
A Logical Formalisation of the Fellegi-Holt

Method of Data Cleaning

Agnes Boskovitz1, Rajeev Goré1, and Markus Hegland2

1 Research School of Information Sciences and Engineering
Australian National University, Canberra ACT 0200 Australia

2 Mathematical Sciences Institute
Australian National University, Canberra ACT 0200 Australia

{agnes.boskovitz, rajeev.gore, markus.hegland}@anu.edu.au

Abstract. The Fellegi-Holt method automatically “corrects” data that
fail some predefined requirements. Computer implementations of the
method were used in many national statistics agencies but are less used
now because they are slow. We recast the method in propositional logic,
and show that many of its results are well-known results in propositional
logic. In particular we show that the Fellegi-Holt method of “edit gen-
eration” is essentially the same as a technique for automating logical
deduction called resolution. Since modern implementations of resolution
are capable of handling large problems efficiently, they might lead to
more efficient implementations of the Fellegi-Holt method.

1 Introduction

Data errors are everywhere. While minor errors might be inconsequential, data
errors can often seriously affect data analysis, and ultimately lead to wrong
conclusions. Detecting and correcting errors to clean data is a large part of the
time-consuming preprocessing stage of any data-intensive project.

Obvious strategies for dealing with potentially erroneous data, like revisit-
ing the original data sources or doing nothing, have clear disadvantages. If the
locations of the errors are known, we can discard dirty data, again with clear
disadvantages. More practically, statistical techniques can be used to estimate a
likely correction. Fortunately, errors can often be located using the data’s inter-
nal dependencies, or redundancies, as seen in the following (contrived) example.

Example, part 1. (This will be a running example throughout this paper.) A
census of school students includes a data record showing a person who is aged
6, has a driver’s licence and is in Grade 8 of school. Domain knowledge gives:

Requirement 1: A person with a driver’s licence must be in at least Grade 11.
Requirement 2: A person in Grade 7 or higher must be at least 10 years old.

The given data record fails both of the requirements. Since school grade level
appears in both of them, it might seem that the record can be corrected by
changing the grade level. However the two requirements cannot be satisfied by

changing only the grade level. The difficulty arises because there is an additional
requirement that can be deduced from these, namely:

Requirement 3: A person with a driver’s licence must be at least 10 years old.

Requirement 3 does not involve school grade level, but is still failed by the data
record. In fact two fields must be changed to satisfy all of the requirements.
Of course in reality something much stronger than Requirement 3 holds, but
Requirement 3 is the logical deduction from the first two Requirements.

In this paper we address the problem of automating the task of correcting
record data when each record must satisfy deterministic requirements. After
stating our assumptions in Section 2, we describe in Section 3 the elegant con-
tribution of Fellegi and Holt [1], who recognised the need to find “all” deducible
requirements to decide where to correct a record. They developed an algorithm
for finding deducible requirements, and proved that it finds enough requirements
to determine which fields must be changed to correct an incorrect record. The
Fellegi-Holt method was used for many years in government statistical agencies,
but is less used now because it is too slow for many practical applications [2].

There have been many published refinements to the Fellegi-Holt method [3–
7]. However, they can be confusing, because the method is expressed in terms of
records which fail requirements, whereas the deducible requirements are about
records which satisfy requirements. We think a formalisation that helps people
to reason about the method itself, especially about the logical deduction of new
requirements, should decrease the level of confusion.

Symbolic logic is a well-developed and rigorous framework for formalising
reasoning and performing logical deduction. Although the problem of finding
“all” deductions is NP-complete, computer implementations for automatically
finding logical deductions are being continually improved. In Sections 4 and 5
we formalise the Fellegi-Holt method in logic, giving us two benefits. Firstly we
gain a rigorous perspective with which to reason about the problem of data cor-
rection and about Fellegi and Holt’s solution. Secondly we gain the potential to
use automated deduction techniques to speed up the method. In our formalisa-
tion, the Fellegi-Holt results become well-known results in classical propositional
logic. In particular, Fellegi-Holt deduction is essentially the same as a standard
technique called resolution deduction. The vast field of results for resolution de-
duction translate to Fellegi-Holt deduction, giving a new and potentially faster
technique for implementing the Fellegi-Holt method. Section 6 gives the results
of some experiments which prove our concept. Although other published formal-
isations in logic solve the data-correction problem, no other work formalises the
Fellegi-Holt method itself in logic.

2 Assumptions and Problem Statement

We assume that we are dealing with data arranged in records. A record R is an
N -tuple (R1, . . . , RN) where Rj ∈ Aj . Here Aj is the domain of the jth field,

and we assume that it is a finite set. We assume that N is fixed for all records
under consideration. The set of all such N -tuples is called the domain space
D = A1 × · · · ×AN =

∏N
1 Aj .

Example, part 2. The Example has three fields:

A1 = {5, 6, . . . , 20} (relevant ages), which we relabel Aage .

A2 = {Y,N} (whether someone has a driver’s licence), which we relabel Adriver .

A3 = {1, 2, . . . , 12} (school grade levels), which we relabel Agrade .

The domain space is D = Aage ×Adriver ×Agrade .

The record in this example is R = (6,Y, 8).

We assume that potential errors in the data are specified by deterministic
requirements obtained from domain knowledge, and that the requirements apply
to one record at a time. The requirements given in the Example are typical.
In the statistical literature, such requirements are usually formalised as edits,
where an edit consists of the elements of D which are incorrect according to the
corresponding requirement. Elements of the edit e are incorrect according to e
or fail e. Elements of D \ e are correct according to e or satisfy e.

Example, part 3. The edits corresponding to Requirements 1-3 are:

e1 = Aage × {Y} × {1, 2, . . . , 10},
e2 = {5, 6, . . . , 9} × Adriver × {7, 8, . . . , 12},
e3 = {5, 6, . . . , 9} × {Y} × Agrade .

Since R ∈ e1, R ∈ e2 and R ∈ e3, R is said to fail all three edits.

In our logical formalisation in Section 4, we represent the requirements as
logical formulae called checks, which represent the correctness of a record. To
each edit there corresponds a check.

We can now give a formal statement of the data correction problem: given a
record R and a set of requirements, find an N -tuple R′ which differs from R in
as few (weighted) fields as possible and satisfies all of the requirements. Solving
the data correction problem involves two steps:

1. Editing: the process of testing a data record against edits; and

2. Imputation: the correction of incorrect data, which itself takes two steps:

(a) error localisation: finding a smallest (weighted) set of fields which can
be altered to correct the record, and then

(b) changing those fields so as to preserve the original frequency distributions
of the data as far as possible (sometimes also called “imputation”).

In this paper we concentrate on error localisation, which is the area in which
the Fellegi-Holt method is slow.

3 The Fellegi-Holt (FH) Method

Fellegi and Holt’s method hinges on two aspects:

1. FH edit generation: a systematic process for generating new edits from a
given set of edits (described below in Section 3.1); and

2. FH error localisation and guarantee: a method of finding a smallest set of
fields that is guaranteed to yield a correction (described in Section 3.2).

3.1 FH Generation of New Edits

Fellegi and Holt generate edits in terms of normal edits, where a normal edit is
an edit e of the form

∏N
j=1 A

e
j , with Ae

j ⊆ Aj . The edits in the Example, part 3,
are normal edits. Any edit can be written as the union of a set of normal edits.

Given a set E of normal edits where each edit e is written
∏N

j=1 A
e
j , and

given a field i, the FH-generated edit on E with generating field i is FHG(i, E):

FHG(i, E) =

i−1
∏

j=1

⋂

e∈E

Ae
j ×

⋃

e∈E

Ae
i ×

N
∏

j=i+1

⋂

e∈E

Ae
j . (1)

Example, part 4. e3 = FHG(grade, {e1, e2}).

The following proposition tells us that any record that satisfies all edits in E
must also satisfy FHG(i, E), so the edit generation process produces an accept-
able edit. The result applies because FHG(i, E) ⊆

⋃

e∈E e.

Proposition 1 (Soundness). [1, Lemma 1] Let E be a set of normal edits, i
be a field, and R be a record such that for all e ∈ E,R /∈ e. Then R /∈ FHG(i, E).

Given a starting set E of edits, the FH edit generation process can be applied
to all subsets of E, on all fields. The newly generated edits can then be added
to E and the process repeated until no new edits can be generated. The process
will eventually terminate because the domain is finite.

The slowness of this process slows down the Fellegi-Holt method. The process
can be sped up by excluding any edit which is a subset of (dominated by) another
generated edit because the FH error localisation guarantee still applies [3]. We
call the unique set of edits left at the end of this process the set of maximal
generated edits, written MGE(E), or just MGE when the context is clear.

3.2 FH Error Localisation Method and Guarantee

Given an arbitrary set of edits, the FH error localisation method depends on:

1. If a record R fails a normal edit e, then any correction to R must change at
least one field j that is involved in e, ie Ae

j 6= Aj . Otherwise the change in
field j cannot affect R’s correctness according to e.

2. Hence if R fails some normal edits then any correction of R must change a
set of fields C which includes an involved field from each failed edit. Such a
set of fields C is called a covering set.

3. There is no guarantee that every covering set of the failed set of edits will
yield a correction to R. However if the edits are the failed edits in the MGE,
then any covering set will yield a correction to R (Theorem 1 below).

4. The FH error localisation method finds a smallest covering set, giving a
solution to the error localisation problem.

Theorem 1 (Error localisation guarantee). Let R be a record and let E be

a set of normal edits such that the edit D =
∏N

j=1 Aj /∈ MGE(E). Let E′ = {e ∈
MGE(E) | R ∈ e} be those edits in MGE(E) that are failed by R. Then there
exists a covering set of E′, and for every covering set C there exists an N -tuple
R′ which (1) is identical to R on fields outside C, and (2) satisfies all the edits
in E. ([1, Theorem 1, Corollaries 1, 2] and [3, Lemma 4, Corollaries 1,2])

Example, part 5. Both edits in E = {e1, e2} are failed by the given record,
but the smallest covering set of E, namely {grade}, does not yield a correction.
The record fails every edit in MGE(E) = {e1, e2, e3}, so E′ = {e1, e2, e3}. Any
pair of fields is a smallest covering set of the MGE and will yield a correction.

3.3 Overcoming the Slowness of Edit Generation

The Fellegi-Holt method is slow because of the slowness of edit generation. Im-
provements to the edit generation process have been published over the years,
eg [3–5], although there is disagreement about whether the “Field Code Forest”
algorithm finds the whole MGE [6]. Fellegi and Holt proposed using “essentially
new” edit generation, a method that produces fewer edits than the MGE, but
which requires much analysis prior to the generation of each new edit.

There has also been work on methods that avoid the large scale edit genera-
tion, and instead solve the editing problem record by record. Garfinkel, Liepins
and Kunnathur [3–5] and Winkler [7] propose a cutting plane algorithm which
avoids finding all implied edits, and instead finds only those that are needed for
each record. Barcaroli [8] formalises the problem in first order logic, and then
uses a systematic search through possible corrections to find a solution. Bruni
and Sassano [9] formalise the problem in propositional logic, use a propositional
satisfiability solver for edit validation and error detection, and then use inte-
ger programming for error localisation and imputation. Franconi et al [10] use
disjunctive logic programming with constraints, solving both the editing and
imputation problem. In each case, there is no preliminary edit generation but
the workload for each record is increased.

In contrast, the Fellegi-Holt idea is to do a large amount of work even before
the data is received, with correspondingly less work for each individual record.
The Fellegi-Holt method would therefore be best applied to datasets such as
population censuses where there is a long time between the finalisation of the
questionnaire and data entry. It is during this time that the large scale edit gen-
eration might be completed. Once the data is entered the editing itself should

take less time than the record-by-record approach. Thus our logical formalisa-
tion, which builds on the formalisation of Bruni and Sassano, keeps the full
generation of the MGE.

4 Translation of the Fellegi-Holt Method to Logic

In this section we represent the FH method in terms of classical propositional
logic. We first represent each of the FH constructs as a corresponding logical
construct, and then represent the key error localisation result.

As in [9], we represent individual field values by atoms, for example p6
age

stands for “age = 6”. The set of atoms is {pv
j | j = 1, . . . , N, v ∈ Aj}. In the

Example we use “age”, “driver” and “grade” to represent 1, 2 and 3 respectively.
Formulae are built from the atoms using the propositional connectives ¬,∨,∧

and →. We represent edits as formulae called checks.

Example, part 6. The edits e1, e2 and e3 are represented by the checks

γ1 = ¬ (pY
driver ∧ (p1

grade ∨ · · · ∨ p10
grade))

γ2 = ¬ ((p5
age ∨ · · · ∨ p9

age) ∧ (p7
grade ∨ · · · ∨ p12

grade))

γ3 = ¬ ((p5
age ∨ · · · ∨ p9

age) ∧ pY
driver) .

EachN -tuple R is represented by a truth function fR : Atoms → {true, false}
which can be extended in the usual way to truth functions on formulae. In any
N -tuple, each component takes exactly one value, so we require every truth
function to map to “true” the following sets of checks, called axioms :

Axiom 1: ¬pv
j ∨ ¬pw

j , for all j = 1, . . . , N and for v 6= w. (Each field of an
N -tuple can take at most one value.)

Axiom 2:
∨

v∈Aj
pv

j , for all j = 1, . . . , N . (Each field of an N -tuple must take

at least one value.)

Example, part 7. R = (6,Y, 8), so fR(p6
age) = fR(pY

driver) = fR(p8
grade) =

true. For all other atoms p, fR(p) = false. For the checks, fR(γ1) = fR(γ2) =
fR(γ3) = false.

If fR(γ) = false then the record R is said to fail the check γ or to be incorrect
according to γ. In the Example, R fails γ1, γ2 and γ3. If fR(γ) = true then the
recordR is said to satisfy the check γ or to be correct according to γ. This mimics
the situation with the corresponding edits, but note that the set of N -tuples on
which a check is “true” is the complement of the corresponding edit.

The following terms from logic will be useful: a literal is an atom or a negated
(¬) atom; a clause is a disjunction (∨) of literals; a clause α subsumes a clause
β if the literals in α form a subset of the literals in β.

Normal edits are represented by negations of conjunctions (∧) of clauses, as

seen in the Example, part 6. In general, the normal edit
∏N

j=1 A
e
j is represented

by the check ¬
∧N

j=1

∨

v∈Ae
j
pv

j . These formulae are complex and difficult to reason

about, but there are simpler “semantically equivalent” formulae: two formulae
ϕ and ψ are semantically equivalent if for all N -tuples R, fR(ϕ) = fR(ψ).

Example, part 8. The checks γ1, γ2 and γ3 from Example, part 6, respectively
representing the edits e1, e2 and e3, are semantically equivalent to:

ε1 = pN
driver ∨ p11

grade ∨ p
12
grade

ε2 = p10
age ∨ · · · ∨ p20

age ∨ p1
grade ∨ · · · ∨ p6

grade

ε3 = p10
age ∨ · · · ∨ p20

age ∨ pN
driver .

In general, the normal edit e =
∏N

j=1 A
e
j can be represented by the check

∨N

j=1

∨

v∈Ae
j
pv

j , where Ae
j is the complement of Ae

j , and so we define a Fellegi-

Holt normal check (FHNC) ε to be a check written in the form
∨N

j=1

∨

v∈Sε
j
pv

j ,

where Sε
j ⊆ Aj . The sets Sε

j may be empty. If they are all empty then the FHNC
is the empty clause, written �, which is the check according to which no N -tuple
is correct, ie every truth function makes � false.

Given a set Σ of FHNCs, the FH-deduced check with generating index i is
FHD(i, Σ), an exact mimic of the complement of the FHG(i, E) in Equation (1):

FHD(i, Σ) =
∨

{

pv
j

∣

∣ j ∈ {1, . . . , N}\{i}, v ∈
⋃

ε∈Σ

Sε
j

}

∨
∨

{

pv
i

∣

∣ v ∈
⋂

ε∈Σ

Sε
i

}

.

Note that FHD(i, Σ) is an FHNC.

Example, part 9. FHD(grade, {ε1, ε2}) = ε3.

As with FH edit generation, any record that satisfies all FHNCs in Σ must
also satisfy FHD(i, Σ), so the FH deduction produces acceptable results:

Proposition 2 (Soundness). Let Σ be a set of FHNCs, i a field, and f a truth
function such that for all σ ∈ Σ, f(σ) = true. Then f(FHD(i, Σ)) = true.

As with FH edit generation, the FH deduction can be repeatedly applied until
no new checks can be generated. We write Σ `FH ε to mean that ε is obtained
from Σ using one or more steps of FH deduction. As with FH edit generation,
checks which represent “dominated” edits can be excluded. This translates to:

1. excluding any subsumed check.

2. excluding any check which is mapped to “true” by every truth function. This
will happen if Axiom 2 is part of the check.

We will call the resulting set of FHNCs derived from a starting set Σ of
FHNCs the set of minimal FH-deduced FHNCs, written MFH(Σ) or just MFH

if the context is clear. The field j is an involved field of the FHNC
∨N

j=1

∨

v∈Sε
j
pv

j

if Sε
j 6= ∅. A covering set for a record is a set C of fields such that each failed

FHNC in the MFH has at least one involved field in C. With these definitions,
the error localisation guarantee (Theorem 1) translates to logic as:

Theorem 2 (Translation to logic of Theorem 1, Corollaries 1, 2 of [1],
modified in [3]). Let f be a truth function and let Σ be a set of FHNCs such
that � /∈ MFH(Σ). Let Σ′ = {ε ∈ MFH(Σ) | f(ε) = false} be those FHNCs in
MFH(Σ) which f makes false. Then there is a covering set of Σ′, and for every
covering set C there is a truth function f ′ such that (1) for all fields j with j /∈ C
and all v ∈ Aj, f

′(pv
j) = f(pv

j), and (2) for all ε ∈ Σ, f ′(ε) = true.

The proof is a faithful translation to logic of Fellegi and Holt’s proof.

5 Using Resolution Deduction instead of FH Deduction

Instead of using Fellegi-Holt deduction, we propose using resolution deduction,
explained below. In this section we show that the MFH can be obtained using
resolution deduction instead of FH deduction, opening the possibility to use the
well-developed methods of automated resolution deduction to obtain the MFH.

Resolution deduction is a well-known method of generating formulae from
other formulae [11]. Whereas FH deduction applies to FHNCs, resolution de-
duction applies to clauses. A single step of resolution takes as input two clauses
q∨ l1 ∨ · · · ∨ lm and ¬q ∨ l′1 ∨ · · · ∨ l′n, where q is an atom and l1, . . . , lm, l

′

1, . . . , l
′

n

are literals, and produces the resolvent clause l1 ∨ · · · ∨ lm ∨ l′1 ∨ · · · ∨ l′n, by
cancelling out q and ¬q. The result of resolving the unit clauses q and ¬q is �.

We define RA (resolution-axioms) deduction using resolution and the two
Axioms of Section 4. The clause σ is RA-deducible from Σ, written Σ `RA σ, if
σ results from Σ∪Axioms by possibly many resolution steps or σ ∈ Σ∪Axioms.

As with FH-deduction, given a starting set Σ of clauses, we can apply RA-
deduction until no new clauses can be generated. The process will eventually
terminate because the number of possible clauses is finite. We remove any sub-
sumed clauses or any clause which contains Axiom 2. At the end, we also remove
all non-FHNCs. We call the unique resulting set of clauses the set of minimal
RA-deduced FHNCs and write it as MRA(Σ) or just MRA if the context is clear.

Example, part 10. The FHNC ε3 is RA-deducible from {ε1, ε2} as follows:

ε1 = pN
driver ∨ p

11
grade ∨ p

12
grade ε2 = p10

age ∨ · · · ∨ p20
age ∨ p

1
grade ∨ · · · ∨ p6

grade

For v = 1, . . . , 6, resolve the axiom ¬p11
grade ∨ ¬pv

grade with ε1 on p11
grade to obtain

6 resolvents:

pN
driver ∨ p

12
grade ∨ ¬pv

grade . (∗v)

For v = 1, . . . , 6, resolve (∗v) with the axiom ¬p12
grade ∨ ¬pv

grade to obtain 6
resolvents:

pN
driver ∨ ¬pv

grade . (+v)

Now resolve (+1) with ε2 on p1
grade to obtain:

p10
age ∨ · · · ∨ p20

age ∨ pN
driver ∨ p2

grade ∨ · · · ∨ p6
grade . (†1)

Now resolve (+2) with (†1) on p2
grade to eliminate p2

grade from (†1) to obtain:

p10
age ∨ · · · ∨ p20

age ∨ pN
driver ∨ p3

grade ∨ · · · ∨ p6
grade . (†2)

Continue successively resolving on p3
grade, . . . , p

6
grade to eventually obtain

ε3 = p10
age ∨ · · · ∨ p20

age ∨ pN
driver . (†6)

Example part 10 can be generalised on the number and sizes of fields. Some
induction steps yield MFH(Σ) ⊆ MRA(Σ). The reverse direction, MRA(Σ) ⊆
MFH(Σ), requires induction on the number of resolution steps, yielding:

Theorem 3. If Σ is a set of FHNCs then MFH(Σ) = MRA(Σ).

Theorem 3 has two consequences. Firstly, automated resolution deduction
will find the MFH. Secondly, the set of MRAs guarantees error localisation since
Theorem 2 applies, and as with FH-deduction, a smallest covering set is guar-
anteed to be a solution to the error localisation problem.

The Fellegi-Holt theorems in logical perspective. In effect Fellegi and
Holt proved some well-known and important results about resolution [11]. Their
Lemma 1 is equivalent to the standard logic result known as soundness, and
their Theorem 1 has as a simple consequence the standard logic result known as
refutational completeness. In fact, their Theorem 1 (part of our Theorem 2) is
a generalisation of a standard logic lemma [11, Lemma 8.14, page 55]. Although
we have omitted the details, our logical equivalents of the Fellegi-Holt theorems
show that, contrary to the claim of Fellegi and Holt, their Theorem 1 can be
proved without using their Theorem 2. These observations support our claim
that a recasting of the Fellegi-Holt method into formal logic helps to reason
about the method itself.

6 Experiments

We conducted experiments to prove our claim that FH-generation can be done
using resolution. We chose Otter [12], a resolution-based theorem prover, for its
reliability and easy availability. Since we were only testing our claim, it did not
matter that Otter is not tuned for propositional deduction. We used Otter

in its default configuration, on a Sun Ultra Sparc 250, and used hyper-resolution
(a special type of resolution) as the deduction method, and the “propositional”
setting. The clause lists were as follows: “usable” list - the given checks; “set of
support” list - Axiom 1; “passive” list - Axiom 2. We used Otter to generate
the MRA for various initial sets of checks.

Our initial tests verified that Otter does in fact find all the required deduced
checks. In particular we used the example analysed in [5] and [6], and obtained
the same deduced checks. The CPU time for this small example was 0.7 seconds.

It is hard to compare experimental results since any other implemetations are
likely to be out of date, because the FH method has not been used in statistical
agencies recently. The only published results that we know of are in [5].

We conducted tests to assess the effect on CPU time of increasing the initial
number of checks. We used various combinations of three parameters: number
of checks, number of fields and number of values per field. For each such com-
bination we produced 1000–3000 randomly generated sets of edits, in order to
observe the variability of the results. Our sets of checks are arranged in two
groups, Group A and Group B, whose parameters are listed in Table 1. The sets
of checks in Group A contained checks with 13 fields and up to 8 values per
field. In Group B, the sets of checks contained checks with 10 fields and up to
10 values per field. Each Group contained sets of checks with 14, 19, 28 and 35
checks. Table 2 gives the CPU times of our results, listing the median times, and
the upper 75% and 99% percentiles.

Table 1. Experiment parameters

Group A Group B

No. of fields 13 10

No. of values per field Fields 1 & 2: 2 Fields 1 & 2: 2
Fields 3 & 4: 3 Field 3: 3
Fields 5 & 6: 4 Field 4: 4
Fields 7 & 8: 5 Field 5: 5
Fields 9 & 10: 6 Field 6: 6
Fields 11 & 12: 7 Field 7: 7
Field 13: 8 Field 8: 8

Field 9: 9
Field 10: 10

Table 2. CPU time (secs) to generate MRAs

Group A Group B

Initial no. Median 75% 99% Median 75% 99%
of FHNCs percentile percentile percentile percentile

14 1 1 39 2 5 147
19 2 6 280 3 14 898
28 2 12 2297 1 5 904
35 1 4 1049 1 2 165

As the initial number of checks increases, the computational time first in-
creases and then decreases. The decrease is caused by the interconnectedness of
the checks, that is, the checks are more likely to have fields in common which

are then eliminated in the deduction process. For example, as the number of
randomly generated checks increases, an inconsistency becomes more likely, re-
ducing the MRA to the single clause �. In addition, clauses restricted to one
field are also more likely, so that newly generated clauses are more likely to
be subsumed. Such situations are unrealistic: contradictory checks are almost
always unacceptible as are checks which unduly restrict one field. Thus these
experiments demonstrate some characteristics of randomly generated problems
as opposed to real problems. The computational times decline because of the
increasing proportion of unrealistic sets of checks.

Efficient methods for performing deduction have been studied extensively in
the field of automated deduction, and Otter is by no means state-of-the-art.
Systems like Chaff [13] can now perform automated deduction in propositional
logic orders of magnitude faster than can Otter. Simon and del Val [14] state
that modern consequence finders can generate and represent huge numbers (1070)
of deduced clauses efficiently. With such systems, one would expect that the CPU
times will be much lower.

7 Conclusions and Future Work

We have shown the equivalence between Fellegi-Holt deduction and resolution
deduction. Fellegi and Holt’s work is truly impressive: in apparent isolation from
logicians, they reinvented automated propositional deduction and proved the
underlying theorems.

The difficulty with the Fellegi-Holt method is the slowness of generating a
suitable set of edits for error localisation. As noted by Bruni and Sassano [9],
methods like Fellegi-Holt, which generate all implied edits, are not applicable to
many problems because the number of implied edits increases exponentially with
the number of original edits. The translation to propositional logic cannot avoid
this problem, of course, since it is inherent in any NP-complete problem. But
modern consequence finders [14] and propositional satisfiability solvers [13] can
efficiently handle huge problems which also have the same exponential behaviour.
So they are worth investigating for our fomalisation of the Fellegi-Holt method.

We have shown that logic has potential for improving the method by giving a
rigorous framework for reasoning about the method, and by demonstrating that
the core of the Fellegi-Holt method can be implemented in automated deduction
tools based on logic. Our next step will be to use some well-tuned deduction
system, or consequence finder, to generate checks efficiently.

Acknowledgements. Thank you to the three anonymous referees for their
helpful suggestions, to Matt Gray for his efficient programming assistance, and
to Andrew Slater for informative discussions about propositional satisfiability
solvers.

References

1. Fellegi, I.P., Holt, D.: A systematic approach to automatic edit and imputation.
Journal of the American Statistical Association 71 (1976) 17–35

2. U.N. Statistical Commission, Economic Commission for Europe and Conference of
European Statisticians: Work Session on Statistical Data Editing. Helsinki (2002)

3. Liepins, G.E.: A rigorous, systematic approach to automatic editing and its statis-
tical basis. Report ORNL/TM-7126, Oak Ridge National Lab., Tennessee (1980)

4. Liepins, G.E.: Refinements to the Boolean approach to automatic data editing.
Technical Report ORNL/TM-7156, Oak Ridge National Lab., Tennessee (1980)

5. Garfinkel, R.S., Kunnathur, A.S., Liepins, G.E.: Optimal imputation of erroneous
data: Categorical data, general edits. Operations Research 34 (1986) 744–751

6. Winkler, W.E.: Editing discrete data. Statistical Research Report Series, RR97/04,
U.S. Bureau of the Census (1997)

7. Winkler, W.E., Chen, B.C.: Extending the Fellegi-Holt model of statistical data
editing. Research Report Series, Statistics #2002-02, U.S. Bureau of the Census
(2002)

8. Barcaroli, G.: Un approccio logico formale al probleme del controllo e della cor-
rezione dei dati statistici. Quaderni di Ricerca 9/1993, Istituto Nazionale di Sta-
tistica , Italia (1993)

9. Bruni, R., Sassano, A.: Errors detection and correction in large scale data collect-
ing. In: Advances in Intelligent Data Analysis, Volume 2189 of Lecture Notes in
Computer Science, Springer-Verlag (2001) 84–94

10. Franconi, E., Palma, A.L., Leone, N., Perri, S., Scarcello, F.: Census data repair:
A challenging application of disjunctive logic programming. In: 8th International
Conference on Logic for Programming, Artificial Intelligence and Reasoning (2001)

11. Nerode, A., Shore, R.A.: Logic for Applications. Springer-Verlag, New York (1997)
12. Argonne National Laboratory, Math. & Comp. Sci. Div.: Otter: An automated

deduction system. (Web page) http://www-unix.mcs.anl.gov/AR/otter/
13. SAT Research Group, Electrical Engineering Department, Princeton University:

zChaff. (Web page) http://ee.princeton.edu/~chaff/zchaff.php
14. Simon, L., del Val, A.: Efficient consequence finding. In: IJCAI ’01: 17th Interna-

tional Joint Conference on Artificial Intelligence, Morgan Kaufmann (2001)

