∗(X ◦M) ◦ Y) ` Z
∗(∗(X ◦M) ◦ Y) ` •Z
∗ • Z ` ∗(X ◦M) ◦ Y
∗ • Z ◦ ∗Y ` ∗(X ◦M)

X ◦M ` ∗(∗ • Z ◦ ∗Y)

M ` ∗X ◦ ∗(∗ • Z ◦ ∗Y)

We end this section with the following basic results.

Lemma 4.45 For every formula A, the sequent A ` A is derivable in DLM .

Proof. The proof is by induction on the size of A. Q.E.D.

Lemma 4.46 The single-premise logical rules for the connectives ¬, ∧, ∨ as well

the modal rules _ ` and ` � (Tables 4.1) are invertible.

Proof. This result can be proved easily by making use of the cutrule. For

example, a conclusion sequent of a _ ` rule instance has the form _A ` X. We

can obtain a derivation of the premise sequent A ` •X from _A ` X as follows:

A ` A ` _•A ` _A _A ` X
cut•A ` X

A ` •X
For the ` � rule, suppose that we are given a derivation of X ` �A. Then we

can obtain a derivation of •X ` A as follows:

X ` �A
A ` A � `�A ` •A cut

X ` •A
•X ` A

As another example, we can obtain the premise sequent X ` A ◦B of a ` ∨ rule

instance from the conclusion sequent X ` A ∨B as follows:

X ` A ∨B
A ` A B ` B cut
A ∨B ` A ◦B cut

X ` A ◦B
The other cases are similar. Q.E.D.

4.3. INTRODUCING THE DISPLAY CALCULUS 117

4.3.2 Motivation for the modal and tense rules

We noted that in Gentzen’s sequent calculus, the structural connective comma

stands for conjunction in the antecedent and disjunction in the succedent. Thus,

the meaning of the comma toggles between conjunction and disjunction. In the

display calculus, Belnap [5] generalises this idea by ensuring that every structural

connective toggles between two logical connectives. The structural connective ◦
in DLM plays a similar role to the comma, toggling between conjunction in

the antecedent and disjunction in the succedent. For the case of the structural

connective ∗ in DLM , the rules ¬ ` and ` ¬ indicate that ∗ stands for negation

in both the antecedent and the succedent. Because ⊃ can be defined in terms of ∨
and ¬, the rules for ⊃ involve both ∗ and •. Moreover, the structural constant I

toggles between the logical constant > in the antecedent and ⊥ in the succedent.

Together with the obvious correspondence between ` in the display calculus

and ⇒ in the Gentzen sequent calculus, the logical rules for ¬ ∧, ∨ and ⊃ in

Table 4.1 are straightforward analogues of the corresponding rules for Gentzen

sequent calculi [25] for classical logic. This leaves the question: how do we formu-

late the rules for the modal and tense operators? In this section we will provide

a motivation for the modal and tense rules. We are aiming for the calculus DLM

to present the basic tense logic Kt (see Section 4.3.4), so the motivation is guided

by this logic.

First consider the following result.

Lemma 4.47 For all tense formulae A and B, _A ⊃ B ∈ Kt iff A ⊃ �B ∈ Kt.

Proof. Let us make use of the Hilbert calculus for Kt. Although the argument

presented here is informal, it should be clear that it can be made into a formal

derivation in the Hilbert calculus.

First suppose that _A ⊃ B ∈ Kt. From Necessitation we know that �(_A ⊃
B) is a theorem. From (Ax−�) and modus ponens, we obtain �_A ⊃ �B. Since

A ⊃ �_A is an instance of the (Converse1) axiom, together with �_A ⊃ �B it

follows that A ⊃ �B ∈ Kt as required.

Now suppose that A ⊃ �B ∈ Kt. From a standard classical equivalences we

know that ¬�B ⊃ ¬A is a theorem. From Necessitation we obtain �(¬�B ⊃
¬A), and hence from (Ax − �) and modus ponens we get �¬�B ⊃ �¬A, and

then ¬�¬A ⊃ ¬�¬�B. From (Dual − �) this is simply _A ⊃ _�B. Also,

¬B ⊃ �3¬B is an instance of (Converse2), and hence we have ¬�3¬B ⊃ B

and _�B ⊃ B. Finally, from _A ⊃ _�B and _�B ⊃ B it follows that _A ⊃ B

as required. Q.E.D.

118 CHAPTER 4. PRELIMINARIES

Lemma 4.47 suggests that if we assigned a structural connective for _ in the

antecedent, the connective could toggle as � in the succedent. Let us pursue this

line of enquiry by assigning the symbol • to _ to obtain:

•A ` X
_A ` X

X ` •A
X ` �A

We have reproduced, respectively, the rules _ ` and ` � in DLM (upto display

equivalence). Whence come the other rules? It turns out that all the remaining

rules can be deduced from the above rules. For example, let us motivate the

rule � `:

P ` X � `�P ` ∗ • ∗X
This rule says that if A ` X is derivable in DLM , then so is �A ` ∗•∗X. Read-

ing ` as ⊃ as usual, from Necessitation, the (Ax−�) axiom and modus ponens

we can imagine introducing � simultaneously in the antecedent and succedent.

Compare �P ` �X with the conclusion of � `. We have introduced � in the

antecedent as required. We stress that this is an informal discussion — in gen-

eral, �X is not a legal structure. What we really need to do is write the �X in

the succedent in some way that makes it a legal structure for an arbitrary struc-

ture X. Since ∗ is the metalevel symbol for negation, ∗• in the succedent stands

for • in the antecedent which we have taken to stand for _ in the antecedent.

Hence it follows that ∗ • ∗ in the succedent stands for _¬ in the antecedent, and

thus ¬_¬ in the succedent. From (Dual − �) this is precisely �. If we replace

�P ` �X with �A ` ∗ • ∗X we have obtained a sequent that is legal for all

structures X. This is precisely the conclusion sequent of � `, and this constitutes

an informal argument for the soundness of that rule.

Incidentally, it is the ‘complete coverage’ of the logical connectives and the

modal and tense operators at the structural level that enables the powerful display

property (Theorem 4.44).

4.3.3 Belnap’s cut-elimination theorem

We say that a display calculus has cut-elimination if any derivation containing

the cutrule can be effectively transformed to a cutfree derivation of the identical

sequent. If a display calculus has cut-elimination, then the cutrule is redundant in

the sense that removing it from the calculus does not reduce the set of derivable

sequents. Belnap [5] shows that any display calculus whose rules satisfy the

display conditions has cut-elimination.

4.3. INTRODUCING THE DISPLAY CALCULUS 119

Before we present the conditions, let us introduce some terminology. An

occurrence of a schematic structure variable in a rule schema is called a parameter.

Every other variable or structure occurring in the rule is called nonparametric.

For example, in the rule schema:

X ` A B ` Y ⊃`
A ⊃ B ` ∗X ◦ Y

the parameters are X and Y . The remaining variables — in this case the

schematic formula variables A and B — and the formula A ⊃ B and struc-

tures ∗X and ∗X ◦ Y are nonparametric. The motivation for definition is that

parameters are structures that ‘go through unchanged’ when passing from the

premises to the conclusion. In the above example, it is easy to see that the con-

clusion sequent is display equivalent to X ` Y ◦ ∗(A ⊃ B) and X ◦ (A ⊃ B) ` Y .

Comparing these two sequents, respectively, to the the left and right premise of

the above rule we see that the X and Y have passed unchanged from the premise

to the conclusion sequent.

The set of display conditions appears in various guises in the literature. Here

we give the conditions for rules presented as rule schema, following [39].

(C2) Congruent parameters is a relation between parameters of the identical

schematic structure variable occurring in the premise and conclusion se-

quents. [In the example above, the parameter X in the left premise and

conclusion of ⊃` are congruent parameters. Similarly, the parameter Y in

the right premise and conclusion of ⊃` are congruent parameters.]

(C3) Each parameter is congruent to at most one schematic structure variable

in the conclusion. Equivalently, no two schematic structure variables in the

conclusion are congruent to each other.

(C4) Congruent parameters are either all antecedent or all succedent parts of

their respective sequent.

(C5) A schematic formula in the conclusion of a rule ρ is either the entire an-

tecedent or the entire succedent. Such a formula is called a principal

formula of ρ.

(C6/7) Each rule is closed under simultaneous substitution of arbitrary structures

for congruent parameters.

120 CHAPTER 4. PRELIMINARIES

(C8) If there are rules ρ and σ with respective conclusions X ` A and A ` Y
with formula A principal in both inferences (in the sense of C5) and if cut

is applied to yield X ` Y , then either X ` Y is identical to either X ` A
or A ` Y ; or it is possible to pass from the premises of ρ and σ to X ` Y
by means of inferences falling under cut where the cut-formula always is a

proper subformula of A.

Theorem 4.48 (Belnap) Any display calculus satisfying (C2)–(C8) has cut-

elimination.

Proof. See Belnap [5] for the proof, based on transformations in Curry [18].

Although the theorem in [5] states a weaker statement, namely that there is a

derivation of the conclusion sequent of the cut rule whenever the premise sequents

are derivable (‘cut-admissibility’), the proof specifies an effective procedure thus

witnessing the stronger statement of cut-elimination. Q.E.D.

Suppose that the formula A occurs in some sequent S in some derivation δ. The

parametric ancestors of A is the set G of occurrences of A defined as follows: put

the given occurrence of A in G. For every rule instance ρ in the subderivation

above S, add each occurrence of A that is a part of some structure X in the

premise of ρ whose congruent structure in the conclusion of ρ (with respect to

the rule schema for ρ) contains an occurrence of A that is already in G. Belnap

uses this concept of parametric ancestor to elegantly capture the notion of ‘tracing

a formula upwards’ in his proof of the cut-elimination theorem.

Belnap also described another condition

(C1) Each schematic formula variable occurring in some premise of a rule ρ is a

subformula of some schematic formula in the conclusion of ρ.

This condition is not required for cut-elimination. However, it is easy to see that

Theorem 4.49 Any display calculus where every rule aside from the cutrule

obeys (C1) has the subformula property, that is, every sequent in a cutfree deriva-

tion of the sequent X ` Y is built from structures over the subformulae of the

formulae occurring in X and Y (as opposed to arbitrary formulae).

If every rule in a display calculus obeys (C2)–(C8) and every rule aside from the

cutrule obeys (C1) then we say that the display calculus obeys (C1)–(C8). The

above results tell us that if a display calculus obeys (C1)–(C8) then the calculus

has cut-elimination and the subformula property.

4.3. INTRODUCING THE DISPLAY CALCULUS 121

4.3.4 Structural rule extensions of DLM

The τ-translation

Define the functions τ1 and τ2 from display structures to tense formulae as fol-

lows [5,39]:

τ1(A) = A τ2(A) = A

τ1(I) = > τ2(I) = ⊥
τ1(∗X) = ¬τ2(X) τ2(∗X) = ¬τ1(X)

τ1(X ◦ Y) = τ1(X) ∧ τ1(Y) τ2(X ◦ Y) = τ2(X) ∨ τ2(Y)

τ1(•X) = _τ1(X) τ2(•X) = �τ2(X)

The τ -translation τ(X ` Y) of the sequent X ` Y is the tense formula τ1(X) ⊃
τ2(Y).

Some properties of the calculus DLM

The following results identify the relationship between the display calculus DLM

and the basic tense logic Kt. The results are constructive in the sense that there

is an algorithm witnessing each result.

Lemma 4.50 For any sequent X ` Y , if X ` Y is derivable in DLM then

τ(X ` Y) ∈ Kt.

Proof. See Wansing [80, Theorem 3.14]. Q.E.D.

Lemma 4.51 For any tense formula A, A ∈ Kt iff I ` A is derivable in DLM .

Proof. For the forward direction it suffices to show that (i) for each axiom A

in the Hilbert calculus for Kt, I ` A is derivable in DLM , and (ii) all the rules

in the Hilbert calculus preserve derivability in DLM . See Wansing [80, Theorem

3.14]. The reverse direction follows from Lemma 4.50. Q.E.D.

Lemma 4.52 For any sequent X ` Y , X ` Y is derivable in DLM iff I ` τ(X `
Y).

Proof. See Wansing [80, Theorem 3.17]. Q.E.D.

As an illustration of the above lemma, let us construct a derivation of τ(•∗•∗p `
∗ • ∗ • p) = _¬�¬p ⊃ ¬_¬�p from the sequent • ∗ • ∗ p ` ∗ • ∗ • p.

122 CHAPTER 4. PRELIMINARIES

• ∗ • ∗ p ` ∗ • ∗ • p
• ∗ • ∗ • ∗ •p ` ∗p

` ¬• ∗ • ∗ • ∗ •p ` ¬p
∗ • ∗ • ∗ • p ` •¬p

` �∗ • ∗ • ∗ • p ` �¬p
∗�¬p ` • ∗ • ∗ •p

¬ `¬�¬p ` • ∗ • ∗ •p
•¬�¬p ` ∗ • ∗ • p

_ `
_¬�¬p ` ∗ • ∗ • p
∗ • ∗_¬�¬p ` •p

(cont.)
` �∗ • ∗_¬�¬p ` �p

∗�p ` • ∗ _¬�¬p
¬ `¬�p ` • ∗ _¬�¬p

•¬�p ` ∗_¬�¬p
_ `

¬�p ` ∗¬�¬p
¬�¬p ` ∗¬�p

` ¬
¬�¬p ` ¬¬�p

`⊃
I ` _¬�¬p ⊃ ¬_¬�p

Lemma 4.53 For sequents X1 ` Y1 and X2 ` Y2, (i) if τ(X1 ` Y1) ≈ τ(X2 `
Y2) ∈ Kt then X2 ` Y2 is derivable in DLM whenever X1 ` Y1 is derivable in

DLM , and (ii) if X1 ` Y1 and X2 ` Y2 are display equivalent, then τ(X1 ` Y1) ∈
Kt whenever τ(X2 ` Y2) ∈ Kt.

Proof. For (i), if X1 ` Y1 is derivable in DLM , we know that τ(X1 ` Y1) ∈ Kt.
From τ(X1 ` Y1) ≈Kt τ(X2 ` Y2) by modus ponens we have τ(X2 ` Y2) ∈ Kt,
and thus X2 ` Y2 is derivable in DLM .

To prove (ii), first observe that if τ(X2 ` Y2) ∈ Kt, then from Lemma 4.51,

we have that I ` τ(X2 ` Y2) is derivable in DLM . Then from Lemma 4.52 we

have that X2 ` Y2 is derivable. Since X1 ` Y1 and X2 ` Y2 are display equivalent,

we have that X1 ` Y1 is derivable. Hence it follows that τ(X1 ` Y1) is derivable.

Q.E.D.

Structural rule extensions of DLM

The display calculus obtained by the addition of a set {ρi}i∈I of structural rules to

DLM is denoted DLM+{ρi}i∈I . In practice, the index set I will always be finite.

Moreover, we often drop the reference to the index set, writing DLM + {ρi}i∈I .
Similarly, we write Kt + {ri}i∈R to denote the Hilbert calculus obtained by the

addition of the Hilbert calculus rules {ri}i∈R to Kt.

Theorem 4.54 Let {ρi}i∈I be a set of structural rules. Then,

(i) X ` Y is derivable in DLM + {ρi}i∈I iff I ` τ(X ` Y) is derivable in

DLM + {ρi}i∈I ; and

(ii) for sequents X1 ` Y1 and X2 ` Y2, if τ(X1 ` Y1) ≈ τ(X2 ` Y2) ∈ Kt then

X2 ` Y2 is derivable in DLM + {ρi}i∈I whenever X1 ` Y1 is derivable in

DLM ; and

4.3. INTRODUCING THE DISPLAY CALCULUS 123

(iii) if X1 ` Y1 and X2 ` Y2 are display equivalent, then τ(X1 ` Y1) ∈ Kt

whenever τ(X2 ` Y2) ∈ Kt.

Proof. The proofs are analogous to those for the calculus DLM . In particular,

observe that the presence of the rules {ρi}i∈I does not complicate the proof in

any way. Q.E.D.

Definition 4.55 (properly displays) Let {ρi}i∈I be a set of structural rules.

We say that DLM + {ρi}i∈I properly displays the tense logic L if

(i) all the rules of DLM + {ρi}i∈I satisfy (C1)–(C8), and

(ii) for any formula A ∈ ForT L, A ∈ L iff I ` A is derivable in DLM+{ρi}i∈I .

We say that the logic L is properly displayable over DLM if there is a set {ρi}i∈I
of structural rules such that DLM + {ρi}i∈I properly displays L.

Notice that in the calculus DLM + {ρi}i∈I , the condition (C8) needs only to

be checked for the logical rules. This is because, by the definition (see pg 111)

of structural rule (schema), these rules only contain parameters and structural

connectives. Specifically, no nonparametric formulae such as logical formulae

can occur in the structural rule schema, and so the hypothesis of C8 can never

be satisfied for structural rules. Incidentally, the transformations [5] witnessing

condition (C8) for the logical rules generalise the ‘principal transformations’ [25]

for classical sequent calculi.

By inspection it is easy to verify that all the rules of DLM satisfy the display

conditions. Together with Theorem 4.51 we then have

Theorem 4.56 The display calculus DLM properly displays Kt.

Equivalent definitions of “properly displays”

We close by showing that the definition of “properly displays” given in Kracht [39]

and Wansing [80] is equivalent to our definition.

Definition 4.57 (τ-translation of a rule) Let ρ be the rule

X1 ` Y1 . . . Xn ` Yn
X ` Y

Then the τ -translation of ρ is the rule

τ(X1 ` Y1) . . . τ(Xn ` Yn)

τ(X ` Y)

124 CHAPTER 4. PRELIMINARIES

Definition 4.58 (admissible rule) A rule

φ1 . . . φn
φ

in some Hilbert (resp. display) calculus C where {φ, φ1, . . . , φn} is a set of for-

mulae (sequents) is said to be admissible if whenever instances of the premise

formulae (sequents) are derivable then the corresponding instance of the conclu-

sion formula (sequent) is derivable in C.

Kracht [39] and Wansing [80] define the term properly displays for Hilbert

calculi Kt + {ri}i∈R (finite R) by substituting condition (ii) in Definition 4.55

with the following two conditions:

(i*) the τ -translation of every admissible rule in DLM + {ρi}i∈I is admissible in

Kt+ {ri}i∈R.

(ii*) every admissible rule in Kt + {ri}i∈R is logically equivalent in Kt to the

τ -translation of some admissible rule in DLM + {ρi}i∈I .

Condition (ii*) means that if the rule

A1 . . . An
B

is admissible in Kt+{ri}i∈R, then there is some admissible rule in DLM+{ρi}i∈I

X1 ` Y1 . . . Xn ` Yn
X ` Y

such that τ(Xi ` Yi) ≈ Ai ∈ Kt for each i, and τ(X ` Y) ≈ B ∈ Kt.
Let us use the term “properly displays* ” to mean the definition obtained from

Definition 4.55 by substituting condition (ii) with (i)* and (ii*). In the following,

we show that the two definitions are equivalent.

Lemma 4.59 DLM + {ρi}i∈I properly displays Kt+ {ri}i∈R iff DLM + {ρi}i∈I
properly displays* Kt+ {ri}i∈R.

Proof. (⇒) Assume that DLM + {ρi}i∈I properly displays Kt + {ri}i∈R. We

must show that (i*) and (ii*) hold. To show (i*), suppose that an arbitrary rule

X1 ` Y1 . . . Xn ` Yn ρ
X ` Y

4.3. INTRODUCING THE DISPLAY CALCULUS 125

is admissible in DLM + {ρi}i∈I and suppose that the τ -translation τ(Xi ` Yi)
of each of the premises of ρ is a theorem of Kt + {ri}i∈R for each i, 1 ≤ i ≤ n.

Since DLM + {ρi}i∈I properly displays Kt + {ri}i∈R we know that I ` τ(Xi `
Yi) is derivable, and hence by Theorem 4.54, Xi ` Yi is derivable in DLM +

{ρi}i∈I . From the admissibility of ρ we conclude that X ` Y is derivable. Use

Theorem 4.54 to get that I ` τ(X ` Y) is derivable, and then from the definition

of properly displays we get that τ(X ` Y) ∈ Kt+ {ri}i∈R. Thus we have proved

that the τ -translation of ρ is admissible in Kt+ {ri}i∈R.

To show (ii*), suppose that an arbitrary rule

A1 . . . An r
B

is admissible in Kt + {ri}i∈R and suppose that there are sequents {Xi ` Yi}i∈Λ

derivable in DLM+{ρi}i∈I such that τ(Xi ` Yi) is logically equivalent in Kt to Ai

for each i, 1 ≤ i ≤ n. Certainly, there is no difficulty with the existence sequents

{Xi ` Yi}i∈Λ with this property, since it is the case for each i that I ` Ai under

the τ -translation is logically equivalent in Kt to Ai. From Theorem 4.54 it follows

that I ` τ(Xi ` Yi) is derivable, and then by the definition of properly displays we

have τ(Xi ` Yi) ∈ Kt+ {ri}i∈R. Since τ(Xi ` Yi) ≈ Ai ∈ Kt+ {ri}i∈R it follows

that Ai ∈ Kt+{ri}i∈R for each i. Because the rule r is admissible, it follows that

B ∈ Kt + {ri}i∈R and thus I ` B is derivable. Moreover τ(I ` B) = > ⊃ B is

logically equivalent in Kt to B. Thus we have proved that the the τ -translation

of the rule

X1 ` Y1 . . . Xn ` Yn
I ` B

is logically equivalent in Kt to r.

(⇐) Assume that DLM + {ρi}i∈I properly displays* Kt + {ri}i∈R. We need

to show that A ∈ Kt+ {ri}i∈R iff I ` A is derivable in DLM + {ρi}i∈I .
First suppose that I ` A is derivable in DLM + {ρi}i∈I . Therefore the rule

p ` p
I ` A

is admissible in DLM + {ρi}i∈I . By (i*) its τ -translation must be admissible in

Kt+ {ri}i∈R:

p ⊃ p

τ(I ` A)

126 CHAPTER 4. PRELIMINARIES

Since p ⊃ p ∈ Kt+ {ri}i∈R it follows that τ(I ` A) = > ⊃ A ∈ Kt+ {ri}i∈R and

thus A ∈ Kt+ {ri}i∈R.

Now suppose that A ∈ Kt+ {ri}i∈R. We need to show that I ` A is derivable

in DLM + {ρi}i∈I . Notice that the rule

p ⊃ p
A

must be admissible in Kt+{ri}i∈R. By (ii*) there are sequents X ` Y and U ` V
satisfying τ(X ` Y) ≈ p ⊃ p ∈ Kt and τ(U ` V) ≈ A ∈ Kt such that the rule ρ

X ` Y ρ
U ` V

is admissible in DLM + {ρi}i∈I . Since p ⊃ p ∈ Kt it follows that τ(X ` Y) ∈
Kt and hence X ` Y is derivable in DLM . Therefore X ` Y is derivable in

DLM + {ρi}i∈I too, and by admissibility of the rule ρ, so is the sequent U ` V .

From Theorem 4.54 we can show that I ` τ(U ` Y) is derivable in DLM+{ρi}i∈I .
Since τ(U ` V) ≈ A ∈ Kt, we can show that τ(U ` V) ` A is derivable in DLM .

Then obviously τ(U ` V) ` A is derivable in DLM+{ρi}i∈I . Since we know that

I ` τ(U ` V) is derivable in DLM + {ρi}i∈I , by the cutrule I ` A is derivable in

DLM + {ρi}i∈I . Q.E.D.

Although our definition closely reflects the notion of a calculus being sound and

complete for a logic, we observe that it is often more convenient to use the equiv-

alent definition of properly displays* when dealing with rule extensions of the

Hilbert calculus Kt.

Chapter 5

Displaying tense and modal logics

Kracht’s Display Theorem I (Section 5.1.1) identifies the axiomatic extensions

over Kt that are properly displayable by the addition of structural rules (satis-

fying (C1)–(C8)) to DLM , as the class of primitive tense axiomatic extensions

over Kt. A semantic characterisation of primitive tense formulae is presented in

Section 5.1.2. Kracht also claims a characterisation of the properly displayable

axiomatic extensions over K. In Section 5.2 we show why this characterisation is

incorrect and examine how we might obtain a new characterisation. In particu-

lar, our work here extends the class of modal logics that are properly displayable

from the primitive modal axiomatic extensions of K studied by Kracht.

Our contribution in this chapter is as follows.

We present two new proofs — based on a second-order representation of tense

formulae, and using model-theoretic arguments — of Kracht’s semantic character-

isation of primitive tense formulae. The original proof relies on Kracht’s Calculus

of Internal Descriptions which we do not use in this work.

Although the logic K ⊕3�p ⊃ �3p has been identified as a counterexample

to Kracht’s characterisation for modal logics, we are not aware of any existing

proof of the (critical and non-trivial) statement that this logic cannot be written

as a primitive modal axiomatic extension of K. Here we give a proof of this

statement using proof-theoretic methods.

Next, we identify the error in Kracht’s claim and present a class of modal for-

mulae called M-formulae, and show that any axiomatic extension via M-formulae

is properly displayable. Then we identify the form of the structural rules (‘ba-

sic rules’) corresponding to M-formulae. This leads to the question — what, if

any, other axiomatic extensions over K are properly displayable by structural

rule extensions? We present a conjecture that answers this question — indeed,

127

128 CHAPTER 5. DISPLAYING TENSE AND MODAL LOGICS

Kracht has given a ‘proof’ for this conjecture, but we have shown that his proof

is incomplete.3 Validity of the conjecture would imply that every structural rule

that corresponds to a tense formula defining a modally definable class of frames

can be rewritten as a basic rule, thus leading to a complete characterisation of

properly displayable modal logics.

5.1 Displaying tense logics

5.1.1 Syntactic characterisation of properly displayable

tense logics

Kracht [38] has given a complete syntactic characterisation of the tense logics

properly displayable over DLM . This is the Display Theorem I.

Definition 5.1 (primitive tense formula) A tense formula is called a primi-

tive tense formula if it has the form A ⊃ B, where A contains each propositional

variable at most once, and A and B are built from >, ∧, ∨, _ and 3.

An axiomatic extension of Kt by a primitive tense formula is called a primitive

tense axiomatic extension.

Theorem 5.2 (Display theorem I) Let Kt⊕∆ be an axiomatic extension of

Hilbert-style tense logic. Then Kt⊕∆ can be properly displayed over DLM iff it

is axiomatizable by a set of primitive tense formulae.

Proof. See Kracht [39]; Wansing [80]. Q.E.D.

The reverse direction of Display Theorem I states that for any set {ti}i∈T of

primitive tense formulae, the logic Kt⊕{ti}i∈T is properly displayable over DLM .

Let us describe the algorithm for constructing the display calculus as we will use

this later on.

Suppose that δ is the primitive tense formula A ⊃ B. Since A and B are

built up from only >, ∧, ∨, _ and 3, using the following equivalences in Kt for

distribution of _ and 3 over disjunction:

3(C ∨D) ≈ 3C ∨3D

_(C ∨D) ≈ _C ∨ _D (5.1)

(C ∨D) ∧ E ≈ (C ∧ E) ∨ (D ∧ E)

3M. Kracht completely agrees with our analysis regarding this problem and concedes that

it is not clear how to obtain the result: personal correspondence by email dated 13/Dec/2010.

5.1. DISPLAYING TENSE LOGICS 129

we can write A ≈
∨
i≤mCi and B ≈

∨
j≤nDj where every Ci and Dj is built

up from only >, ∧, _ and 3. Now
∨
i≤mCi ⊃

∨
j≤nDj is a theorem of Kt iff

Ci ⊃
∨
j≤nDj is a theorem for all i, 1 ≤ i ≤ m. The axiom A ⊃ B is equivalent

in deductive power to the addition of the rule r for some propositional variable q

not appearing in {A,B}:

B ⊃ q
A ⊃ q

which in turn is equivalent to the addition of the rules {ri}i∈R (so Kt⊕A ⊃ B =

Kt+ {ri}i∈R), where ri is the following rule:

D1 ⊃ q . . . Dn ⊃ q
Ci ⊃ q

(q does not appear in either {Di}i∈D or Ci). Notice that each formula that occurs

in ri is free of the disjunction and implication connectives. Now we translate the

rules {ri}i∈R into structural rule schemata by replacing ⊃ with the symbol `,

and mapping the formulae (which are built from >, ∧, _ and 3) into display

structures using the map σ:

σ(>) = I

σ(p) = Xp

σ(A ∧B) = σ(A) ◦ σ(B)

σ(_B) = •σ(B)

σ(3B) = ∗ • ∗σ(B)

where Xp is a schematic structure variable that is uniquely assigned to the propo-

sitional variable p. The resulting structural rules schemata {ρ1, . . . , ρm} have the

following form:

σ(D1) ` Xq . . . σ(Dn) ` Xq ρi
σ(Ci) ` Xq

It is easy to verify that the {ρi}i∈I satisfy (C1)–(C8). Next it is shown that the

addition of the rule ρi to DLM is equivalent in deductive power to the addition

of the rule ri to Kt, so DLM + {ρi}i∈I properly displays Kt+ {ri}i∈R.

The forward direction of Display Theorem I states that if the structural rule

extension DLM +{ρi}i∈I properly displays Kt⊕∆ then there is some set {ti}i∈T
of primitive tense formulae such that Kt ⊕ ∆ = Kt ⊕ {ti}i∈T . The idea here

is to show that each ρi can be written in the following form for some schematic

structure variable Y not occurring in {X,X1, . . . , Xn}:

130 CHAPTER 5. DISPLAYING TENSE AND MODAL LOGICS

X1 ` Y . . . Xn ` Y
X ` Y

The addition of a structural rule of the above form to DLM corresponds to an

axiomatic extension over Kt by a primitive tense formula so the result follows.

Define the following classes of logics:

Dtense = {L is properly displayable over DLM |
L = Kt⊕∆ for some set ∆ of tense formulae}

Ptense = {L |L = Kt⊕ {ti}i∈T for some set {ti}i∈T of primitive tense formulae }

Then Kracht’s Display Theorem I states that Dtense = Ptense.

Example 5.3 Consider the primitive tense formula Q1: _3p ⊃ 3_p. Since

σ(_3p) = • ∗ • ∗Xp and σ(3_p) = ∗ • ∗ •Xp

from _3p ⊃ 3_p we obtain the rule schema (dropping the subscript p)

∗ • ∗ •X ` Y q1• ∗ • ∗X ` Y

such that DLM + q1 properly displays Kt⊕Q1.

Next, consider the primitive tense formula Q2:

3p ∧3q ∧3r ⊃ 3((_p ∧ _q) ∨ (_q ∧ _r) ∨ (_p ∧ _r))

Using the classical equivalences 3(A ∨ B) = 3A ∨ 3B to push the disjunctions

outwards, the above formula is equivalent to

3p ∧3q ∧3r ⊃ 3(_p ∧ _q) ∨3(_q ∧ _r) ∨3(_p ∧ _r)

By inspection, the above formula is a primitive tense formula. Using σ we obtain

the rule schema q2

∗ • ∗(•L ◦ •M) ` Y ∗ • ∗(•M ◦ •N) ` Y ∗ • ∗(•L ◦ •N) ` Y
q2∗ • ∗L ◦ ∗ • ∗M ◦ ∗ • ∗N ` Y

such that DLM + q2 properly displays Kt⊕Q2.

5.1. DISPLAYING TENSE LOGICS 131

5.1.2 A semantic characterisation for primitive tense

formulae

In the previous section we saw that the properly displayable axiomatic extensions

of Kt is exactly the class of axiomatic extensions over Kt by primitive tense

formulae. In this section we will see that these formulae can be characterised by

a certain class of tense Kracht formulae from the frame language Lf .

Definition 5.4 (Arf∃rx) Let Arf∃rx denote the class of tense restrictedly pos-

itive formulae (Definition 4.16) with a single free variable x having the form

∀rxφ(∃ry ;x, x) where φ(x) is constructed from existential restricted quantifiers

and (positive) atomic formulae of the form u = u, u = v and Rsuv using ∧
and ∨, and in an atomic formula u = v and Rsuv at least one of u and v is

inherently universal (Definition 4.17).

Kracht [39] has identified the relationship between primitive tense formulae and

the class Arf∃rx4 — namely that (finite sets of) primitive tense formulae and

conjunctions of formulae from Arf∃rx define exactly the same class of frames.

Kracht makes use of his Calculus of Internal Descriptions [38, 40] to obtain this

result. In this work, instead of using that calculus, we make use of the algorithm

given in [7] and described in Section 4.2.2. Since we will make use of the result to

characterise properly display axiomatic extensions of modal logic in later sections,

we will present two new proofs of this result that do not rely on the Calculus of

Internal Descriptions.

Define a _3∧-formula f(X0, . . . , Xn) to be a formula constructed from dis-

tinct symbols X1, . . . , Xn, each appearing exactly once, using ∧, 3 and _. A 3∧-

formula is a _3∧-formula containing no occurrences of _. We write f(Y0, . . . , Yn)

to mean the formula obtained from f(X0, . . . , Xn) by substituting Yi for each Xi.

For brevity we will write f for f(X0, . . . , Xn) and f(Yi) for f(Y0, . . . , Yn).

Let
∨
f be the formula obtained from f by replacing each conjunction symbol ∧

with the disjunction symbol ∨. The formula f b is obtained from f by deleting

all occurrences of 3 and _. When f is a _3∧-formula, f b is equivalent to the

4Kracht [39] actually relates the primitive tense formulae with type 1 formulae of the form

∀rx ∃ry φ(x) such that φ is free of quantifiers, as opposed to the type 1′ formulae in Arf∃rx.

This characterisation has persisted in the subsequent literature. M. Kracht agrees with the

observation in the text following Example 4.33 that it is not clear how to obtain a type 1

formula (personal correspondence). None of the results in [39] is affected by the use of type 1′

formulae.

132 CHAPTER 5. DISPLAYING TENSE AND MODAL LOGICS

conjunction X0 ∧ . . . ∧ Xn and
∨
f
b

is equivalent to the formula X0 ∨ . . . ∨ Xn.

Finally, we attach the subscript ST to a function (eg. fST ,
∨
fST) to mean the

image of that function under STx0 .

The following result indicates that a _3∧-formula arises when we apply the

algorithm in Theorem 4.31 to compute the tense formula correspondent of a

formula in Arf∃rx.

Lemma 5.5 Suppose that α ∈ Arf∃rx. Then the tense formula correspondent

of α obtained from the algorithm in Theorem 4.31 is frame equivalent to a formula

of the form

f(p0 ∧ ¬D0, . . . , pn ∧ ¬Dn) ⊃ ⊥ (5.2)

where f(X0, . . . , Xn) is a _3∧-formula and each pi is a distinct propositional

variable and each Di is either ⊥ or constructed from variables in {pi} and >
using 3, _, ∧ and ∨.

Proof. Inspection of the algorithm in Theorem 4.31. It is easy to check that the

resulting tense formula has the form A ⊃ ⊥, where A is a substitution instance of

a _3∧-formula f(X0, . . . , Xn), where each Xi is substituted with a formula of one

of the following forms: pi∧¬Di, pi or ¬Di, where the {pi}i∈I (I ⊆ {0, . . . , n}) are

distinct, and the tense formulae {Di}i∈J (J ⊆ {0, . . . , n}) are constructed from

the propositional variables {pi}i∈I using >,3,_,∧ and ∨.

Form the sequence p1, . . . , pn from {pi}i∈I in the obvious way by introducing

new propositional variables pj for each missing index j. Similarly, form the se-

quence D1, . . . , Dn from {Di}i∈J by setting Dj = ⊥ for each missing index j. It

is easy to see that for any frame F , F |= A iff F |= f(pi ∧¬Di). Hence the claim

is proved. Q.E.D.

Example 5.6 Consider the formula (∀y�x)(∀u�y)Rux. Applying the algorithm

in Theorem 4.31, we obtain the correspondent formula p0 ∧3_¬3p0 ⊃ ⊥. This

formula is frame equivalent to (p0∧¬⊥)∧3_(p1∧¬3p0) ⊃ ⊥. Then this formula

can be written as f(p0∧¬⊥, p1∧¬3p0) where f is the _3∧-formula X0∧3_X1.

Because of the presence of the negation symbols, the formula (5.2) is not a

primitive tense formula. However this formula is frame-equivalent to a primitive

tense formula as the following result shows.

Lemma 5.7 A formula of the form (5.2) under the restrictions for {pi}i∈P and

{Di}i∈D stated in Lemma 5.5 is frame-equivalent to the primitive tense formula

f(pi) ⊃
∨
f(pi ∧Di).

5.1. DISPLAYING TENSE LOGICS 133

Using this result we can prove Kracht’s [39] characterisation of primitive tense

formulae.

Theorem 5.8 Let F be some class of frames. Then, F is defined by a set of

primitive tense formulae iff F can be defined by a formula of the form ∀x(∧iαi)
for {αi}i∈J ⊂ Arf∃rx.

Proof. The direction from left-to-right follows from an inspection of the algo-

rithm in Theorem 4.24 for computing the first-order formula corresponding of a

given very simple Sahlqvist formula. In particular, it is easy to verify that the

first-order correspondent αi of a primitive tense formula ti is a formula in Arf∃rx.

Since Fti = F∀xαi for each i, it follows that

F{ti}i∈T = F∧i(∀xαi)
= F∀x(∧i∀xαi)

For the right-to-left direction, by Lemma 5.5 and Lemma 5.7 we know that

for each αi ∈ Arf∃rx, ∀xαi corresponds to some primitive tense formula ti. It

follows that F∀x(∧iαi) = F{ti}i∈T as required. Q.E.D.

Thus it remains to prove Lemma 5.7. The claim that f(pi) ⊃
∨
f(pi ∧ Di) is

a primitive tense formula is easily verified. We present two proofs of the frame-

equivalence portion of the claim. The first utilises the second-order representation

of a tense formula. The second proof (see Appendix A) uses a model-theoretic

argument.

Proof.[First proof of Lemma 5.7] In the following we will implicitly make use of

the following properties for a _3∧-formula f . Because ∃ru (A∧B) = (∃ruA∧B)

when there is no free occurrence of u in B, we have STx0(f(Xi)) = fST (STxi(Xi))

for some distinct set {x1, . . . , xn}. Also, fST (STxi(Xi)) = ∃rx̄ f b(Xi) where ∃rx̄
is an abbreviation for ∃rx1 . . . ∃rxn . Finally, observe that when x̄ is not free in B,

then (∃rx̄ A) ⊃ B = ∀rx̄ (A ⊃ B).

We will prove the claim in three steps.

STEP 1.

We know that f(pi ∧ ¬Di) ⊃ ⊥ is frame-equivalent to the following (see text

134 CHAPTER 5. DISPLAYING TENSE AND MODAL LOGICS

around (4.3)):

∼
∀P∀x0STx(f(pi ∧ ¬Di))→ f =

∼
∀P∀x0fST (STxi(pi) ∧ STxi(¬Di))→ f

(for some distinct set {x1, . . . , xn})

=
∼
∀P∀x0∀rx̄

(
f b(STxi(pi) ∧ STxi(¬Di))→ f

)
=
∼
∀P∀x0∀rx̄

(
f b(STxi(pi))→

∨
f
b

(STxi(Di))

)
=
∼
∀P∀x0∀rx̄

(
f b(Pixi)→

∨
f
b

(STxi(Di))

)
(5.3)

We claim that (5.3) is frame-equivalent to

∀x0∀rx̄
(
∨
f
b

(STxi(Di))

)
[{σ(Pi)/Pi}] (5.4)

Define the predicate σ(Pi)(ω) = (xi = ω). It is easy to check that (5.4) can

be obtained from (5.3) by instantiating each predicate variable Pi with σ(Pi) so

M |= (5.3) implies M |= (5.4) for any model M . To show that (5.4) implies (5.3),

for an arbitrary model M and arbitrary states w,w1, . . . , wn, assuming that M |=
(5.4) and

M |= f b(Pixi)[w0/x0, w1/x1, . . . , wn/xn]

we need to show that

M |=
∨
f
b

(STxi(Di))[w0w1 . . . wn] (5.5)

It follows from the assumptions that

M |=
∨
f
b

(STxi(Di))[w0w1 . . . wn][{σ(Pi)/Pi}] (5.6)

Next, since f b(Pixi)[w0w1 . . . wn] is a conjunction of formulae Piwi for each i, from

our assumption we have that

M |= ∀y(σ(Pi)(y)→ Py)[w0w1 . . . wn]

This tells us that each predicate Pi extends the valuation σ(Pi). Since (5.5) is

positive in every predicate variable, the result follows from (5.6) by appealing to

monotonicity.

STEP 2.

Now consider the formula f(pi) ⊃
∨
f(pi ∧ Di). We know that this formula is

frame-equivalent to the following second-order formula

∼
∀P∀x0fST (Pixi)→

∨
fST (STzi(pi ∧Di))

5.1. DISPLAYING TENSE LOGICS 135

where, without loss of generality we may assume that the sets {x1, . . . , xn} and

{z1, . . . , zn} are disjoint. This simplifies to

∼
∀P∀x0∀rx̄

(
f b(Pixi)→

∨
fST (Pizi ∧ STzi(Di))

)
(5.7)

Instantiating each Pi with the predicate σ(Pi) we defined in Step 1, we get

∀x0∀rx̄ fST (zi = xi ∧ STzi(Di))[{σ(Pi)/Pi}]

This formula is equivalent to

∀x0∀rx̄
(
∨
f
b

(STxi(Di))

)
[{σ(Pi)/Pi}] (5.8)

(because of the zi = xi terms, the existential restricted quantifiers {∃rzi } in fST

are redundant and hence can be deleted). So M |= (5.7) implies M |= (5.8) for

any model M . We claim that (5.8) implies (5.7) (so these formulae are frame-

equivalent). For an arbitrary model M and arbitrary states w0, w1, . . . , wn, as-

suming that M |= (5.8) and

M |= f b(Pixi)[w0w1 . . . wn]

we need to show that

M |=
∨
fST (Pizi ∧ STzi(Di))[w0w1 . . . wn] (5.9)

It follows from the assumptions that

M |=
∨
fST (Pizi ∧ STzi(Di))[w0w1 . . . wn][{σ(Pi)/Pi}] (5.10)

Next, since f b(Pixi)[w0w1 . . . wn] is a conjunction of formulae Piwi for each i, from

our assumption we have that

M |= ∀y(σ(Pi)(y)→ Py)[w0w1 . . . wn]

The above tells us that each predicate Pi extends the valuation σ(Pi). Since (5.9)

is positive in every predicate variable, the result follows from (5.10) by appealing

to monotonicity.

STEP 3.

Finally, since (5.4) and (5.8) are identical, it follows that the formulae f(pi ∧
¬Di) ⊃ ⊥ and f(pi) ⊃

∨
f(pi ∧Di) are frame-equivalent. Q.E.D.

We observe that the stronger result that every formula in Arf∃rx locally cor-

responds to a primitive tense formula also holds. To prove this result, simply

remove the quantification over x0 in the above proof.

136 CHAPTER 5. DISPLAYING TENSE AND MODAL LOGICS

5.2 Displaying modal logics

A primitive modal formula is a primitive tense formula that does not contain _.

In other words, a modal formula is called a primitive modal formula if it has the

form A ⊃ B, where A contains each propositional variable at most once, and

A and B are built from >, ∧, ∨ and 3. Also let DLM.K denote the display

calculus obtained from DLM by deleting the introducing the tense operators (ie

the rules _ `, ` _, � ` and ` �). All the definitions for DLM (such as the

definition of “derivation”, “invertible”, “admissible” and “structural rules”) apply

to DLM.K in the obvious way. For example, compare the following definition of

properly displays for DLM.K with Definition 4.55.

Definition 5.9 (properly displays for DLM.K) Let {ρi}i∈I be a set of struc-

tural rules. We say that DLM.K + {ρi}i∈I properly displays the modal logic L

if

(i) all the rules of DLM.K + {ρi}i∈I satisfy (C1)–(C8), and

(ii) for any formula A ∈ ForML, A ∈ L iff I ` A is derivable in DLM.K +

{ρi}i∈I .

Given a modal logic L, if there is a set {ρi}i∈I of structural rules such that

DLM.K + {ρi}i∈I properly displays L, we say that L is properly displayable

over DLM.K. We also have at our disposal the Display Property and Belnap’s

cut-elimination theorem. The obvious question is whether there is an analogue

of Display Theorem I for modal logics. Kracht has claimed such an analogue

(Section 5.2.1). However, a counterexample to the claim has been presented

(Section 5.2.2). In Section 5.2.3 we identify the error in Kracht’s claim. Then

in Section 5.2.4 we introduce the M-formulae and show that any axiomatic ex-

tension of K via M-formulae is properly displayable. Finally, in Section 5.2.5 we

investigate what other logics might be properly displayable.

5.2.1 Kracht’s claim

Define the following classes of logics:

Dmodal = {L is properly displayable over DLM.K |
L = K ⊕∆ for some set ∆ of modal formulae}

Pmodal = {L |L = K ⊕ {mi}i∈M for some set {mi}i∈M of primitive modal formulae }

5.2. DISPLAYING MODAL LOGICS 137

Consider the following lemma.

Lemma 5.10 Let {mi}i∈M be a set of primitive modal formulae. Then, using

Display Theorem I we can compute a set {ρi}i∈I of structural rules such that

DLM + {ρi}i∈I properly displays Kt⊕ {mi}i∈M and DLM.K + {ρi}i∈I properly

displays K ⊕ {mi}i∈M .

Proof. Since every primitive modal formula is a primitive tense formula, by

Theorem 5.2, for an arbitrary set {mi}i∈M of primitive modal formulae we can

compute a set {ρi}i∈I of structural rules such that DLM + {ρi}i∈I properly dis-

plays Kt⊕ {mi}i∈M .

We will show that DLM.K + {ρi}i∈I properly displays K ⊕ {mi}i∈M .

Suppose that A ∈ K ⊕{mi}i∈M . Then A ∈ Kt⊕{mi}i∈M and so the sequent

I ` A is derivable in DLM + {ρi}i∈I . As a consequence of the cut-elimination

theorem and (C1), if a tense introduction rule occurs in cutfree derivation then

the endsequent would contain either _ or �. Hence there is a derivation of

I ` A that does not use the tense introduction rules. Thus I ` A is derivable in

DLM.K + {ρi}i∈I .
Next, suppose that I ` A is derivable in DLM.K + {ρi}i∈I . Certainly then

I ` A is derivable in DLM + {ρi}i∈I and thus A ∈ Kt ⊕ {mi}i∈M . By the

Sahlqvist Completeness Theorem, Kt⊕{mi}i∈M is sound and complete for (tense

frames based on) the class F{mi}i∈M of modal frames, so F{mi}i∈M |= A. By the

same theorem, K ⊕ {mi}i∈M is sound and complete for F{mi}i∈M . It follows that

A ∈ K ⊕ {mi}i∈M .

So A ∈ K ⊕ {mi}i∈M iff I ` A is derivable in DLM.K + {ρi}i∈I . Obviously

every rule in the calculus obeys (C1)–(C8). Hence it follows thatDLM.K+{ρi}i∈I
properly displays K ⊕ {mi}i∈M . Q.E.D.

From the above lemma it follows that

Pmodal ⊆ Dmodal

So every axiomatic extension of K by primitive modal formulae is properly

displayable. What can we say about the other direction? Kracht [39, pg 144]

has claimed that the other direction is also true (he calls this result “Display

Theorem II”).

Claim 5.11 An axiomatic extension of Hilbert-style modal logic can be properly

displayed (by structural rules over DLM.K) iff it is axiomatizable by a set of

primitive modal formulae.

138 CHAPTER 5. DISPLAYING TENSE AND MODAL LOGICS

In our notation, Claim 5.11 states that Dmodal = Pmodal. Recently however, the

logic K⊕3�p ⊃ �3p has been proposed as an example of a logic that is in Dmodal
and not in Pmodal (this counterexample has been known at least as far back as

Wansing [80], where he credits Rajeev Goré).

5.2.2 A counterexample to Kracht’s claim

We need to show that K⊕3�p ⊃ �3p ∈ Dmodal and K⊕3�p ⊃ �3p 6∈ Pmodal.
So there are two things to prove.

(i) the logic K ⊕3�p ⊃ �3p is properly displayable (Lemma 5.12); and

(ii) K ⊕ 3�p ⊃ �3p cannot be expressed as a primitive modal axiomatic

extension over K (Lemma 5.16)

Because 3�p ⊃ �3p and _3p ⊃ 3_p are frame-equivalent, the proof of (i) is

essentially an application of the work in Section 5.1. To prove (ii) requires more

work. Clearly 3�p ⊃ �3p is not a primitive modal formula but we need to

make sure that there is no set {mi}i∈M of primitive modal formulae such that

K⊕3�p ⊃ �3p = K⊕{mi}i∈M . We are not aware of any proof of (ii) (although

the result has obviously been accepted as true in Wansing [80]).

Lemma 5.12 (i) The logic Kt ⊕ _3p ⊃ 3_p is properly displayable over

DLM .

(ii) For any frame F , F |= _3p ⊃ 3_p iff F |= 3�p ⊃ �3p.

(iii) The logic K ⊕3�p ⊃ �3p is properly displayable over DLM.K.

Proof. In Example 5.3 we saw that DLM+ρ properly displays Kt⊕_3p ⊃ 3_p

where ρ is the structural rule

∗ • ∗ •X ` Y
• ∗ • ∗X ` Y

Proof of (ii). Let us compute the first-order correspondents of _3p ⊃ 3_p

and 3�p ⊃ �3p. We have already seen that the first-order correspondent of the

very simple Sahlqvist formula _3p ⊃ 3_p is the following Kracht tense formula

(see Example 4.25):

(∀u� x)(∀v � u)(∃l � x)Rvl (5.11)

Since 3�p ⊃ �3p is a Sahlqvist formula but not a very simple Sahlqvist for-

mula, we would need to use the full algorithm here (in Theorem 4.24 we only

5.2. DISPLAYING MODAL LOGICS 139

described the procedure for very simple Sahqlvist formulae). However this for-

mula is an example of the so-called incestual axioms discussed by Lemmon and

Scott [43] who show that 3�p ⊃ �3p is a first-order correspondent of the for-

mula ∀uv(Rxu ∧ Rxv → ∃l(Rul ∧ Rvl) which is equivalent to the Kracht modal

formula

(∀u� x)(∀v � x)(∃l � u)(Rvl) (5.12)

It is straightforward to check that (5.11) and (5.12) are valid on the identical

class of frames, so the claim is proved.

Proof of (iii). Since 3�p ⊃ �3p and _3p ⊃ 3_p define the same class F
of frames, by the Sahlqvist Completeness Theorem, Kt⊕ _3p ⊃ 3_p and K ⊕
3�p ⊃ �3p are both sound and complete with respect to F . Thus for any

modal formula A, A ∈ Kt⊕ _3p ⊃ 3_p iff F |= A iff A ∈ K ⊕3�p ⊃ �3p.

Now, if A ∈ K ⊕ 3�p ⊃ �3p then A ∈ Kt ⊕ 3�p ⊃ �3p and so I ` A
is derivable in DLM + ρ. Since A is a modal formula, I ` A is derivable in

DLM.K+ρ. Next, if I ` A is derivable in DLM.K+ρ then I ` A is derivable in

DLM+ρ, so A ∈ Kt⊕_3p ⊃ 3_p. Since A must be a modal formula, it follows

that A ∈ K⊕3�p ⊃ �3p. Of course, every rule in DLM.K+ρ obeys (C1)–(C8)

so we have proved that DLM.K + ρ properly displays K ⊕3�p ⊃ �3p. Q.E.D.

Next we show that K ⊕3�p ⊃ �3p cannot be written as a primitive modal

axiomatisation over K. Let V ar(A) be the set of propositional variables that

occur in the formula A. We will require the following lemma.

Lemma 5.13 Let L be an axiomatic extension of Kt (resp. K). For every

primitive tense (modal) formula A ⊃ B, there are a finite number of primitive

tense (modal) formulae A∗i ⊃ B∗i satisfying L⊕A ⊃ B = L⊕i∈Λ {A∗i ⊃ B∗i } such

that for each i, either (i) V ar(A∗i) = V ar(B∗i), or (ii) A∗i is constructed from >
using ∧, 3 and _ and B∗i is the propositional variable q.

Proof. We prove the result for primitive tense formulae. The proof for the modal

case is analogous.

Write A and B in disjunctive normal form as the (finite) disjunctions
∨
i∈I Ai

and
∨
j∈J Bj respectively, where each disjunct is constructed from propositional

variables and > using ∧, 3 and _. Now L⊕ (
∨
i∈I Ai ⊃

∨
j∈J Bj) = L⊕i∈I {Ai ⊃∨

j∈J Bj}, where each Ai is constructed from propositional variables and > using

∧, 3 and _.

Let i ∈ I. We will show that L⊕Ai ⊃
∨
j∈J Bj = L⊕A∗i ⊃ B∗i where A∗i ⊃ B∗i

is a primitive tense formula with the required properties. The result follows by

repeating the argument for each i ∈ I.

140 CHAPTER 5. DISPLAYING TENSE AND MODAL LOGICS

Let A′i be obtained from Ai by substituting > for every variable in V ar(Ai) \
V ar(B), and let B′i be obtained from B by substituting ⊥ for every variable in

V ar(B) \ V ar(Ai).
Since A′i ⊃ B is a substitution instance of Ai ⊃ B, it follows that L ⊕ A′i ⊃

B ⊂ L ⊕ Ai ⊃ B. We have the following results for arbitrary formulae built

from propositional variables and > using ∧, 3 and _; and a string σ constructed

from 3 and _:

(> ⊃ >) ∈ Kt and (p ⊃ >) ∈ Kt for any propositional variable p

D1 ⊃ D2 ∈ Kt implies σD1 ⊃ σD2 ∈ Kt
D1 ⊃ D2 ∈ Kt and E1 ⊃ E2 ∈ Kt implies D1 ∧ E1 ⊃ D2 ∧ E2 ∈ Kt

Statements 1 and 3 follow from the axioms of Cp (these are present in L too).

Statement 2 follows from (Ax−�) and (Ax−�). These are axioms of Kt and

hence are present in L too. Since Ai is constructed from propositional variables

and > using ∧, 3 and _, it follows that Ai ⊃ A′i. Together with A′i ⊃ B we get

Ai ⊃ B ∈ L⊕ A′i ⊃ B. Thus L⊕ Ai ⊃ B = L⊕ A′i ⊃ B.

Now let us show that L ⊕ A′i ⊃ B = L ⊕ A′i ⊃ B′i. Since A′i ⊃ B′i is a

substitution instance of A′i ⊃ B, it follows that L⊕ A′i ⊃ B′i ⊂ L⊕ A′i ⊃ B. We

have the following results for arbitrary formulae built from propositional variables

and > using ∧, 3 and _; and a string σ constructed from 3 and _:

((D ∧ ⊥) ⊃ ⊥) ∈ Kt
(D ⊃ ⊥) ∈ Kt implies (σD ⊃ ⊥) ∈ Kt

Once again, the above holds for formulae in L too. From the above it follows that

for any formula built from propositional variables, > and ⊥ using ∧, 3 and _,

the formula is equivalent to ⊥ whenever it contains an occurrence of ⊥. Applying

these results to B′i we have that B′i ≈ ⊥ ∈ Kt or B′i ≈
∨
j∈Ji Bj ∈ Kt for some

non-empty set Ji ⊂ J . It follows that A′i ⊃ B is derivable from A′i ⊃ B′i, so

A′i ⊃ B ∈ L⊕ A′i ⊃ B′i. Thus L⊕ A′i ⊃ B = L⊕ A′i ⊃ B′i.

Now, suppose that B′i ≈
∨
j∈Ji Bj ∈ Kt for some non-empty set Ji ⊂ J .

Then A′i ⊃ B′i is already a primitive tense formula such that V ar(A′i) = V ar(B′i).

Setting A∗i = A′i and B∗i = B′i we can satisfy (i) in the statement of the theorem.

Finally, suppose that B′i ≈ ⊥ ∈ Kt. Then L ⊕ Ai ⊃ B = L ⊕ A′i ⊃ ⊥. Set

B∗i = q for some q 6∈ V ar(A′i). Then we have L⊕ A′i ⊃ ⊥ = L⊕ A′i ⊃ q. Let A∗i
be the formula obtained from A′i by substituting every propositional variable in

V ar(A′i) with >. Using our work above we obtain L ⊕ Ai ⊃ B = L ⊕ A∗i ⊃ B∗i ,

5.2. DISPLAYING MODAL LOGICS 141

where A∗i is constructed from > using ∧, 3 and _. Clearly A∗i ⊃ B∗i is a primitive

tense formula satisfying (ii) in the statement of the theorem. Q.E.D.

The reason for the seemingly unusual case split in the statement of the above

lemma is due to the fact that primitive tense formulae are not permitted to

contain the symbol ⊥. For example, consider the primitive tense formula 3p ⊃ q.

Substituting the variable p with > and q with ⊥ we get 3> ⊃ ⊥. Let L be some

extension of Kt. The proof of the above lemma witnesses that L ⊕ 3p ⊃ q =

L⊕3> ⊃ ⊥. It also witnesses that L⊕3> ⊃ ⊥ = L⊕3> ⊃ q. Now 3> ⊃ ⊥
is not a primitive tense formula, but 3> ⊃ q is a primtive tense formula. Since

we wish to remain within the primitive tense fragment, we have formulated the

lemma using this case split.

Let us introduce some terminology. We write X1 ` Y1 ∼ X2 ` Y2 to mean that

each sequent is derivable from the other using the structural rules in Table 4.2

and Table 4.3 (this is a weaker requirement that display equivalence where only

rules from Table 4.2 may be used). A formula occurrence A in the sequent X ` Y
is •-hugged if X ` Y ∼ •A ` Y ′ or X ` Y ∼ X ′ ` •A for some structure X ′

or Y ′. Similarly, a formula occurrence A in the sequent X ` Y is ∗ • ∗-hugged if

X ` Y ∼ ∗ • ∗A ` Y ′ or X ` Y ∼ X ′ ` ∗ • ∗A for some structure X ′ or Y ′.

Remark 5.14 Consider the rules � ` and ` 3:

A ` X � `�A ` •X
X ` A ` 3∗ • ∗X ` 3A

By inspection, in the conclusion sequent of � `, the formula occurrence �A is

•-hugged, and in the conclusion sequent of ` 3, the formula occurrence 3A is

∗ • ∗-hugged.

An inspection of the rules in Tables 4.2 and 4.3 reveal that a formula occur-

rence cannot be both •-hugged and ∗•∗-hugged. Moreover, for any occurrence of

formula A in a sequent, A is either •-hugged (resp. ∗•∗-hugged) or not •-hugged

(not ∗ • ∗-hugged).

If the conclusion sequent of a rule instance ρ contains a •-hugged (resp. ∗ • ∗-
hugged) formula occurrence A and every parametric ancestor of A (see discussion

following Theorem 4.48 for the definition) in the premise sequents of ρ is •-hugged

(∗•∗-hugged) we say that ρ preserves •-hugged (∗•∗-hugged) formulae upwards. A

rule schema ρ preserves preserves •-hugged (resp. ∗•∗-hugged) formulae upwards

if every rule instance of ρ preserves •-hugged (∗ • ∗-hugged) formulae upwards.

142 CHAPTER 5. DISPLAYING TENSE AND MODAL LOGICS

By inspection, all the rule schemata in Tables 4.2 and 4.3 preserve •-hugged

and ∗ • ∗-hugged formulae upwards. In contrast, it should be clear from Re-

mark 5.14 that some of the logical rule schemata (Table 4.1) do not preserve

•-hugged and ∗ • ∗-hugged formulae upwards.

Lemma 5.15 Let {ms}s be a finite set of primitive modal formulae. Then there

is a finite set {ρsi}si of structural rule schemata such that DLM.K + {ρsi}si
properly displays K⊕{ms}s. Moreover, the structural rules of the calculus satisfy

the following properties:

(i) each structural rule schema preserves •-hugged formulae upwards.

(ii) every schematic structure variable in the conclusion of a structural rule

schema must occur in (at least) one of the premises.

(iii) if a premise of a structural rule schema contains a schematic structural vari-

able not present in the conclusion, then the conclusion contains no schematic

structural variables.

Proof. By Lemma 5.13, without loss of generality we may assume that each

primitive modal formula ms has the form
∨
i∈Is A

s
i ⊃

∨
j∈Jsi

Bs
ij where for each i,

Asi disjunction-free, and either (i) V ar(Asi) = V ar(
∨
j B

s
ij) or (ii) |Ji| = 1, Bs

i1 is

some propositional variable q, and Asi is built from > using ∧, 3 and _.

By Display Theorem I (Theorem 5.2) we can compute the structural rule {ρsi}i
corresponding to each ms so that DLM + {ρsi}si properly displays Kt ⊕ {ms}.
Then, by Lemma 5.10 we have that DLM.K+{ρsi}si properly displays K⊕{ms}.
The structural rules in DLMK + {ρsi}si consist of the rules in Tables 4.2 and 4.3

and the rules {ρsi}si. By inspection it is easy to verify that all the rules in

Tables 4.2 and 4.3 satisfy the claims of this corollary. Thus it remains to prove

the claims for the rules {ρsi}si.
We compute the rule schema ρsi from ms using the translation σ from Sec-

tion 5.1:

σ(>) = I

σ(p) = Xp

σ(B ∧ A) = σ(B) ◦ σ(A)

σ(3B) = ∗ • ∗σ(B)

5.2. DISPLAYING MODAL LOGICS 143

where Xp denotes the schematic structure variable corresponding to p. Notice

that we have intentionally omitted the line

σ(_B) = •σ(B)

This is because we are dealing with primitive modal formulae and hence cannot

encounter _. Since we are using the algorithm in Section 5.1 we know that

each ρsi will have the form

L1 ` Y . . . Ln ` Y
M ` Y

where the schematic structures L1, . . . , Ln,M are composed from schematic struc-

ture variables and I using only ◦ and ∗ • ∗. For example, there can be no rule

schema of the following form:

•L ` Y
L ` Y

As a consequence, each rule ρsi preserves •-hugged formulae upwards, so claim (i)

is proved.

Now to prove (ii) and (iii). Suppose that Asi ⊃
∨
j∈Jsi

Bs
ij (i ∈ Is) is a primitive

modal formula such that V ar(Asi) = V ar(
∨
j B

s
ij). Then, in the corresponding

rule ρsi under the translation σ, every schematic structure variable in the con-

clusion σ(Asi) must occur in (at least) one of the premises {σ(Bs
ij)}j, and every

schematic structure variable occurring in a premise will also occur in the conclu-

sion. On the other hand, for a primitive modal formula of the form Asi ⊃ q where

Asi is constructed from > using ∧, 3 and _, then under the translation σ, the

conclusion σ(Asi) of ρsi contains no schematic structure variables. These are the

only two cases to check so the result is proved. Q.E.D.

Lemma 5.16 The logic K⊕3�p ⊃ �3p cannot be written as a primitive modal

axiom extension over K.

Proof. Proof by contradiction. Assume that there exists some set {mi}i∈M of

primitive modal formulae such that K ⊕ 3�p ⊃ �3p = K ⊕ {mi}i∈M . By the

previous lemma, without loss of generality we may assume that each primitive

modal formula mi has the form Ai ⊃
∧
j Bij with Ai disjunction-free, and either

(i) V ar(Ai) = V ar(
∧
j Bij) or (ii) mi has the form Ai ⊃ q where Ai is built from >

using ∧, 3 and _. Let F denote the class of frames defined by 3�p ⊃ �3p.

From the Sahqlvist Completeness Theorem we know that K ⊕ 3�p ⊃ �3p is

sound and weakly complete with respect to F .

144 CHAPTER 5. DISPLAYING TENSE AND MODAL LOGICS

By Lemma 5.15 we can compute the structural rules {ρi}i∈I corresponding to

{mi}i∈M so DLM+{ρi}i∈I properly displays Kt⊕{mi}i∈M and DLM.K+{ρi}i∈I
properly displays K ⊕{mi}i∈M , and all the structural rules in DLM.K + {ρi}i∈I
satisfy (i)–(iii) in Lemma 5.15.

Since 3�p ⊃ �3p ∈ K ⊕ {mi}i∈M , there must be a derivation in DLM.K +

{ρi}i∈I of the sequent 3�p ` �3p. Because

�p ` �p
` 3∗ • ∗�p ` 3�p 3�p ` �3p

cut∗ • ∗�p ` �3p

3p ` 3p
� `�3p ` •3p
cut∗ • ∗�p ` •3p

from the cut-elimination theorem, there must be a cutfree derivation δ of ∗•∗�p `
•3p. Since every initial sequent of δ must have the form p ` p, tracing upwards

from the endsequent along every path, we will either encounter � ` first and

then ` 3, or ` 3 first and then � `. Also notice that because the �p formula

occurrence in ∗ • ∗�p ` •3p is ∗ • ∗-hugged and the 3p formula occurrence is

•-hugged, neither of the logical rules can occur immediately above the sequent

∗ • ∗�p ` •3p (see Remark 5.14). Clearly the structural rules in {ρi}i∈I must be

capable of transforming �p into a •-hugged formula and 3p into a ∗ • ∗-hugged

formula. We will first show that any such transformation will imply derivability

in DLM + {ρi}i∈I of a sequent of a particular form. This corresponds to validity

on F of a formula with a certain syntactical form. We will show that this leads

to a contradiction.

Case I. Suppose that the � is removed prior to the 3 in some path above the

endsequent ∗•∗�p ` •3p of δ. Then, in the conclusion sequent S of � ` on that

path,

(i) it must be the case that �p is •-hugged so S has the form �p ` •X1 for

some structure X1.

(ii) The only rules that can occur between the endsequent and S are the struc-

tural rules of the calculus. We already know that the structural rules pre-

serve •-hugged formulae upwards. Moreover, because the structural rules

satisfy (ii) and (iii) in Lemma 5.15, new formulae cannot appear when pass-

ing from the conclusion to a premise of a rule instance. As a result, the

sequent S has the form �p ` X2 where X2 is built from •3p and I using

∗ • ∗ and ◦.

5.2. DISPLAYING MODAL LOGICS 145

To make •X1 = X2 the only possibility is that S is the sequent �p ` •3p. Thus

the sequents �p ` •3p and �p ` �3p are derivable so �p ⊃ �3p must be in

K ⊕3�p ⊃ �3p. Now consider the following frame F :

u // v // w
��

By inspection, 3�p ⊃ �3p is valid on F and hence F ∈ F .5 Therefore �p ⊃
�3p must be valid on F . However �p ⊃ �3p is falsifiable on F at state u by

setting V (p) = {v}. So we have a contradiction.

Case II. The remaining case to consider is when 3 is removed prior to � in

every path above the endsequent of δ. Then, in the conclusion sequent Sj of

every path above the endsequent ∗ • ∗�p ` •3p of δ it must be the case that 3p

is ∗ • ∗-hugged in Sj, so Sj is of the form ∗ • ∗Xj ` 3p. Since all the structural

rules of the calculus preserve •-hugged formulae upwards, the only way to get

from a •-hugged 3p occurrence (∗ • ∗�p ` •3p) to a ∗ • ∗-hugged 3p occurrence

(∗•∗Xj ` 3p) is if a structure containing •3p disappears along the path between

the endsequent and Sj. However we know that every schematic structural variable

occurring in the conclusion of a structural rule in the calculus must occur in (at

least) one premise so it is impossible for •3p to disappear in every path above

the endsequent and below the {Sj}. We have arrived at a contradiction. Q.E.D.

We have shown the existence of a properly displayable modal logic that cannot

be written as an axiomatic extension over K by primitive modal formulae. Hence

Kracht’s claim is contradicted. Admittedly, the display calculus is not an ideal

proof-theoretic system to conduct a proof of this nature because of the large

diversity of structures that can appear in a derivation. A semantic proof would

likely yield a more elegant argument. As we noted before, the statement of

Lemma 5.16 is implicitly affirmed in [80, 33] although we are not aware of any

proof.

5.2.3 Identifying the error in ‘Display Theorem II’

Since we have contradicted Claim 5.11, it follows that there must be some error

in Kracht’s proof [39] of this claim. Let us identify this error.

5We have seen that 3�p ⊃ �3p corresponds to the formula (∀u� x)(∀v� x)(∃l� u)(Rvl).

Informally, we can think of this property as saying that ‘any two not necessarily distinct states

that x sees (u and v say) will themselves see some state y’. So validity of 3�p ⊃ �3p on a

frame F can be easily verified by checking this statement for each state in F .

146 CHAPTER 5. DISPLAYING TENSE AND MODAL LOGICS

Definition 5.17 (Ar′f∃r′x) Let Ar′f∃r′x denote the class of modal restrictedly

positive formulae (Definition 4.16) with a single free variable x of the form

∀r′xφ(∃r′y ;x, x) where φ(x) is constructed from existential forward restricted

quantifiers and (positive) atomic formulae of the form u = u, u = v and Rsuv

using ∧ and ∨, and in an atomic formula u = v and Rsuv at least one of u and v

is inherently universal (Definition 4.17).

Clearly Ar′f∃r′x ⊂ Arf∃rx.

Kracht’s proof consists of two steps.

Step I. If α ∈ Arf∃rx and F∀xα is definable by some set of modal formulae,

then there is an α′ ∈ Ar′f∃r′x such that F∀xα = F∀xα′ .
His idea is to get rid of the ‘backward restricted quantifiers’ (∀u � v) and

(∃u � v) in α. Let α be the formula ∀ry φ(∃rz ;x, y). Since F∀xα is modally

definable, ∀xα is preserved under generated modal subframes. It can be shown

that this implies that every backward existential restricted quantifier (∃u� v) in

∃rz can be replaced by some number of forward existential restricted quantifiers,

to obtain a formula α′ such that ∀xα = ∀xα′, where α′ has the form

∀ry REL(x) ∧ φ(∃r′z′ ;x, y)

and REL(x) consists of a conjunction of terms Ruv for each (∃u�v) term in ∃rz .

To remove the backward universal restricted quantifiers in α′, Kracht suggests

that we consider the formula ¬α′. He claims here that ∀x¬α′ is preserved under

generated modal subframes, and hence we can remove the resulting backward

existential restricted quantifiers in ¬α′ in a similar manner to before. However,

it is not clear that the formula ∀x¬α′ is in fact preserved under generated modal

subframes, so his proof is incomplete.6

STEP II. Next, Kracht concludes that every formula in Ar′f∃r′x corresponds

to a primitive modal formula. This is incorrect — we have seen that the modal

formula 3�p ⊃ �3p is a frame correspondent of the formula α:

(∀y � x)(∀u� x)(∃v � y)Ruv

By inspection, α ∈ Ar′f∃r′x. Suppose that α has a primitive modal correspon-

dent m (so Fm = F∀xα). Since 3�p ⊃ �3p and m are Sahlqvist formulae, using

the Sahlqvist completeness theorem, A ∈ K ⊕m iff

Fm |= A iff F∀xα |= A iff F3�p⊃�3p |= A

6M. Kracht completely agrees with our analysis regarding this problem and concedes that

it is not clear how to obtain the result: personal correspondence by email dated 13/Dec/2010.

5.2. DISPLAYING MODAL LOGICS 147

Once again, by the Sahlqvist completeness theorem, F3�p⊃�3p |= A iff A ∈
K⊕3�p ⊃ �3p. Thus K⊕m = K⊕3�p ⊃ �3p. However, this is impossible,

due to Lemma 5.16.

5.2.4 A syntactic characterisation of Ar′f∃r′x

In this section we will define a subclass of modal Sahlqvist formulae called the M-

formulae that is more expressive than the class of primitive modal formulae, and

show that every α ∈ Ar′f∃r′x corresponds to an M-formula, and every M-formula

corresponds to a formula from Ar′f∃r′x.

Define an M-Ant formula to be a formula of one of the following forms for

n, si ≥ 0:

p ∧�s1+1q1 ∧ . . . ∧�sn+1qn �s1+1q0 ∧ . . . ∧�sn+1qn

Define a basic primitive formula to be a formula built from ∧ and 3 using propo-

sitional variables and >.

Then an M-implication has the form A ⊃ B where A is an M -Ant or >,

and B is constructed from basic primitive formulae using ∨, or ⊥.

Finally, an M-formula is a formula constructed from M -implications {Ai ⊃
Bi}i∈Λ by freely applying disjunctions and boxes, that satisfies

V ar(Ai) ∩ V ar(Aj) = ∅ for i 6= j

V ar(Bi) ⊆
⋃
i

V ar(Ai)

Let MFORM denote the class of finite axiomatic extensions over K by M -

formulae. In notation,

MFORM = {L |L = K ⊕ {Mi} for some finite set {Mi} of M-formulae}

Lemma 5.18 Every M-formula is a modal Sahlqvist formula.

Proof. This follows immediately from a consideration of Definition 4.26. Q.E.D.

Lemma 5.19 Every α ∈ Ar′f∃r′x corresponds to an M-formula, and every M-

formula corresponds to a formula from Ar′f∃r′x.

Proof. It suffices to show that α ∈ Ar′f∃r′x in its most general form corresponds

to an M-formula in its most general form. Suppose that

α = ∀r′x(1) . . . ∀r′x(n) φ(∃r′y(1) . . . ∃r′y(m) ;x(0), . . . , x(n))

148 CHAPTER 5. DISPLAYING TENSE AND MODAL LOGICS

is an arbitrary element of Ar′f∃r′x, so the restrictor of any x(i) is some x(j) with

j < i, and the restrictor of any y(i) is either some x(k) or some y(j) with j < i.

Also, φ is composed from positive atomic formulae of the form u = u, u = v and

Rsuv using ∧ and ∨, and in an atom u = v and Rsuv at least one of u and v is

inherently universal (see Definition 4.18).

Clearly α is a Kracht formula. Without loss of generality, suppose that φ

is a disjunction of conjunctions, so α is a type I formula in the terminology of

Section 4.2.3. Let x and y denote the sets {x(1), . . . , x(n)} and {y(1), . . . , y(m)}
respectively. Following the proof of Theorem 4.31, α is equivalent to

∼
∀P
∼
∀Q∀r′x

[∧
i∈S1

STx(i)(M
(i))→ φ′(∃r′y)

]
(5.13)

for some set S1 ⊆ {0, . . . , n} and formulae {M i}i∈S1 , where each M (i) has one of

the following forms, for ni ≥ 0, s(i, j) ≥ 1:

p(i) ∧�s(i,1)q
(i)
1 ∧ . . . ∧�s(i,ni)q(i)

ni
�s(i,1)q

(i)
1 ∧ . . . ∧�s(i,ni)q(i)

ni

and φ′ is obtained from φ by replacing (for x(i) ∈ x and u ∈ x ∪ y)

u = u with STu(>)

u = x(i) with STu(pi)

Rlux(i) with STu(3
lpi)

and each occurrence (indexed by j) of Rs(i,j)x(i)u (si,j ≥ 1) in φ with STu(q
(i)
j).

Furthermore, inspection of the proof of Theorem 4.31 reveals that

V ar(M (i)) ∩ V ar(M (j)) = ∅ for i 6= j

and every formula in φ′ occurs in
⋃
i∈S1

V ar(M (i)).

Consider φ′(∃r′y). By removing the existential quantifiers in favour of 3-

occurrences and collecting STx(i) terms together for each x(i) we obtain a disjunc-

tion of formulae of the form

STx(i)

(∨
j

3 . . .3(3 . . .3pv ∧3 . . .3(3 . . .3pv ∧ . . .))

)
︸ ︷︷ ︸

ψ(i)

for i in some set S2 ⊆ {0, . . . , n}, where pv can be any propositional variable

occurring in (5.13) or >. Extend ψ(i) to {0, . . . , n} by setting ψ(i) = ⊥ for

5.2. DISPLAYING MODAL LOGICS 149

i 6∈ S2. Also, extend M (i) from S1 to {0, . . . , n} by setting M (i) = > for i 6∈ S1.

Then (5.13) is equivalent to

∼
∀P
∼
∀Q∀r′x

[∧
0≤i≤n

STx(i)(M
(i))→

∨
0≤i≤n

STx(i)(ψ
(i))

]

This is equivalent to

∼
∀P
∼
∀Q∀r′x

[∨
0≤i≤n

STx(i)(¬M (i) ∨ ψ(i))

]

and thus
∼
∀P
∼
∀Q¬∃r′x

[∧
0≤i≤n

STx(i)(M
(i) ∧ ¬ψ(i))

]
We can now eliminate the restricted quantifiers ∃r′x to obtain a formula of the

following form, where (Π1, . . . ,Πn) denotes an ordering of the formulae {M (i) ∧
¬φ(i)} (1 ≤ i ≤ n), and ti ≥ 0.

∼
∀P
∼
∀Q¬STx(0)

(M (0) ∧ ¬φ(0)) ∧

∧3 . . .3︸ ︷︷ ︸
t1

(3 . . .3︸ ︷︷ ︸
t2

Π1 ∧3 . . .3︸ ︷︷ ︸
t3

(3 . . .3︸ ︷︷ ︸
t4

Π2 ∧ . . .))


This is the local second-order frame correspondent of a formula of the form[

(M (0) ∧ ¬φ(0)) ∧
(∧

3t1(3t2Π1 ∧3t3(3t4Π2 ∧ . . .))
)]
⊃ ⊥

which is equivalent to[
(M (0) ∧ ¬φ(0)) ∧

(∧
¬�t1(�t2¬Π1 ∨�t3(�t4¬Π2 ∨ ¬ . . .))

)]
⊃ ⊥

Since ¬Πk is a formula of the form (M (i) ⊃ φ(i)) for some i, this is equivalent to

(M (0) ⊃ φ(0)) ∨
(∨

�t1 [�t2(M (i) ⊃ φ(i)) ∨�t3 [�t4(M (j) ⊃ φ(j)) ∨ ¬ . . .]]
)

This is the general form for a modal formula corresponding to a formula in

Ar′f∃r′x. Notice that this is precisely the form of an M-formula, as defined

at the beginning of this section. Q.E.D.

Theorem 5.20 MFORM ⊆ Dmodal.

Proof. Suppose that K ⊕{Mi} ∈ MFORM for some set {Mi} of M-formulae.

By Lemma 5.19 each Mi corresponds to a formula from Ar′f∃r′x. So there exists

a finite set {αi}i∈J ⊂ Ar′f∃r′x such that α =
∧
i αi corresponds to {Mi}. Since

150 CHAPTER 5. DISPLAYING TENSE AND MODAL LOGICS

Ar′f∃r′x ⊂ Arf∃rx it follows that α corresponds to a set {ti}i∈T of primitive

tense formulae. By Display Theorem I, there is a set {ρi}i∈I of structural rules

such that DLM + {ρi}i∈I properly displays Kt ⊕ {ti}i∈T . Now, because every

M-formula is a Sahlqvist formula, by the Sahlqvist completeness theorem, A ∈
K ⊕ {Mi} iff F{Mi} |= A. This occurs iff F{ti}i∈T |= A iff A ∈ Kt ⊕ {ti} iff

I ` A is derivable in DLM + {ρi}i∈I . Because A is a modal formula, by the cut-

elimination result we have I ` A is derivable in DLM.K+{ρi}i∈I . It follows that

DLM.K+{ρi}i∈I properly displays K⊕{Mi}. Since the set {Mi} was arbitrary,

MFORM ⊆ Dmodal. Q.E.D.

Example 5.21 We saw in Section 5.2.2 that K ⊕3�p ⊃ �3p can be properly

displayed over DLM.K. Observe that 3�p ⊃ �3p can be written as the following

M-formula:

3�p ⊃ �3p ≈ ¬3�p ∨�3p

≈ �¬�p ∨�3p

≈ �(�p ⊃ ⊥) ∨�(> ⊃ 3p)

Thus K ⊕3�p ⊃ �3p ∈MFORM.

It is straightforward to show that every primitive modal axiomatic extension

over K is in MFORM.

Corollary 5.22 If {mi}i∈M is a set of primitive modal formulae, then K ⊕
{mi}i∈M ∈MFORM.

Proof. It is easy to check that each primitive modal formula mi corresponds

to a formula αi ∈ Ar′f∃r′x (consider the algorithm in Section 4.2.3). Thus

F{mi}i∈M = F∀x∧αi . Since F∀x∧αi is definable by some set {Mi} of M-formulae

(Lemma 5.19). From the Sahlqvist completeness theorem, we have

A ∈ K ⊕ {Mi} iff F{Mi} |= A iff F{mi}i∈M |= A iff A ∈ K ⊕ {mi}i∈M

Thus K ⊕ {mi}i∈M = K ⊕ {Mi} ∈ MFORM. Q.E.D.

In Appendix A we present a direct method for computing the M-formulae

corresponding to a given primitive modal formula.

5.2. DISPLAYING MODAL LOGICS 151

5.2.5 Towards a complete characterisation

In Lemma 5.19 we saw that every M-formula globally corresponds to some formula

∀xα (α ∈ Ar′f∃r′x) and ∀xα (α ∈ Ar′f∃r′x) globally corresponds to some M-

formula. Thus, in order to properly display an axiomatic extension over K by M-

formulae {Mi}, it suffices to compute the first-order correspondents {αi}i∈J and

from these compute the primitive tense correspondents. The required structural

rules can be then obtained from the primitive tense correspondents. (We are

implicitly making use of the Sahlqvist completeness theorem and the fact that

every M-formula is a Sahlqvist formula).

Although every axiomatic extension over K by M-formulae is properly dis-

playable, we do not know if there are other properly displayable axiomatic exten-

sions over K. To shed light on this question we take the following approach:

We will look at the form of the structural rules corresponding to M-formulae

(call these rules basic rules). It then remains to investigate if rules outside this

form enable us to properly display more logics. We leave this investigation for

future work. However we will present some justifications for the restrictions that

the basic rules impose on a general structural rule.

Computing the basic rules

One method for computing the basic rules would be to use the general form of a

formula α ∈ Ar′f∃r′x and compute the corresponding primitive tense formula and

then the display rule. However, with the objective of obtaining a structural rule

of a certain form, we will first transform α into a formula α′ ∈ Arf∃rx satisfying

certain syntactic properties, such that for any frame F , F |= ∀x0α iff F |= ∀x0α
′.

Then we will compute the display rule corresponding to ∀x0α
′ to obtain the basic

rule. We will use a running example to illustrate the ideas.

Let α = ∀r′x1 . . . ∀r
′
xn φ be an arbitrary formula in Ar′f∃r′x. Using the

algorithm in Section 4.2.3 — inserting _ as described in Remark 4.30 — we can

show (the proof is analogous to Lemma 5.5) that the correspondent of α is the

formula

f(p0 ∧ ¬D0, . . . , pn ∧ ¬Dn) ⊃ ⊥ (5.14)

where

(i) f is a 3∧-formula,

(ii) the propositional variables {pi}i∈P are distinct

152 CHAPTER 5. DISPLAYING TENSE AND MODAL LOGICS

(iii) each Di is either ⊥ or constructed from variables in {pi} and > using 3, _, ∧
and ∨ such that an occurrence of _ can only bind other _ occurrences and

propositional variables. This last condition follows from the fact that the

algorithm introduces occurrences of _ precisely to replace terms in α of the

form Rsxu (u is inherently universal) with _spx.

Condition (iii) means that _ only occurs in the context _ . . ._pi (so _(pi ∨ pj)
is impossible, for example). A formula of this form is called a blue formula.

Example 5.23 Let α be the formula

(∀x1 � x0)(∀x2 � x1)(∀x3 � x1)[(∃x4 � x3)(x2 = x4)∨
(∃x4 � x3)Rx2x4 ∨ (∃x4 � x3)Rx4x2] (5.15)

Using the algorithm in Section 4.2.3 we compute the correspondent blue formula:

p0 ∧3 (p1 ∧3(p2 ∧ ¬⊥) ∧3(p3 ∧ ¬(3p2 ∨3_p2 ∨33p2))) ⊃ ⊥ (5.16)

The formula ∀x0α can be interpreted graphically as follows. Let Gα be the

directed graph whose nodes consist of every universally quantified variable in ∀x0α

(ie. the variables {x0, . . . , xn}), and v → u iff (∀u�v) appears in α. The node x0

is called the reference point. Notice that Gα is a tree with root x0.

Example 5.24 (cont.) The graph for the formula ∀x0α where α is the for-

mula (5.15):

x2 x3

x1

bb <<

∗x0

OO

Note that the graph contains nodes for universally quantified variables only (so

there is no node for x4). We have marked the reference point with ∗.

Our first observation is that we can shift the reference point to any other node

to obtain a frame-equivalent formula ∀xα′ where α′ is in Arf∃rx under suitable

variable renaming. To see this, note that Gα is a connected graph and hence any

node is reachable from any other node using the backward and forward universal

restricted quantifiers. Notice that Gα′ — this graph is obtained analogously to

before. In particular v → u iff either (∀u � v) or (∀v � u) appears in α′ — is

identical to Gα except the reference point need not be the same. In particular,

Gα′ is a tree because Gα is a tree.

5.2. DISPLAYING MODAL LOGICS 153

Example 5.25 (cont.) In the example above, the reference point for the graph

was x0. Let us illustrate shifting this reference point with two examples:

x2 x3

∗x1

bb <<

x0

OO

∗x2 x3

x1

bb ==

x0

OO

In the graph above left, the reference point has been moved to x1. The correspond-

ing formula for this graph is

∀x1(∀x2 � x1)(∀x3 � x1)(∀x0 � x1)[(∃x4 � x3)(x2 = x4)∨
(∃x4 � x3)Rx2x4 ∨ (∃x4 � x3)Rx4x2] (5.17)

In the graph above right, the reference point has been moved to x2. The corre-

sponding formula for this graph is

∀x2(∀x1 � x2)(∀x3 � x1)(∀x0 � x1)[(∃x4 � x3)(x2 = x4)∨
(∃x4 � x3)Rx2x4 ∨ (∃x4 � x3)Rx4x2]

As expected, aside from the placement of ∗, each of the above graphs is identical

to the original graph,

Let u be an arbitrary node in Gα. Our second observation is that any point v

on this graph is reachable from u by first taking some number of backward steps

and then some number of forward steps. In particular, there is never a need to go

forward before going back. To see the consequences of this observation, consider

the tense correspondent of ∀xα′:

f ′(p0 ∧ ¬D1, . . . , pn ∧ ¬Dn) ⊃ ⊥ (5.18)

where the {pi}i∈P and {Di}i∈D are identical to those appearing in (5.14). It must

be the case that f ′ is a _3∧-formula such that there is no occurrence of _ inside

the scope of 3 (ie. no ‘nesting’ of _ inside 3).

If a formula does not contain a subformula of the form A ∧ B where both A

and B contain _ we say that the formula resists _-conjoining. Our third obser-

vation is that f ′ resists _-conjoining. For, if it did not resist _-conjoining, this

would imply the existence of two nodes in Gα′ with no common ancestor Thus

154 CHAPTER 5. DISPLAYING TENSE AND MODAL LOGICS

Gα′ would no longer be a tree — the root of a tree is a common ancestor for any

pair of nodes — and this is impossible.

To summarise, we have shown that every blue formula is frame-equivalent to

a formula of the form (5.18) where

(i) f ′ is a _3∧-formula

(ii) the propositional variables {pi}i∈P are distinct

(iii) each Di is either ⊥ or constructed from variables in {pi} and > using 3, _, ∧
and ∨ such that an occurrence of _ can only bind other _ occurrences and

propositional variables.

(iv) f ′ contains no nesting of _ inside 3 and resists _-conjoining.

Call this formula a green formula.

In fact, it is also the case that every green formula is frame-equivalent to

some blue formula. The reason for this is that due to the nesting and conjoining

restrictions, the graph of the first-order formula corresponding to (5.18) is a tree.

The result then follows by shifting the reference point to the root of this tree thus

eliminating the need for backward universal restricted quantifiers.

Example 5.26 (cont.) Consider the blue formula (5.17). The frame-equivalent

green formula is

((_p0 ∧ ¬⊥) ∧ (p1 ∧ ¬⊥) ∧3(p2 ∧ ¬⊥) ∧3(p3 ∧ ¬(3p2 ∨ _p2 ∨33p2))) ⊃ ⊥
(5.19)

We can represent the above using the _3∧-formula

f ′(X1, X2, X3, X4) = _X0 ∧X1 ∧3X2 ∧3X3 (5.20)

as f ′(p0 ∧ ¬⊥, p1 ∧ ¬⊥, p2 ∧ ¬⊥, p3 ∧ ¬(3p2 ∨3_p2 ∨33p2).

Although a green formula is not a primitive tense formula due to the pres-

ence of negation symbols, using Lemma 5.7, the green formula (5.18) is frame-

equivalent to the following primitive tense formula:

f ′(p0, . . . , pn) ⊃
∨
f(p0 ∧D1, . . . , pn ∧Dn)

Example 5.27 (cont.) From Lemma 5.7, (5.17) is frame-equivalent to

p0 ∧ p1 ∧3p2 ∧3p3 ⊃ [(p0 ∧ ⊥) ∨ (p1 ∧ ⊥) ∨3(p2 ∧ ⊥)∨
3(p3 ∧ (3p2 ∨3_p2 ∨33p2))]

5.2. DISPLAYING MODAL LOGICS 155

For any Xi occurring in f ′, let the address A(Xi) of Xi in f ′ be the ordered string

constructed from 3 and _ whose scope contains Xi. It follows that we can push

the disjunction symbols outwards in the succedent of the above formula to obtain

an equivalent formula of the form

f(pi) ⊃
n∨
i=0

(
mi∨
j=1

A(Xi)(pi ∧Dij)

)

where Di = ∨mij=1Dij for each i.

Example 5.28 (cont.) From (5.20) we compute A(X0) = _, A(X1) = ε (empty

string), A(X2) = 3 and A(X3) = 3. We obtain the equivalent formula

_p0 ∧ p1 ∧3p2 ∧3p3 ⊃ _(p0 ∧ ⊥) ∨ (p1 ∧ ⊥) ∨3(p2 ∧ ⊥)∨
3(p3 ∧3p2) ∨3(p3 ∧3_p2) ∨3(p3 ∧33p2) (5.21)

By a monotonicity argument, this formula is frame-equivalent to

3> ∧3p2 ∧3p3 ⊃ (3(p3 ∧ (3p2 ∨3_p2 ∨33p2))) (5.22)

Using the function σ defined in Secion 5.1.1 we obtain the corresponding rule for

some fresh schematic structure variable Y :

σ(A(p1)(p1 ∧D11)) ` Y . . . σ(A(pn)(pn ∧Dnmn)) ` Y
σ(f(pi)) ` Y

It is easy to verify that this rule is a structural rule obeying (C1)–(C8).

Example 5.29 (cont.) Finally, let us compute the rule corresponding to (5.22):

∗ • ∗(X3 ◦ ∗ • ∗X2) ` Y ∗ • ∗(X3 ◦ ∗ • ∗ •X2) ` Y ∗ • ∗(X3 ◦ (∗ • ∗)(∗ • ∗) ◦X2) ` Y
•I ◦ ∗ • ∗X2 ◦ ∗ • ∗X3 ` Y

Abstracting from the above, we define a basic rule to be a structural rule

satisfying the following additional conditions:

(i) the structural connective ∗ does not occur in any sequent.

(ii) any schematic structure variable appears at most once in the conclusion

sequent.

(iii) A schematic structure variable appears in the succedent of every sequent in

the rule. Moreover this variable does not appear in any antecedent.

156 CHAPTER 5. DISPLAYING TENSE AND MODAL LOGICS

(iv) the conclusion sequent antecedent is constructed from the schematic struc-

ture variables {Xi} and I using ∗ • ∗, • and ◦, and each schematic structure

variable occurs exactly once. Let A(Xi) denote the address of Xi in the

conclusion sequent antecedent (we are overloading A() to apply to either a

_3∧-formula or a display structure but this should cause no confusion).

(v) the conclusion sequent antecedent does not contain an occurrence of • in

the scope of ∗•∗, and resists •-conjoining (ie there is no substructure of the

form U ◦ V where both U and V contain occurrences of •).

(vi) Each premise is of the form A(Xi)(Xi ◦ Li) where Li is constructed from

{Xi} and I using ◦ and the ‘building blocks’ ∗•∗ and •. Moreover, the build-

ing block • may only bind other occurrences of • and schematic structure

variables (so an Li of the form •(Xj ◦Xk) is prohibited, for example).

By inspection, every basic rule satisfies (C1)–(C8).

Non-basic structural rules

A structural rule that is not a basic rule is called a non-basic rule. Clearly a

non-basic rule violates some of the conditions (i)–(vi) for basic rules.

In the remainder of this section we will look at non-basic rules satisfying (C1)–

(C8). Of course, it is easy to construct a non-basic rule satisfying (C1)–(C8) that

is equivalent to a basic rule. For example, consider the following non-basic rule

(below left) and its equivalent basic rule (below right):

∗X ` Y
∗X ` Y

X ` Y
X ` Y

The interesting case is when the non-basic rule cannot be rewritten as a basic

rule. In particular, we investigate if such rules can be used to display additional

logics (ie logics outside the axiomatic extensions of K via M-formulae).

Although we do not have a complete answer to this question, we present the

following observations.

Without loss of generality we may assume that any structural rule satisfying

(C1)–(C8) satisfies (i) and (ii).

Item (iii) is a sufficient condition to ensure that a rule extension can be

expressed as an axiomatic extension. Consider the following rule, where the

schematic structure variable Y does not appear in {Li}i∈L in the following:

L1 ` Y . . . Ln ` Y ρ
L0 ` Y

5.2. DISPLAYING MODAL LOGICS 157

Suppose that some structural rule extension C of DLM properly displays some

extension L of Kt. By the definition of properly displays, C+ρ properly displays

L+ r where r is the rule

τ(L1) ` q . . . τ(Ln) ` q
r

τ(L0) ` q
and the propositional variable q does not appear in {τ(Li)}i∈L. Let t denote the

formula τ(L0) ⊃ τ(L1) ∨ . . . ∨ τ(Ln). Let us show that L + r = L ⊕ t. Clearly

the rule r is admissible in L ⊕ t, so L + r ⊆ L ⊕ t. Moreover, by substituting

τ(L1) ∨ . . . ∨ τ(Ln) for the variable q in the rule r we can obtain the formula t.

Thus L ⊕ t ⊆ L + r. We conclude that L ⊕ t = L + r. Without item (iii) it is

not obvious how to compute the formula corresponding a given rule. Indeed it

may be the case that any properly displayable axiomatic extension over K can

be constructed using only structural rules obeying (iii) but this requires further

investigation.

The restriction in (iv) states that each schematic structure variable must

appear exactly once. In (ii) we noted that assuming that each schematic structure

variable occurs at most once involves no loss of generality. So the restriction is

that each Xi must appear in the conclusion sequent. This is equivalent to stating

that no schematic structure variable can appear in a premise sequent unless it

also appears in the conclusion sequent. Suppose that ρ is such a structural rule.

Let A ⊃ B be the corresponding primitive tense formula computed according to

the algorithm. It must be the case that B contains a propositional variable not

appearing in A. By a monotonicity argument it can be shown that A ⊃ B is

frame-equivalent to a formula A′ ⊃ B′ where every propositional variable in B′

occurs in A′. Let ρ′ be the corresponding structural rule. Clearly ρ′ obeys (iv).

Moreover, the set of derivable sequents is invariant under the substitution of ρ′

for ρ. Thus, without loss of generality, we need only consider structural rule

extensions of DLM.K that obey (iv).

Regarding item (v), consider the rule

•(X ◦ Z) ` Y
•X ◦ •Z ` Y

This rule contains •-conjoining in the conclusion antecedent (it satisfies all the

other conditions of basic rules). The corresponding primitive tense formula is

_p ∧ _q ⊃ _(p ∧ q). This formula globally corresponds to the formula α =

∀x(∀u � x)(∀v � x)(u = v) (‘every state has at most one predecessor’). In fact,

the class of frames defined by this formula is modally undefinable. To see this,

consider the frames F1 (below left) and F2 (below right).

158 CHAPTER 5. DISPLAYING TENSE AND MODAL LOGICS

u1
// v1

u2
// v2

u′1

��
v′

u′2

??

Let f be the function taking ui 7→ u′i (i ∈ {1, 2}) and vi 7→ v′. It is straightforward

to check that f is a bounded morphism (see [7]) between F1 and F2 which means

that if the class of frames defined by _p ∧ _q ⊃ _(p ∧ q) is modally definable,

then F1 |= α implies F2 |= α. However, by inspection F1 |= α and F2 6|= α so our

claim follows.

Also consider the rule

Z ` Y
(∗ • ∗) •X ◦ Z ` Y

This rule contains an occurrence of • inside the scope of ∗ • ∗ in the conclusion

succedent, violating (v) (it satisfies all the other conditions of basic rules, although

strictly speaking, the premise sequent should be written as the display equivalent

Z ◦I ` Y). The corresponding primitive tense formula is 3_p∧q ⊃ p∧q which is

frame equivalent to 3_p ⊃ p. This formula globally corresponds to the formula

∀x(∀u� x)(∀v � u)(x = u) (‘every state has at most one predecessor’). We have

already seen that the class of frames with this property is modally undefinable.

Finally let us examine item (vi). First consider the rule

∗ • ∗ •X ` Y
• ∗ • ∗X ` Y

We have encountered this rule before, it corresponds to the primitive tense for-

mula _3p ⊃ 3_p which is equivalent to 3�p ⊃ �3p. Notice that this rule is

not a basic rule. However, it is equivalent to the basic rule

Z ◦ (∗ • ∗) •X ` Y
Z ◦ •(∗ • ∗)X ` Y

In fact, this ‘trick’ can be employed to ensure that the real restriction in (vi) is

that an occurrence of • in the premise may only bind other occurrences of • and

schematic structure variables. Consider the following rule:

•(∗ • ∗)X ` Y
X ` Y

5.2. DISPLAYING MODAL LOGICS 159

In the premise antecedent of this rule, the occurrence • binds the structure ∗•∗X,

violating (vi) (the rule satisfies all the other conditions of basic rules). This rule

corresponds to the primitive tense formula p ⊃ _3p. This formula globally corre-

sponds to the formula ∀x(∃u�x)(∃v�u)(x = v) (‘every state has a predecessor’).

Clearly this property holds for the following frame:

u //99 v

If this class of frames was modally definable, then the property should hold for

the subframe generated by state v (see [7]) — that is, the frame consisting of a

single irreflexive state. Clearly the property does not hold for a single irreflexive

state so we conclude that this class of frames is not modally definable.

These observations suggest (but do not prove) that non-basic rules can either

be rewritten as basic rules, or correspond to primitive tense formulae that define

a modally undefinable class of frames. We could confirm these observations if we

could show that every class of modally definable frames defined by a formula in

Arf∃rx is also defined by a formula in Ar′f∃r′x — this is precisely the statement

that Kracht [39] claims (see Step I in Section 5.2.3) although he had conceded

that his proof is incomplete.7 Hence we leave this statement as a conjecture.

Notice that if the conjecture holds, then every set {ρi}i∈I of structural rules

whose primitive tense correspondents define a modally definable class of frames

could be rewritten as a set {ρ′i} of basic rules.

Since the M-formulae were computed as the frame-equivalent modal formulae

for certain primitive tense formulae it is no surprise that the computation can-

not be applied to primitive tense formulae defining modally undefinable classes

of frames. Let {ti}i∈T be a set of primitive tense formulae defining a modally

undefinable class of frames. The question we ask here is: what can we say about

the modal restriction of Kt ⊕ {ti}i∈T ? To take a specific case: we have already

seen that 3_p ⊃ p defines a class of frames that is modally undefinable, so how

can we describe the modal restriction of Kt⊕3_p ⊃ p? If it is the case that the

modal restriction of Kt ⊕ {ti}i∈T is always an axiomatic extension of K via M-

formulae, that would mean that axiomatic extensions via M-formulae do present

the ‘full picture’ after all, and we would have a complete characterisation. On the

other hand, if it is the case that the modal restriction of Kt ⊕ {ti}i∈T is always

sound and complete for some modally definable class of frames, then M-formulae

present the full picture only if the conjecture in the previous paragraph holds.

Investigating these issues is the topic of future work.

7Personal correspondence by email dated 13/Dec/2010.

160 CHAPTER 5. DISPLAYING TENSE AND MODAL LOGICS

Chapter 6

Displaying superintuitionistic

logics

This chapter extends Goré [28] where it is shown that a display calculus for a

superintuitionistic logic can be obtained from a display calculus for its modal com-

panion. We exploit the relationship between Ar′f∃r′x and M-formulae and the

fact that extensions over Kt by M-formulae are properly displayable to show how

to construct display calculi for a large class of superintuitionistic logics specified

using syntactic and semantic characterisations.

We begin by presenting syntactic and semantic specifications for propositional

intuitionistic logic Ip. A (consistent) superintuitionistic logic is a consistent ex-

tension of Ip closed under modus ponens and uniform substitution. The Gödel

translation induces a map between superintuitionistic logics and modal logics be-

tween S4 and S5. In Section 6.2 we obtain the display calculus DLS4 for modal

logic S4 and then introduce the display calculus DLI. In Section 6.3 we show

how the mapping between superintuitionistic logics and modal logics can be used

to relate structural rule extensions of DLS4 and DLI. In particular, we show

that DLI properly displays Ip. We can use these results to properly display

an axiomatic extension of Ip whenever the Gödel translation of each new axiom

is S4-equivalent to some M-formula (we introduced M-formulae in the previous

chapter). Finally, in Section 6.5.1 we show how to display superintuitionistic log-

ics characterised by classes of intuitionistic frames definable using formulae from

Ar′f∃r′x.

161

162 CHAPTER 6. DISPLAYING SUPERINTUITIONISTIC LOGICS

6.1 Introducing superintuitionistic logics

6.1.1 A Hilbert calculus for intuitionistic logic

Intuitionistic logic Ip can be defined (see [16]) in the language L using the fol-

lowing Hilbert calculus:

Axioms: All the axioms of classical propositional logic Cp (see Section 4.1)

except (A10) p ∨ ¬p.

Inference rules:

• Modus ponens : if A ∈ Ip and A ⊃ B ∈ Ip then B ∈ Ip

• Uniform substitution of arbitrary formulae for propositional variables in a

formula

As with Cp, the symbols ¬ and > are redundant in the sense that ¬A is equivalent

to A ⊃ ⊥ for any A ∈ ForL, and > is equivalent to ¬⊥. However it is known [48]

that none of the logical symbols “⊥”, “∨”, “∧” and “⊃” is definable in Ip in

terms of the other three symbols. Contrast this situation with Cp.

Notice that if we add the axiom (A10) p ∨ ¬p to the above calculus, we can

obtain a calculus for Cp. That is, Cp = Ip⊕ p ∨ ¬p.

6.1.2 Semantics for intuitionistic logic

We can also define intuitionistic logic Ip semantically as follows.

A binary relation R on a set W is called a partial order if the following

conditions are satisfied for all x, y, z ∈ W :

Rxx (reflexivity)

Rxy ∧Ryz → Rxz (transitivity)

Rxy ∧Ryx→ x = y (antisymmetry)

An intuitionistic frame is a pair F = (W,R) where W is a non-empty set and

R is a partial order on W . Compare this definition with Definition 4.1. Clearly,

an intuitionistic frame is a frame where R is a partial order.

An intuitionistic valuation V in a frame (W,R) is a function assigning to each

propositional variable p ∈ VarL some (possibly empty) subset V (p) ⊆ W such

6.1. INTRODUCING SUPERINTUITIONISTIC LOGICS 163

that for every x ∈ V (p) and y ∈ W , Rxy implies that y ∈ V (p). More generally,

a set S ⊆ W with the property that for all x, y ∈ W :

x ∈ S and Rxy implies y ∈ S

is called upward closed. Let UpW denote the upward closed subsets of W . Thus

an intuitionistic valuation in (W,R) is a map V from VarL into UpW .

An intuitionistic model (based on F) is a pair (F, V) where F is an intu-

itionistic frame and V is an intuitionistic valuation in F . Compare this with

Definition 4.2. Clearly, an intuitionistic model is a special instance of a model

where the valuations are restricted to intuitionistic valuations.

Let M = ((W,R), V) be an intuitionistic model and w ∈ W . Define the

satisfaction relation M,w |=i D by induction on the structure of the formula

D ∈ ForL as follows:

M,w |=i ⊥ never

M,w |=i > always

M,w |=i p iff w ∈ V (p)

M,w |=i ¬A iff for all v ∈ W , if Rwv then not M, v |=i A

M,w |=i A ∨B iff M,w |=i A or M,w |=i B

M,w |=i A ∧B iff M,w |=i A and M,w |=i B

M,w |=i A ⊃ B iff for all v ∈ W , if Rwv then M, v |=i A implies M, v |=i B

As we would expect, M,w |= A ⊃ ⊥ iff M,w |= ¬A. The negation of M,w |=i A

is written M,w 6|=i A.

Formula A ∈ ForL is valid at a state w in an intuitionistic frame F (notation:

F,w |=i A) if M,w |=i A for all intuitionistic models M based on F . A formula

A ∈ ForL is valid in an intuitionistic frame F if it is valid at every state w in F

(notation: F |=i A). Observe that if F 6|=i A, then there must be some model M

based on F and state w such that M,w 6|=i A. Finally, we say that A is valid on

a class F of intuitionistic frames if F ∈ F implies F |=i A.

Example 6.1 Consider the intuitionistic frame F :

u99 // v ee

Set V (p) = {v} and let M be the model (F, V). So M,u 6|= p. Also, because

M, v |= p it follows that M,u 6|= ¬p. Therefore M,u 6|= p∨¬p and thus F 6|= p∨¬p.

164 CHAPTER 6. DISPLAYING SUPERINTUITIONISTIC LOGICS

Suppose that α(x) is a formula from the basic first-order frame language Lf

(see Definition 4.11) containing the free variable x. Recall that Lf is simply the

first-order language containing the symbols = and R. Let F = (W,R) be an

arbitrary intuitionistic frame. Interpreting the binary relation R in the frame F

as the symbol R in Lf (technically speaking, we define a morphism from Lf into

the structure F = (W,R)), we write F |= α[w/x] to mean that α is satisfied

(in the usual sense of first-order classical logic) in the frame F when the free

variable x in α is interpreted as the state w ∈ W . If F |= α[w/x] for all w ∈ W ,

then it follows that F |= ∀xα(x). Furthermore, for a formula α in Lf containing

no free variables, observe that F |= ¬α iff F 6|= α. If F is a class of intuitionistic

frames then we write F |= α to mean that F ∈ F implies F |= α. Note that we

have intentionally dropped the subscript “i”, writing |= instead of |=i. This is be-

cause satisfiability of a first-order formula (unlike satisfiability of an intuitionistic

formula) on an intuitionistic frame is defined identically to the general case.

The following semantic characterisation of Ip is a standard result.

Theorem 6.2 Ip = {A ∈ ForL |F |=i A for every intuitionistic frame F}

Proof. See [16]. Q.E.D.

A frame F ′ = (W ′, R′) is called a subframe of the frame F = (W,R) if W ′ ⊆ W

and R′ is the restriction of R to W ′. The subframe F ′ is a generated subframe

of F if W ′ is an upward closed subset of W . Also, if W ′ is the upward closure of

some set X ⊆ W (ie. W ′ is the minimal upward closed set containing X) then we

say that W ′ and F ′ are generated by the set X. If F ′ is generated by a singleton

{w} ⊆ W we say that F ′ is rooted and call w the root.

The following result is also standard (see [16]).

Lemma 6.3 For every intuitionistic frame F and every formula A, the following

conditions are equivalent:

(i) F |=i A

(ii) F ′ |=i A for every subframe F ′ of F

(iii) F ′ |=i A for every rooted subframe F ′ of F

As an immediate corollary, we have

Corollary 6.4

Ip = {A ∈ ForL |F |=i A for every rooted intuitionistic frame F}

6.1. INTRODUCING SUPERINTUITIONISTIC LOGICS 165

We will freely make use of the syntactic and semantic charaterisations of Ip as

convenient.

6.1.3 Superintuitionistic logics and the Gödel translation

A logic L in the language L is called consistent if L 6= ForL. It is easy to show

that any logic containing the axiom (A9) is consistent iff ⊥ 6∈ L.

A superintuitionistic logic L is a set of formulae in the language L that is

closed under modus ponens and uniform substitution. For every consistent su-

perintuitionistic logic L, it is the case that Ip ⊆ L ⊆ Cp (see [16]). From now

on, we will use the term ‘superintuitionistic logic’ to mean a consistent superin-

tuitionistic logic.

Recall that the logic S4 = K ⊕ {4, T} is the logic obtained from the axioms

(4) �p ⊃ p (T) �p ⊃ ��p

Define the Gödel translation [27, 16] T : ForL 7→ ForML:

T (⊥) = ⊥
T (>) = �>
T (p) = �p

T (A ∧B) = T (A) ∧ T (B)

T (A ∨B) = T (A) ∨ T (B)

T (A ⊃ B) = �(T (A) ⊃ T (B))

T (¬A) = �¬T (A)

The Gödel translation induces the following embedding of superintuitionistic

logics into modal logics.

Theorem 6.5 For any set {Ai}i∈A ∈ ForL,

A ∈ Ip⊕ {Ai}i∈A ⇔ T (A) ∈ S4⊕ {T (Ai)}i∈A

Proof. See Dummett and Lemmon [21]. Q.E.D.

A modal logic is called normal if it is closed under the Necessitation rule

A/�A. A normal modal logic M ⊇ S4 is called a modal companion of a super-

intuitionistic logic L if for every intuitionistic formula A, it is the case that

A ∈ L iff T (A) ∈M (6.1)

166 CHAPTER 6. DISPLAYING SUPERINTUITIONISTIC LOGICS

If M is a modal companion of L, then we say that L is the superintuitionistic

fragment of M . For example, by Theorem 6.5, S4 ⊕ {T (Ai)}i∈A is a modal

companion of Ip⊕ {Ai}i∈A, and Ip⊕ {Ai}i∈A is the superintuitionistic fragment

of S4 ⊕ {T (Ai)}i∈A. The modal logic S5 is defined as K ⊕ {T, 5}, where (5) is

the axiom 3A ⊃ �3A. It is easy to check that the modal companion of the logic

Ip⊕ (p ∨ ¬p) = Cp is the logic S5.

We observe that S4⊕ {T (Ai)}i∈A is by no means the only modal companion

of the logic Ip⊕ {Ai}i∈A. In fact, it is known that the set of modal companions

of an arbitrary superintuitionistic logic Ip⊕{Ai}i∈A is infinite, with both a least

element (S4 ⊕ {T (Ai)}i∈A) and a greatest element (in terms of set inclusion).

See [17] for a survey of results concerning embeddings of superintuitionistic logics

into normal modal logics. In passing we note that if we lift the normality restric-

tion in the definition of modal companion, there are even more modal logics into

which superintuitionistic logics are embeddable [17, 81].

6.2 The calculus DLI

Extending Definition 4.55, we say that a display calculus C properly displays

the logic L if (i) every rule of C satisfies the display conditions (C1)–(C8) (see

Section 4.3.3), and (ii) for every formula A in the language of L, A ∈ L iff

I ` A is derivable in C. If C properly displays L, then we say that L is properly

displayable, and that C is a display calculus for L.

We can exploit this relationship between superintuitionistic logics and their

modal companions to obtain display calculi for superintuitionistic logics. Let us

begin by presenting a display calculus for S4. Notice that axiomatic extensions

over Kt by (4) and (T) are equivalent, respectively, to axiomatic extensions over

Kt using the following primitive modal axioms:

(4′) 33p ⊃ 3p (T ′) p ⊃ 3p

Since (4′) and (T ′) are primitive modal axioms, following the procedure in Sec-

tion 5.1 we can easily compute the structural rules

∗ • ∗X ` Y
d4

(∗ • ∗)(∗ • ∗)X ` Y
∗ • ∗X ` Y

dT
X ` Y

such that the calculus DLS4 = DLM.K + d4 + dT properly displays S4.

Next we introduce the display calculus DLI consisting of:

6.2. THE CALCULUS DLI 167

I ` X (> `)> ` X
X ` I (` ⊥)
X ` ⊥

•X ` ∗A (` ¬)
X ` ¬A

∗A ` X (¬ `)¬A ` •X

X ` A Y ` B (` ∧)
X ◦ Y ` A ∧B

A ◦B ` X (∧ `)
A ∧B ` X

X ` A ◦B (` ∨)
X ` A ∨B

A ` X B ` Y (∨ `)
A ∨B ` X ◦ Y

•X ◦ A ` B (`⊃)
X ` A ⊃ B

X ` A B ` Y (⊃`)
A ⊃ B ` •(∗X ◦ Y)

Table 6.1: Logical rules for the display calculus DLI

(i) the initial sequents p ` p for every propositional variable p, and the sequents

I ` > and ⊥ ` I,

(ii) the display (structural) rules (Table 4.2) and the proper structural rules

(Table 4.3),

(iii) the logical rules given in Table 6.1,

(iv) the structural rules d4 and dT ,

(v) the cutrule X ` A A ` Y cut
X ` Y

(vi) the (Trivh) rule — for any propositional variable p,
p ` Z

Trivh•p ` Z

Notice that the Trivh rule schema (introduced in [28]) is neither a logical rule

(because it does not introduce a logical connective or constant) nor a structural

rule (since it contains a schematic propositional variable). It is straightforward

to check that Trivh satisfies all the display conditions.

We are particularly interested in derivations for sequents of the form I ` T (A).

Definition 6.6 (T -derivation) Let {ρi}i∈I be any set of structural rules. A T -

derivation (in DLS4 + {ρi}i∈I) is a cutfree derivation in DLS4 + {ρi}i∈I whose

endsequent has the form I ` T (A) where T is the Gödel translation and A ∈ ForL.

168 CHAPTER 6. DISPLAYING SUPERINTUITIONISTIC LOGICS

When using the above definition, we will drop the reference to the calculus (“in

DLS4 + {ρi}i∈I”) when this can be inferred from the context.

Lemma 6.7 Let {ρi}i∈I be any set of structural rules and suppose that δ is a

T -derivation (in DLS4 + {ρi}i∈I). Then the principal formula of each � ` and

` � rule occurrence in δ is either a propositional variable or >, or a formula C

where C = A ⊃ B or ¬A for some A,B. Furthermore δ contains no occurrences

of the introduction rule for 3.

Proof. Because δ is cutfree and the endsequent has the form I ` T (A), the result

follows immediately from the definition of the Gödel translation T . Q.E.D.

Recall that the rules in Table 4.2 are given the name ‘display rules’ because

these are the basic structural rules of the display calculus that enable the display

property (see discussion above Theorem 4.44). In a proof diagram, we will use the

label ‘d/r’ to indicate some number of such display rule instances. In a derivation,

if the rule instance ρ2 appears below ρ1 such that there are no rules between ρ1

and ρ2 except possibly display rules, then we say that ρ1 is followed immediately

by ρ2. Also, in the proof of the following result we will make use of the notion of

‘parametric ancestor’. See the discussion following Theorem 4.48 for a definition

of this term.

Lemma 6.8 Let {ρi}i∈I be any set of structural rules. Suppose that δ is a T -

derivation in DLS4 + {ρi}i∈I . Then there is a T -derivation δN of the identical

sequent in DLS4 + {ρi}i∈I such that

(i) each occurrence of ⊃` and `⊃ in δN is followed immediately by � ` and

` � respectively, and

(ii) each occurrence of ¬ ` and ` ¬ in δN is followed immediately by � ` and

` � respectively, and

(iii) each initial sequent p ` p appears in the context

p ` p
� `�p ` •p

d/r
(∗ • ∗) ∗ p ` ∗�p

d4
(∗ • ∗)(∗ • ∗) ∗ p ` ∗�p

d/r
�p ` • • p

d/r• •�p ` p
` �•�p ` �p

6.2. THE CALCULUS DLI 169

Also the initial sequent I ` > occurs in the context

I ` > d/r•I ` > ` �
I ` �>

Proof. Because δ is a T -derivation, every occurrence of A ⊃ B and ¬A in the

endsequent must appear in the respective contexts �(A ⊃ B) and �¬A, and each

propositional variable p and > must appear in the respective contexts �p and

�>. Furthermore, Lemma 6.7 tells us that the principal formula of every � `
and ` � rule occurrence must be one of A ⊃ B, ¬A, or a propositional variable p

or >.

Call an occurrence ρ of the rule � ` (resp. ` � ρ) normal if it follows

immediately after either ⊃` or ¬ ` (`⊃ or ` ¬) or occurs in the context shown

in (iii). Otherwise such an occurrence is called abnormal. It suffices to show

that δ can be transformed so that every occurrence of � ` and ` � is normal.

Proof by induction on the total number of abnormal rule occurrences in δ.

We simply choose an abnormal rule occurrence ρ and convert it into a normal

rule occurrence using the transformations below.

Case I. ρ = � ` with principal formula C.

Suppose C = A ⊃ B. Trace the parametric ancestors of C above ρ in δ to

identify the sequents where C is introduced:

{Ui ` A B ` Vi} ⊃`
A ⊃ B ` ∗U ◦ Vi. . .
A ⊃ B ` Z ρ = � `

�(A ⊃ B) ` •Z

Replace with

{Ui ` A B ` Vi} ⊃`
Ui ◦ A ⊃ B ` Vi d/r
A ⊃ B ` ∗Ui ◦ Vi � `

�(A ⊃ B) ` •(∗Ui ◦ Vi)
d/r

•�(A ⊃ B) ` ∗Ui ◦ Vi
. . .

•�(A ⊃ B) ` Z
�(A ⊃ B) ` •Z

Observe that in the above derivation, moving down from the sequents {•�(A ⊃
B) ` ∗Ui ◦ Vi} to the sequent •�(A ⊃ B) ` Z is legal. This is because in the

original derivation, no parametric ancestor of A ⊃ B is a principal formula in

170 CHAPTER 6. DISPLAYING SUPERINTUITIONISTIC LOGICS

the portion [original diagram] between the sequents {A ⊃ B ` ∗Ui ◦ Vi} and

A ⊃ B ` Z.

When C = ¬A the transformations are similar.

Case II. ρ = ` � with principal formula C.

Suppose C = A ⊃ B. Trace the parametric ancestors of C above ρ in δ to

identify the sequents where C is introduced:

{Ui ◦ A ` B} `⊃
Ui ` A ⊃ B

. . .
η
. . .

•Z ` A ⊃ B ` �
Z ` �(A ⊃ B)

It would be tempting to treat this subcase in the same manner we dealt with the

corresponding case for � ` case, that is, by replacing the above derivation with

{Ui ◦ A ` B} `⊃
Ui ` A ⊃ B ` �
U ′i ` �(A ⊃ B

. . .
η
. . .

Z ` �A ⊃ B

where •U ′i = Ui. However there is no guarantee that this transformation is legal

as it relies on Ui containing a leading •. Furthermore, the first structural rule

in η (should one exist) may no longer have a legal premise in the transformed

derivation because an occurrence of • has been ‘stolen’ by the ` � rule. Solution:

instead of taking the ` � rule upwards, bring the `⊃ rule down as follows:

{Ui ◦ A ` B}
Ui ` ∗A ◦B. . .

η
. . .

•Z ` ∗A ◦B d/r•Z ◦ A ` B `⊃•Z ` A ⊃ B ` �
Z ` �(A ⊃ B

When C = ¬A the transformation is similar.

It remains to deal with the case when the principal formula of � ` or ` � is a

propositional variable or >. Because every propositional variable appears boxed

in the endsequent, every initial sequent p ` p in δ appears in one of the following

contexts.

6.3. STRUCTURAL RULE EXTENSIONS OF DLI AND DLS4 171

p ` p
. . .
η1
. . .

Y [p] ` •p
` �

Y [p] ` �p
. . .
η2
. . .

p ` Z[�p]
� `

�p ` •Z[�p]

p ` p
. . .
η3
. . .

p ` Y [p]
� `

�p ` •Y [p]
. . .
η4
. . .

Z[�p] ` •p
` �

Z[�p] ` �p

The transformations for left above and right above are respectively,

p ` p
� `�p ` •p

d/r
(∗ • ∗) ∗ p ` ∗�p

d4
(∗ • ∗)(∗ • ∗) ∗ p ` ∗�p

d/r• •�p ` p
` �•�p ` �p

. . .
η1
. . .

Y [•�p] ` •�p
d/r

(∗ • ∗) ∗�p ` ∗Y [•�p]
dT∗�p ` ∗Y [•�p]

d/r
Y [•�p] ` �p

. . .
η2
. . .

•�p ` Z[�p]
d/r

�p ` •Z[�p]

p ` p
� `�p ` •p

d/r
(∗ • ∗) ∗ p ` ∗�p

d4
(∗ • ∗)(∗ • ∗) ∗ p ` ∗�p

d/r• •�p ` p
` �•�p ` �p

. . .
η3
. . .

•�p ` Y [�p]
d/r

�p ` •Y [�p]
. . .
η4
. . .

Z[�p] ` •�p
d/r, dT

Z[�p] ` �p

Similar arguments can be used to show that I ` > appears as in the statement

of the lemma.

It is easy to see that each of the transformations preserves the endsequent of δ.

Also, each iteration of the transformation does not affect existing normal rules

in the derivation or introduce any new abnormal rules. Thus the result follows

from the induction hypothesis. Q.E.D.

6.3 Structural rule extensions of DLI and DLS4

Let DLS4aux be the calculus obtained from DLS4 by replacing the initial sequent

schema p ` p with •�p ` �p, replacing I ` > with I ` �>, and replacing the

logical rule schemata in Table 4.1 with the rules in Table 6.2.

Define a proper formula occurrence A to be a formula occurrence in a sequent

or derivation such that there is no formula occurrence properly containing the

172 CHAPTER 6. DISPLAYING SUPERINTUITIONISTIC LOGICS

I ` X (> `)> ` X
X ` I (` ⊥)
X ` ⊥

•X ` ∗A (` ¬�)
X ` �¬A

∗A ` X (¬� `)
�¬A ` •X

X ` A Y ` B (` ∧)
X ◦ Y ` A ∧B

A ◦B ` X (∧ `)
A ∧B ` X

X ` A ◦B (` ∨)
X ` A ∨B

A ` X B ` Y (∨ `)
A ∨B ` X ◦ Y

•X ◦ A ` B (`⊃�)
X ` �(A ⊃ B)

X ` A B ` Y (⊃�`)
�(A ⊃ B) ` •(∗X ◦ Y)

Table 6.2: Logical rules for the display calculus DLS4aux

occurrence A. Consider the sequent •�(A ⊃ B) ` ∗•∗(�(A ⊃ B)∧C). Then the

proper formula occurrences in this sequent are �(A ⊃ B) (from the antecedent)

and (�(A ⊃ B) ∧ C) (from the succedent). Notice that although �(A ⊃ B)

occurs as a subformula of the formula (�(A ⊃ B) ∧C), this does not undermine

the status of the formula occurrence �(A ⊃ B) as a proper formula occurrence

in the antecedent. Informally, the proper formula occurrences are the ‘largest’

formulae occurring in a sequent or derivation.

Lemma 6.9 Let {ρi}i∈I be any set of structural rules.

(i) I ` T (A) is derivable in DLS4aux + {ρi}i∈I iff I ` T (A) is derivable in

DLS4 + {ρi}i∈I .

(ii) For any derivation δ in DLS4aux + {ρi}i∈I , any proper formula occurrence

in δ must be of the form T (A) for some A ∈ ForL.

Proof. Proof of (i). The left-to-right direction follows from the observation that

every rule in DLS4aux + {ρi}i∈I is some combination of rules in DLS4 + {ρi}i∈I .
In fact, we only need to check the logical rules of DLS4aux+{ρi}i∈I . For example,

the `⊃� rule is obtained in DLS4 + {ρi}i∈I by first applying `⊃ and then ` �.

For the right-to-left direction, suppose that I ` T (A) is derivable in DLS4 +

{ρi}i∈I . We can then obtain a derivation δN of I ` T (A) satisfying the conditions

in Lemma 6.7 and Lemma 6.8. The translation from δN to a derivation δ′ of

I ` T (A) in DLS4aux + {ρi}i∈I is straightforward. Replace each initial fragment

in δN of the form

6.3. STRUCTURAL RULE EXTENSIONS OF DLI AND DLS4 173

p ` p
� `�p ` •p

d/r
(∗ • ∗) ∗ p ` ∗�p

d4
(∗ • ∗)(∗ • ∗) ∗ p ` ∗�p

d/r• •�p ` p
` �•�p ` �p

with the initial sequent •�p ` �p. Replace each initial fragment

I ` > d/r•I ` > ` �
I ` �>

with the initial sequent I ` �>. Similarly, each rule pair is replaced with the

combination rule in the obvious way. For example, the rule pair ⊃`,� ` is

replaced with the rule ⊃�`.

Proof of (ii). Inspection of the initial sequents and logical rules of DLS4aux +

{ρi}i∈I reveal that the only proper formula occurrences that may occur in a

derivation have the form T (A) for some A ∈ ForL. Q.E.D.

Lemma 6.10 Let {ρi}i∈I be any set of structural rules. For any A ∈ ForL, if I `
A is derivable in DLI+{ρi}i∈I , then I ` T (A) is derivable in DLS4aux+{ρi}i∈I .

Proof. Without loss of generality, we may assume the property that in a deriva-

tion in DLI + {ρi}i∈I , the initial sequent p ` p is immediately followed by the

Trivh rule. In other words, the derivation commences

p ` p
Trivh•p ` p

To see this, observe that the principal formula of Trivh (by definition) must

be a propositional variable. In particular, this means that for any propositional

variable p that is principal by a Trivh rule ρ, there can be no logical rules above ρ

in the derivation that make p principal. Thus we can push the Trivh rule upwards

so that it appears immediately after the initial sequent. Moreover, should we

require a sequent of the form p ` p, then we can write:

p ` p
Trivh•p ` p
d/r, dT

p ` p

We will prove that if δ is a derivation of X ` Y in DLI + {ρi}i∈I , then the

sequent XT ` Y T obtained from X ` Y by substituting every proper formula

occurrence A in X and Y with T (A) is derivable in DLS4aux + {ρi}i∈I . The

statement of the Lemma clearly follows from this result.

174 CHAPTER 6. DISPLAYING SUPERINTUITIONISTIC LOGICS

Without loss of generality, take δ to be cutfree. Induction on the height of δ. If

the height is one, then δ must be either I ` > or ⊥ ` I. The required derivations

are, respectively, I ` �> and ⊥ ` I. If δ has the form

p ` p
Trivh•p ` p

then replace with the initial sequent •�p ` �p.

Otherwise, consider the last rule ρ in δ (we will illustrate a few of the cases

that arise, the remaining cases are similar).

If ρ = ∨ ` then δ has the form

δ′

A ` X
δ′′

B ` Y
A ∨B ` X ◦ Y

By the induction hypothesis the sequents T (A) ` XT and T (B) ` Y T are deriv-

able in DLS4aux + {ρi}i∈I . Then we can write

T (A) ` XT T (B) ` Y T

∨ `
T (A) ∨ T (B) ` XT ◦ Y T

If ρ = `⊃, then δ has the form

δ′

•X ◦ A ` B
X ` A ⊃ B

By the induction hypothesis, the sequent •XT ◦ T (A) ` T (B) is derivable in

DLS4aux + {ρi}i∈I . Then we can write

•XT ◦ T (A) ` T (B)
`⊃�

XT ` �(T (A) ⊃ T (B))

If ρ = ⊃ `, then δ has the form

δ′

X ` A
δ′′

B ` Y
A ⊃ B ` •(∗X ◦ Y)

By the induction hypothesis, the sequents XT ` T (A) and T (B) ` Y T are deriv-

able in DLS4aux + {ρi}i∈I . Then we can write

XT ` T (A) T (B) ` Y T

⊃�`
�(T (A) ⊃ T (B)) ` •(∗XT ◦ Y T)

If the last rule is a structural rule, we can simply apply the induction hypoth-

esis to the premise sequent(s) and then apply ρ. Q.E.D.

6.3. STRUCTURAL RULE EXTENSIONS OF DLI AND DLS4 175

Lemma 6.11 Let {ρi}i∈I be any set of structural rules. For any A ∈ ForL, if I `
T (A) is derivable in DLS4aux+{ρi}i∈I , then I ` A is derivable in DLI+{ρi}i∈I .

Proof. We will prove that if δ is a derivation of X ` Y in DLS4aux + {ρi}i∈I ,
then the sequent XT− ` Y T− obtained from X ` Y by substituting every proper

formula occurrence T (B) in X ` Y with B is derivable in DLI + {ρi}i∈I . Notice

that by Lemma 6.9(ii), it is the case that every proper formula occurrence in

X ` Y is a formula of the form T (B) for some B ∈ ForL. The statement of the

Lemma clearly follows from this result.

Without loss of generality, take δ to be cutfree. Induction on the height of δ.

If δ is •�p ` �p, then write

p ` p
Trivh•p ` p

If δ is I ` �> or ⊥ ` I, then write, respectively, I ` > or ⊥ ` I.

Otherwise, consider the last rule ρ in δ. Once again, we illustrate with a few

of the cases that arise.

If ρ = ` ∧, then δ has the form

δ′

X ` T (A)
δ′′

Y ` T (B)

X ◦ Y ` T (A) ` (B)

By the induction hypothesis, the sequents XT− ` A and Y T− ` B are derivable

in DLI + {ρi}i∈I . Then we can write

XT− ` A Y T− ` B ` ∧
XT− ◦ Y T− ` A ∧B

If ρ = `⊃�, then δ has the form

δ′

•X ◦ T (A) ` T (B)

X ` �(T (A) ⊃ T (B))

By the induction hypothesis, the sequent •XT− ◦ A ` B is derivable in DLI +

{ρi}i∈I . Then we can write

•XT− ◦ A ` B `⊃
XT− ` A ⊃ B

If ρ = ⊃�`, then δ has the form

176 CHAPTER 6. DISPLAYING SUPERINTUITIONISTIC LOGICS

δ′

X ` T (A)
δ′′

T (B) ` Y
�(T (A) ⊃ T (B)) ` •(∗X ◦ Y)

By the induction hypothesis, the sequents XT− ` A and B ` Y T− are derivable

in DLI + {ρi}i∈I . Then we can write

XT− ` A B ` Y T−
⊃�`

A ⊃ B ` •(∗XT− ◦ Y T−)

If the last rule is a structural rule, we can simply apply the induction hypoth-

esis to the premise sequent(s) and then apply ρ. Q.E.D.

Corollary 6.12 Let {ρi}i∈I be any set of structural rules. Then, for any A ∈
ForL,

I `DLI+{ρi}i∈I A iff I `DLS4+{ρi}i∈I T (A)

Proof. Suppose that I ` A is derivable in DLI + {ρi}i∈I . From Lemma 6.10 we

know that I ` T (A) is derivable inDLS4aux+{ρi}i∈I and then from Lemma 6.9(i),

I ` T (A) is derivable in DLS4 + {ρi}i∈I .
Next, suppose that I ` T (A) is derivable inDLS4+{ρi}i∈I . From Lemma 6.9(i)

we know that I ` T (A) is derivable in DLS4aux + {ρi}i∈I . Now the result follows

from Lemma 6.11. Q.E.D.

The next lemma provides a method of generating display calculi over DLI to

display a large class of superintuitionistic logics.

Lemma 6.13 Let {ρi}i∈I be any set of structural display rules and suppose that

DLS4 + {ρi}i∈i properly displays the logic M . If M is a modal companion of

some superintuitionistic logic L, then DLI + {ρi}i∈I properly displays L.

Proof. It suffices to show that for any A ∈ ForL, A ∈ L iff I ` A is derivable in

DLI + {ρi}i∈I .
First suppose that I ` A is derivable in DLI + {ρi}i∈I . By Corollary 6.12 we

know that I ` T (A) is derivable in DLS4 + {ρi}i∈I and thus T (A) ∈ M . Since

M is a modal companion of L, we have A ∈ L.

Next suppose that A ∈ L. Since M is a modal companion of L we have

T (A) ∈ M . Thus I ` T (A) is derivable in DLS4 + {ρi}i∈I . From Corollary 6.12

we know that I ` A is derivable in DLI + {ρi}i∈I so we are done. Q.E.D.

Since S4 is a modal companion of Ip and DLS4 properly displays S4, the

above Lemma yields

Corollary 6.14 The display calculus DLI properly displays Ip.

6.4. DISPLAYING GD; RECOVERING CP 177

6.4 Displaying GD; recovering Cp

Gödel-Dummett Logic GD (also called LC) is obtained by the addition of the

axiom gd: (p ⊃ q)∨(q ⊃ p) to Ip. From Theorem 6.5 we know that S4⊕�(�p ⊃
�q)∨�(�q ⊃ �p) is a modal companion. In the presence of the axioms (4) and

(T) it is known (see [31]) that the following axioms are equivalent:

�(�p ⊃ �q) ∨�(�q ⊃ �p) �(�p ⊃ q) ∨�(�q ⊃ p)

The formula above right is an M-formula, so we know that S4 ⊕ �(�p ⊃ q) ∨
�(�q ⊃ p) is properly displayable over DLM.K. To compute the corresponding

display rule, we must first express the M-formula as a formula in Ar′f∃r′x and

then compute the frame equivalent primitive tense formula using the tools of

Sections 4.2.2 and 4.2.3. Then, using the procedure of Section 5.1 we obtain the

display rule:

X ` Y •X ` Y ∗ • ∗X ` Y dgd• ∗ • ∗X ` Y
such that DLS4 + dgd properly displays S4 ⊕ T ((p ⊃ q) ∨ (q ⊃ p)). Then from

Lemma 6.13 we have that DLI + dgd properly displays the superintuitionistic

logic GD.

We have already noted that classical propositional logic Cp can be obtained by

the addition of the axiom p ∨ ¬p to Ip. If we compute the Gödel translation of

p ∨ ¬p we get

T (p ∨ ¬p) = �p ∨�¬�p
≈ (> ⊃ �p) ∨�(�p ⊃ ⊥)

This is an M-formula so we can compute the corresponding structural rule as

before. Alternatively, observe that this formula is equivalent in K to the (5)

axiom 3p ⊃ �3p. In the presence of axiom (T), the (5) axiom is equivalent to

the primitive tense formula p ∧3q ⊃ 3(q ∧3p) (see [31]). It follows that

S4⊕ p ∧3q ⊃ 3(q ∧3p) = S4⊕3p ⊃ �3p = S5

From p ∧3q ⊃ 3(q ∧3p) we can compute the display rule

∗ • ∗(M ◦ ∗ • ∗L) ` Y
dS5

L ◦ ∗ • ∗M ` Y

178 CHAPTER 6. DISPLAYING SUPERINTUITIONISTIC LOGICS

such that DLS4+dS5 properly displays S5. So DLI+dS5 properly displays Cp.

Here is a derivation of the sequent I ` p ∨ ¬p in DLI + dS5.

p ` p
Trivh•p ` p

p ◦ ∗ • p ` I
d/r

∗ • ∗(p ◦ ∗ • ∗ ∗ p) ` I
dS5∗p ◦ ∗ • ∗p ` I

• ∗ p ` ∗p
¬ `∗p ` ¬p

I ` p ◦ ¬p
` ∨

I ` p ∨ ¬p

6.5 Displaying superintuitionistic logics charac-

terised by semantic conditions

In the previous section, our mode of operation was as follows: given the su-

perintuitionistic logic Ip ⊕ {Ai}i∈A, write {T (Ai}i∈A as a set of M-formulae.

Since axiomatisations by M-formulae are properly displayable over DLS4, we

obtain a calculus DLS4 + {ρi}i∈I that properly displays S4⊕ {T (Ai)}i∈A. From

Lemma 6.13 it follows that DLI + {ρi}i∈I properly displays Ip⊕ {Ai}i∈A. How-

ever, it is not always clear how to (or possible to) transform the Gödel translation

of a given axiom into M-formulae as we did in the previous section. When the

superintuitionistic logic has a semantic characterisation, we can sometimes make

use of that characterisation to display the logic.

Let F = (W,R) be a transitive frame. Define the equivalence relation ∼ on

W by taking, for all x, y ∈ W :

x ∼ y iff either x = y or (Rxy and Ryx)

The equivalence classes with respect to ∼ are called clusters. The cluster con-

taining state x will be denoted C(x).

Definition 6.15 (skeleton of a frame) The skeleton ρF of a transitive frame F

is the quotient frame with respect to ∼. That is, ρF = (ρW, ρR) where

ρW = {C(x) |x ∈ W} ρRC(x)C(y) iff Rxy

Observe that ρF is antisymmetric for any transitive frame F . Furthermore, if

F = (W,R) is reflexive and transitive, then ρR is a partial order on ρF (ie. ρF is

reflexive, transitive and antisymmetric). In this chapter, we are concerned mainly

with S4-frames (ie. reflexive and transitive frames).

6.5. LOGICS CHARACTERISED BY SEMANTIC CONDITIONS 179

Lemma 6.16 If F = (W,R) is an antisymmetric S4-frame then ρF = F .

Proof. First notice that for states x, y ∈ W : x ∼ y iff x = y. The only case to

check is when x ∼ y and Rxy and Ryx. Since F is antisymmetric, it follows that

x = y as required. Thus it follows that ρW = W .

The next thing to check is that for x, y ∈ W : ρRxy iff Rxy. This follows

immediately from the definition, so ρR = R.

Since ρW = W and ρR = R we conclude that ρF = F . Q.E.D.

Lemma 6.17 For every reflexive and transitive frame F , and every intuitionistic

formula A,

ρF |=i A iff F |= T (A)

Proof. Induction on the size of A. See [16] for details. Q.E.D.

In the following, (∀x� w)B and (∃x� w)B respectively stand for either

∀x(Rwx→ B) ∃x(Rwx ∧B)

or

∀x(ρRwx→ B) ∃x(ρRwx ∧B).

The context will make it clear if we mean the relation R or ρR.

Recall that we write F |= α for a Lf formula α to mean that the formula is

satisfied on the frame F in the usual sense of first-order logic.

Lemma 6.18 Let α(x) be an arbitrary formula in Ar′f∃r′x. If ∀xα is satisfied

on an S4-frame F , then ∀xα is satisfied on ρF .

Proof. In order to simplify the notation, we will suppose that α is the modal

Kracht formula (∀w � x)φ((∃y � w);x,w) (the generalisation to arbitrary α ∈
Ar′f∃r′x is straightforward). Let F be an S4 frame such that F |= (∀x)(∀w �

x)φ((∃y � w);x,w). By definition of Ar′f∃r′x, φ can always be written as a dis-

junction of conjunctions of atoms comprising of existential restricted quantifiers

and formulae Ruv and u = v.

We aim to show that ρF |= (∀x)(∀w � x)φ((∃y �w);x,w). Argue by contra-

diction by assuming that (†): (∀x)(∀w � x)φ((∃y � w);x,w) is not satisfied on

ρF . Then ρF |= (∃x)(∃w � x)¬φ((∃y � w);x,w). Thus there exist C(l), C(m)

180 CHAPTER 6. DISPLAYING SUPERINTUITIONISTIC LOGICS

satisfying ρRC(l)C(m) such that (in the following, variables x and w have been

uniformly substituted with C(l) and C(m) respectively):

ρF |= ¬φ((∃y � C(m));C(l), C(m)) (6.2)

Consider the statement F |= ¬φ((∃y �m); l,m). Let (‡) denote the assump-

tion that this statement does not hold. Then there is an instantiation φ′(l,m, zi)

with {zi} for y — for some of the existential restricted quantifiers occurrences in

φ((∃y �m); l,m) — so that Rmzi and F |= φ′(l,m, zi). Now observe that

F |= Rab iff ρF |= ρRC(a)C(b)

F |= a = b implies ρF |= C(a) = C(b) (reverse direction need not hold)

Using the above, from F |= φ′(l,m, zi) by induction on the size of φ we can show

that ρF |= φ′(C(l), C(m), C(zi)). Since Rmzi, we have ρRC(m)C(z) and thus

ρF |= φ((∃y � C(m));C(l), C(m))

This contradicts (6.2).

We have made two assumptions (†) or (‡). The contradiction we have obtained

tells us that one of these assumptions is incorrect. If (†) is incorrect we are done.

Instead, if (‡) is incorrect then it is indeed the case that F |= ¬φ((∃y�m); l,m).

Since ρRC(l)C(m) we have Rlm, and thus F |= (∃l)(∃m� l)¬φ((∃y �m); l,m).

However this contradicts the original premise we were given, that F |= (∀x)(∀w�

x)φ((∃y � w);x,w). The only possibility is that (†) must be incorrect. Q.E.D.

Lemma 6.19 Let α be a conjunction σ1 ∧ . . .∧ σn of formulae from Ar′f∃r′x. If

∀xα is satisfied on a frame F , then ∀xα is satisfied on ρF .

Proof. Suppose that F |= ∀x
∧
i σi(x). Then for every state u in F , F |= σi(u)

and thus F |= ∀xσi (1 ≤ i ≤ n). From the previous lemma we know that

ρF |= ∀xσi for each i. Then for every state u and index i we have ρF |= σi(u)

and thus ρF |= ∀x
∧
i σi(x). Q.E.D.

Lemma 6.20 Suppose that a class Fi of intuitionistic frames and a class FS4

of S4-frames are both defined by ∀xα, where α is a conjunction of formulae

{αi}i∈J ⊂ Ar′f∃r′x. Then for any intuitionistic formula A

Fi |=i A iff FS4 |= T (A)

6.5. LOGICS CHARACTERISED BY SEMANTIC CONDITIONS 181

Proof. First suppose that Fi 6|=i A. Then there must be some intuitionistic frame

F ∈ Fi such that F 6|=i A. Since F is a reflexive, transitive and antisymmetric

frame such that F |= ∀xα, it follows that F ∈ FS4 and ρF = F (Lemma 6.16).

Therefore ρF 6|=i A and thus from Lemma 6.17 it follows that F 6|= T (A) and

thus FS4 6|= T (A).

Now suppose that F 6|= T (A). Then there must be some S4-frame F ∈ FS4

such that F 6|= T (A). By Lemma 6.17 it follows that ρF 6|=i A. Since F |= ∀xα,

from Lemma 6.19 it follows that ρF |= ∀xα. Since ∀xα defines Fi, it follows that

ρF ∈ Fi. Since ρF 6|=i A we get Fi 6|=i A. Q.E.D.

Suppose that the superintuitionistic logic L is sound and weakly complete for

the class Fi of intuitionistic frames defined by ∀xα where α is a conjunction of

formulae from Ar′f∃r′x. For any intuitionistic formula A, A ∈ L iff Fi |=i A.

If FS4 is the class of S4-frames defined by ∀xα, from Lemma 6.20 it follows

that Fi |=i A iff FS4 |= T (A). In Section 5.1 we saw how to compute the

set {Mi}i∈Λ of M-formulae corresponding to α. By the Sahlqvist completeness

theorem, S4 ⊕ {Mi}i∈Λ is sound and weakly complete for FS4, and thus FS4 |=
T (A) iff T (A) ∈ S4⊕ {Mi}i∈Λ. We have proved the following theorem.

Theorem 6.21 Suppose that the superintuitionistic logic L is sound and weakly

complete for the class of intuitionistic frames defined by ∀xα where α is a con-

junction of formulae from Ar′f∃r′x. Let {Mi}i∈Λ be the M-formulae corresponding

to α. Then, for any intuitionistic formula A,

A ∈ L iff T (A) ∈ S4⊕ {Mi}i∈Λ

It follows that S4⊕ {Mi}i∈Λ is a modal companion of L.

Corollary 6.22 If the superintuitionistic logic L is sound and weakly complete

for some class of intuitionistic frames defined by ∀xα where α is a conjunction

of formulae from Ar′f∃r′x, then L is properly displayable.

Proof. Theorem 6.21 tells us that we can compute the axiomatic extension L′ of

S4 by M-formulae such that L′ is a modal companion of L. Since any axiomatic

extension of S4 by M-formulae is properly displayable (Theorem 5.20), the result

follows from Lemma 6.13. Q.E.D.

182 CHAPTER 6. DISPLAYING SUPERINTUITIONISTIC LOGICS

Name Axiom

kc,wem ¬p ∨ ¬¬p
lc,gd,da (p ⊃ q) ∨ (q ⊃ p)
kp (¬p ⊃ q ∨ r) ⊃ (¬p ⊃ q) ∨ (¬p ⊃ r)
bdn bd1 = p1 ∨ ¬p1; bdn+1 = pn+1 ∨ (pn+1 ⊃ bdn)

btwn ∧0≤i≤j≤n¬(¬pi ∧ ¬pj) ⊃ ∨ni=0(¬pi ⊃ ∨i 6=j¬pj)

Table 6.3: The syntactic form of some common superintuitionistic axioms as

presented in [16]. Notice that the axioms bdn and btwn are parametrised by the

index n.

6.5.1 Applications

In this section, we will apply Corollary 6.22 to display suitable superintuitionistic

logics. Our plan of action is as follows.

Suppose that we are given the superintuitionistic logic Ip⊕{Ai}i∈A and sup-

pose that for each i, βi is the global frame correspondent of Ai. In other words,

for each i, F |=i Ai iff F |= βi. There are two things we need to be able to do

before deploying Corollary 6.22.

Firstly, we need to be able to write each βi as a formula ∀xαi for αi ∈ Ar′f∃r′x.

If this is possible, then F∧i∀xαi defines F{Ai}i∈A . It is easy to check that for any

frame F , F |= ∀x ∧i αi iff F |= ∧i∀xαi. So ∀x ∧i αi properly defines F{Ai}i∈A .

Thus if Ip⊕ {Ai}i∈A is sound and weakly complete for F{Ai}i∈A , from Corol-

lary 6.22 we can obtain a calculus for Ip⊕{Ai}i∈A. So the second thing to check

is that Ip⊕ {Ai}i∈A is sound and weakly complete for F{Ai}i∈A .

Certainly, if {Ai}i∈A defines the class F of intuitionistic frames, it is easy to

check that B ∈ Ip⊕ {Ai}i∈A implies F |=i B so we have soundness.

Of course, it need not be the case that Ip ⊕ {Ai}i∈A is weakly complete for

F{Ai}i∈A . However there is a class of intuitionistic formulae for which we can

obtain completeness making use of the notion of canonicity (we used a similar

approach for modal logics in Section (4.2.4)).

We say that the intuitionistic formula B is canonical if for any superintu-

itionistic logic L, B ∈ L implies that B is valid on the intuitionistic canonical

frame Fc (see [15] for a definition) for L. It is known that Fc |=i B iff B ∈ L

for any intuitionistic formula B. It follows that if {Ai}i∈A is a set of canonical

formulae defining the class F of intuitionistic frames, then F |=i B implies that

B ∈ Ip⊕{Ai}i∈A. In other words, Ip⊕{Ai}i∈A is weakly complete with respect

to F .

6.5. LOGICS CHARACTERISED BY SEMANTIC CONDITIONS 183

Name First-order characterisation on intuitionistic frames

kc,wem
∀xyz(Rxy ∧Rxz → ∃u(Ryu ∧Rzu))

[∀x(∀y � x)(∀z � x)(∃u� y)Rzu]

lc,gd,da
∀xy(Rxy ∨Ryx)

[∀w(∀x� w)(∀y � w)(Rxy ∨Ryx)]*

kp

∀xyz(Rxy ∧Rxz ∧ ¬Ryz ∧ ¬Rzy → ∃u(Rxu ∧Ruy ∧Ruz∧
∀v(Ruv → ∃w(Rvw ∧ (Ryw ∨Rzw)))))

[no obvious Ar′f∃r′x formula]

bdn
∀x0 . . . xn(∧n−1i=0 Rxixi+1 → ∨i6=jxi = xj)

[∀x0(∀x1 � x0) . . . (∀xn � xn−1)(∨i 6=jxi = xj)]

btwn
∀xx0 . . . xn(∧ni=1Rxxi → ∃y

∨
i 6=j(Rxiy ∧Rxjy))

[∀w(∀x� w)(∀x0 � x) . . . (∀xn � x)(∃y � w)
∨

1≤i,j≤n;i 6=j (Rxiy ∧Rxjy)]

Table 6.4: First-order characterisation of some common superintuitionistic ax-

ioms (see [16]). In the cases where it is possible to directly deduce the equivalent

formula of the form ∀α (α ∈ Arf∃rx), this formula is enclosed in []. The symbol ∗
denotes that the characterisation is for a rooted intuitionistic frame.

In Table 6.3 we present a list of standard superintuitionistic axioms. All the

formulae in this table are known to be canonical (see [16]). In Table 6.4 we present

the first-order formulae characterising these axioms on intuitionistic frames (in the

case of lc we use rooted intuitionistic frames), as well an an equivalent formulation

as formulae of the form ∀α for α ∈ Ar′f∃r′x (with the exception of kp). We can

utilise Corollary 6.22 to construct display calculi for axiomatic extensions over Ip

by the formulae in Table 6.3 (except kp). As an aside, we observe that Ghilardi

and Meloni [26] present a simple algorithm that is capable of identifying a large

class of canonical intuitionistic formulae, including all the formulae in Table 6.3

with the exception of btwn.

Consider the seven interpolable superintuitionistic logics (see Maksimova [45]).

Negri [53] has presented labelled sequent calculi for these logics. Here we show how

to construct display calculi for these logics following the procedure we described

above.

Ip Already done (DLI).

Jan Jankov-De Morgan logic is axiomatised Ip ⊕ kc. Write fkc to denote the

∀xAr′f∃r′x formula corresponding to kp. Because kc is canonical we know

that Ip ⊕ kc is sound and weakly complete with respect to the class of

intuitionistic frames satisfying fkc. We have already encountered fkc in

Lemma 5.12 where we saw that it globally corresponds to _3p ⊃ 3_p

184 CHAPTER 6. DISPLAYING SUPERINTUITIONISTIC LOGICS

and 3�p ⊃ �3p. From _3p ⊃ 3_p we can compute the corresponding

display rule (Section 5.1):

(∗ • ∗)(∗ • ∗) •X ` Y
dJan

(∗ • ∗)X ` Y

Thus, DLS4 + dJan properly displays S4⊕3�p ⊃ �3p.

From Theorem 6.21, the above logic is a modal companion of Ip ⊕ kc.

Therefore by Lemma 6.13, DLI + dJan properly displays Ip⊕ kc.

GD Gödel-Dummett Logic is axiomatised as Ip ⊕ (p ⊃ q) ∨ (q ⊃ p). We have

already presented a calculus for this logic (Section 6.4).

BD2 This logic can be axiomatised as Ip ⊕ bd2. Notice that bd2 is the formula

p∨ (p ⊃ (q ∨¬q)). From Table 6.4 we see that this formula is characterised

by the class of intuitionistic frames satisfying

∀x(∀y � x)(∀z � y)(x = y ∨ y = z ∨ x = z)

Since intuitionistic frames are antisymmetric, we can simplify this to

∀x(∀y � x)(∀z � y)(Ryx ∨Rzy ∨Rzx))

As an aside, this is an illustration of Rodenburg’s [61] observation that the

‘=’ symbol has no part to play in intuitionistic correspondence theory. In

fact, by the reflexivity of intuitionistic frames, the above is frame-equivalent

to

∀x(∀y � x)(∀z � y)(Ryx ∨Rzy) (6.3)

Because bd2 is canonical, Ip ⊕ Bd2 is sound and complete for the class

of frames satisfying (6.3). Following the procedure in Section 4.2.3, (6.3)

locally corresponds to

∼
∀PQ(∀y � x)(∀z � y)(STx(p) ∧ STy(q)→ STy(3p) ∨ STz(3q))

⇔
∼
∀PQ¬(∃y � x)(∃z � y)(STx(p) ∧ STy(q ∧ ¬3p) ∧ STz(¬3q))

⇔
∼
∀PQ¬(STx(p ∧3(q ∧ ¬3p ∧3¬3q)))

This corresponds to the formula p∧3(q∧¬3p∧3¬3q) ⊃ ⊥ which is frame

equivalent to

(p ∧ ¬⊥) ∧3((q ∧ ¬3p) ∧3(r ∧ ¬3q)) ⊃ ⊥

6.5. LOGICS CHARACTERISED BY SEMANTIC CONDITIONS 185

Since we want to compute the corresponding display rule, we need write this

formula as a frame-equivalent primitive tense formula. From Lemma 5.7 the

above formula is frame-equivalent to

p ∧3(q ∧3r) ⊃ (p ∧ ⊥) ∨3((q ∧3p) ∨3(r ∧3q))

This simplifies to p∧3(q∧3r) ⊃ 3(q∧3p)∨33(r∧3q). From Section 5.1

we compute the display rule

∗ • ∗(M ◦ ∗ • ∗L) ` Z (∗ • ∗)(∗ • ∗)(N ◦ ∗ • ∗M) ` Z
dbd2

L ◦ ∗ • ∗(M ◦ ∗ • ∗N) ` Z

So DLI + dbd2 properly displays Ip⊕ bd2.

GS The greatest semi-constructive logic can be axiomatised as

Ip⊕ {gs, bd2}

where gs is the formula (p ⊃ q)∨(q ⊃ p)∨((p ⊃ ¬q)∧(¬q ⊃ p)). We already

noted that the formula bd2 is canonical. From Ghilardi and Meloni [26] we

may verify that (p ⊃ q) ∨ (q ⊃ p) ∨ ((p ⊃ ¬q) is also canonical. Thus the

logic GS is sound and weakly complete for the class of intuitionistic frames

satisfying (6.3) and the following formula [53]:

∀xyz∃v((Rxv ∧Ryv) ∨ (Ryv ∧Rzv) ∨ (Rxv ∧Rzv)) (6.4)

It is not obvious that the above formula can be written in the form ∀xα
for α ∈ Ar′f∃r′x. However, notice that the logic GS is sound and weakly

complete for the class of rooted intuitionistic frames with root w (say)

satisfying (6.3) and (6.4).

To see this, let FGS (resp. F rGS) denote the class of intuitionistic frames

(intuitionistic frames with root w) satisfying (6.3) and (6.4) (or equivalently,

those frames defined by {gs, bd2}). Let us first show that for any B ∈ ForL,

F rGS |=i B iff FGS |=i B. The right-to-left direction is obvious. For the left-

to-right direction, suppose that F rGS |=i B and FGS 6|=i B. Then there is

some model M based on some F ∈ FGS and state u such that M,u 6|=i B.

Let u↑ be the subframe of F generated by {u}. From Lemma 6.3 we know

that u↑ |=i {gs, bd2} and u↑ 6|=i B. It follows that u↑ is a frame in F rGS
(upto suitable renaming of state variables) on which formula B is not valid.

This contradicts our assumption that F rGS |=i B so we are done.

186 CHAPTER 6. DISPLAYING SUPERINTUITIONISTIC LOGICS

Now notice that on any intuitionistic frame with root w, formula (6.4) is

equivalent to

(∀x�w)(∀y�w)(∀z�w)(∃v�w)(Rxv∧Ryv)∨ (Ryv∧Rzv)∨ (Rxv∧Rzv)

We can compute the corresponding primitive tense formula as

3p ∧3q ∧3r ⊃ 3(_p ∧ _q) ∨3(_q ∧ _r) ∨3(_p ∧ _r)

The corresponding display rule is

∗ • ∗(•L ◦ •M) ` Y ∗ • ∗(•M ◦ •N) ` Y ∗ • ∗(•L ◦ •N) ` Y
dgs∗ • ∗L ◦ ∗ • ∗M ◦ ∗ • ∗N ` Y

Thus DLI + {dbd2, dgs} properly displays the logic GS.

SM Smetanich logic [53] can be axiomatised as Ip⊕{gd, bd2}. Using our results

above we see that DLI + {dgd, dbd2} properly displays SM .

Cp Already done (DLI + dS5).

Negri [53] shows how to construct a labelled sequent calculus for any superintu-

itionistic logic characterised by a certain syntactically specified class of first-order

formulae called geometric implications. In contrast, to compute a display calcu-

lus, we need to express the first-order formulae in terms of Arf∃rx formulae. It

can be checked easily that every Ar′f∃r′x formula can be written as a geometric

implication. However it is unclear if the other direction holds. In particular, we

would like to investigate the following: suppose that the geometric implication g

defines a class F of intuitionistic frames. Then, can we always find some conjunc-

tion α of formulae from α ∈ Ar′f∃r′x such that ∀xα defines F? Or else, under

what conditions does this hold? This is the topic of future research.

Nonetheless, we have seen that for every geometric implication appearing

in [53] and characterising some class of intuitionistic frames, it is straightforward

enough to deduce the equivalent Ar′f∃r′x formula. Finally, we observe that it is

unclear how to write the first-order correspondent of the formula kp as a Ar′f∃r′x
formula, and hence we are unable to provide a display calculus for Kreisel-Putnam

logic Ip ⊕ kp. Since it is also unclear how to write that first-order formula as a

geometric implication, it is unclear if there is a labelled sequent calculus for this

logic either.

Part III

Importing results from labelled

sequent calculi

187

Chapter 7

Labelled tree sequent calculi

Tree-hypersequents [57] and nested sequents [13, 37, 11] are generalisations of the

traditional sequent calculus obtained via the addition of new symbols into the

sequent. It is well-known [12, 57] that these sequents are notational variants of

each other. Here we identify a subclass of the labelled sequents of Negri [52] called

labelled tree sequents that is yet another notational variant of these sequents. The

relationship between these sequents can be extended in the obvious way to calculi

built from these sequents.

Poggiolesi [58] has presented a cutfree tree-hypersequent calculus CSGL for

provability logic GL and posed a question regarding the relationship of this cal-

culus with Negri’s [52] cutfree labelled sequent calculus G3GL for GL — remem-

ber that the labelled sequent framework is more general that the labelled tree

sequent/tree-hypersequent framework. Here we answer this question in full by

presenting transformations between derivations in each system when the deriva-

tion endsequent has the form⇒ A (in CSGL) or⇒ x : A (in G3GL). Poggiolesi

expends considerable effort in proving soundness and completeness for CSGL,

and has to consider numerous cases in the proof of cut-admissibility. Using the

existing results for G3GL we can directly obtain these results for the CSGL cal-

culus. A key aspect of this work is the method of importing results from the

labelled sequent calculus into a labelled tree sequent calculus using a translation

between derivations in these calculi.

Hein [35] has suggested a method of constructing labelled tree sequen calculi

for logics over K axiomatised by formule from a proper subclass of the Lemmon-

Scott axioms [43]. However the cut-elimination result for these calculi is conjec-

tured but not proved. Here we modify Hein’s scheme and obtain cut-elimination

for the resulting calculi for some concrete modal logics. Although we do not yet

189

190 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

have a general proof of cut-elimination, the work here indicates how this problem

can be phrased in terms of the extension of the method of importing results from

suitable labelled sequent calculi into labelled tree sequent calculi.

7.1 Introduction

7.1.1 Tree-hypersequents, nested sequents and labelled

tree sequents

Gentzen [25] introduced the sequent calculus as a tool for studying proof sys-

tems for classical and intuitionistic logics. Gentzen sequent calculi are built from

traditional sequents of the form X ⇒ Y where X and Y are formula multisets.

The main result is the cut-elimination theorem, which shows how to eliminate the

cut-rule from these calculi. The resulting sequent calculi are said to be cutfree. A

significant drawback of the Gentzen sequent calculus is the difficulty of adapting

the calculus to new logics. In particular, these calculi often fail to be modular —

informally this means that there is a weak correspondence between the rules of

the calculus and the logical axioms, so much effort is required to generate new

calculi from an existing calculus, even when the corresponding logics have a close

connection. For example, although there is a cutfree Gentzen sequent calculus

for S4, there is no known cutfree Gentzen calculus for S5 despite the fact that

the logic S5 can be directly obtained from a Hilbert calculus [16] for S4 by the

addition of a single axiom corresponding to symmetry.

This has lead to various generalisations of the Gentzen sequent calculus in an

attempt to present logics using proof systems with nice properties. Hypersequent

calculi [3] generalise Gentzen sequent calculi by using a /-separated list of tradi-

tional sequents (a hypersequent) rather than just a single one. Usually, the order

of the sequents is not important so a multiset can be used instead of a list. In

this case the hypersequent X ⇒ Y/U ⇒ V is the same as U ⇒ V/X ⇒ Y , for

example.

Tree-hypersequents generalise hypersequents through the addition of the sym-

bols ; and () to the syntax, and by attaching importance to the order of the

traditional sequents. Furthermore, the placement of the / and ; symbols play a

crucial role in the semantic meaning of a tree-hypersequent, enabling each tree-

hypersequent to be associated with a tree-like frame (see Definition 4.1). For

example, the tree-hypersequents −/(−/(−;−));− and −/ − / − /(−;−), where

7.1. INTRODUCTION 191

the dashes stand for sequents, correspond to the (tree) frame figures below left

and below right respectively:

__ ??

__ ??

__ ??

OO

OO

Nested sequents (also called deep sequents) have been invented several times

independently (for example, see [13, 37, 11]). Nested sequents generalise the

traditional sequent by permitting a nesting of formulae multisets. The nesting

is denoted through the addition of the symbols [] to the syntax. Indeed, the

nesting of formulae multisets using [] conveys the same semantic information as

the ordering of the symbols /, ; and () in a tree-hypersequent. For example,

the tree figures above left and above right can be written, respectively, as nested

sequents of the following form:

−, [−, [−], [−]], [−] −, [−, [−, [−], [−]]]

It is easy to see that nested sequents and tree-hypersequents are notational vari-

ants of the same object. Following standard notation, we will use a one-sided

sequent to capture the information at each node rather than the two-sided tradi-

tional sequent we used for tree-hypersequents. For this reason, each dash in the

above nested sequents corresponds to a formula multiset.

Labelled sequents [24, 50] generalise the traditional sequent by the prefixing of

indices or labels to formulae occurring in the sequent. As Restall [59] observes,

a labelled sequent can be viewed as a directed graph with sequents at each node

Negri [52] has presented a method for generating cutfree labelled sequent calculi

for a large family of modal logics. These labelled sequent calculi incorporate the

frame accessibility relation into the syntax of the calculi. These calculi are mod-

ular, since a new logic can be presented by the inclusion of a rule corresponding

to the properties of its accessibility relation. In the case of S5 for example, la-

belled sequent rules for reflexivity, transitivity and symmetry are added to the

base calculus.

A labelled tree sequent is a special instance of a labelled sequent where the

underlying graph structure is restricted to a tree. Under this restriction, the

connection between these sequents and tree-hypersequents and nested sequents

becomes apparent.

192 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

Since this chapter concerns mappings between various types of sequent calculi,

for the sake of definiteness, in the following section we present a formal definition

for each type of calculus we will encounter.

7.1.2 Basic definitions

The basic modal languageML is defined using a countably infinite set of proposi-

tional variables pi, the propositional connectives ¬, ∨, ∧ and ⊃, the unary modal

operators � and 3, and the punctuation marks ().

A modal formula is a formula belonging to the set defined by the following

grammar

A ::= p | ¬A | (A ∨B) | (A ∧B) | (A ⊃ B) |�A |3A

where p ranges over the set of propositional variables.

In this chapter we work exclusively with classical modal logics. In this context

we have the freedom of working with certain proper subsets of {¬,∨,∧,⊃,�,3},
as the missing language elements can be defined in terms of the remaining ones.

For example, in Section 7.3 we restrict ourselves to the subset {¬,∧,�}. Then a

modal formula is implicitly taken as being defined by the simplified grammar

A ::= p | ¬A | (A ∧B) |�A

A traditional sequent (denoted X ⇒ Y) is an ordered pair (X, Y) where X (the

‘antecedent’) and Y (the ‘succedent’) are finite multisets of formulae.

The syntactic equality of two structures (such as sequents or formulae) is

denoted using ≡. The negation is denoted 6≡. So, for example ¬¬p 6≡ p although

the formulae ¬¬p and p are logically equivalent in extensions of classical logic.

Definition 7.1 (Gentzen sequent calculus) The Gentzen sequent calculus con-

sists of some set of traditional sequents (the initial sequents) and some set of

inference rules of the form

S1 . . .Sn
S

where the traditional sequents S1, . . . ,Sn are called the premises of the rule, and S
is called the conclusion sequent.

The two common flavours of the cut-rule are the additive cut, where the con-

texts Γ, ∆ are identical in each premise,

7.1. INTRODUCTION 193

Γ⇒ ∆, A A,Γ⇒ ∆
cut

Γ⇒ ∆
and the multiplicative cut

Γ1 ⇒ ∆1, A A,Γ2 ⇒ ∆2
cut

Γ1,Γ2 ⇒ ∆1,∆2

Tree-hypersequent calculi

A tree-hypersequent is built from traditional sequents using the symbols /, ;

and ().

Definition 7.2 A tree-hypersequent is defined inductively as follows:

(i) if S is a traditional sequent, then S is a tree-hypersequent,

(ii) if S is a traditional sequent and G1, G2, . . . , Gn are tree-hypersequents, then

S/G1;G2; . . . ;Gn is a tree-hypersequent.

For the sake of clarify, we will often use parentheses, for example, writing the

tree-hypersequent S/G1; . . . ;Gn as S/(G1; . . . ;Gn), although, strictly speaking,

these symbols are not a part of the formal language.

We will use the following syntactic conventions (possibly with subscripts):

A,B, . . .: modal formulae,

X, Y, U, V,Γ,∆: finite multisets of formulae

S, T : traditional sequents

G,H, . . .: tree-hypersequents.

X, Y , . . .: finite multisets of tree-hypersequents.

Following are some examples of tree-hypersequents:

X ⇒ Y X ⇒ Y/(U ⇒ V ; Γ⇒ ∆) S/((T /X);Y)

Let ∅ denote the empty tree-hypersequent. We write G{H} to mean that the

tree-hypersequent G contains a specific occurrence of the tree-hypersequent H.

Then G{∅} denotes the tree-hypersequent obtained from G{H} by substituting

that specific occurrence of H with the empty tree-hypersequent. The notation

here differs from Poggiolesi [57, 58] where square brackets [] are used instead of

{ }. The square brackets are reserved here for the language of nested sequents.

Given two tree-hypersequents G1{S1} and G2{S2}, the relation of equivalent

position between the traditional sequents S1 and S2 (denoted G1{S1} ∼ G2{S2})
is defined inductively as follows:

194 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

(i) S1 ∼ S2

(ii) S1/X ∼ S2/X
′

(iii) If H1{S1} ∼ H2{S2} then T /(H1{S1};X) ∼ T ′/(H2{S2};X ′) where T
and T ′ are traditional sequents

The intended interpretation I of a tree-hypersequent as a modal formula is

defined as follows

(X ⇒ Y)I = ∧X ⊃ ∨Y
(S/(G1; . . . Gn))I = SI ∨�GI1 ∨ . . . ∨�GIn

Definition 7.3 (tree-hypersequent calculus) Obtained from Definition 7.1

with the phrase ‘traditional sequent’ replaced with ‘tree-hypersequent’.

For brevity, from here onwards we will write THS to stand for the words ‘tree-

hypersequent(s)’.

For THS G{X ⇒ Y,A} ∼ G′{A,U ⇒ V } (so the sequents X ⇒ Y,A and

A,X ⇒ Y are in an equivalent position), define the cut-rule:

G{X ⇒ Y,A} G′{A,U ⇒ V }
cut

G ? G′{X,U ⇒ Y, V }

where X ⇒ Y ⊗U ⇒ V is defined as X,U ⇒ Y, V , and the operator ? is defined

inductively for THS H{S} ∼ H ′{S ′} as follows

(i) S ? S ′ = S ⊗ S ′

(ii) (S/X) ? (S ′/Y) = (S ⊗ S ′/X;Y)

(iii) (T /H{S};X)⊗ (T ′/H ′{S ′};Y) = T ⊗ T ′/(H{S} ? H ′{S ′});X;Y

Remember that S,S ′, T , T ′ denote traditional sequents. The ? operation can be

viewed as a merge operation on trees, and it ensures that the conclusion sequent

of the cut-rule is indeed a THS.

Nested sequent calculi

A nested sequent is a finite multiset of modal formulae and boxed sequents. A

boxed sequent is a term of the form [Γ] where Γ is a nested sequent. Thus a

nested sequent has the form

A1, . . . , Am, [Γ1], . . . , [Γn]

7.1. INTRODUCTION 195

where the {Ai} are modal formulae and the {Γi} are nested sequents. We write

Γ{∆} to denote the nested sequent containing a specific occurrence of ∆. Sim-

ilarly, the notation Γ{} denotes a nested sequent with a single hole which does

not occur inside formulae. The nested sequent Γ{∆} is obtained from Γ{} by

replacing the hole with ∆.

Definition 7.4 (nested sequent calculus) Obtained from Definition 7.1 with

the phrase ‘traditional sequent’ replaced with ‘nested sequent’.

The cut-rule for nested sequent calculi is defined as follows:

Γ{A} Γ{¬A}
cut

Γ{∅}

Labelled sequents and labelled tree sequent calculi

Fitting [24] has described the incorporation of frame semantics into tableau proof

systems for the purpose of obtaining tableau systems for certain logics. Ap-

proaches to internalise the frame semantics into the Gentzen sequent calculus

via the labelling of formulae appear in Mints [50], Vigano [76] and Kushida and

Okada [41]. In this Chapter we use the labelled systems for modal logic presented

in Negri [52].

Assume that we have at our disposal an infinite set SV of variables (‘state

variables’) disjoint from the set of propositional variables. We will use the letters

x, y, z . . . to denote state variables. A labelled formula has the form x : A where x

is a state variable and A is a modal formula. If X = {A1, . . . An} is a multiset

of formulae, then x : X denotes the multiset {x : A1, . . . , x : An} of labelled

formulae. Notice that if the formula multiset X is empty, then x : X is the

empty labelled formula multiset. A relation term is a term of the form Rxy

where x and y are variables. A (possibly empty) set of relations terms is called

a relation set. A labelled sequent (denoted R, X ⇒ Y) is the ordered triple

(R, X, Y) where R is a relation set and X (‘antecedent’) and Y (‘succedent’) are

multisets of labelled formulae.

Definition 7.5 (labelled sequent calculus) Obtained from Definition 7.1 with

the phrase ‘traditional sequent’ replaced by ‘labelled sequent’.

Remark 7.6 (side conditions) Inference rules may contain additional condi-

tions that need to be satisfied in order to apply the rule. Such conditions are called

side conditions. A common side condition for a labelled sequent inference rule is

196 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

a restriction of the form “z does not appear in the conclusion sequent of the rule”

for some schematic variable z. Let us call this type of side condition a standard

variable restriction.

A frame is a pair (W,R) where W is a set of states and R is a binary relation

on W (see Definition 4.1). A frame is said to be rooted if it is generated (see the

discussion preceding Lemma 6.3) by some {x} ⊆ W . In this case, x is called the

root of F . A rooted frame whose underlying undirected graph does not contain

a path from any node back to itself (ie. no cycles) is called a tree. For example,

a frame containing a reflexive state is not a tree. An empty frame is trivially a

tree. Due to the prohibition of cycles, a non-empty tree has exactly one root.

For some relation set R, the set WR consists of all those states that appear

in R. That is,

WR = {x |Rxv ∈ R or Rvx ∈ R for some state v}

Let RR be the binary relation on WR given by (x, y) ∈ RR iff Rxy ∈ R. Then

we say that the frame FR = (WR, RR) is defined by the relation set R.

We say that a relation set R is treelike if the frame defined by R is a tree.

For a non-empty relation set R that is treelike, let root(R) denote the root of

this tree.

To illustrate this definition, consider the relation sets {Rxx}, {Rxy,Ruv},
{Rxy,Rzy}, and {Rxy,Rxz,Ryu,Rzu}. The frames defined by these sets are,

respectively,

x
��

y v

x

OO

u

OO y

x

??

z

__

u

y

??

z

__

x

__ ??

None of the above relation sets are treelike because the frames defined by their

relation sets are not trees. In the above frames from left-to-right, frame 1 contains

a reflexive state (and hence a cycle); frame 2 and frame 3 are not rooted. Finally,

frame 4 is not a tree because the underlying undirected graph contains a cycle.

Definition 7.7 (labelled tree sequent) A labelled tree-sequent is a labelled

sequent of the form R, X ⇒ Y where

(i) R is treelike, and

7.1. INTRODUCTION 197

(ii) if R = ∅ then X has the form {x : A1, . . . , x : An} and Y has the form

{x : B1, . . . , x : Bm} for some state variable x (ie. each labelled formula

in X and Y has the same label), and

(iii) if R 6= ∅ then every state variable x that occurs in either X or Y (as a

labelled formula x : A for some formula A) also occurs in R (ie as a term

Rxu or Rux for some state u).

For example, each of the following is a labelled tree sequent:

x : A⇒ x : A ⇒ y : A Rxy,Rxz, x : A⇒ y : A

Notice that it is possible for a state variable to occur in the relation set and not in

the X, Y multisets (this is what happens with the state variable z in the example

above right). The following are not labelled tree sequents:

x : A⇒ x : A, z : A Rxy, x : A⇒ z : A Rxy,Ryz,Rxz ⇒

From left-to-right above, the first labelled sequent is not a labelled tree sequent

because the relation set is empty and yet two distinct state variables occur in

the sequent (violating condition (ii)). The next sequent violates condition (iii)

because the state variable z appears in the succedent (as z : A) but it does not

appear in the relation set. The final sequent violates condition (i) because the

relation set is not treelike.

Definition 7.8 (labelled tree sequent calculus) A labelled tree sequent cal-

culus is a labelled sequent calculus where only labelled tree sequents may occur.

For brevity, from here onwards we will write LTS to stand for the words ‘labelled

tree sequent(s)’.

Negri [52] uses the following cut-rule cut for labelled sequent calculi:

R1, X ⇒ Y, x : A R2, x : A,U ⇒ V
cutR1 ∪R2, X, U ⇒ Y, V

We cannot use this rule directly in a labelled tree sequent calculus becauseR1∪R2

need not be treelike even if R1 and R2 are treelike. Instead of placing additional

conditions on the cut-rule, we define an ‘additive’ cut-rule for labelled tree sequent

calculi as follows:

R, X ⇒ Y, x : A R, x : A,X ⇒ Y
cutLTSR, X ⇒ Y

198 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

We will close this section by revising standard terminology. The terminology is

applicable to Gentzen/THS/nested sequent/LTS calculi, so in the following we

use the term ‘calculus’ to refer to any one of these systems. Similarly the term

‘sequent’ here refers to a traditional/tree-hyper/nested/labelled tree sequent.

Syntactic cut-admissibility means that the cut-rule is syntactically admissible

— ie. if the premises of a cut-rule instance are derivable (in the calculus in ques-

tion), then there is an effective transformation of the premise derivations leading

to a derivation of the conclusion sequent. Cut-admissibility is an important proof-

theoretic result for a calculus (see Section 1.1). Of course, if the calculus already

contains the cut-rule then syntactic admissibility is obvious. When the calculus

contains the cut-rule, the more meaningful concept is syntactic cut-elimination:

if δ is a derivation in C+ cut then there is an effective transformation to a deriva-

tion δ′ in C with identical endsequent. Syntactic cut-elimination is equivalent to

the statement that syntactic cut-admissibility holds for the calculus without cut.

For example, suppose that we have cut-admissibility for a calculus C. To show

cut-elimination for C + cut, take an arbitrary derivation δ in C + cut. Argue by

induction on the number of cut-rule instances in δ. To prove the inductive case,

choose a topmost cut-rule in δ and invoke the syntactic cut-admissibility result. In

this chapter we deal with cutfree calculi so we focus on syntactic cut-admissibility.

General cut-admissibility is the statement that the conclusion sequent is deriv-

able whenever the premises of a cut-rule are derivable. There is no guarantee here

of an effective transformation for obtaining the conclusion sequent. An example

of such a result would be a semantic proof of cut-admissibility. Clearly syntactic

cut-admissibility implies general cut-admissibility. However it need not be the

case that the reverse direction holds. For, even in a cutfree calculus for a logic,

backward proof search may not necessarily terminate. In other instances, further

argument may be required to avoid loops. Even when general cut-admissibility

implies an algorithm for obtaining a cutfree derivation of a given sequent, from

a proof-theoretical perspective, we observe that the implicit interest is in an al-

gorithm that reveals insights into the proof calculus, for example by opening

up the possibility of generalisation to new logics and new rules. Furthermore,

another implicit motivation for an algorithm witnessing a syntactic proof of cut-

elimination is the ability to obtain bounds on the length of a cutfree derivation

with respect to the original derivation. Note that if we use an exhaustive search to

induce a cutfree derivation, there would be no connection between this derivation

7.2. MAPS BETWEEN THS AND LTS 199

and the original derivation.

A rule instance in the calculus C is a substitution instance of formulae (and

state variables, if applicable) of one of the inference rules from C. An initial

sequent instance in the calculus C is a substitution instance of formulae (and

state variables, if applicable) of an initial sequent from C. A derivation in the

calculus C is defined in the usual way, as either an initial sequent instance, or

an application of a rule instance to derivations of the premises of the rule. If

there is a derivation of some sequent S in C, then we say that S is derivable in C.
The height of a derivation is defined in the usual way as the maximum depth of

the derivation tree. We write `δC S to mean that there is a derivation δ of the

sequent S in C. To avoid having to name the derivation we simply write `C S.

We say that an inference rule ρ is admissible in C if whenever premises of

any rule instance of ρ is derivable in C, then so is the conclusion of the rule

instance. The word effective signifies the presence of an algorithm. If there is

an effective transformation that witnesses the admissibility, then we say that ρ is

syntactically admissible. If a calculus C derives precisely those formulae belonging

to the logic L (ignoring any extraneous information such as labels) we say that C
presents L.

7.2 Maps between THS and LTS

Although the fact that THS and LTS are notational variants is quite apparent,

we will present concrete definitions for the maps witnessing this fact for use in

later sections. The reader who wishes to omit the algorithmic and technical details

concerning the mapping functions and the calculi induced by these functions

may safely proceed to Definition 7.19 (perhaps after reviewing Definition 7.9 and

Definition 7.11).

If X ⇒ Y and U ⇒ V are traditional sequents, recall that we defined X ⇒
Y ⊗U ⇒ V to be the traditional sequent X,U ⇒ Y, V . Overloading the operator,

if R1, X ⇒ Y and R2, U ⇒ V are two labelled sequents, then define R1, X ⇒
Y ⊗R2, U ⇒ V to be the labelled sequent R1 ∪ R2, X, U ⇒ Y, V . Because the

order of elements in a multiset is irrelevant, in each case ⊗ is associative and

commutative.

Definition 7.9 Define the function TLx taking a THS to a labelled sequent as

200 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

follows:

TLx(X ⇒ Y) = x : X ⇒ x : Y

TLx(X ⇒ Y/G1; . . . ;Gn) =
(
⊗nj=1TLyj(Gj)

)
⊗ (Rxy1, . . . , Rxyn, x : X ⇒ x : Y)

where y1, . . . , yn are variables that have not been used already (fresh variables).1

By inspection of the function, it is easy to check that the image of TLx is a labelled

tree sequent. We will sometimes suppress the subscript, writing TL for the sake of

clarity when the state variable that is used is not important. Observe that TLG
assigns a unique state variable to each traditional sequent S appearing in G.

Moreover, given the THS G1{S1} and G2{S2} such that S1 ∼ S2 (traditional

sequents in an equivalent position), without loss of generality we may assume

that the state variable assigned to S1 in TL(G1{S1}) and S2 in TL(G2{S2}) is

identical.

Before introducing the map from a LTS to a THS let us introduce some

notation. Let R be a relation set, and let Γ be a multiset of labelled formulae.

Define the following sets:

Rx = {Rxv |Rxv ∈ R for some state v}
Γx = {x : A |x : A ∈ Γ for some formula A}

So Γx consists of those labelled formulae in Γ that are labelled with the state x.

Notice that if R is treelike and R 6= ∅ then Rroot(R) 6= ∅.
For a relation set R, we define the set Rx↑ to be the relation set defining the

subframe (of the frame defined by R) generated by {x} (when x occurs in R)

and the empty set otherwise. In notation,

Ruv ∈ Rx↑ iff Ruv ∈ Rx or ∃v1, . . . , vn.{Rxv1, . . . , Rvnu,Ruv} ⊆ R

Finally, if Γ is a set of labelled formulae, let ΓR be the labelled formulae that are

labelled with states occurring in R.

Example 7.10 Consider the labelled tree sequent R, X ⇒ Y , where

R = {Rwu,Rwv,Rus,Rut}
X = {w : A,w : B, u : C}
Y = {u : A, v : B, s : C}

1From a technical perspective we should be more precise here. To ensure that a variable is

not reused, the stack of variables available for use needs to be passed to the function at each

call. This can certainly be done — we omit the details here.

7.2. MAPS BETWEEN THS AND LTS 201

Let us illustrate the use of the functions we introduced above. For example, we

have Rw = {Rwu,Rwv} and Rv = ∅; Xw = {w : A,w : B} and Yw = ∅. Also,

Rw↑ = R, Ru↑ = {Rus,Rut} and Rs↑ = ∅. Finally, YRw↑ = Y , YRu↑ = {u : A, s :

C} and YRs↑ = ∅.

Definition 7.11 Define the function LT taking a LTS R, X ⇒ Y to a THS as

follows:

If R = ∅ then R, X ⇒ Y must have the form x : U ⇒ x : V for some state

variable x. Set LT(x : U ⇒ x : V) = U ⇒ V .

Otherwise, for x = root(R) and Rx = {Rxy1, . . . , Rxyn}:

LT(R, X ⇒ Y) =

Xx ⇒ Yx/(LT(Ry1↑, XRy1↑ ⇒ YRy1↑); . . . ;LT(Ryn↑XRyn↑ ⇒ YRyn↑))

Recall that SV denotes the set of state variables. Let V ar(S) ⊂ SV denote

the finite set of state variables occurring in the labelled sequent S. A renaming

of S is a one-to-one function fS : V ar(S) 7→ SV (by one-to-one we mean that if

fS(x) = fS(y) then x = y). We write Dom(fS) and Im(fS) to denote the domain

and image of fS respectively.

For any labelled sequent S ′ and renaming fS of the labelled sequent S, let

S ′fS be the labelled sequent obtained from S ′ by the simultaneous and uniform

substitution x 7→ fS(x) for all x ∈ Dom(fS)∩V ar(S ′). Notice that S ′fS need not

be an LTS even if S ′ is a LTS.

Example 7.12 Consider the following LTS S (below left) and S ′ (below right):

x : A⇒ x : A Rxy, x : A⇒ y : B

Let the renaming fS of S be the function mapping x 7→ y. Then S ′fS is the labelled

sequent Ryy, y : A⇒ y : B. Clearly this sequent is not a LTS.

It is easy to check that if S is a LTS, then for any renaming fS of S, it is the

case that SfS must be a LTS.

Lemma 7.13 Let G denote a THS and let S denote a LTS. Then

(i) TLG is a labelled tree-sequent.

(ii) LTS is a THS.

(iii) LT(TLG) ≡ G, and TL(LTS) ≡ SfS for some renaming fS of S.

202 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

Proof. The proofs of (i) and (ii) are straightforward, following from an inspection

of the functions TL and LT. In the case of (iii), observe that Definition 7.7(iii)

ensures that no labelled formulae are ‘lost’ when passing from S to LTS. However,

since the TL function assigns state variables, it may be necessary to ‘swap’ label

names in order to obtain equality of the LTS TL(LTS) and S. In other words,

there is some renaming fS of S such that TL(LTS) ≡ SfS . Q.E.D.

Lemma 7.14 (substitution lemma) Suppose that C is a LTS calculus and S
is a LTS. Also suppose that the inference rules in C have no side conditions, or a

standard variable restriction (see Remark 7.6). Let fS be an arbitrary renaming

of S. If `δC S then there is an effective transformation to a derivation δ′ such

that `δ′C SfS .

Proof. Induction on the height of δ. If the height is one, then δ must be an

initial sequent. It is easy to see that SfS is also an initial sequent.

Now suppose that the last rule in δ is the LTS inference rule ρ, with premises

S1, . . . ,Sn. Although each Si is a LTS, if ∪iV ar(Si) contains state variables not

in S (for example, due to a standard variable restriction on ρ), it is possible that

(Si)fS is not a LTS even if Si is a LTS.

For example, suppose that f is the renaming x 7→ y of the LTS ⇒ x : �A,

and consider the following rule instance of ρ:

S1 = Rxy, y : �A⇒ y : A
S = ⇒ x : �A

Then (S1)f is the labelled sequent Ryy, y : �A ⇒ y : A which is not a LTS

(because the relation set contains the cycle Ryy) although S1 is a LTS.

Returning to the proof, notice that we can always define a one-to-one function

g from ∪iV ar(Si) \ Dom(fS) to fresh state variables (in particular, to variables

outside Im(fS)). Then ((Si)g)fS is a LTS. Then ((·)g)fS implicitly defines a

renaming V ar(Si) 7→ SV for Si for each i. So ((Si)g)fS is a LTS.

Continuing the example above, set g as the map y 7→ z, so

((S1)g)f = Ryz, z : �A⇒ z : A

(Sg)f = ⇒ y : �A

and this is a legal rule instance of ρ.

Once again, returning to the proof, by the induction hypothesis we can obtain

derivations of ((Si)g)fS in C. Moreover, observe that

7.2. MAPS BETWEEN THS AND LTS 203

((S1)g)fS . . . ((Sn)g)fS
(Sg)fS

is a rule instance of ρ. Hence we have a derivation of (Sg)f . Since V ar(S) ∩
Dom(g) = ∅, it follows that (Sg)fS = SfS . Q.E.D.

We remind the reader that this substitution lemma pertains to LTS calculi as

given in Definition 7.8. In particular, this lemma may not apply to calculi con-

taining pathological rules that are not invariant under renaming, such as the

following rule:

x 6= a
(a is some fixed state variable)

x : A⇒ x : B

Inference rules induced by TL and LT

We will now look at how to construct an inference rule for THS from an inference

rule for LTS and vice versa.

1. Let ρ be an inference rule built from LTS. Following standard terminology

(for example, see [70, 52]), any labelled formula that ‘appears’ or ‘disappears’

when moving from a premise to the conclusion of the inference rule is called a

principal formula. A principal element in an inference rule ρ is either a principal

formula of ρ or an occurrence of a term Ruv such that ρ contains a principal for-

mula with label u or v. The remaining terms are referred to as context elements.

The image LTρ of ρ under LT is obtained as follows. Each LTS Si occurring

in ρ is mapped to a THS of the form Gi{(X ⇒ Y/X) +Hi} where the structure

Gi{(X ⇒ Y/X)} corresponds to the context in Si (and any standard variable

restriction), the structure of Hi is computed by an analysis of the principal for-

mulae in Si, and the symbol + is used informally to mean that the terms in Hi

should be ‘appropriately’ inserted into the Gi{(X ⇒ Y/X)}. Finally, LTρ is

obtained by substituting Gi{(X ⇒ Y/X) +Hi} for each Si in ρ. This procedure

is best illustrated by an example.

Example 7.15 We will first look at an LTS inference rule without any standard

variable restrictions. Consider the inference rule L�:

R,
principal︷︸︸︷
Rxy , x : �A,Γ⇒ ∆,

principal︷ ︸︸ ︷
y : �A R, x : �A,

principal︷ ︸︸ ︷
Rxy, y : A,Γ⇒ ∆

L�R, Rxy︸︷︷︸
principal

, x : �A,Γ⇒ ∆

204 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

Consider the left premise of L�. This LTS can be written

R, x : �A,Γ⇒ ∆︸ ︷︷ ︸
context

⊗Rxy ⇒ y : �A︸ ︷︷ ︸
principal

Since there are no restrictions on Γ, ∆ or R (apart from it being treelike) —

we can write its image under LT as THS G{�A,X ⇒ Y/X} where the variable

corresponding to X ⇒ Y (under LT) is x and G and X are arbitrary THS, and X

and Y are arbitrary labelled formula multisets. The image H of the principal

elements is LT(Rxy ⇒ y : �A) which is simply ⇒ /⇒ �A. Then G{(�A,X ⇒
Y/X) +H} becomes

G{(�A,X ⇒ Y/X) + (⇒ /⇒ �A)}

which can be written G{�A,X ⇒ Y/(U ⇒ V,�A/X ′)}. Because G was arbi-

trary, we can simplify the notation by absorbing the X ′ term to get G{A,X ⇒
Y/U ⇒ V,�A}. Applying this procedure to the remaining premise sequent and

the conclusion we obtain the rule LT(L�):

G{�A,X ⇒ Y/(U ⇒ V,�A/X)} G{�A,X ⇒ Y/(A,U ⇒ V/X)}
LT(L�)

G{�A,X ⇒ Y/(U ⇒ V/X)}

Example 7.16 Now let us look at an inference rule with a standard variable

restriction. Consider the following inference rule R� constructed from LTS:

R,
principal︷ ︸︸ ︷

Rxy, y : �A,Γ⇒ ∆,

principal︷ ︸︸ ︷
y : A

R�R,Γ⇒ ∆, x : �A︸ ︷︷ ︸
principal

where y does not appear in the conclusion of the rule.

We can write the premise sequent as a product of context elements and prin-

cipal elements:

R,Γ⇒ ∆︸ ︷︷ ︸
context

⊗Rxy, y : �A⇒ y : A︸ ︷︷ ︸
principal

Similarly we can write the conclusion sequent as follows:

R,Γ⇒ ∆︸ ︷︷ ︸
context

⊗⇒ x : �A︸ ︷︷ ︸
principal

Notice that R,Γ ⇒ ∆ is no longer completely arbitrary because of the variable

restriction. The image of R,Γ ⇒ ∆ under LT can be written G{X ⇒ Y/X}

7.2. MAPS BETWEEN THS AND LTS 205

where the variable assigned to X ⇒ Y is taken to be x, and no traditional sequent

in X is assigned the variable y. Meanwhile we have

LT(Rxy, y : �A⇒ y : A) =

x︷ ︸︸ ︷
⇒ /

y︷ ︸︸ ︷
�A⇒ A

LT(⇒ x : �A) = ⇒ �A︸ ︷︷ ︸
x

(the braces identify traditional sequents corresponding to the state variables).

Then the image of the premise sequent is G{(X ⇒ Y/X) + (⇒ /�A⇒ A)}
which simplifies to G{X ⇒ Y/(�A ⇒ A;X)} (notice that there is no ‘mix-

ing’ of the sequent �A ⇒ A and X because no traditional sequent in X is as-

signed the variable y). We can simplify the notation by absorbing the X to get

G{X ⇒ Y/�A ⇒ A}, where it is implicit that G{X ⇒ Y } does not contain

a sequent corresponding to the variable y. Then the image of the conclusion se-

quent is simply G{X ⇒ Y + (⇒ �A)} which becomes G{X ⇒ Y,�A}. So we

ultimately obtain the rule LT(R�):

G{X ⇒ Y/�A⇒ A}
LT(R�)

G{X ⇒ Y,�A}

2. Let ρ be a rule constructed from LTS. The image of ρ under TL is ob-

tained in a reverse of the procedure described above. We will also need to add a

standard variable restriction of the form “z does not appear in the conclusion of

TLρ” whenever a traditional sequent in ρ (corresponding to the state variable z

under TL) ‘disappears’ when moving from premise to conclusion. This definition

requires further explication. For the purposes of clarity, rather than providing a

technical definition, we will illustrate with an example.

Example 7.17 Consider the THS rule �Kgl.

G{X ⇒ Y/�A⇒ A}
�Kgl

G{X ⇒ Y,�A}

Notice that the sequent �A ⇒ A in the premise disappears in the conclusion.

Formally, there is no traditional sequent S in the equivalent position (∼) to �A⇒
A. Let us compute TL�Kgl. For the premise we have

TLxG{X ⇒ Y/�A⇒ A} = TLxG{X ⇒ Y/∅} ⊗ (v : �A⇒ v : A)

where u is the variable corresponding to the traditional sequent X ⇒ Y in G{X ⇒
Y/∅}, and v is the variable corresponding to ∅. Remember that in general x 6=

206 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

u since x corresponds to the ‘root sequent’ in G{∅} and u corresponds to the

occurrence of ∅. For the conclusion sequent we have

TLxG{X ⇒ Y,�A} = TLxG{X ⇒ Y } ⊗ (u : �A)

where once again u is the variable corresponding to the traditional sequent X ⇒ Y

in G{X ⇒ Y }. However, notice that there is no traditional sequent in G{X ⇒
Y } corresponding to the variable v.

Now, TLxG{X ⇒ Y/∅} can be written R, Ruv,Γ⇒ ∆ where R is a relation

set with root x and there is no occurrence of the variable v in R, Γ or ∆. Then

TLxG{X ⇒ Y } becomes R,Γ⇒ ∆. We thus obtain the LTS rule TL�Kgl.

R, Ruv, v : �A,Γ⇒ ∆, v : A TL�KglR,Γ⇒ ∆, u : �A

with the standard variable restriction “v does not occur in the the conclusion of

TL�Kgl”.

We advise the reader that these procedures can usually be executed on sight.

Notice that the image LT(R�) of the LTS inference rule R� (Example 7.16)

is precisely the THS inference rule �Kgl. Also the image TL�Kgl of the THS

inference rule �Kgl (Example 7.17)) is precisely the LTS inference rule R� (upto

variable renaming). Thus TL(LT(R�)) is identical to R� (upto variable renam-

ing), and LT(TL�Kgl) is identical to �Kgl. An inspection of the above proce-

dures reveal that this is true for arbitrary inference rules. That is, for any THS

inference rule ρ we have that TL(LTρ) is identical to ρ (upto variable renaming)

and for any LTS inference rule ρ we have LT(TLρ) ≡ ρ.

Remark 7.18 The THS inference rules we discussed above contain no side con-

dition. The LTS inference rules we looked at were permitted to contain only the

standard variable restrictions. Although we have defined the THS and LTS cal-

culi to comprise of inference rules of these forms only, it is clear that inference

rules for THS and LTS calculi may well contain other types of side conditions

as well. For example, the cut-rule cut for THS we introduced in Section 7.1.2

imposes the condition that the sequents containing the cut-formulae must be in an

equivalent position. Similarly, the cut-rule TLcut for LTS imposes the condition

that the the union of the relation sets of the premise sequents is treelike.

Since the variety of side conditions is seemingly limitless, we have looked only

at the conditions that we will encounter later. We do observe that the TLcut rule

can be obtained from the rule cut by a similar analysis to the above.

7.2. MAPS BETWEEN THS AND LTS 207

Calculi induced by TL and LT

We can now construct a THS calculus from a LTS calculus and vice versa.

Definition 7.19 (calculi induced by TL and LT) If C is a THS calculus,

then let TLC denote the calculus consisting of the image of every initial sequent

and inference rule in C under TL.

Next, if C is a LTS calculus, then let LTC denote the calculus consisting of

the image of every initial sequent and inference rule in C under LT.

We are ready to prove some properties of these calculi.

Lemma 7.20 Let C be a THS calculus. Then,

(i) for any THS G, `C G iff `C LT(TLG)

(ii) for any LTS S, `TLC S iff `C TL(LTS)

Proof. Immediate from Lemma 7.13 and Lemma 7.14. Q.E.D.

Lemma 7.21 (i) The THS calculi C and LT(TLC) derive exactly the same set

of THS. (ii) The LTS calculi C and TL(LTC) derive exactly the same set of

LTS.

Proof. Proof of (i). From Lemma 7.13 we know that LT(TLG) ≡ G for any

THS G, so the calculi C and LT(TLC) are identical.

Proof of (ii). Consider the LTS calculi C and TL(LTC). By the way we

defined the mapping functions, it should be clear that the two calculi are identical

modulo some renaming of state variables in the initial sequents, inference rules

and standard variable restrictions. Lemma 7.14 assures us that the identical LTS

are derivable so we are done. Q.E.D.

Lemma 7.22 Let C be a THS calculus. Then,

(i) for any THS G, `C G iff `TLC TLG

(ii) for any LTS S, `TLC S iff `C LTS

In each case, the respective derivations in C and TLC have identical height.

208 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

Proof. Proof of (i). Suppose that `δC G. We need to show that TLG is derivable

in TLC. We can obtain a derivation δ′ of TLG from δ by replacing every THS G′

appearing in δ with TLG′, and every rule ρ with TLρ — by the definition of TLC,
the resulting object is a derivation in the calculus TLC with endsequent TLG.

In particular, notice that if ρ is a legal rule instance in C, then TLρ will obey

any relevant standard variable restrictions in TLC. Moreover, by construction, δ

and δ′ have identical height.

Proof of (ii) is analogous to the above. Q.E.D.

Corollary 7.23 For any THS calculus C and modal formula A we have `C⇒ A

iff `TLC⇒ x : A. Moreover the translation from one derivation to the other is

effective.

Proof. Immediate from Lemma 7.22. Effectiveness of the translation follows

from an inspection of the algorithm given there. Q.E.D.

7.3 Poggiolesi’s CSGL and Negri’s G3GL

Recently Negri [52] presented a labelled sequent calculus G3GL for provability

logic GL as part of a systematic program to present labelled sequent calculi for

modal logics. Subsequently Poggiolesi [58] presented the THS calculus CSGL

and proved soundness and completess forGL as well as syntactic cut-admissibility.

In this section, we begin by presenting the THS calculus CSGL. Using the

procedures we described in the previous section, we then obtain the LTS calculus

TLCSGL. Next we present Negri’s [52] labelled sequent calculus G3GL. A key

aspect of this work is showing that we can import results from G3GL to the LTS

calculus TLCSGL (Theorem 7.27). Using Corollary 7.23 we then establish the

following:

(i) We answer in full a question raised by Poggiolesi [58] regarding the ex-

act relationship between the calculi G3GL and CSGL. In particular, we

demonstrate a translation between the two systems.

(ii) We show that CSGL is sound and complete for provability logic GL and

prove syntactic cut-admissibility. Poggiolesi [58] needs to invoke the seman-

tics of the logic to prove soundness, and has to consider the many cases

that arise in the cut-admissibility proof. The novelty of our proof is that

we show how to use the existing soundness and completeness result and the

7.3. POGGIOLESI’S CSGL AND NEGRI’S G3GL 209

Initial THS: G{p,X ⇒ Y, p} G{�A,X ⇒ Y,�A}

Propositional rules:

G{X ⇒ Y,A}
¬A

G{¬A,X ⇒ Y }
G{A,X ⇒ Y }

¬K
G{X ⇒ Y,¬A}

G{A,B,X ⇒ Y }
∧A

G{A ∧B,X ⇒ Y }
G{X ⇒ Y,A} G{X ⇒ Y,B}

∧K
G{X ⇒ Y,A ∧B}

Modal rules:

G{�A,X ⇒ Y/(U ⇒ V,�A/X)} G{�A,X ⇒ Y/(A,U ⇒ V/X)}
�Agl

G{�A,X ⇒ Y/(U ⇒ V/X)}

G{X ⇒ Y/�A⇒ A}
�Kgl

G{X ⇒ Y,�A}

Special logical rule:

G{�A,X ⇒ Y/(�A,U ⇒ V/X)}
4

G{�A,X ⇒ Y/(U ⇒ V/X)}

Table 7.1: The THS calculus CSGL [58]

syntactic cut-admissibility result for G3GL. Since many proof-theoretical

properties (invertibility of inference rules, for example) are preserved under

the notational variants translation we can get these results for ‘free’ as well,

alleviating the need for independent proofs of these results.

7.3.1 The calculus CSGL and TLCSGL

Poggiolesi’s THS calculus CSGL [58] is presented in Table 7.1. From this calculus

we can construct the LTS calculus TLCSGL (Table 7.2).

For a relation term or labelled formula α, we introduce the left and right

weakening rules:

R,Γ⇒ ∆
LWLTSR, α,Γ⇒ ∆

R,Γ⇒ ∆
RWLTSR,Γ⇒ ∆, α

with a restriction on α in each case to ensure that the conclusion sequent of each

rule is a LTS whenever the premise sequent is a LTS.

Next we introduce the left and right contraction rules:

210 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

Initial LTS: R, x : p,Γ⇒ ∆, x : p R, x : �A,Γ⇒ ∆, x : �A

Propositional rules:

R,Γ⇒ ∆, x : A
¬AR, x : ¬A,Γ⇒ ∆

R, x : A,Γ⇒ ∆
¬KR,Γ⇒ ∆, x : ¬A

R, x : A, x : B,Γ⇒ ∆
∧AR, x : A ∧B,Γ⇒ ∆

R,Γ⇒ ∆, x : A R,Γ⇒ ∆, x : B
∧KR,Γ⇒ ∆, x : A ∧B

Modal rules:

R, Rxy, x : �A,Γ⇒ ∆, y : �A R, Rxy, x : �A, y : A,Γ⇒ ∆ TL�AglR, Rxy, x : �A,Γ⇒ ∆

R, Rxy, y : �A,Γ⇒ ∆, y : A TL�KglR,Γ⇒ ∆, x : �A

where y does not appear in the conclusion of TL�Kgl.

Special logical rule:

R, Rxy, x : �A, y : �A,Γ⇒ ∆
TL4R, Rxy, x : �A,Γ⇒ ∆

Table 7.2: The LTS calculus TLCSGL

R, x : A, x : A,Γ⇒ ∆
LCR, x : A,Γ⇒ ∆

R,Γ⇒ ∆, x : A, x : A
RCR,Γ⇒ ∆, x : A

Lemma 7.24 The rules LWLTS and RWLTS for weakening and the rules LC and

RC for contraction are height-preserving syntactically admissible in TLCSGL.

Proof. Poggiolesi [58] shows that the corresponding THS rules (ie. the weaken-

ing and contraction rules under LT) are height-preserving syntactically admissi-

ble in CSGL. By Theorem 7.22, the mapping between derivations in CSGL and

TLCSGL is height-preserving. Hence the analogous results apply to TLCSGL
too, so we are done. Q.E.D.

7.3.2 Negri’s calculus G3GL

If we compare the TLCSGL calculus with Negri’s labelled sequent calculus G3GL

for provability logic GL, the only differences are that

(i) The condition that the relation set of every labelled sequent is treelike is

removed, and

7.3. POGGIOLESI’S CSGL AND NEGRI’S G3GL 211

(ii) G3GL does not contain the ‘Special logical rule’ TL4, and

(iii) G3GL contains the following initial sequent (below left) and inference rule

(below right):

R, Rxx,Γ⇒ ∆ (Irref)
R, Rxz,Rxy,Ryz,Γ⇒ ∆

(Trans)R, Rxy,Ryz,Γ⇒ ∆

For those rules in G3GL that also occur in TLCSGL, we will use the rule

labelling of TLCSGL. For example, we write TL�Kgl instead of the label R�−L
used in [52]. Strictly speaking, the calculus G3GL also contains rules for the

disjunction and implication connectives. Since these connectives can be written

in terms of negation and conjunction, for our purposes there is no harm in this

omission. The weakening rules LW and RW are obtained from LWLTS and

RWLTS by dropping the term restriction on α. The rules LW and RW as well as

the contraction rules LC and RC are height-preserving admissible in G3GL [52].

Theorem 7.25 (Negri) The labelled sequent calculus G3GL (i) has syntactic

cut-admissibility, and (ii) presents the logic GL.

Proof. See Negri [52]. Q.E.D.

7.3.3 Results

Poggiolesi [58] states (in the “Conclusions and further work” section):

“As it has probably already emerged in the previous sections,

CSGL is quite similar to Negris calculus G3GL [see [52]]: indeed,

except for the rule 4 that only characterizes CSGL, the propositional

and modal rules of the two calculi seem to be based on a same intu-

ition. Given this situation, a question naturally arises: what is the

exact relation between the two calculi? Is it possible to find a trans-

lation from the THS calculi to the labeled calculi and vice versa?”

We will need the following lemma.

Lemma 7.26 The following rule is syntactically admissible in TLCSGL:

Rxy,Ryz,Rxu,R, X ⇒ Y
(Trans′)

Rxy,Ryz,R[z/u], X[z/u]⇒ Y [z/u]

where u does not appear in the premise sequent.

212 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

Proof. The argument is a standard induction on the height of the premise

derivation. For example, suppose that the last rule in the premise derivation is

TL4, so we have

...
Rxy,Ryz,Rxu,R, x : �A, u : �A,X ⇒ Y

TL4R, Rxy,Ryz,Rxu,R, x : �A,X ⇒ Y

From Rxy,Ryz,Rxu,R, x : �A, u : �A,X ⇒ Y , by the induction hypothesis we

can obtain a derivation of Rxy,Ryz,R[z/u], x : �A, z : �A,X[z/u] ⇒ Y [z/u].

Then

Rxy,Ryz,R[z/u], x : �A, z : �A,X[z/u]⇒ Y [z/u]
LWLTS

Rxy,Ryz,R[z/u], x : �A, y : �A, z : �A,X[z/u]⇒ Y [z/u]
TL4

Rxy,Ryz,R[z/u], x : �A, y : �A,X[z/u]⇒ Y [z/u]
TL4

Rxy,Ryz,R[z/u], x : �A,X[z/u]⇒ Y [z/u]

This is the required derivation.
Next, suppose that the last rule in the premise derivation is TL�Agl, so

...
Rxy,Ryz,Rxu,R, x : �A,X ⇒ Y, u : �A

...
Rxy,Ryz,Rxu,R, x : �A, u : A,X ⇒ Y

TL�Agl
Rxy,Ryz,Rxu,R, x : �A,X ⇒ Y

From the premise sequents of TL�Agl, by the induction hypothesis we can obtain

derivations of the following two sequents:

Rxy,Ryz,R[z/u], x : �A,X[z/u]⇒ Y [z/u], z : �A

Rxy,Ryz,R[z/u], x : �A, z : A,X[z/u]⇒ Y [z/u]

Applying LWLTS(y : �A) to each sequent we get, respectively,

Rxy,Ryz,R[z/u], x : �A, y : �A,X[z/u]⇒ Y [z/u], z : �A

Rxy,Ryz,R[z/u], x : �A, y : �A, z : A,X[z/u]⇒ Y [z/u]

Applying TL�Agl to these sequents we get

. . . TL�Agl
Rxy,Ryz,R[z/u], x : �A, y : �A,X[z/u]⇒ Y [z/u]

TL4
Rxy,Ryz,R[z/u], x : �A,X[z/u]⇒ Y [z/u]

This is the required derivation. The other cases are similar. Q.E.D.

The LTS rule (Trans′) corresponds to the following tree-hypersequent rule under

the mapping LT:

7.3. POGGIOLESI’S CSGL AND NEGRI’S G3GL 213

G{X ⇒ Y/(U ⇒ V/S ⇒ T/X); (L⇒M/X ′)}
G{U ⇒ V/(U,L⇒ V,M/X;X ′)}

The main result in this section is the following result which connects Negri’s

labelled sequent calculus G3GL and the labelled tree sequent calculus TLCSGL.

Together with Corollary 7.23, this completely answers the question posed in Pog-

giolesi [58].

Theorem 7.27 For any modal formula A, `TLCSGL⇒ x : A iff `G3GL⇒ x : A.

Moreover the translation between the corresponding derivations is effective.

Proof. The translation is effective due to the constructive transformations that

we will use.

For the left-to-right direction it suffices to show that TL4 is syntactically

admissible in G3GL. First, working in G3GL (note that because we are working

in a labelled sequent calculus but not a LTS calculus, the relation sets that occur

in the derivation need not be treelike), observe that:

z : �A⇒ z : �A
Rxz, x : �A, z : �A⇒ z : A, z : �A

z : A⇒ z : A
Rxz, z : A, x : �A, z : �A⇒ z : A TL�Agl

Rxz, x : �A, z : �A⇒ z : A
LW

Rxy,Ryz,Rxz, x : �A, z : �A⇒ z : A
(Trans)

Rxy,Ryz, x : �A, z : �A⇒ z : A TL�Kgl
Rxy, x : �A⇒ y : �A

Suppose that we are given a derivation of the premise R, Rxy, y : �A, x :

�A,X ⇒ Y of TL4. From the cut-rule and the above derivation we get a

derivation of R, Rxy, x : �A, x : �A,X ⇒ Y . By Theorem 7.25 we can obtain

a cutfree derivation of this sequent. Since the left contraction rule LC is admis-

sible in G3GL [52], we get Rxy, x : �A,X ⇒ Y and thus TL4 is syntactically

admissible in G3GL.

For the right-to-left direction, suppose that `δG3GL⇒ x : A for some deriva-

tion δ. We will show how to transform δ into a derivation in TLCSGL of the

same sequent.

We observe first that δ does not contain any occurrences of the initial sequent

(Irref). To see this, observe that in any G3GL derivation, viewed downwards,

a state variable occurrence y can disappear from premise sequent to conclusion

sequent only via the TL�Kgl rule — all the other rules preserve the set of state

variables in the relation set. The side condition of TL�Kgl enforces that the

variable y appears exactly once in the relation set of the premise of TL�Kgl (in a

term of the form Rxy for some variable x distinct from y). Now, if δ contains the

214 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

initial sequent (Irref) R, Ryy,X ⇒ Y , then the relation set of the initial sequent

contains at least two occurrences of y. It follows that the relation set of every

sequent below this initial sequent in δ will contain at least two occurrences of y,

contradicting the fact that the endsequent of δ has the form ⇒ x : A.

To obtain a derivation of ⇒ x : A in TLCSGL, it suffices to show that we

can transform δ by eliminating all instances of (Trans) while ensuring that every

sequent in the transformed derivation is a LTS.

Obviously the endsequent ⇒ x : A of δ is a LTS. Working upwards from

the endsequent towards the initial sequents, by inspection, every rule with the

exception of the (Trans) rule has the property that if the conclusion sequent is a

LTS, then so are the premise sequents. Working upwards from the endsequent,

suppose we encounter the following occurrence of the (Trans) rule, where the

conclusion sequent R, Rul, Rlv,X ⇒ Y is a LTS:

...
Rul,Rlv, Ruv,R, X ⇒ Y

(Trans)
Rul,Rlv,R, X ⇒ Y

...
⇒ x : A

Clearly the premise sequent R, Rul, Rlv, Ruv,X ⇒ Y of (Trans) is not a LTS

because the relation set is not treelike. We claim that we can transform the deriva-

tion of R, Rul, Rlv, Ruv,X ⇒ Y into a derivation of R, Rul, Rlv, Rus,X ⇒ Y

where s is a state variable not appearing in the original derivation. Then applying

(Trans′) we can obtain the conclusion sequent R, Rul, Rlv,X ⇒ Y having at the

same time deleted the original occurrence of (Trans). By repeatedly applying

this argument we can obtain a derivation of ⇒ x : A containing no occurrences

of (Trans). Because the (Trans ′) rule is syntactically admissible in TLCSGL the

result follows.

Proof of the claim. The proof is by induction on the height of the premise

derivation of Rul,Rlv, Ruv,R, X ⇒ Y . If the premise derivation is an initial

sequent of the form Rul,Rlv, Ruv,R, q : p,X ⇒ Y, q : p then we can replace this

with Rul,Rlv, Rus,R, q : p,X ⇒ Y, q : p for some fresh state variable s. This is

clearly a LTS so we are done.
Now suppose that the last rule in this derivation is TL�Agl so we have

Rul,Rlv,Ruv,R, u : �C,X ⇒ Y, v : �C Rul,Rlv,Ruv,R, u : �C, v : C,X ⇒ Y
TL�Agl

Rul,Rlv,Ruv,R, u : �C,X ⇒ Y

7.3. POGGIOLESI’S CSGL AND NEGRI’S G3GL 215

By the induction hypothesis we can obtain derivations of the following sequents:

Rul,Rlv, Rus,R, u : �C,X ⇒ Y, v : �C

Rul,Rlv, Rus,R, u : �C, v : C,X ⇒ Y

for a variable s not appearing in the original derivation. Applying LWLTS(l : �C)

to each sequent we get, respectively

Rul,Rlv, Rus,R, u : �C, l : �C,X ⇒ Y, v : �C

Rul,Rlv, Rus,R, u : �C, l : �C, v : C,X ⇒ Y

Applying TL�Agl to these sequents we get

. . . TL�Agl
Rul,Rlv, Rus,R, u : �C, l : �C,X ⇒ Y

TL4
Rul,Rlv, Rus,R, u : �C,X ⇒ Y

By admissibility of (Trans ′) we obtain a derivation of Rul,Rlv,R, u : �C,X ⇒ Y

as required. The other cases are straightforward. Q.E.D.

Negri uses the initial sequent R, Rxx,Γ ⇒ ∆ (Irref) in the proof of cut-

admissibility for G3GL to argue that there cannot be a labelled sequent with a

relation set (in our terminology) containing {Rxx1, Rx1x2, . . . Rxnx} (a ‘loop’).

We saw above that (Irref) cannot occur in any G3GL derivation of a sequent of

the form⇒ x : A. By definition, the relation set of a LTS can never contain such

a loop so there is no initial LTS in TLCSGL corresponding to (Irref) in G3GL.

Theorem 7.28 The calculus CSGL (i) presents the logic GL, and (ii) has syn-

tactic cut-admissibility.

Proof. Follows from Theorem 7.25 using Corollary 7.23 and Theorem 7.27.

Q.E.D.

Note that although the above proofs make use of the results for G3GL [52],

these results are syntactic because the proofs for G3GL are syntactic.

It is not clear if the cutfree LTS calculus (TLCSGL)s obtained from TLCSGL
by substituting the rule TL4 with the rule (Trans′) is sound and complete for GL.

216 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

7.4 Generalised Hein’s scheme

A cutfree system is said to be modular (for some set) if there are inference rules

corresponding to each modal axiom and the addition of any combination of these

rules to the base calculus is sound and complete for the corresponding logic.

Kracht’s Display Theorem I [39] (see Section 5.1) specifies how to construct for

every primitive tense formula ti a set {ρij}j of display rules, so that any exten-

sion Kt⊕ {ti}i∈T of the basic tense logic Kt by primitive tense formulae {ti}i∈T
is properly displayed by the display calculus DLM + {ρij}ij. It follows that

these calculi are modular for the set of primitive tense formulae. In a similar

vein, Negri [52] has shown how to construct a labelled sequent inference rule cor-

responding to a given geometric formulae such that any modal logic with frame

semantics described by some finite number of geometric formulae can be presented

by extending the labelled sequent calculus G3K for K with the corresponding

rules. Note that although Negri’s characterisation is semantic in the sense that

the applicable logics need to be specified in terms of their frame semantics, for ge-

ometric formulae belonging to the Kracht fragment — such as the class Ar′f∃r′x
(see Section 5.2.3), for example — we could just as easily characterise these log-

ics syntactically using the modal (Sahlqvist) correspondent of these formulae (see

Section 4.2). Indeed, in the reverse direction, should we wish, we could express

Display Theorem I in semantic terms making use of the semantic characterisation

of primitive tense formulae (see Section 5.1.2).

These results aside, the construction of modular cutfree systems for Gentzen

sequent calculi and its variants is generally regarded as a challenging problem. In

the context of nested sequents, Brünnler and Straßburger [12] have suggested that

the key to obtaining modular systems might be the use of nested sequent struc-

tural rules (these are nested sequent inference rules containing no occurrences of

formulae). Using such rules, Brünnler and Straßburger have presented modular

cutfree nested sequent systems for the logics K ⊕ X where X ⊆ {T, 4, B, 5, D}
(see Table 7.3).

Since nested sequents are a notational variant of LTS, these results can be

viewed from a LTS perspective. Let us use the term relation rule2 to mean a

labelled sequent inference rule containing no schematic formula variables. Then

it is easy to verify that the class of nested sequent structural rules corresponds

exactly to the class of relation rules. Hein [35] has proposed a method for ob-

2We have reserved the term ‘structural rule’ for the contraction and weakening rules of the

calculus.

7.4. GENERALISED HEIN’S SCHEME 217

Name Axiom Frame property

T �p ⊃ p ∀x.Rxx reflexivity

4 �p ⊃ ��p ∀xyz(Rxy ∧Ryz → Rxz) transitivity

5 3�p ⊃ �p ∀xyz(Rxy ∧Rxz → Ryz) euclideanness

B p ⊃ �3p ∀xy(Rxy → Ryx) symmetry

3 �(�p ⊃ q) ∨�(�q ⊃ p) ∀xyz(Rxy ∧Rxz → (Ryz ∨Rzy)) connectedness

D �p ⊃ 3p ∀x∃y.Rxy seriality

2 3�p ⊃ �3p ∀xyz(Rxy ∧Rxz → ∃w(Ryw ∧Rzw)) directedness

Table 7.3: Some modal axioms and their global first-order frame correspondents.

The formulae T , 4, B and 5 are 3/4 Lemmon-Scott axioms.

taining LTS inference rules for formulae belonging to the class of so-called 3/4

Lemmon-Scott axioms, by ‘unfolding’ the problematic relation sets in Negri’s

rules. Hein then shows how to obtain LTS calculi for logics over K axiomatised

by these formulae. However, these calculi contain the cut-rule and no proof of

cut-elimination is presented.

Here we first generalise Hein’s inference rules and then obtain cut-elimination

and a proof of modularity for some of the resulting calculi, making use of the

results of Brünnler and Straßburger [12]. This indicates that the Generalised

Hein’s scheme for obtaining LTS inference rules from 3/4 Lemmon-Scott axioms

seems to ‘work’ in the sense that it leads to cutfree systems for at least some of

these axioms. This is interesting because it raises the possibility that we may be

able to obtain an algorithm for obtaining LTS calculi (and hence nested sequent,

THS calculi) for 3/4 Lemmon-Scott logics through a suitable generalisation of

the cut-elimination proof. In particular, observe that Brünnler and Straßburger

do not explain how to obtain the inference rules for logics outside {T, 4, B, 5, D}
(see Table 7.3). Thus the incentive for working in the LTS setting is Negri’s

general result which identifies those logics that can be presented via cutfree la-

belled sequent calculi, and the Generalised Hein’s scheme which shows how to

construct LTS inference rules for the 3/4 Lemmon-Scott axioms. Although it is

true that the Generalised Hein’s scheme (though not necessarily Negri’s result)

can be ported to the nested sequent setting, because this approach is heavily re-

liant on the correspondence theory between modal formulae and their first-order

correspondents, in terms of argument and notation it is helpful here that the LTS

notation makes more visible the semantic content in the inference rule, as com-

pared to nested sequents where the semantic content can be obscured by the []

notation.

218 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

Following Negri [52], let us examine how to construct a relation rule from a first-

order formula.3 Recall the notation we introduced in Section 4.2.1.

R1uv := Ruv

Rk+1uv = (∃uk+1 � u)Rkuk+1v (k ≥ 1)

Let α be a formula in Ar′f∃r′x (see Section 5.2.3). Then α has the form

(∀u1 � v1) . . . (∀um � vm)(∃r′ ȳ1M1 ∨ . . . ∨ ∃r
′
ȳnMn) (7.1)

where, the variables in {x} ∪ {ui} are called the inherently universal variables,

and by definition the restrictor vi of each ui is either x or some uj (j < i), and

each Mi is a conjunction of terms of the form l = l, l = m and Rklm where in

l = m and Rklm at least one of l,m is an inherently universal variable.

For simplicity of notation, let us look at a special case of (7.1) where ȳi is a

single variable yi for each i so ∃r′ ȳi denotes (∃yi�u′i) for some u′i ∈ {ui}, and Mi

is a conjunction of terms Q̄i = {Qi1, . . . , Qiki}, where each Qij has the form Rklm

where at least one of l,m is an inherently universal variable. Moreover, let Pi

denote the term Ruivi and P̄ = {Pi}. By expanding the restricted quantifier

notation, (7.1) can be written as the following first-order formula

∀u1 . . . ∀um(P1 ∧ . . . Pm → ∃y1(Ru′1y1 ∧M1) ∨ . . . ∃yn(Ru′nyn ∧Mn)) (7.2)

Example 7.29 Consider the formula (∀x�y)(∀x�z)(∃w�y)(Rzw) ∈ Ar′f∃r′x.

We can write this formula as

∀yz(Rxy ∧Rxz → ∃w(Ryw ∧Rzw))

For a formula of the form (7.2), let Rα denote the following labelled sequent

schematic rule, where R is a schematic relation set variable, and X and Y are

schematic labelled multiset variables.

Q̄1[z1/y1], P̄ ,R, X ⇒ Y . . . Q̄n[zn/yn], P̄ ,R, X ⇒ Y
Rα

P̄ ,R, X ⇒ Y

with the standard variable restriction that the variables z1, . . . zn do not appear

in the conclusion sequent. Since Ar′f∃r′x is a subclass of the modal Kracht

3Although Negri’s result applies to the class of geometric formulae (⊇ Ar′f∃r′x), we will

work with Ar′f∃r′x because we know that this class belongs to the Kracht fragment.

7.4. GENERALISED HEIN’S SCHEME 219

Initial LTS: R, x : p,Γ⇒ ∆, x : p

Propositional rules:

R, x : A,Γ⇒ ∆ R, x : B,Γ⇒ ∆
L∨R, x : A ∨B,Γ⇒ ∆

R,Γ⇒ ∆, x : A, x : B
R∨R,Γ⇒ ∆, x : A ∨B

R, x : A, x : B,Γ⇒ ∆
L∧R, x : A ∧B,Γ⇒ ∆

R,Γ⇒ ∆, x : A R,Γ⇒ ∆, x : B
R∧R,Γ⇒ ∆, x : A ∧B

R,Γ⇒ ∆, x : A R, x : B,Γ⇒ ∆
L⊃R, x : A ⊃ B,Γ⇒ ∆

R, x : A,Γ⇒ ∆, x : B
R⊃R,Γ⇒ ∆, x : A ⊃ B

Modal rules:

R, Rxy, x : �A, y : A,Γ⇒ ∆
L�R, Rxy, x : �A,Γ⇒ ∆

R, Rxy,Γ⇒ ∆, y : A
R�R,Γ⇒ ∆, x : �A

R, Rxy, y : A,Γ⇒ ∆
L3R, x : 3A,Γ⇒ ∆

R, Rxy,Γ⇒ ∆, x : 3A, y : A
R3R, Rxy,Γ⇒ ∆, x : 3A

Table 7.4: The labelled sequent calculus G3K [52]. The rules �R and 3L have

the condition that y does not appear in the conclusion sequent.

formulae, ∀xα globally corresponds to some modal (Sahlqvist) formula Mα. In

Table 7.3 we present some well-known modal axioms and the global first-order

frame correspondents (expanded from their Kracht form).

The labelled cutfree sequent calculus G3K for K is presented in Table 7.4.

Theorem 7.30 (Negri) Suppose that {αi} ⊂ Ar′f∃r′x and let Mαi denote the

modal correspondent of αi. Then G3K + {Rαi}4 is sound and complete for the

logic K ⊕ {Mαi} and the cut-rule is syntactically admissible. In notation,

`G3K+{Rαi}
⇒ x : A iff A ∈ K ⊕ {Mαi}

Proof. See Negri [52]. Q.E.D.

Here are the labelled sequent rules for reflexivity (Ref), transitivity (Trans),

symmetry (Sym) and seriality (Ser) obtained according to Negri’s scheme:

Rxx,R,Γ⇒ ∆
(Ref)R,Γ⇒ ∆

Rxy,Ryz,Rxz,R,Γ⇒ ∆
(Trans)

Rxy,Ryz,R,Γ⇒ ∆
Rxy,Ryx,R,Γ⇒ ∆

(Sym)
Rxy,R,Γ⇒ ∆

Rxy,R,Γ⇒ ∆
(Ser)R,Γ⇒ ∆

4Negri also stipulates the addition of more rules to the calculus in order to obtain height-

preserving admissibility of the contraction rule in the calculus — each additional rule corre-

sponds to a contraction instance for any duplication of terms in P̄ appearing in the premise

sequents of Rαi
.

220 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

where (Ser) has the condition that y does not appear in the conclusion sequent.

In general it is not clear how to obtain a LTS calculus for the logic K⊕{Mαi}
from the labelled sequent calculus G3K + {Rαi} presenting this logic. This is

because the relation rules {Rαi} obtained according to Negri’s scheme either

becomes redundant in a LTS calculus or fail to preserve LTS from premise to

conclusion. For example, the rule (Ref) is redundant in a LTS calculus because

the premise sequent can never be a LTS due to the presence of the Rxx term.

Hence the LTS calculus G3K+(Ref) presents the logic K (and not K⊕�p ⊃ p).

An exception is the rule (Ser). Clearly the LTS calculus G3K+(Ser) is sound for

K⊕�p ⊃ 3p because of soundness of the labelled sequent calculus G3K+(Ser).

To prove completeness, we can argue that whenever the sequent ⇒ x : A is

derivable in the labelled sequent calculus G3K + (Ser) we can transform that

derivation into a derivation of ⇒ x : A in the LTS calculus. Furthermore,

syntactic cut-admissibility for the LTS calculus then follows immediately from

syntactic cut-admissibility for the labelled sequent calculus (Theorem 7.30). We

omit the details.

Hein [35] has proposed a method for constructing LTS inference rules corre-

sponding to the formula ∀xα(x) for α ∈ Ar′f∃r′x when ∀xα(x) can be written in

the following form (h, i, j ≥ 0):

∀xyz(Rhxy ∧Rjxz → Riyz) (7.3)

It is well-known [43] that a Kracht formula of the above form corresponds to the

following modal formula, which is a special case of the Lemmon-Scott axioms

{3h�ip ⊃ �j3kp |h, i, j, k ≥ 0}:

3h�ip ⊃ �jp (7.4)

For this reason, Hein refers to the class of formulae of the form (7.4) as the 3/4

Lemmon-Scott axioms. The formulae T , 4, B and 5 in Table 7.3 are examples of

3/4 Lemmon-Scott axioms.

For any 3/4 Lemmon-Scott axiom M , let MH be the following LTS rule where

R0lm abbreviates l = m and Rk+1lm: abbreviates Rll1, . . . , Rlk−1lk, Rlkm.

Rhxy,Rjxz,Riyu,R, X ⇒ Y
MH

Rhxy,Rjxz,R, X[z/u]⇒ Y [z/u]

Then the rule MH has the condition that the variables u, y1, . . . , yi−1 in Riyu do

not appear in the conclusion sequent. A word about the notation here: Rklm

abbreviates a term from the first-order frame language and possibly contains the

existential operator ∃ whereas Rklm is a set of relation terms.

7.4. GENERALISED HEIN’S SCHEME 221

Theorem 7.31 (Hein) Let {Mi}i∈M be a set of 3/4 Lemmon-Scott axioms, and

let {MiH}i∈M be the corresponding LTS rules obtained as described above. Then

the LTS calculus G3K + {MiH}i∈M + cutLTS is sound and complete for K ⊕
{Mi}i∈M.

Proof. See Hein [35]. Q.E.D.

Notice that in the LTS rule MH above, the condition that u does not appear

in the conclusion sequent enforces that u does not appear in R. This condition

appears to be unnecessarily strong and so we propose the following Generalised

Hein’s scheme for obtaining the following LTS rule MH′ from a 3/4 Lemmon-

Scott axiom M of the form (7.3):

Rhxy,Rjxz,Riyu,R, X ⇒ Y
MH′

Rhxy,Rjxz,R[z/u], X[z/u]⇒ Y [z/u]

once again with the condition that the variables u, y1, . . . , yi−1 in Riyu do not

appear in the conclusion sequent. Notice that, unlike MH , the conclusion sequent

of MH′ is a LTS even if R contains an occurrence of u.

Theorem 7.32 Let {Mi}i∈M be a set of 3/4 Lemmon-Scott axioms, and let

{MiH′}i∈M be the corresponding LTS rules obtained by the Generalised Hein’s

scheme. Then the LTS calculus G3K + {MiH′}i∈M + cutLTS is sound and com-

plete for K ⊕ {Mi}i∈M.

Proof. Since each LTS ruleMiH′ subsumesMiH , completeness is immediate from

Theorem 7.31. We could prove soundness following Hein’s [35] model-theoretic

argument for MiH . However it is simpler to observe that the calculus G3K +

{MiH′}i∈M can be embedded in the labelled sequent calculus G3K + {Ri}i∈M
where Ri is the relation rule corresponding to Mi and obtained using Negri’s

scheme. The result follows from Theorem 7.30. Q.E.D.

By itself, this result is really not that strong because the theorem does not resolve

the central issue of whether the cut-rule can be eliminated fromG3K+{ρMi
}i∈M+

cutLTS. Hein conjectures that cut-elimination holds but does not present a proof.

In the remainder of this section we will examine this issue further.

For the formulae T , 4, B and 5, the LTS rules obtained according to the

Generalised Hein’s scheme are denoted, respectively, as TH′ , 4H′ , BH′ and 5H′

(Table 7.5). For each of the formulae in T , 4, B, 5 and D, the corresponding

222 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

Rxy,R, X ⇒ Y
TH′R[x/y], X[x/y]⇒ Y [x/y]

Rxy,Ryz,Rxu,R, X ⇒ Y
4H′

Rxy,Ryz,R[z/u], X[z/u]⇒ Y [z/u]

Rxy,Ryz,R, X ⇒ Y
BH′

Rxy,R[x/z], X[x/z]⇒ Y [x/z]
Rxy,Rxz,Ryu,R, X ⇒ Y

5H′
Rxy,Rxz,R[z/u], X[z/u]⇒ Y [z/u]

Table 7.5: The Generalised Hein’s scheme LTS rules for some 3/4 Lemmon-Scott

axioms.

Nested sequent rule Corresponding LTS rule

Γ{[∆]}
ḂSΓ{∆}

Rxy,R, X ⇒ Y
TBSR[x/y], X[x/y]⇒ Y [x/y]

Γ{[∆], [Σ]}
4̇

Γ{[[∆],Σ]}
Rxy,Rxz,R, X ⇒ Y

4BSRxy,Ryz,R, X ⇒ Y

Γ{[∆, [Σ]]}
ḂΓ{[∆],Σ}

Rxy,Ryz,R, X ⇒ Y
BBS

Rxy,R[x/z], X[x/z]⇒ Y [x/z]

Γ{[∆]}{∅}
5̇

Γ{∅}{[∆]}
Rxy,Ryz,R,Γ⇒ ∆

5BSRuy,Ryz,R,Γ⇒ ∆

Γ{[∅]}
ḊΓ{∅}

Rxy,R,Γ⇒ ∆
DBSR,Γ⇒ ∆

Table 7.6: Nested sequent structural rules from [12] and the corresponding LTS

rules. The rule 5̇ has the condition that the hole in Γ{}{∅} has depth > 0 (so

it does not correspond to the root). The rule 5BS has the condition that u is a

state outside the upward closure of y in the frame defined by Rxy,Ryz,R. Rule

DBS has the condition that y does not appear in the conclusion sequent.

nested sequent structural rules from [12] are denoted, respectively, as Ṫ , 4̇, Ḃ, 5̇

and Ḋ. These rules, along with the corresponding LTS rules TBS, 4BS, BBS, 5BS

and DBS (under the obvious mapping from nested sequent rules to LTS rules)

are presented in Table 7.6. The reader should verify that it is indeed the case that

the conclusion sequent of each ρBS rule is a LTS sequent whenever the premise

sequent of ρ is a LTS sequent.

Let NSK denote the cutfree nested sequent calculus for K titled “System K”

in Brünnler and Straßburger [12].

Theorem 7.33 (Brünnler and Straßburger) For a set X ⊆ {T, 4, B, 5, D},
let Ẋ denote the corresponding subset of {Ṫ , 4̇, Ḃ, 5̇, Ḋ} Then NSK+ Ẋ is sound

and complete for K ⊕X and the cut-rule is syntactically admissible.

Proof. See Brünnler and Straßburger [12] Q.E.D.

7.4. GENERALISED HEIN’S SCHEME 223

We have the following observations.

(i) The rules TH and BH are exactly TBS and BBS.

(ii) Although the rules 4H and 4BS are not identical, we can show that 4BS

is syntactically admissible in G3K + 4H and 4H is syntactically admis-

sible in G3K + 4BS. To show the former, suppose that we are given

a derivation in G3K + 4H of the premise sequent Rxy,Rxz,R, X ⇒ Y

of 4BS. Then, for some fresh variable u we can obtain a derivation of

Rxy,Ryz,Rxu,R[u/z], X[u/z] ⇒ Y [u/z]. Applying 4H to this sequent we

obtain

Rxy,Ryz, (R[u/z])[z/u], (X[u/z])[z/u]⇒ (Y [u/z])[z/u]

This is exactly Rxy,Ryz,R, X ⇒ Y so admissibility is proved. To show

that 4H is syntactically admissible in G3K + 4BS we will make use of the

admissibility of the following rule (Merge) in G3K:

Rxy,Rxz,R, X ⇒ Y
(Merge)

Rxy,R[y/z], X[y/z]⇒ Y [y/z]

(see Poggiolesi [57] for a proof of this result for THS calculi). Then, starting

with the premise sequent of 4H , we have

Rxy,Ryz,Rxu,R, X ⇒ Y
4BSRxy,Ryu,Ryz,R, X ⇒ Y

Applying the rule (Merge) to the above sequent we obtain

Rxy,Ryz,R[z/u], X[z/u]⇒ Y [z/u]

This is precisely the conclusion sequent of 4H so admissibility is proved.

(iii) It is not clear if the rules 5H and 5BS are inter-admissible in G3K.

(iv) Although D is not a 3/4 Lemmon-Scott axiom, notice that the relation rule

(Ser) obtained from Negri’s scheme is exactly the rule DBS.

Lemma 7.34 For a set X ⊆ {T, 4, B} ∪ {D}, let X ′ denote the corresponding

subset of {TH , 4H , BH}∪{(Ser)} (formula D corresponds to the (Ser) rule). Then

the LTS calculus G3K + X ′ is sound and complete for K ⊕X and the cut-rule

is syntactically admissible.

224 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

Proof. Let XBS denote the subset of {TBS, 4BS, BBS, DBS} corresponding to X.

Following from the admissibility of the cut-rule in the corresponding nested se-

quent calculi (Theorem 7.33) we have that the cut-rule is admissible in G3K +

XBS. From our observations above it is clear that G3K + XBS and G3K + X ′

derive exactly the same sequents. It follows that the cut-rule is admissible in

G3K +X ′. Q.E.D.

Although Lemma 7.34 suggests that Theorem 7.32 can be strengthened to ob-

tain cutfree LTS calculi (and hence nested sequent/THS calculi) for modal logics

axiomatised by 3/4 Lemmon-Scott axioms, a general proof of cut-admissibility

has yet to be presented. Assuming that such a general proof can be obtained, the

next question would be to see how much further Theorem 7.32 can be extended

from the 3/4 Lemmon-Scott axioms, to include axioms such as connectedness

(3 axiom) and directedness (2 axiom), for example. Indeed, we have already

seen that we can obtain a cutfree LTS calculus for K ⊕D although the seriality

axiom D is not a 3/4 Lemmon-Scott axiom.

Poggiolesi [55] presents cutfree THS calculi for the logics K ⊕ X (X ⊆
{T, 4, B, 5}). The calculi presented there contain non-structural rules called “Spe-

cial logical rules”, corresponding to each formula in X. In order to prove cut-

admissibility, she proves admissibility of certain “Special (THS) structural rules”

which are identical or similar to the rules TBS, 4BS, BBS and 5BS (under the map-

ping from LTS to THS). From our work here we know that the “Special logical

rules” can be deleted in favour of the appropriate THS structural rules. It would

be interesting to identify the syntactic relationship between such “special log-

ical rules” and “Special structural rules” as this may yield an insight into the

generation of structural rules leading to cutfree calculi.

7.5 Conclusion

We have answered a question posed by Poggiolesi regarding the connections be-

tween the THS calculus CSGL for GL and the labelled sequent calculus G3GL

for GL. A crucial aspect of this work is showing that ⇒ x : A is derivable in

G3GL iff ⇒ x : A is derivable in the LTS calculus TLCSGL (Theorem 7.27).

Negri has identified a large class of modal logics that can be presented us-

ing cutfree labelled sequent calculi. Meanwhile, the Generalised Hein’s scheme

proposes a method for constructing LTS calculi for certain modal logics. The

problem is that it is not clear how to eliminate the cut-rule from the calculi.

7.5. CONCLUSION 225

Lemma 7.34 shows that cut-elimination holds for some concrete instances. An ex-

tension of this work would be to develop a method of embedding suitable labelled

sequent calculi inside LTS calculi (analogous to Theorem 7.27) thus enabling us

to obtain cutfree LTS calculi for the general case.

Negri [53] has shown how to obtain cutfree labelled sequent calculi for a large

class of superintuitionistic logics [16] that are specified by their frame conditions.

It would be interesting to see if it is possible to extend the techniques in this

chapter to obtain THS/nested sequent calculi for these logics.

226 CHAPTER 7. LABELLED TREE SEQUENT CALCULI

Chapter 8

Conclusion

In this thesis, we have presented conclusions and further research in each chapter.

Here we provide a broad overview of the results.

We presented syntactic proofs of cut-elimination for GL and Go. In the case

of GL, this work resolves the controversy regarding Valentini’s original proof and

Moen’s counterclaim. In particular, we show how to lift Valentini’s argument to a

sequent calculus for GL built from multisets and prove that the induction measure

is well-founded, and we have identified a mistake in Moen’s claim. The proof for

Go means that syntactic cut-elimination has been shown now for the provability

logics GL, Grz and Go, filling a gap in the literature. Our study indicates that

the proof for Go requires the deepest level of analysis — this is perhaps related

to the fact that Go ⊂ GL and Go ⊂ Grz. A prominent feature of these logics is

that the corresponding sequent calculi contain an inference rule with a diagonal

formula. That is, each sequent calculus contains a rule with a formula crossing

from the antecedent (of the premise sequent) to the succedent (of the conclusion

sequent). Typically the difficulties for the cut-elimination proof arise from this

rule. As future work, the transformations in these proofs can be abstracted in

order to give a uniform account of cut-elimination for sequent calculi containing

inference rules with diagonal formulae. As an application, we would like to use

these techniques to obtain a syntactic proof of cut-elimination for a traditional

sequent calculus for the logic S4.3.1, as Shimura’s [67] proof for this logic requires

a modification of the traditional sequent calculus.

In Part II we confirmed that Kracht’s characterisation of properly displayable

modal logics is incorrect and proposed a new characterisation. Although the

complete characterisation rests on a conjecture that still needs to be proved1, even

1M. Kracht has given a ‘proof’ for the conjecture, but we have shown that his proof is

227

228 CHAPTER 8. CONCLUSION

without this conjecture our work significantly extends the class of modal logics

that are properly displayable. Using these results we showed how to properly

display superintuitionistic logics axiomatised by formulae of a certain syntactic

form. Moreover, we also demonstrated how to properly display superintuitionistic

logics that are specificed by suitable semantic frame conditions. Thus, our work

provides a systematic method of constructing display calculi for a large class of

superintuitionistic logics.

Finally, in Part III we identified a subclass of the labelled sequent calculus

called labelled tree sequent calculi and proved that they are notational vari-

ants of the tree-hypersequent and nested sequent calculus. We then showed how

to embed Negri’s labelled sequent calculus G3GL for provability logic GL in a

labelled tree sequent calculus. Exploiting this embedding and the notational

variant result, we obtained a mapping between derivations in Poggiolesi’s [58]

tree-hypersequent calculus CSGL and the labelled sequent calculus G3GL, for

derivations of formulae in GL. This completely answers a question posed as future

work in Poggiolesi [58]. Using this mapping we can obtain soundness and com-

pleteness, and cut-admissibility for CSGL from the existing results for G3GL,

alleviating the need for independent proofs. Next, we proved cut-elimination for

certain labelled tree sequent calculi that were constructed using a general scheme

for obtaining inference rules from 3/4 Lemmon-Scott formulae. An extension of

this work would be to obtain a generalised proof of cut-admissibility for logics

axiomatised over K using 3/4 Lemmon-Scott formulae. Our work here indicates

that this problem can be phrased in terms of importing results from suitable

labelled sequent calculi into labelled tree sequent calculi.

incomplete. He completely agrees with our analysis regarding this problem and concedes that

it is not clear how to obtain the result: personal correspondence by email dated 13/Dec/2010.

Appendix A

Additional results for Chapter 5

A.1 A model-theoretic proof of Lemma 5.7

Let us introduce some notation. For a string σ constructed from 3 and _ (ε

denotes the empty string), recursively define the first-order formulae Pσ(w, v) as

follows:

Pε(w, v) = (w = v)

P3σ(w, v) = (∃w′ � w)Pσ(w′, v)

P_σ(w, v) = (∃w′ � w)Pσ(w′, v)

For example, P3_(w, s) is the formula (∃w′ � w)(∃w′′ � w′)(s = w′′).

Lemma A.1 Let σ be a (possibly empty) string constructed from 3 and _. Ob-

serve that for any tense formula A, model M and state w:

M,w |= σA iff there exists v such that Pσ(w, v) and M, v |= A

Proof. Induction on the length of σ. Q.E.D.

Intuitively, Pσ(w, v) is a statement specifying the path between states w and v

in terms of existential quantifers.

The notation
∨
f is defined in Section 5.1.2.

Proof.[Second proof of Lemma 5.7] It suffices to prove that for every frame F ,

F |= f(pi) ⊃
∨
f(pi ∧Di) iff F |= f(pi ∧ ¬Di) ⊃ ⊥. We argue in each direction by

contradiction.

Assume that there is some F such that F |= f(pi ∧ ¬Di) ⊃ ⊥ and F 6|=
f(pi) ⊃

∨
f(pi ∧Di). The latter implies that there exists some model M based on

229

230 APPENDIX A. ADDITIONAL RESULTS FOR CHAPTER 5

F , and state w such that M,w 6|= f(pi) ⊃
∨
f(pi ∧ Di). Therefore M,w |= f(pi)

and M,w 6|=
∨
f(pi ∧ Di). From M,w |= f(pi) by repeated use of Lemma A.1

it follows that there exist states v1, . . . , vn and strings σ1, . . . , σn in 3,_ such

that Pσi(w, vi) and M, vi |= pi. Moreover, since M,w 6|=
∨
f(pi ∧ Di) it must be

the case that M, vi 6|= pi ∧ Di and hence M, vi 6|= Di (1 ≤ i ≤ n). Therefore

M, vi |= pi ∧¬Di for each i, so M,w |= f(pi ∧¬Di). Since F |= f(pi ∧¬Di) ⊃ ⊥
it follows that M,w |= ⊥. This is impossible so we have obtained a contradiction.

Now for the other direction. Assume that there is some frame F such that

F |= f(pi) ⊃
∨
f(pi ∧ Di) and F 6|= f(pi ∧ ¬Di) ⊃ ⊥. Then there exists some

model M = (F, V) and state w such that M,w 6|= f(pi ∧ ¬Di) ⊃ ⊥. Thus

M,w |= f(pi ∧ ¬Di). Therefore there exist v1, . . . , vn and strings σ1, . . . , σn

constructed from 3,_ such that Pσi(w, vi) and M, vi |= pi ∧ ¬Di. Therefore

M, vi |= pi for each i, and thus M,w |= f(pi). Since F |= f(pi) ⊃
∨
f(pi ∧Di) by

assumption, we must have M,w |=
∨
f(pi ∧Di). Define the set u(i) by

s ∈ u(i) iff Pσi(w, s) and M, s |= pi ∧Di

Since
∨
f(X0, . . . , Xn) is constructed from Xi using 3,_ and ∨, using the equiv-

alences at (5.1) we can push the disjunction outwards to write
∨
f(X0, . . . , Xn)

as
∨
i σiXi where σi is a string constructed from 3 and _. Then

∨
f(pi ∧ Di) is

equivalent to
∨
i σi(pi∧Di). Since M,w |=

∨
f(pi∧Di) at least one of the disjuncts

must be satisfied at the state w, so at least one of the sets in {u(i)} must be non-

empty. If every Di = ⊥ then we have an immediate contradiction. Otherwise

suppose that Di 6= ⊥ (i ∈ I) for some set I ⊆ {1, . . . , n}. Informally speaking,

the sets {u(i)}i∈I consist of the states that ‘witness’ M,w |=
∨
f(pi ∧ Di). Also

observe that vi 6∈ u(i) for every i ∈ I since M, vi |= pi ∧ ¬Di.

Let M ′ = (F, V ′) be the model obtained from M = (F, V) by setting

V ′(pi) = V (pi) \ u(i) for each propositional variable pi

Informally speaking, the model M ′ is obtained from M by ‘switching-off’ pi at

states s satisfying Pσi(w, s) and pi ∧Di.

Clearly M ′, vi |= pi for each i, so M ′, w |= f(pi) and thus M ′, w |=
∨
f(pi ∧Di).

Therefore there must be some i∗ ∈ I and state s such that Pσi∗ (w, s) and M ′, s |=
pi∗ ∧ Di∗ . Since the formula pi∗ ∧ Di∗ is positive, by Lemma 4.21 it is upward

monotone in all propositional variables. Since V ′(p) ⊆ V (p) for all p, we have

M, s |= pi∗ ∧ Di∗ . Then it must be the case that s ∈ u(i∗), which would mean

A.2. M-FORMULAE FROM PRIMITIVE MODAL FORMULAE 231

that s 6∈ V ′(pi∗) and thus M ′, s 6|= pi∗ . This is impossible, however, for we have

already noted that M ′, s |= pi∗ ∧Di∗ . We have arrived at a contradiction. Q.E.D.

We observe that we can depict a ‘fragment’, respectively, of the models M

and M ′ used in the above proof, for some Di 6= ⊥, as follows:

vi pi ∧ ¬Di

w

Rσi
77

Rσi
''

s ∈ u(i) pi ∧Di

vi pi ∧ ¬Di

w

Rσi
66

Rσi
''

s ∈ u(i) ¬pi ∧Di

A.2 Computing M-formulae from primitive

modal formulae

Recall that a basic primitive formula is a formula built from ∧ and 3 using

propositional variables and >. We will need the following result.

Lemma A.2 Let (A1, . . . , An) and (B1, . . . , Bm) be sequences of basic primitive

formulae. Let (B′1, . . . , B
′
m) be the sequence obtained from (B1, . . . , Bm) by re-

placing each Bi that contains propositional variables not occurring in
⋃
i V ar(Ai)

with ⊥. Then

F |= A1 ∧ . . . ∧ An ⊃ B1 ∨ . . . ∨Bm iff F |= A1 ∧ . . . ∧ An ⊃ B′1 ∨ . . . ∨B′m

Proof. First suppose that Bm contains a propositional variable z not occurring

in
⋃
i V ar(Ai). We need to show that

F |= A1 ∧ . . . ∧ An ⊃ B1 ∨ . . . ∨Bm iff F |= A1 ∧ . . . ∧ An ⊃ B1 ∨ . . . ∨Bm−1 ∨ ⊥

The right-to-left direction is straightforward. For the left-to-right direction we

proceed by contradiction.

Assume that there is some frame F such that

F |= A1 ∧ . . . ∧ An ⊃ B1 ∨ . . . ∨Bm−1 ∨Bm (A.1)

and F 6|= A1 ∧ . . . ∧ An ⊃ B1 ∨ . . . ∨ Bm−1 ∨ ⊥. Then there exists a model

M = (F, V) and state w such that

M,w |= A1 ∧ . . . ∧ An and M,w 6|= B1 ∨ . . . ∨Bm−1 ∨ ⊥

232 APPENDIX A. ADDITIONAL RESULTS FOR CHAPTER 5

From (A.1) it follows that M,w 6|= Bi (i < m) and M,w |= Bm. Because Bm is a

basic primitive formula, we can falsify Bm in the model M ′ obtained from M by

setting V ′(z) = ∅ and keeping all other valuations unchanged. Since z does not

occur negatively in the Bi, we have M,w 6|= Bi (i ≤ m). Also, because z does

not occur in the Ai, we have M,w |= Ai (i ≤ n). Thus

M ′, w 6|= A1 ∧ . . . ∧ An ⊃ B1 ∨ . . . ∨Bm−1 ∨Bm

contradicting (A.1) so the claim is proved.

The main result follows from repeated application of this argument. Q.E.D.

In the following we make use of the fact that primitive modal formulae belong

to the class of Sahlqvist formulae, and hence define a first-order definable class

of frames.

Lemma A.3 Let A ⊃ B be a primitive modal formulae. Then there is an effec-

tively computable set {Mi} of M-formulae such that K ⊕ (A ⊃ B) = K ⊕ {Mi}.

Proof. First observe that any basic primitive formula D can be written in the

form 3 . . .3(r ∧ D′) where r is a propositional variable or > and D′ is a basic

primitive formula. Consider the formula ¬D:

¬3 . . .3(r ∧D′) ≈Kt � . . .�((r ⊃ ⊥) ∨ ¬D′)

By induction on the size of D, it follows that the negation of a basic primitive

formula containing each propositional variable at most once is equivalent to an

M-formula.

Now, from the primitive modal formula A ⊃ B, using standard equivalences

we can write this formula as a conjunction of primitive modal formulae {si},
where each si has the form

A1 ∧ . . . ∧ An ⊃ B1 ∨ . . . ∨Bm (A.2)

where each formula in {Ai}, {Bi} is a basic primitive formula. By the definition

of primitive modal axiom, the antecedent of (A.2) contains each propositional

variable at most once. Furthermore, by Lemma A.2 there is a formula

A1 ∧ . . . ∧ An ⊃ B′1 ∨ . . . ∨B′m (A.3)

where {B′i} is a set of basic primitive formulae such that (A.2) and (A.3) define

the same class of frames, and every propositional variable in the succedent also

occurs in the antecedent. Clearly (A.3) is equivalent to

¬A1 ∨ . . . ∨ An ∨ (> ⊃ B′1) ∨ . . . ∨ (> ⊃ B′m) (A.4)

A.2. M-FORMULAE FROM PRIMITIVE MODAL FORMULAE 233

Each ¬Ai term is equivalent to an M-formula, and each > ⊃ B′i term is either

equivalent to an M-formula or to ⊥. Thus the above formula is an M-formula. We

have shown that each primitive modal formula si corresponds to an M-formulaMi.

Since the sets {si} and {Mi} are Sahlqvist formulae, by the Sahlqvist complete-

ness theorem, K ⊕ {si} = K ⊕ {Mi}. It follows that K ⊕ (A ⊃ B) = K ⊕ {Mi}.
Q.E.D.

234 APPENDIX A. ADDITIONAL RESULTS FOR CHAPTER 5

Bibliography

[1] M. Amerbauer. Cut-free tableau calculi for some propositional normal modal

logics. Studia Logica, 57(2-3):359–372, 1996.

[2] A. Avron. On modal systems having arithmetical interpretations. J. Symbolic

Logic, 49(3):935–942, 1984.

[3] A. Avron. The method of hypersequents in the proof theory of propositional

non-classical logics. In Logic: from foundations to applications (Staffordshire,

1993), Oxford Sci. Publ., pages 1–32. Oxford Univ. Press, New York, 1996.

[4] J. Barwise. An introduction to first-order logic. In J. Barwise, editor, Hand-

book of Mathematical Logic, pages 5–46. North-Holland, Amsterdam, 1977.

[5] N. D. Belnap, Jr. Display logic. J. Philos. Logic, 11(4):375–417, 1982.

[6] K. Bimbó. LEt
→, LR◦∧∼, LK, and cutfree proofs. Journal of Philosophical

Logic, 36(5):557–570, 2007.

[7] P. Blackburn, M. de Rijke, and Y. Venema. Modal logic, volume 53 of

Cambridge Tracts in Theoretical Computer Science. Cambridge University

Press, Cambridge, 2001.

[8] M. Borga. On some proof theoretical properties of the modal logic GL.

Studia Logica, 42(4):453–459 (1984), 1983.

[9] M. Borga and P. Gentilini. On the proof theory of the modal logic Grz. Z.

Math. Logik Grundlag. Math., 32(2):145–148, 1986.

[10] M. Borisavljević, K. Došen, and Z. Petrić. On permuting cut with con-

traction. Math. Structures Comput. Sci., 10(2):99–136, 2000. The Lambek

Festschrift: mathematical structures in computer science (Montreal, QC,

1997).

235

236 BIBLIOGRAPHY

[11] K. Brünnler. Deep sequent systems for modal logic. In Advances in modal

logic. Vol. 6, pages 107–119. Coll. Publ., London, 2006.

[12] K. Brünnler and L. Straßburger. Modular sequent systems for modal logic.

In M. Giese and A. Waaler, editors, Tableaux 2009, volume 5607 of Lecture

Notes in Computer Science. Springer-Verlag, 2009.

[13] R. A. Bull. Cut elimination for propositional dynamic logic without ∗. Z.

Math. Logik Grundlag. Math., 38(2):85–100, 1992.

[14] W. Buszkowski. Mathematical linguistics and proof theory. In J. van Ben-

them and A. ter Meulen, editors, Handbook of logic and language, pages

683–736. North-Holland Publishing Co., Amsterdam, 1997.

[15] S. Celani. Remarks on intuitionistic modal logics. Divulg. Mat., 9(2):137–

147, 2001.

[16] A. Chagrov and M. Zakharyaschev. Modal logic, volume 35 of Oxford Logic

Guides. The Clarendon Press Oxford University Press, New York, 1997.

Oxford Science Publications.

[17] A. Chagrov and M. Zakharyashchev. Modal companions of intermediate

propositional logics. Studia Logica, 51(1):49–82, 1992.

[18] H. B. Curry. Foundations of mathematical logic. McGraw-Hill Book Co.,

Inc., New York, 1963.

[19] J. E. Dawson and R. Goré. Generic methods for formalising sequent calculi

applied to provability logic. In LPAR (Yogyakarta), volume 6397 of Lecture

Notes in Computer Science, pages 263–277. Springer, 2010.

[20] K. Došen. Sequent-systems for modal logic. J. Symbolic Logic, 50(1):149–

168, 1985.

[21] M. A. E. Dummett and E. J. Lemmon. Modal logics between S4 and S5. Z.

Math. Logik Grundlagen Math., 5:250–264, 1959.

[22] R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. J.

Symbolic Logic, 57(3):795–807, 1992.

[23] R. Dyckhoff and S. Negri. Admissibility of structural rules for contraction-

free systems of intuitionistic logic. J. Symbolic Logic, 65(4):1499–1518, 2000.

BIBLIOGRAPHY 237

[24] M. Fitting. Proof methods for modal and intuitionistic logics, volume 169 of

Synthese Library. D. Reidel Publishing Co., Dordrecht, 1983.

[25] G. Gentzen. The collected papers of Gerhard Gentzen. Edited by M. E.

Szabo. Studies in Logic and the Foundations of Mathematics. North-Holland

Publishing Co., Amsterdam, 1969.

[26] S. Ghilardi and G. Meloni. Constructive canonicity in non-classical logics.

Ann. Pure Appl. Logic, 86(1):1–32, 1997.

[27] K. Gödel. Collected works. Vol. I. The Clarendon Press Oxford University

Press, New York, 1986. Publications 1929–1936, Edited and with a preface

by Solomon Feferman.

[28] R. Goré. Intuitionistic logic redisplayed. Technical Report TR-ARP-1-95,

Research School of Information Sciences and Engineering and Centre for

Information Science Research, The Australian National University, January

1995.

[29] R. Goré. Substructural logics on display. Log. J. IGPL, 6(3):451–504, 1998.

[30] R. Goré. Tableau methods for modal and temporal logics. In Handbook of

tableau methods, pages 297–396. Kluwer Acad. Publ., Dordrecht, 1999.

[31] R. Goré, W. Heinle, and A. Heuerding. Relations between propositional

normal modal logics: an overview. J. Logic Comput., 7(5):649–658, 1997.

[32] R. Goré and R. Ramanayake. Valentini’s cut-elimination for provability logic

resolved. In Advances in Modal Logic, Vol. 7 (Nancy, 2008).

[33] R. Goré and A. Tiu. Classical modal display logic in the calculus of struc-

tures and minimal cut-free deep inference calculi for S5. J. Logic Comput.,

17(4):767–794, 2007.

[34] J. Goubault-Larrecq and I. Mackie. Proof theory and automated deduction,

volume 6 of Applied Logic Series. Kluwer Academic Publishers, Dordrecht,

1997.

[35] R. Hein. Geometric theories and modal logic in the calculus of structures.

Master’s thesis, Technische Universität Dresden, 2005.

238 BIBLIOGRAPHY

[36] A. Indrzejczak. Cut-free sequent calculus for S5. Bull. Sect. Logic Univ.

 Lódź, 25(2):95–102, 1996.

[37] R. Kashima. Cut-free sequent calculi for some tense logics. Studia Logica,

53(1):119–135, 1994.

[38] M. Kracht. How completeness and correspondence theory got married. In

Diamonds and defaults (Amsterdam, 1990/1991), volume 229 of Synthese

Lib., pages 175–214. Kluwer Acad. Publ., Dordrecht, 1993.

[39] M. Kracht. Power and weakness of the modal display calculus. In Proof

theory of modal logic (Hamburg, 1993), volume 2 of Appl. Log. Ser., pages

93–121. Kluwer Acad. Publ., Dordrecht, 1996.

[40] M. Kracht. Tools and techniques in modal logic, volume 142 of Studies in

Logic and the Foundations of Mathematics. North-Holland Publishing Co.,

Amsterdam, 1999.

[41] H. Kushida and M. Okada. A proof-theoretic study of the correspondence

of classical logic and modal logic. J. Symbolic Logic, 68(4):1403–1414, 2003.

[42] D. Leivant. On the proof theory of the modal logic for arithmetic provability.

J. Symbolic Logic, 46(3):531–538, 1981.

[43] E. J. Lemmon and D. S. Scott. The ‘Lemmon Notes’: An Introduction to

Modal Logic. Blackwell, Oxford, 1977.

[44] T. Litak. The non-reflexive counterpart of Grz. Bull. Sect. Logic Univ. Lódź,

36(3-4):195–208, 2007.

[45] L. Maksimova. Interpolation properties of superintuitionistic logics. Studia

Logica, 38(4):419–428, 1979.

[46] L. Maksimova. On modal Grzegorczyk logic. Fund. Inform., 81(1-3):203–210,

2007.

[47] P. Mancosu. From Brouwer to Hilbert. Oxford University Press, New York,

1998. The debate on the foundations of mathematics in the 1920s, With the

collaboration of Walter P. van Stigt, Reproduced historical papers translated

from the Dutch, French and German.

BIBLIOGRAPHY 239

[48] J. C. C. McKinsey. Proof of the independence of the primitive symbols of

Heyting’s calculus of propositions. J. Symbolic Logic, 4:155–158, 1939.

[49] G. Mints. Cut elimination for provability logic. Collegium Logicum 2005:

Cut-Elimination.

[50] G. Mints. Indexed systems of sequents and cut-elimination. J. Philos. Logic,

26(6):671–696, 1997.

[51] A. Moen. The proposed algorithms for eliminating cuts in the provability

calculus gls do not terminate. NWPT 2001, Norwegian Computing Center,

2001-12-10. http://publ.nr.no/3411.

[52] S. Negri. Proof analysis in modal logic. J. Philos. Logic, 34(5-6):507–544,

2005.

[53] S. Negri. Proof analysis in non-classical logics. In Logic Colloquium 2005,

volume 28 of Lect. Notes Log., pages 107–128. Assoc. Symbol. Logic, Urbana,

IL, 2008.

[54] S. Negri and J. von Plato. Structural proof theory. Cambridge University

Press, Cambridge, 2001. Appendix C by Aarne Ranta.

[55] F. Poggiolesi. Reflecting the semantic features of s5 at the syntactic level.

In SILFS conference proceedings (forthcoming).

[56] F. Poggiolesi. A cut-free simple sequent calculus for modal logic s5. The

Review of Symbolic Logic, 1(1):3–15, 2008.

[57] F. Poggiolesi. The method of tree-hypersequents for modal propositional

logic. In Towards mathematical philosophy, volume 28 of Trends Log. Stud.

Log. Libr., pages 31–51. Springer, Dordrecht, 2009.

[58] F. Poggiolesi. A purely syntactic and cut-free sequent calculus for the modal

logic of provability. The Review of Symbolic Logic, 2(4):593–611, 2009.

[59] G. Restall. Comparing modal sequent systems. http://consequently.org/

papers/comparingmodal.pdf.

[60] G. Restall. Displaying and deciding substructural logics. I. Logics with con-

traposition. J. Philos. Logic, 27(2):179–216, 1998.

240 BIBLIOGRAPHY

[61] P. H. Rodenburg. Intuitionistic correspondence theory. PhD thesis, Univer-

sity of Amsterdam, 1986.

[62] H. Sahlqvist. Completeness and correspondence in the first and second or-

der semantics for modal logic. In Proceedings of the Third Scandinavian

Logic Symposium (Univ. Uppsala, Uppsala, 1973), pages 110–143. Stud.

Logic Found. Math., Vol. 82, Amsterdam, 1975. North-Holland.

[63] G. Sambin and V. Vaccaro. A new proof of Sahlqvist’s theorem on modal

definability and completeness. J. Symbolic Logic, 54(3):992–999, 1989.

[64] G. Sambin and S. Valentini. The modal logic of provability. The sequential

approach. J. Philos. Logic, 11(3):311–342, 1982.

[65] K. Sasaki. Löb’s axiom and cut-elimination theorem. J. Nanzan Acad. Soc.

Math. Sci. Inf. Eng., 1:91–98, 2001.

[66] M. Sato. A cut-free Gentzen-type system for the modal logic S5. J. Symbolic

Logic, 45(1):67–84, 1980.

[67] T. Shimura. Cut-free systems for some modal logics containing S4. Rep.

Math. Logic, (26):39–65, 1992.

[68] R. M. Solovay. Provability interpretations of modal logic. Israel J. Math.,

25(3-4):287–304, 1976.

[69] V. Švejdar. On provability logic. Nord. J. Philos. Log., 4(2):95–116 (2000),

1999.

[70] A. S. Troelstra and H. Schwichtenberg. Basic proof theory, volume 43 of

Cambridge Tracts in Theoretical Computer Science. Cambridge University

Press, Cambridge, second edition, 2000.

[71] S. Valentini. The modal logic of provability: cut-elimination. J. Philos.

Logic, 12(4):471–476, 1983.

[72] S. Valentini. A syntactic proof of cut-elimination for GLlin. Z. Math. Logik

Grundlag. Math., 32(2):137–144, 1986.

[73] J. van Benthem. Modal logic and classical logic. Indices: Monographs in

Philosophical Logic and Formal Linguistics, III. Bibliopolis, Naples, 1985.

BIBLIOGRAPHY 241

[74] J. van Benthem. The logic of time, volume 156 of Synthese Library. Dor-

drecht,Boston,London: Kluwer Academic Publishers, Dordrecht, second edi-

tion, 1991. A model-theoretic investigation into the varieties of temporal

ontology and temporal discourse.

[75] J. van Heijenoort. From Frege to Gödel. A source book in mathematical logic,

1879–1931. Harvard University Press, Cambridge, Mass., 1967.

[76] L. Viganò. Labelled non-classical logics. Kluwer Academic Publishers, Dor-

drecht, 2000. With a foreword by Dov M. Gabbay.

[77] J. von Plato. A proof of Gentzen’s Hauptsatz without multicut. Arch. Math.

Logic, 40(1):9–18, 2001.

[78] H. Wansing. Sequent calculi for normal modal propositional logics. J. Logic

Comput., 4(2):125–142, 1994.

[79] H. Wansing. Translation of hypersequents into display sequents. Log. J.

IGPL, 6(5):719–733, 1998.

[80] H. Wansing. Sequent systems for modal logics. In D. Gabbay and F. Guen-

thner, editors, Handbook of Philosophical Logic, volume 8, pages 61–145.

Kluwer, 2002.

[81] M. Zakharyaschev. The greatest extension of S4 into which intuitionistic

logic is embeddable. Studia Logica, 59(3):345–358, 1997.

