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Rajeev Goré and Jimmy Thomson

Logic and Computation Group,
Research School of Computer Science, The Australian National University

Abstract. We give Binary Decision Diagram (BDD) based methods for
deciding validity and satisfiability of propositional Intuitionistic Logic
Int and Bi-intuitionistic Tense Logic BiKt. We handle intuitionistic im-
plication and bi-intuitionistic exclusion by treating them as modalities,
but the move to an intuitionistic basis requires careful analysis for han-
dling the reflexivity, transitivity and antisymmetry of the underlying
Kripke relation. BiKt requires a further extension to handle the inter-
actions between the intuitionistic and modal binary relations, and their
converses. We explain our methodology for using the Kripke semantics
of these logics to constrain the underlying least and greatest fixpoint ap-
proaches of the finite model construction. With some optimisations this
technique is competitive with the state of the art theorem provers for
Intuitionistic Logic using the ILTP benchmark and randomly generated
formulae.

1 Introduction

For many logics, we can decide the validity of a given formula ϕ0 by constructing
the set of all subsets of some closure cl(ϕ0), and checking whether these subsets
can support a (counter) model that makes ϕ0 false. If no such model exists, then
we can safely declare ϕ0 to be valid using this finite model property (fmp).

At first sight, this “fmp method” seems impractical since the first step re-
quires us to “construct” the set of all (exponentially many) subsets of cl(ϕ0),
thus giving a procedure whose worst case and best case complexity is always
of order O(2|cl(ϕ0)|). However, Pan et al. [12] and Marrero [9] have shown that
Binary Decision Diagrams (BDDs) can be used to represent the required subsets
efficiently, without actually “constructing” them explicitly for K and CTL.

We investigate the potential of this BDD-based method for Intuitionistic
Propositional Logic (Int) and its extensions Bi-Intuitionistic Logic (BiInt) and
Bi-Intuitionistic Tense Logic (BiKt). These logics introduce various complica-
tions over K and CTL: the logic Int has an intuitionistic rather than a classical
basis; the logic BiInt has an operator whose semantics uses the converse of the
Kripke binary relation; the logic BiKt has two binary relations R� and R♦ so
that � and ♦ are not De Morgan duals, has their converses to handle � and
� and has two further interaction conditions. A priori, it is not obvious how to
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w �� ⊥ w � p iff ρ(w, p) = t
w � ϕ ∧ ψ iff w � ϕ and w � ψ w � ϕ ∨ ψ iff w � ϕ or w � ψ
w � ϕ → ψ iff ∀v � w.v �� ϕ or v � ψ w � ϕ−< ψ iff ∃v 
 w.v � ϕ and v �� ψ
w � ♦ϕ iff ∃v.wR♦v and v � ϕ w � �ϕ iff ∃v.wR−1

� v and v � ϕ
w � �ϕ iff ∀z∀v.w 
 zR�v ⇒ v � ϕ w � �ϕ iff ∀z∀v.w 
 zR−1

♦ v ⇒ v � ϕ

Fig. 1. Kripke Semantics for BiKt in model M = (W,
, R�, R♦, ρ) and w ∈ W

handle all of these complications using the BDD method, and indeed, we find
that the least fixpoint approach for BDDs does not work for all of our logics.

We show how to adapt the BDD-method to Int, extend it to BiInt andBiKt,
and describe some useful optimisations. We also compare our implementation
with the state of the art theorem provers for Int (PITP [1] and Imogen [11]), and
DBiKt [15], the only theorem prover for BiKt that we are aware of.

Our results show that with the help of some optimisations, this method is
competitive with state-of-the-art theorem provers for Int, and still works well
for some of its tense extensions. Its biggest advantage is its versatility.

1.1 Related Work

Current state of the art theorem provers for Int are based on an optimised
tableau method [1] or a heuristically guided, focused, polarised, inverse method
[11]. Pointers to other theorem provers for Int can be found on the ILTP Bench-
mark website [16]: most of them are based upon tableaux or sequent calculi.

Various sequent calculi for BiInt exist [4, 6, 13, 14, 15]. Some of them al-
low backward proof-search, and some have been extended to handle BiKt [7].
However, we know of only one implementation for both of these logics [15].

Pan et al. [12] give a BDD-based algorithm for decidingK, the simplest propo-
sitional classical normal modal logic. They show how to handle a single binary
relation using BDDs, but do not need to consider multiple interacting “con-
verse” relations, nor further frame conditions like reflexivity, transitivity and
anti-symmetry, as we do. They also experiment with some potential optimi-
sations, some of which are not limited to K. We make use of some of these
optimisations, as well as describing some new optimisations appropriate for Int.

Marrero [9] gives a BDD-based algorithm for deciding computation tree logic
CTL, a propositional modal temporal logic with fixpoints. He provides a way
of handling the transitive closure of a discrete and serial relation by explicitly
calculating a least fixpoint, which he uses to deal with eventualities. For our
logics, the relation itself is required to be transitive, so we use a different method.

2 Syntax and Semantics of Bi-Intuitionistic Tense Logics

Formulae of BiKt [7] are defined from a set Prp of primitive propositions as:

ϕ ::= p ∈ Prp | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ−< ϕ | ♦ϕ | �ϕ | �ϕ | �ϕ
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Models of BiKt are structures M = (W,�, R�, R♦, ρ) where W is a non-empty
set of worlds; � is a reflexive, transitive and antisymmetric binary relation on
W ; both R� and R♦ are binary relations on W satisfying the “zig-zag” frame
conditions (F1) and (F2) below; and ρ :W ×Prp �→ {t, f} is a valuation which
obeys the persistence property:

(F1): If x � y and xR♦z then ∃w.yR♦w and z � w
(F2): If xR�y and y � z then ∃w.x � w and wR�z

Persistence: If ρ(w, p) = t and w � v then ρ(v, p) = t.

Given M = (W,�, R�, R♦, ρ) and w ∈ W , the semantics of BiKt are given in
Figure 1. We use → for intuitionistic implication while we use ⇒ for classical
implication in the meta-logic. We define intuitionistic negation ¬ϕ as ϕ → ⊥.
Note that � and ♦, and � and �, are not de Morgan duals via negation.

BiInt [18] is the {∧,∨,→,−< ,⊥}-fragment of BiKt and models of BiInt
thus do not need the R� and R♦ relations. Int is BiInt without −< -formulae.

A formula ϕ is L-valid if for all L-models M, and for all worlds w ∈ M we
have M, w � ϕ. Dually, ϕ is L-satisfiable if there is some L-model M with some
world w ∈ M such that M, w � ϕ. A formula is L-falsifiable iff it is not L-valid.
We define global logical consequence for BiKt and fragments as follows where
M = (W,�, R�, R♦, ρ) and Γ is a finite set of “global assumptions”:

Γ |= ϕ iff ∀M. (∀w ∈W.M, w � Γ ) ⇒ ∀w ∈ W.M, w � ϕ.

3 A BDD Perspective of the Finite Model Method

For each of our logics, our goal is to construct a finite model M = (Wf , �f ,
R�, R♦, ρ), as appropriate, similar to Pan et al., by constructing a sequence of

frames (W0,�0, R
0
�, R

0
♦), (W1,�1, R

1
�, R

1
♦), . . ., (Wf ,�f , Rf�, Rf♦) such that the

final frame gives a model which is “canonical” in two senses: if ϕ0 is satisfiable
(falsifiable) then some world of Wf satisfies (falsifies) ϕ0. Given such a finite
“canonical” model, we can decide whether a given ϕ0 is satisfiable or valid by
checking whether such worlds exist.

For a given formula ϕ0, and a closure cl(ϕ0) we first define a set of atoms
Atm ⊆ cl(ϕ0), as appropriate for the logic. Each subset of Atm is a classical
(bi-valent) valuation on these atoms, where membership means truth-hood. The
set of potentially good worlds W = 2Atm is thus an upper bound on each Wi

above, and the binary relation W ×W is an upper bound on each �i.
We next use the Kripke semantics to extract necessary constraints to construct

a relation �max ⊆ W × W that is maximal in that it throws out only the
edges which break these constraints. We then monotonically refine an initial
approximation W0 towards Wf , using the constructed �max relation to enforce
the correct modal interpretation of the elements of cl(ϕ0) in all the worlds. Once
Wf has been computed, the final step is to determine which, if any, worlds in
Wf satisfy and falsify ϕ0, giving the satisfiability and validity of ϕ0.
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3.1 A Better Basis for Wf

For our logics, cl(ϕ0) = sub(ϕ0), the set of all subformulae of ϕ0 including ϕ0.
The naive way to construct Wf is simply to use the set of all subsets of cl(ϕ0).
We instead use only the “sensible subsets” following Pan et al.’s “lean” repre-
sentation and Marrero’s choice of BDD variables. We represent each primitive
proposition and implication from cl(ϕ0) as an explicit BDD-variable, and com-
pute the “denotation” of an arbitrary formula from cl(ϕ0) as follows:

Atm = (Prp ∩ sub(ϕ0)) ∪ {ϕ→ ψ | ϕ→ ψ ∈ sub(ϕ0)}
W = 2Atm �⊥� = ∅ �a� = {w ∈ W | a ∈ w}
�φ ∧ ψ� = �φ� ∩ �ψ� �φ ∨ ψ� = �φ� ∪ �ψ�

Thus W is finite, w ∈ W corresponds to a classical binary valuation on our
BDD-variables, and for every ψ ∈ cl(ϕ0), the world w claims to satisfy ψ if
w ∈ �ψ�, and claims to falsify ψ if w ∈ �ψ�, where �ψ� = W \ �ψ�.

The set W is smaller than 2cl(ϕ0), and does not contains worlds which behave
inappropriately with respect to conjunction and disjunction. We are thus left
with worlds containing primitive propositions and implications. The semantics
of an intuitionistic implication refers to �. We therefore use an explicit repre-
sentation � of the � relation as a finite set of ordered pairs from W ×W .

3.2 Constructing the Maximal � Relation

Our eventual goal is to construct a Wf ⊆ W and a binary relation �f over
Wf which obeys all of the semantic restrictions of intuitionistic models. We now
show how to construct an over-approximation �max over W which is persistent,
transitive and anti-symmetric, and which also obeys one half of the semantics of
implication. These restrictions on the binary relation are not required for K or
CTL, and so are not considered by Pan et al. [12] and Marrero [9].

Persistence. For any particular primitive proposition p ∈ Atm, the persistence
condition can be expressed in terms of denotations as below:

∀w, v ∈ W . w ∈ �p� & w � v ⇒ v ∈ �p� (1)

Alternatively, dropping universal quantifiers, we can write it as either of:

w � v ⇒ w ∈ �p� or v ∈ �p� w ∈ �p� & v ∈ �p� ⇒ w �� v (2)

The constraint obtained from (2) is expressed in terms of set notation as:

� ⊆ (�p� ×W) ∪ (W × �p�) (�p� ×W) ∩ (W × �p�) ⊆ �� (3)

That is, an upper bound on � is the set of ordered pairs from W × W where
the first world is not in the denotation of p or the second is in the denotation of
p. Alternately, a pair of worlds from W ×W is forbidden from being in � if the
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first is in the denotation of p and the second is not. Taking the conjunction over
all p ∈ cl(ϕ0) gives our final over-approximation from persistence:

� ⊆
⋂

p∈Prp∩Atm
(�p� ×W) ∪ (W × �p�) (4)

Semantics of implication. Since � is transitive, if w � v then all successors
of v are successors of w as well: thus if M, w � φ → ψ, then M, v � φ → ψ
and implications persist across �. We mimic this by extending (4) from just the
primitive propositions to all atoms ψ in Atm:

� ⊆
⋂

ψ∈Atm
(�ψ� ×W) ∪ (W × �ψ�) (5)

For any particular implication φ → ψ, the “only if” part of the semantics of
implication can be expressed using denotations by dropping quantifiers as either:

w ∈ �φ→ ψ� & w � v ⇒ v ∈ �φ� ∪ �ψ� (6)

w � v ⇒ w ∈ �φ→ ψ� or v ∈ �φ� ∪ �ψ� (7)

Just as (1) became (4), constraint (7) becomes the following in terms of sets:

� ⊆
⋂

φ→ψ∈Atm
(�φ→ ψ� ×W) ∪ (W × (�φ� ∪ �ψ�)) (8)

The conjunction of (5) and (8) gives �max, an upper bound on �, as:

�max = RHS(5) ∩RHS(8) (9)

Transitivity and Antisymmetry

Lemma 1 The relation �max is transitive: (�max ◦ �max) ⊆ �max.

Proof. For a contradiction, pick any (x, y) ∈ �max ◦ �max and suppose (x, y)
fails the persistence condition (5): thus for some ψ ∈ Atm, we have x ∈ �ψ�
and y ∈ �ψ�. By the definition of ◦ there must be some “midpoint” z such that
(x, z) ∈ �max and (z, y) ∈ �max. Since x �max z and x ∈ �ψ� we must have
z ∈ �ψ� by persistence of �max. Then z �max y gives y ∈ �ψ�: contradiction.

Suppose then that (x, y) fails condition (8): thus x ∈ �φ → ψ� and y ∈ �φ�
and y ∈ �ψ�. As before, the midpoint z ∈ �φ→ ψ�. By (8), if (z, y) ∈ �max then
y ∈ �φ� ∪ �ψ�, but this again contradicts our earlier assumption. Thus any pair
in �max ◦ �max must obey (9). So �max is transitively closed.

Lemma 2 If w �max v and v �max w then w = v: thus �max is antisymmetric.

Proof. Let x �max y and y �max x. Suppose they differ on some atom a. If a ∈ x,
then a ∈ y by persistence, and vice-versa. Thus x and y cannot be distinct.

The relation �max may not be reflexive since W may contain a w ∈ �φ →
ψ� ∩ �φ� ∩ �ψ�, meaning that (w,w) /∈ �max.
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3.3 Using �max to Construct Wf

We now have a set of “sensible” worlds W and an over-approximation�max of �
that is persistent, transitive and anti-symmetric (but not necessarily reflexive).
The structure (W ,�max) may still contain “bad” worlds that do not obey the
semantics: for example, a world w ∈ W with w ∈ �φ→ ψ� which lacks a v ∈
�φ� ∩ �ψ� with w �max v. We can refine this structure into a model in two
ways: by starting with W0 = W as the set of all “potentially good” worlds and
removing only “bad” worlds, or by starting withW0 = ∅ as the set of all “known
good” worlds and adding only “good” worlds. The greatest fixpoint of the first
way, and the least fixpoint of the second way gives the Wf we seek.

At each stage, �i is just the restriction of �max to Wi. These restrictions
maintain persistence and antisymmetry of �i because no new edges are added.
We maintain transitivity (x �i y & y �i z ⇒ x �i z) because each restriction
removes worlds rather than edges, thus the only way we can lose an existing
edge x �i z, is by removing x or z, whence we also lose x �i y or y �i z.

Regaining Reflexivity. The restriction of �max toW is reflexive if the formula
below left holds, so the maximal subset of W on which �max is reflexive is Refl :

∀w ∈ W. w �max w Refl = {w ∈ W | (w,w) ∈ �max}
Any w ∈ W such that w �∈ Refl is not permitted to be reflexive by our constraints
on �max, and thus must not appear in any model and so Wf ⊆ Refl .

Enforcing the Semantics of Implications. The remaining aspect of the se-
mantics to consider is the (contra-position of the) “if” component of implication:

w ∈ �φ→ ψ� ⇒ ∃v ∈Wi. w � v & v ∈ �φ� ∩ �ψ� (10)

Given the current “potentially good” or “known good” worlds Wi, the potential
witnesses V φ→ψ

i that falsify a particular φ→ ψ ∈ Atm are found by:

V φ→ψ
i =Wi ∩ �φ� ∩ �ψ�.

From this, we can identify the worlds which can reach such a witness using the
�max pre-image of V φ→ψ

i , and complete the representation:

Wφ→ψ
i = �φ→ ψ� ∪ {x | ∃y ∈ V φ→ψ

i . (x, y) ∈ �max} (11)

The pre-image is found using existential quantification of BDDs, as described by
Pan et al. and Marrero. We now show how to find the set Wf using fixpoints.

The GFP Method. We start with W0 = W , as the set of all “potentially
good” worlds and prune bad worlds by computing the greatest fixpoint of:

Wi+1 =Wi ∩ Refl ∩
⋂

φ→ψ∈Atm
Wφ→ψ
i (12)
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Since Refl does not depend on Wi, we can instead just start with W0 = Refl .
Formula (12) is monotonic decreasing, and since W is finite, finding a fixpoint
by repeated iteration is guaranteed to terminate in exponential time.

The LFP Method. We start withW0 = ∅ and add only “good” worlds. Unlike
K, where the least- and greatest-fixpoint iterated formulae are essentially the
same, we must account for reflexivity at each iteration to handle the case where
x = y in (11). A solution to this is to explicitly allow for reflexivity:

W+ = �φ� ∪ �ψ� W−
i = (�φ� ∩ �ψ�) ∪ {x | ∃y ∈ V φ→ψ

i . (x, y) ∈ �max}
Wi+1 =Wi ∪

⋂

φ→ψ∈Atm
(�φ→ ψ� ∩W−

i ]) ∪ (�φ→ ψ� ∩W+) (13)

Here the formula for W+ captures the worlds that satisfy φ → ψ locally. The
formula for W−

i captures the worlds that falsify φ → ψ locally, or by having
some other successor which falsifies φ→ ψ.

In the first iteration, W0 = ∅, so V φ→ψ
0 = ∅ and W−

i = �φ� ∩ �ψ�. Thus

W1 =
⋂

φ→ψ∈Atm

(
�φ→ ψ� ∩ �φ� ∩ �ψ�

)
∪
(
�φ→ ψ� ∩ (�φ� ∪ �ψ�)

)

That is, W1 contains all worlds that satisfy/falsify all their implications locally.
Then, W2 will be the worlds which satisfy/falsify all their implications either
locally or in the worlds of W1, and so on. Since equation (13) is monotonically
increasing, and W is finite, this least fixpoint computation terminates.

Deciding Satisfiability, Falsifiability and Validity. OnceWf is constructed,
the model is Mf = (Wf ,�f , ρ) where, for all w ∈ Wf , we put ρ(w, p) = t iff
p ∈ w. We can lift this valuation to cl(ϕ0) by showing that Mf , w � ψ iff
w ∈ �ψ� for all ψ ∈ cl(ϕ0), giving us soundness.

For completeness, we have to show that the witness w0 which satisfies or
falsifies ϕ0 in some model M is also represented inWf . Since the fmp guarantees
that only members of cl(ϕ0) are relevant, w0 is represented by w′

0 ∈ W as
the subset w′

0 = {ψ ∈ Atm | M, w0 � ψ}. For the greatest fixpoint method,
w′

0 ∈W0 = W and we prove that after all refinements, it is in Wf . For the least
fixpoint method, W0 = ∅ so we prove that w′

0 is added to Wi, for some i > 0.

Theorem 3 ϕ0 is satisfiable iff �ϕ0�∩Wf �= ∅ and ϕ0 is valid iff �ϕ0�∩Wf = ∅.
Since we construct a representation of a model, we can relatively easily create a
concrete example model illustrating satisfiability or falsifiability. But we deduce
unsatisfiability and validity by the absence of certain worlds, so a convincing
proof or “reason” for unsatisfiability or validity is more difficult to produce.

Global Assumptions. The greatest fixpoint method can easily handle global
assumptions to decide whether Γ |= ϕ0 by using W0 = �Γ � instead of W0 = W ,
thus immediately considering only those worlds that satisfy Γ . For the least
fixpoint method, we must assert the global assumptions Γ at each iteration.
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3.4 Extension to Bi-Intuitionistic Logic BiInt

We now show that the greatest fixpoint BDD-method extends easily to handle
converse, but the least fixpoint one does not. Our outline follows the methodology
we set out for Int, but we no longer explicitly distinguish between �, �i and
�max. Strictly speaking, the same distinctions as for Int apply.

The denotation of −< -formulae uses the (converse of the) semantic binary
relation �, so as for →-formulae, we add all −< -formulae from cl(ϕ0) to Atm.

The semantics of −< are handled similarly to →. Transitivity of the under-
lying relation � means that if M, w � φ−< ψ and w � v then M, v � φ−< ψ,
so exclusions persist. Thus we demand that all atoms still persist across �.

The (contra-position of the) “if” component of the semantics of φ−< ψ is:

w ∈ �φ−< ψ� & w �−1 v ⇒ v ∈ �φ� ∪ �ψ� (14)

Equation (14) transforms to a constraint on �−1 and hence �:

�−1 ⊆ (�φ−< ψ� ×W) ∪ (W × (�φ� ∪ �ψ�)) (15)

� ⊆ (W × �φ−< ψ�) ∪ ((�φ� ∪ �ψ�) ×W) (16)

The “only if” component of the semantics of exclusion is:

w ∈ �φ−< ψ� ⇒ ∃v. w �−1 v & v ∈ �φ� ∩ �ψ� (17)

We now have to modify the fixpoint formula. For greatest fixpoints, we first
calculate the witnesses V φ−< ψ

i to the existential of (17), as for implication earlier,

and then determine the worlds Wφ−< ψ
i which reach the witness via �−1:

V φ−< ψ
i =Wi ∩ �φ� ∩ �ψ� Wφ−< ψ

i = �φ−< ψ� ∪ {y | ∃x ∈ V φ−< ψ
i . (x, y) ∈ �}

The greatest fixpoint simply extends the one for Int with this new constraint:

Wi+1 =Wi ∩ Refl ∩
⋂

φ→ψ∈Atm
Wφ→ψ
i ∩

⋂

φ−< ψ∈Atm
Wφ−< ψ
i

On the other hand, it is not clear that there can be a least fixpoint approach
for BiInt. For example, the formula p∧ (((p → ⊥) → ⊥)−< p) is satisfiable, but
only in models containing a group of worlds which simultaneously require the
existence of each other. Such worlds lead to a non-well-founded ordering on the
inclusion of worlds in the least fixpoint, meaning that W0 = ∅ does not suffice.

3.5 Extension to Bi-Intuitionistic Tense Logic BiKt

Moving from BiInt to BiKt presents more of a challenge. In addition to the 4
new connectives �,♦,� and �, we must handle the two frame conditions (F1)
and (F2). These conditions are difficult to capture directly as they refer to both
the intuitionistic and modal relations and are existential in nature. However,
their purpose is to ensure that truth persists over �, and this is easier to use.
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Theorem 4 (Persistence of BiKt) For all BiKt models M, if M, w � ϕ
and w � v then M, v � ϕ.

The proof proceeds by induction on the size of ϕ and relies on (F1) and (F2)
for the persistence of ♦- and �-formulae. Thus (F1) and (F2) cause persistence.

Suppose now that we have a structure which fails (F1) or (F2), but in which
all formulae persist across �. We can soundly add the missing R� or R♦ edges,
without changing the satisfaction relation, to obtain a BiKt-model (which obeys
(F1) and (F2)) as encapsulated in the next theorem.

Theorem 5 By adding R♦ and R� edges, a structure M1 = (W,�, R1
♦, R

1
�, ρ)

which is persistent can be converted to a structureMn = (W,�, Rn♦, Rn�, ρ) which
satisfies (F1) and (F2), and such that M1, w � ϕ iff Mn, w � ϕ, for all w ∈W .

Thus, considering all persistent structures is sufficient. We must first extend Atm
by adding all formulae with a main connective from {�,♦,�,�} from cl(ϕ0).
We can then enforce persistence as for Int and BiInt via (5).

Having handled the frame conditions, we handle the semantics for ♦ and �
using Pan et al.’s methods for K. The ♦-formulae impose a restriction on R♦,
while the �-formulae impose a similar restriction on R−1

� , and hence upon R�:

R♦ ⊆ (�♦ψ� ×W) ∪ (W × �ψ�) (18)

R−1
� ⊆ (��ψ� ×W) ∪ (W × �ψ�) (19)

For the greatest fixpoint method, we also need:

W♦ψ
i = �♦ψ� ∪ {x | ∃y ∈ (Wi ∩ �ψ�) . (x, y) ∈ R♦}

The �- and �-formulae are more complicated to represent since R� and R♦
interact with �. The contra-positive of the “if” part of the semantics for � is:

w ∈ ��ψ� ⇒ ∃z. w � z & ∃v. zR�v & v ∈ �ψ�

This has two existentials, which can be handled by computing two pre-images
as follows. Let Z�ψ

i = {z | ∃y ∈ (Wi ∩ �ψ�) . (z, y) ∈ R�} and let

W�ψ
i = ��ψ� ∪ {x | ∃z ∈ (Wi ∩ Z�ψ

i ) . (x, z) ∈ �max}

For the “only if” component, the interactions of the relations are more trouble-
some. But since � is required to be reflexive, the following are essential:

wR�v ⇒ w ∈ ��ψ� ∨ v ∈ �ψ� (20)

vR♦w ⇒ w ∈ ��ψ� ∨ v ∈ �ψ� (21)

Additionally, because (5) enforces persistence, if u ∈ ��ψ�, then any w such that
u � w must also satisfy w ∈ ��ψ�. By induction this will force all �-successors
w of u to satisfy (20), and thus to satisfy the original semantics.
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The constraints on R� are thus (19) and (20):

R� ⊆ (��ψ� ×W) ∪ (W × �ψ�) (M, w � �ψ ⇒ M, v � ψ)

R� ⊆ (W × ��ψ�) ∪ (�ψ� ×W) (M, w � ψ ⇒ M, v � �ψ)

Similarly, the constraints on R♦ are (18) and (21):

R♦ ⊆ (�♦ψ� ×W) ∪ (W × �ψ�) (M, v � ψ ⇒ M, w � ♦ψ)
R♦ ⊆ (W × ��ψ�) ∪ (�ψ� ×W) (M, v � �ψ ⇒ M, w � ψ)

To complete the decision procedure, the greatest fixpoint calculation is:

Wi+1 =Wi ∩ Refl ∩Wφ→ψ
i ∩Wφ−< ψ

i ∩W�ψ
i ∩W♦ψ

i ∩W�ψ
i ∩W�ψ

i

3.6 Optimisations

Variable ordering. The choice of variable ordering is critical when using ordered
BDDs. We chose the following ordering after minimal experimentation since
its preliminary results are encouraging. For each member of Atm whose main
connective is non-classical (i.e. implication, exclusion, diamond or box), we do
a pre-order traversal of the formation tree stopping at other members of Atm.
The first time any member of Atm is encountered, it is appended to the current
ordering. Pre-image computations require copying Atm, so the copy a′ of a
appears immediately after a in the ordering. Using an ordering which puts all
copies at the end of the ordering is particularly bad.

Since determining the best ordering is a difficult problem in itself, BDD pack-
ages allow us to dynamically reorder the BDD variables. There is a trade-off
between the quality of a reordering and the time taken to perform the re-
ordering, so the main question is when to use this feature. For the greatest-
fixpoint method, we provide an option which uses this feature once only to find
a good ordering after computing W0 using Refl and any global assumptions.

Normalisation. Another component of complexity is the number of BDD vari-
ables. We use techniques such as constant propagation (�∧ϕ = ϕ, ⊥ → ϕ = �,
etc.) to reduce formula size, and possibly reduce the number of atoms. We use
syntactic equality to check whether two formulae are equivalent when determin-
ing the set of atoms. Normalising wrt an arbitrary fixed ordering < on formulae
improves the efficiency of this equality check. For example, putting p < q col-
lapses {(p ∧ q) → ⊥, (q ∧ p) → ⊥} to {(p ∧ q) → ⊥}, requiring fewer atoms.

Early Termination. If we only want to check satisfiability or validity, then early
termination is possible. In the greatest fixpoint approach, the setsWi are strictly
decreasing. If any Wi ⊆ �ϕ0� then Wf ⊆ �ϕ0�, so ϕ0 is valid, and if any Wi ∩
�ϕ0� = ∅ thenWf∩�ϕ0� = ∅, so ϕ0 is unsatisfiable. In the least fixpoint approach,
Wi is strictly increasing. If any Wi ∩ �ϕ0� �= ∅ then Wf ∩ �ϕ0� �= ∅, so ϕ0 is

satisfiable, and if any Wi ∩ �ϕ0� �= ∅ then Wf ∩ �ϕ0� �= ∅, so ϕ0 is not valid.
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Explicit representation of ↔. Expanding bi-implications↔ into two implications
can lead to an exponential blowup in the size of the formula. We therefore gave
a direct semantics for ↔ and added it to the set of atoms.

Explicit global assumptions. When determining Int-validity of a formula ϕ0 =
(γ → ϕ), any counterexample must make γ true in all states reachable from
the root. The formula is valid iff all models where γ is true globally must make
ϕ true. Thus, in the greatest fixpoint approach, we can start with W0 = �γ�,
rather thanW0 = W . By translating top-level implications to global assumptions
in this manner, there are fewer atoms to consider, and the global assumptions
may restrict the search space resulting in fewer iterations before reaching the
fixpoint. This optimisation cannot be used for BiInt because −< allows us to
look “backwards” along �, so γ cannot be turned into a global assumption.

4 Experimental Results

We used the ILTP propositional benchmarks [17, 16] and randomly generated
formulae. All tests were performed on 32bit Ubuntu with a Core 2 Duo 3.0GHz
processor, 3 GB RAM and a timeout of 600 seconds for each problem instance.

Benchmarks. The ILTP benchmarks consists of several categories of struc-
tured intuitionistic formulae. Some are “uninteresting” since they are easy for
all provers. The remaining “interesting” benchmarks are split into 12 problem
sets with 20 instances each, parametrised by a size n, consisting of zero or more
axioms {γ0, · · · , γk} and a single conjecture C giving (γ0 ∧ · · · ∧ γk) → C.

The random benchmarks are generated to have a fixed number of symbols
(treating ¬ϕ = ϕ → ⊥ as only one additional symbol) and a maximum ratio of
distinct propositions to formula size. Formulae for Int use connectives ∧,∨,¬,→
and ↔ while formulae for BiKt add in connectives −< ,�,�,♦ and �. We used
1000 instances of each size from 10 through to 90 in steps of 5, which are available
here: http://users.cecs.anu.edu.au/~rpg/BDDBiKtProver/

Theorem provers. According to the ILTP benchmark [16], the two best provers
for propositional intuitionistic logic are PITP/PITPINV, and Imogen.

PITP and PITPINV [1] implement a signed tableau calculus to determine Int
validity. The tableau rules are divided into 6 categories based on the branching
factor and whether or not they are invertible. PITPINV attempts a non-invertible
branch of one category before the invertible branch, while PITP attempts the
invertible branch first. PITP and PITPINV are written in C++, and make use of
optimisations such as dynamic formula simplification.

Imogen [11] uses a focused polarised inverse method to determine Int validity.
Given a formula, Imogen performs a pre-processing step to assign polarities to
each subformula. It then makes use of focusing based on the polarities to generate
inference rules, and these rules are used (and extended) by the inverse method
in a saturation phase to attempt to construct a sequent proving the original

http://users.cecs.anu.edu.au/~rpg/BDDBiKtProver/
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formula. Imogen is written in ML, and uses heuristics when assigning polarities
to try to minimise the search space. When given 600 seconds, it tries one heuristic
for 2 seconds and then, if needed, tries an alternate heuristic for 598 seconds.

DBiKt [15] is the only theorem prover we are aware of for BiKt. It uses a
deep-inference nested sequent calculus for BiKt and is implemented in Java. It
has not been heavily optimised, but is intended as a proof of concept.

BDDBiKt is our Ocaml theorem prover using the Buddy [3] BDD library. It is
available here: http://users.cecs.anu.edu.au/~rpg/BDDBiKtProver/

Results. The numbers reported here for PITP differ from those on the ILTP
website for two reasons. The first is that we use different hardware. The second
is that formula SYN007+1.0014 expands to 4GB when converted to the input
format of PITP, which did not allow it to be converted in-memory in the initial
comparison. We instead write the formula to disk during the conversion, which
allows the conversion to finish and hence allows PITP to solve it.

Our numbers for PITPINV differ from the ILTP website because we discovered
a bug during the comparison on randomly generated formulae. The authors of
PITPINV corrected the bug, and this has impacted its performance.

We analysed the impact of the implemented optimisations by testing the fol-
lowing versions of our own implementation:

GFP: Greatest-fixpoint with early termination and explicit handling of ↔
Ga: GFP, with explicit global assumptions
Gn: GFP, with normalisation.
Gna: GFP with both explicit global assumptions and normalisation
Gnar: Gna with dynamic variable reordering.
LFP: Least-fixpoint with the same optimisations as GFP
Ln: LFP with normalisation.

In Figure 2, “sum” is the sum out of the 240 “interesting” problems shown
individually, while “total” is out of the whole 274 instance benchmark.

With all optimisations enabled, our BDD-method (Gnar) solved the second
highest number of instances on the ILTP benchmark. Unlike the other theo-
rem provers, when the BDD-method fails, it usually runs out of memory rather
than time. Experiments on the same hardware with a 64bit OS and 8GB RAM
showed that no instance caused Gnar to run out of memory and BDD times were
improved, but only one additional problem was solved by Gnar, while Imogen
performed notably slower. We now discuss the effects of each optimisation.

Explicit Assumptions. Converting top-level implications to explicit global as-
sumptions has the largest impact. All of the benchmark formulae with axioms
were helped by this optimisation, and some were trivialised by it.

Normalisation. Normalising the input formula was not as beneficial as ex-
plicit assumptions. In some cases it helps significantly: for example it rewrites
SYJ206 to �. In others it is detrimental because changing the formula struc-
ture changes our heuristically chosen BDD order into a worse one.

http://users.cecs.anu.edu.au/~rpg/BDDBiKtProver/
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GFP Gn Ga Gna Gnar LFP Ln Imogen PITP PITPINV Out of

SYJ201 6 6 20 20 20 6 6 20 20 20 20
SYJ202 12 10 12 10 8 12 10 8 10 10 20
SYJ203 17 18 20 20 20 18 19 20 20 20 20
SYJ204 17 19 20 20 20 18 20 20 20 20 20
SYJ205 14 14 14 19 19 12 12 20 20 11 20
SYJ206 15 20 15 20 20 19 20 20 20 20 20
SYJ207 6 6 20 20 20 7 7 20 7 8 20
SYJ208 7 7 9 10 8 9 9 19 20 20 20
SYJ209 17 18 20 20 20 18 19 20 10 10 20
SYJ210 17 18 20 20 20 19 20 20 20 20 20
SYJ211 6 6 9 8 15 9 9 20 20 9 20
SYJ212 13 20 13 20 20 18 20 20 20 20 20

sum of above 147 162 192 207 210 165 171 227 206 187 240
total over all 181 196 226 241 244 199 205 261 240 221 274

Fig. 2. Number of instances solved in the ILTP benchmark

Assumptions + Normalisation. Combining both optimisations works well
on the whole. For class SYJ205, the formula is a conjunction of two seman-
tically equivalent implications which are syntactically reordered. Normalisa-
tion combines the two implications into one, which is then converted into a
global assumption. No assumptions can be made explicit without normalisa-
tion, and normalisation alone only removes one implication from the closure.

Dynamic Variable Reordering. Adding dynamic variable ordering is a mixed
bag. In most cases its overhead is significant, while the benefits are small. For
SYJ211 this is reversed, with reordering taking little time but giving signifi-
cant improvement. We speculate that our relatively naive ordering performs
reasonably well on most of the benchmarks, possibly because of the preva-
lence of lexicographically ordered sequences of propositional variables, so in
general the dynamic ordering does not give a big benefit. However when the
initial ordering is bad, the dynamic ordering can assist.

GFP vs LFP. LFP performs similarly to GFP in many cases, although it is
not compatible with some of the helpful optimisations. The small differences
between LFP and GFP arise from their different fixpoint formulae. LFP
generally has fewer iterations, but each iteration is a more complex formula
than the one used by GFP and thus takes longer to compute.

The results of random Int tell a different story. Now Imogen performs consid-
erably worse than all other provers, failing to solve many cases. GFP scales
reasonably, but is still significantly worse than PITP. Gnar is consistently slower
than Gna, however at size 90 the non-reordering version runs out of memory
on 7 formulae, while the reordering version times out on only 5. It seems that
reordering may not help very often, but it makes the method more robust.

LFP does quite well, though not as well as PITP. The majority of the randomly
generated formulae are invalid, so LFP can terminate early. Since each iteration
is quite expensive, performing fewer iterations on the invalid formulae here gives
a large benefit. On the valid formulae, it performs worse than GFP.
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Fig. 3. Average time taken per random Int and BiKt instance with a timeout of 600s

The comparison with DBiKt for BiKt shows that each theorem prover can
handle some formulae that the other could not. For sizes up to 75, GFP solved
all instances, and did it faster than DBiKt. Past that point, DBiKt solved an
increasing number of problems that GFP could not solve due to time or memory
limits, and the time taken by GFP increased significantly above that of DBiKt.
In general, all but 5 or so of the randomly generated formulae were invalid, but
some of the few valid instances proved difficult for DBiKt and not GFP.

5 Conclusion and Further Work

Our optimised BDD-method Gnar for Int is competitive with the state-of-the-
art provers Imogen and PITP in the following sense: on the ILTP benchmarks, it
solves more problems than PITP but less problems than Imogen, and on randomly
generated formulae, it performs better than Imogen but worse than PITP.

Unlike the other methods, BDD-methods are “memory hungry” so adding
memory is likely to improve their relative performance. Indeed, moving from a
32bit OS to a 64bit OS gave a small improvement, but not as much as we hoped
since the bottleneck just moved from memory to time.

To some extent, our implementation is naive, and further optimisations from
the model checking community need to be investigated. In particular, we need
to ascertain whether the BDD method is relatively brittle to variable ordering
heuristics, or robust over many potential choices.

We are currently extending this method to handle all 15 basic modal logics
obtained by combinations of reflexivity, transitivity, seriality, euclideaness, and
symmetry, as well as to the modal mu-calculus. We are also extending the im-
plementation to generate explicit (counter) models. A characterisation of when
and how the method works would also be nice. Finally, can the BDD method be
extended to predicate logics, possibly using instantiation-based methods?

The biggest advantage of the BDD-method is the ease with which it extends
from Int to BiInt to BiKt compared to tableaux and inverse methods. For
example, handling a “converse” operator to give BiInt using tableaux requires
significant methodological extensions [2, 8]. Similarly, the inverse method has
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not been extended to handle “converse” as far as we know. McLaughlin and
Pfenning [10] have implemented an inverse method for intuitionistic modal log-
ics which do not require the complications of converse. We can handle these
intuitionistic modal logics using our BDD-method for BiKt by just dropping
−< , � and �, and replacing R� and R♦ with a single modal relation R.
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[6] Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof-search for bi-
intuitionistic logic using nested sequents. In: AiML 2008, pp. 43–66 (2008)
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