
A HOL model of the Hare-Clark voting system

Version 2.04

Michael Norrish

8 June 2004

Abstract

This document gives a formal, logical presentation of the Hare-Clark voting
system used in the Australian Capital Territory, as specified in Schedule 4 of
the Electoral Act 1992 (R12). The presentation is one that can be mechanically
manipulated by the HOL proof assistant.

Contents

1 Introduction 4

1.1 Notation . 4

1.2 The HOL Formalisation . 5

2 The Algorithm Introduced 6

2.1 Counts, or the algorithm’s “clock” 6

3 Basic Types 8

3.1 Candidates . 8

3.2 Ballot Papers . 9

3.2.1 Well-formed ballots . 10

3.2.2 What is the value of a bag of transferrable ballots? 11

3.2.3 Which candidates are in a bag of transferrable ballots? . . 11

3.2.4 Is a ballot paper for a candidate? 12

3.3 Candidate Information . 13

3.3.1 What are all the ballots in a cinfo? 14

3.3.2 What are the candidates in a cinfo? 14

3.3.3 Well-formedness for cinfo values 15

3.4 Vote Piles . 15

3.4.1 What are a pile’s ballot papers? 16

3.4.2 What are the candidates in a pile? 16

3.4.3 Well-formedness for vote piles 17

3.4.4 Transferring a bundle of votes 18

1

4 Algorithm State 19

4.1 Functions over Algorithm States 21

4.1.1 Which are all the ballot papers? 21

4.1.2 Which are all the candidates? 22

4.1.3 How many votes does a (continuing) candidate have? . . . 22

4.1.4 What is the set of successful candidates? 23

4.1.5 Which candidates can be ignored? 23

4.1.6 What is the total value of remaining, “live” votes? 23

4.1.7 What is the set of continuing candidates? 24

4.1.8 Algorithm State Well-formedness 25

5 The Algorithm Defined 26

5.1 Clause 3: First preferences . 27

5.2 Clause 4: Scrutiny to cease . 29

5.3 Clause 5: Scrutiny to continue 31

5.4 Clause 6: Surplus votes . 32

5.5 Clause 7: More than 1 surplus 34

5.6 Clause 8: Exclusion of candidates 37

5.7 Clause 9: Votes of excluded candidates 39

6 Theorems 40

6.1 Clause 3 creates well-formed states 41

6.2 Clause 6 preserves well-formed states 42

7 Change Log 43

A Proofs 45

A.1 Clause 3 creates only well-formed states 45

A.2 Clause 6 preserves well-formed states 54

B Additional HOL Material 56

B.1 Auxiliary HOL Definitions . 57

B.2 Auxiliary Tactics . 63

2

B.3 Finishing . 64

C Chunk Index 65

D Identifier Index 67

3

Chapter 1

Introduction

1.1 Notation

This document is a “literate program”, which means that it is a combination of
expository text, and actual HOL source code. This source code is always found
in specially marked-up chunks. The following chunk, 〈Sample 4a〉 illustrates:

4a 〈Sample 4a〉≡
HOL code might apper here.

To elide details, code can also be

put into other chunks, and referred

to from here. Thus:

〈Sample Details 4b〉

The reference to 〈Sample Details 4b〉 inside the chunk above should be taken to
mean that the text of the chunk labelled 〈Sample Details 4b〉 is actually included
in 〈Sample 4a〉 but has been elided for reasons of exposition. Those details are
provided in a chunk of their own:

4b 〈Sample Details 4b〉≡ (4a) 5a .

Material separated out from the

higher level chunk.

4

Note that all chunks are accompanied by references that appear in left margins
to make it easy to find cross-referenced chunks. The parenthesised numbers
on the right hand side specify which chunks, if any, this chunk is referred to
by. The references identify the page-number of the chunk, possibly followed by
additional roman letters if more than one chunk appears on that page.

If multiple chunks appear with the same name, then these should be understood
as if the material within them is concatenated together. Thus, it is possible to
extend the subsidiary chunk 〈Sample Details 4b〉:

5a 〈Sample Details 4b〉+≡ (4a) / 4b

More information

The numbers with triangles that appear to the right of such chunks indicate
that they are part of a continued chunk.

1.2 The HOL Formalisation

The following “chunk”, which assembles the HOL source code, should now make
sense: the theory consists of sections with names such as 〈Preliminaries 56a〉,
〈Types 8a〉 and 〈Algorithm Definition 27〉 that will be present in the output source
in that order. This doesn’t mean that the presentation in this document follows
that order. The 〈Preliminaries 56a〉 section, for example, is less fascinating than
the other material, and is relegated to an appendix.

5b 〈HOL Theory of the Electoral Act 1992 5b〉≡
〈Preliminaries 56a〉
〈Types 8a〉
〈Algorithm States 19〉
〈Algorithm Definition 27〉
〈Theorems 40〉
〈Closing 64b〉

5

Chapter 2

The Algorithm Introduced

The basic outline of the algorithm is given in Figure 2.1, where each of the
boxes in the chart corresponds to a clause of Part 4.2 of the Act. The logical
specification of the algorithm will reflect this structure, with one HOL function
for each box, or phase of the algorithm. Each such function will have the name
clause〈n〉 for appropriate values of n.

The HOL model of this algorithm will take an “algorithm state” and pass it
through each of the flow-chart boxes in Figure 2.1. So, the initial state will
have a number of continuing candidates, no successful candidates and a pile of
unallocated votes. The state will evolve as it passes through the various phases,
with candidates becoming successful and others being excluded.

2.1 Counts, or the algorithm’s “clock”

The algorithm proceeds in phases that the Act calls “counts”. To a first approx-
imation, each loop around the graph in Figure 2.1 is a count. Unfortunately,
this simple picture is inaccurate because Clause 9 can cause multiple phases
of vote transfers, and each of these phases consists of a single “count”. This
doesn’t cause any significant problems.

6

Start

3: First prefer-
ences
(Initialisation)

Stop
4: Scrutiny to
cease
(Stop?)

5: Scrutiny to con-
tinue
(Does there exists a suc-
cessful candidate with a
surplus?)

7: More than 1
surplus
(Determining which suc-
cessful candidate should
have their votes redis-
tributed first)

8: Exclusion of
candidates
(Determining which can-
didate to exclude)

6: Surplus votes
(Redistribution of sur-
plus votes)

9: Votes of ex-
cluded candidates
(Redistributing an
excluded candidate’s
votes)

�

Y

N

Y N

Figure 2.1: A flow-chart for the Hare-Clark algorithm. Bold-face numbers are
those of the clauses in Part 4.2, accompanied by those clauses’ titles.

7

Chapter 3

Basic Types

Before a formal description of the Hare-Clark algorithm is possible, all of the
“objects” it manipulates need to be described. Types provide these descriptions.
In this chapter, the simplest types are described, starting with candidates, and
moving up to “vote piles”. In Chapter 4, the type of the algorithm states is
introduced.

8a 〈Types 8a〉≡ (5b)

〈Candidates 8b〉
〈Ballot Papers 9a〉
〈Candidate Information 13a〉
〈Vote Piles 15b〉

3.1 Candidates

It is not necessary to commit to a particular representation for candidates as
the algorithm doesn’t require anything more than being able to compare two
candidates for equality. The following establishes such a type:1

8b 〈Candidates 8b〉≡ (8a)

val _ = new_type("candidate", 0)

Defines:
candidate, used in chunks 9a, 11b, 15, 16, 18, 20, 22b, 33, 35, 36, 38, 39, and 47.

There are no interesting functions possible a type such as this. In order to make
the specification executable, the candidate type may be made an abbreviation
for the type of strings.

1The zero in the definition means that the type is a nullary type constructor, alternatively,
a type constant.

8

3.2 Ballot Papers

A ballot is represented as a list of candidates, where the first candidate in the
list is the voter’s first choice, where the second candidate in the list is the voter’s
second choice, and so on.

9a 〈Ballot Papers 9a〉≡ (8a) 9b .

val _ = type_abbrev("ballot", ‘‘:candidate list‘‘)

Defines:
ballot, used in chunks 9b, 10a, and 47.

Uses candidate 8b.

Ballot papers coupled with transfer values will be known as transferable ballot
papers (tbp):

9b 〈Ballot Papers 9a〉+≡ (8a) / 9a 9c .

val _ = type_abbrev("tbp", ‘‘:ballot # real‘‘)

Defines:
tbp, used in chunks 10–14, 16a, 18, 20, 21b, and 33.

Uses ballot 9a.

There are a number of important functions to be defined on the type of ballot
papers.

9c 〈Ballot Papers 9a〉+≡ (8a) / 9b 12b .

〈Ballot Paper Functions 10a〉

9

3.2.1 Well-formed ballots

Not all possible lists of candidates correspond to real ballots. In particular, a
list of candidates that includes repeated candidates is not valid. Also, a ballot
must list at least one candidate. Further, it is assumed that the provisions of
Part 4.1, clause 2 have been applied to normalise ballot papers, so that

• ballot papers where “the same number has been marked in 2 or more
candidate squares”, have those numbers and any greater number removed
(Part 4.1, clause 2(2)); and

• ballot papers where “a number is missing from the series of consecutive
whole numbers marked in the candidate squares”, have all numbers greater
than the missing number removed (Part 4.1, clause 2(3)).

Because voters do not have to rank all possible candidates, and because of
the above “normalisation provisions”, ballots may be lists of different lengths.
Further, votes must be for valid candidates (where validity is given in a set
of candidates ok cands, passed as a parameter). The following defines a new
predicate to test whether or not a ballot is well-formed :

10a 〈Ballot Paper Functions 10a〉≡ (9c) 10b .

val wf_ballot_def = Define‘

wf_ballot ok_cands (b : ballot) =

ALL_DISTINCT b /\ ~(b = []) /\ set(b) SUBSET ok_cands

‘;

Defines:
wf ballot, used in chunks 10b, 42a, and 47.

Uses ballot 9a and set 57a.

Transferable ballot papers also need their own well-formedness predicate. The
ballot component must itself be well-formed, and the transfer value must be
positive and rational.

10b 〈Ballot Paper Functions 10a〉+≡ (9c) / 10a 11a .

val wf_tbp_def = Define‘

wf_tbp ok_cands ((b, tv) : tbp) =

wf_ballot ok_cands b /\ 0 < tv /\ ?p q. tv = &p / &q

‘;

Defines:
wf tbp, used in chunks 15a, 25, 45b, and 47.

Uses tbp 9b and wf ballot 10a.

10

3.2.2 What is the value of a bag of transferrable ballots?

Bags of transferable ballot papers may need to be summed. This calculation is
done by the function sum vote bag:

11a 〈Ballot Paper Functions 10a〉+≡ (9c) / 10b 11b .

val sum_vote_bag_def = Define‘

sum_vote_bag (bag : tbp bag) : real =

ITBAG ((+) : real -> real -> real) (image SND bag) 0

‘;

Defines:
sum vote bag, used in chunks 15a and 23c.

Uses image 57a and tbp 9b.

3.2.3 Which candidates are in a bag of transferrable bal-
lots?

This function returns (the set of) candidates mentioned in a bag of transferrable
ballots. This is done by calculating the image of the bag under set o FST. The
FST function strips the transfer value of each ballot, and then the set function
turns a list of candidates into a set of candidates. The result is a bag of sets of
candidates. The call to ITBAG then calculates the union of all these sets.

11b 〈Ballot Paper Functions 10a〉+≡ (9c) / 11a 12a .

val tbp_bag_candidates_def = Define‘

tbp_bag_candidates (tb : tbp bag) : candidate set =

ITBAG (UNION) (image (set o FST) tb) {}

‘;

Defines:
tbp bag candidates, used in chunks 14b and 22a.

Uses candidate 8b, image 57a, set 57a, and tbp 9b.

11

3.2.4 Is a ballot paper for a candidate?

The predicate ballot is for takes three parameters: ignore, a set of candi-
dates to ignore; c, the candidate whose ballot this might be; and b, the (trans-
ferable) ballot to be checked. If, ignoring those candidates in the set ignore,
the ballot b is “for” candidate c (i.e., there is at least one candidate remaining
on the ballot, and the first such candidate is c), then this predicate is true,
otherwise false. The ignored candidates correspond to those that have already
been excluded from consideration for one reason or another. They may have
been dead to start with, they may have already become successful candidates,
or they may have been excluded.

In more detail, the filter function in the definition filters a list of candidates so
that only those satisfying its first argument remain. The predicate in this case
is \c’. ~(c’ IN ignore), which is true of those candidates that don’t appear
in the ignore set.

12a 〈Ballot Paper Functions 10a〉+≡ (9c) / 11b

val ballot_is_for_def = Define‘

ballot_is_for ignore c ((b, tv) : tbp) =

let b’ = filter (\c’. ~(c’ IN ignore)) b

in

~(b’ = []) /\ (HD b’ = c)

‘;

Defines:
ballot is for, used in chunks 17, 33, 39, and 47.

Uses filter 57a and tbp 9b.

Further properties of ballot papers are stated and proved in an appendix:

12b 〈Ballot Papers 9a〉+≡ (8a) / 9c

〈Properties of ballot papers 45b〉

12

3.3 Candidate Information

Each candidate in the vote-counting system is associated with three pieces of
information:

• a natural number (the vote value of the candidate’s votes);

• a bag of ballot papers; and

• another bag, representing the last batch of votes transferred to this can-
didate.

The number of votes allotted to a candidate is not simply the sum of the votes’
transfer values, nor even this sum rounded down. Instead, when a packet of
papers is transferred to a candidate, the number of votes these represent is
rounded down, before being added to the candidate’s count. This is as per the
definition of count votes. Therefore, in addition to each pile of votes, the system
must track the number of votes this pile represents. Finally, the last packet
of votes transferred to a candidate is significant when a candidate becomes
successful. It is only this packet of votes that may be liable for redistribution.

It seems simpler to avoid having the same votes recorded twice, so the total
votes for a candidate will be the union of the second and third components.
Another option would be to have transferred votes move into both the second
and third components simultaneously. This type is introduced below as a cinfo

(standing for “candidate information”):

13a 〈Candidate Information 13a〉≡ (8a) 13b .

val _ = Hol_datatype‘

cinfo = <| count : num ;

old_votes : tbp bag ;

latest_votes : tbp bag |>

‘;

Defines:
cinfo, used in chunks 14–16, 18, and 20.

Uses tbp 9b.

There are a number of functions to be defined on candidate information records.

13b 〈Candidate Information 13a〉+≡ (8a) / 13a

〈Candidate Information Functions 14a〉

13

3.3.1 What are all the ballots in a cinfo?

Though a candidate information record needs to track the most recently trans-
fered votes separately from the other votes a candidate has received, it is also
frequently necessary to consider all of a candidate’s votes together. The name of
this function makes it clear that a bag of transferrable ballot papers is returned.

14a 〈Candidate Information Functions 14a〉≡ (13b) 14b .

val cinfo_votebag_def = Define‘

cinfo_votebag (ci : cinfo) : tbp bag =

BAG_UNION ci.old_votes ci.latest_votes

‘;

Defines:
cinfo votebag, used in chunks 14–17 and 23c.

Uses cinfo 13a and tbp 9b.

3.3.2 What are the candidates in a cinfo?

This function returns (the set of) all of the candidates mentioned in a candidate
information record:

14b 〈Candidate Information Functions 14a〉+≡ (13b) / 14a 15a .

val cinfo_candidates_def = Define‘

cinfo_candidates pt = tbp_bag_candidates (cinfo_votebag pt)

‘;

Defines:
cinfo candidates, used in chunk 16b.

Uses cinfo votebag 14a and tbp bag candidates 11b.

14

3.3.3 Well-formedness for cinfo values

A candidate information record is well-formed if

• the two bags of ballots stored for that candidate are finite;

• at least one of the bags is non-empty;

• the stored count for the candidate is no greater than the sum of the transfer
values on all the stored ballots; and

• each stored ballot is well-formed.

A ballot is only well-formed with respect to a set of valid candidates, so this set
is given as a parameter to the wf cinfo function defined below.

15a 〈Candidate Information Functions 14a〉+≡ (13b) / 14b

val wf_cinfo_def = Define‘

wf_cinfo okcands ci =

finite (cinfo_votebag ci) /\ ~(cinfo_votebag ci = {||}) /\

&ci.count <= sum_vote_bag (cinfo_votebag ci) /\

!b. BAG_IN b (cinfo_votebag ci) ==> wf_tbp okcands b

‘;

Defines:
wf cinfo, used in chunk 17.

Uses cinfo votebag 14a, finite 57a, sum vote bag 11a, and wf tbp 10b.

3.4 Vote Piles

A “vote pile” is a finite map from candidates to candidate information records
(written in HOL as :candidate |-> cinfo). The notation with the arrow will
generally be preferred to the abbreviation.

15b 〈Vote Piles 15b〉≡ (8a)

val _ = type_abbrev("vote_pile", ‘‘:candidate |-> cinfo‘‘)

〈Vote Pile Functions 16a〉

Uses candidate 8b and cinfo 13a.

15

There are a great many functions on vote piles as this type is the core component
of the algorithm state.

3.4.1 What are a pile’s ballot papers?

This function returns all of the ballot papers stored within a pile (i.e., a finite-
map from candidates to pile-triples):

16a 〈Vote Pile Functions 16a〉≡ (15b) 16b .

val pile_ballots_def = Define‘

pile_ballots (p : candidate |-> cinfo) : tbp bag =

ranb (cinfo_votebag o_f p)

‘;

Defines:
pile ballots, used in chunks 21b and 25.

Uses candidate 8b, cinfo 13a, cinfo votebag 14a, ranb 60a, and tbp 9b.

3.4.2 What are the candidates in a pile?

Composing the cinfo candidates function with p generates a finite map from
candidates to set of candidates. (This is the map from candidates to the sets
of candidates mentioned on their ballot papers.) Taking the range of this map
returns a set of sets.

16b 〈Vote Pile Functions 16a〉+≡ (15b) / 16a 17 .

val pile_candidates_def = Define‘

pile_candidates (p : candidate |-> cinfo) =

BIGUNION (ran (cinfo_candidates o_f p))

‘;

Defines:
pile candidates, used in chunks 22a and 42b.

Uses candidate 8b, cinfo 13a, and cinfo candidates 14b.

16

3.4.3 Well-formedness for vote piles

A vote pile is well-formed if for every candidate in the domain of the pile each
stored ballot in the candidate’s record is actually for the candidate, and if each
record is itself well-formed. This function is again parameterised by a set of
acceptable candidates. In addition, determining who a ballot is for requires a
knowledge of which candidates on a ballot should be ignored, so this must also
be a parameter.

17 〈Vote Pile Functions 16a〉+≡ (15b) / 16b 18 .

val wf_pile_def = Define‘

wf_pile okcands ignores p =

!c. c IN dom p ==>

wf_cinfo okcands (p ’ c) /\

!b. b IN set (cinfo_votebag (p ’ c)) ==>

ballot_is_for ignores c b

‘;

Defines:
wf pile, used in chunks 25, 47, and 55.

Uses ballot is for 12a, cinfo votebag 14a, dom 57a, set 57a, and wf cinfo 15a.

17

3.4.4 Transferring a bundle of votes

The transfer of bundles of votes is done in Clauses 6 and 9 (Sections 5.4 and
5.7), so it makes sense to specify a function that both implementations can use.
The function transfer bundle takes a bundle of votes to be transferred. All
of the ballots are assumed to have the same transfer value, but they may be for
different candidates. The bfor parameter is used to determine which candidate
a ballot is for, and the pile parameter is the pile of votes which is to be updated
as the votes are transferred.

18 〈Vote Pile Functions 16a〉+≡ (15b) / 17

val transfer_bundle_def = Define‘

transfer_bundle (bundle : tbp bag)

(bfor : tbp -> candidate)

(pile : candidate |-> cinfo)

=

let brel (b1 : tbp) (b2 : tbp) = (bfor b1 = bfor b2) in

let grouped_votes = partitionb brel bundle in

let transfer_group gp pile =

let (b, tv) = BAG_CHOICE gp in

let b_is_for = bfor (b, tv) in

let count = trunc (tv * &(card gp)) in

let (old_count,old_ballots,old_lastballots) =

if b_is_for IN dom pile then

let pt = pile ’ b_is_for in

(pt.count, pt.old_votes, pt.latest_votes)

else

(0, {||}, {||})

in

let merged = BAG_UNION old_ballots old_lastballots

in

pile |+ (b_is_for,

<| count := old_count + count ;

old_votes := merged ;

latest_votes := gp |>)

in

ITSET transfer_group grouped_votes pile

‘;

Defines:
transfer bundle, used in chunks 33, 39, and 42b.

Uses candidate 8b, card 57a, cinfo 13a, dom 57a, partitionb 61a, and tbp 9b.

18

Chapter 4

Algorithm State

19 〈Algorithm States 19〉≡ (5b)

〈Algorithm State Type 20〉
〈Functions over Algorithm States 21b〉
〈Algorithm State Well-formedness (Invariant) 25〉

19

The state manipulated by the algorithm must include

• A vote pile, keyed by the current first candidate of each ballot paper.

• A bag of votes corresponding to those votes that have been set aside. Votes
can be set aside if they no longer mention any continuing candidates, or
once a candidate is deemed successful and elected. In the latter case, all
of that’s candidate’s votes, except the last packet of votes transferred to
that candidate, have no further role to play, and mustn’t be considered by
further stages of the algorithm, even if they do mention other continuing
candidates.

• A characterisation of the candidates not in the domain of vote pile into
three disjoint sets: dead, excluded, and done successes. The dead
set will not change as algorithm proceeds. The excluded candidates
are those who have been excluded through the action of Clause 9. The
done successes candidates will be those candidates who are both suc-
cessful, and have had any surplus votes redistributed. In other words,
they will be candidates who do not need any further work done on them.
The Act’s category of successful candidates will be the union of those can-
didates with vote pile who have sufficient votes with done successes.
The Act’s category of continuing candidates will be the subset of the can-
didates with vote pile who are not successful.

• The election’s quota. The quota will not change as the algorithm proceeds.

• The number of candidates to elect, given as N in Schedule 4. This number
is another that will not change as the algorithm proceeds.

Here follows the definition of a new HOL type, state, a record of seven fields,
corresponding to the state discussed above.

20 〈Algorithm State Type 20〉≡ (19) 21a .

val _ = Hol_datatype‘

state = <| vote_pile : candidate |-> cinfo ;

set_aside : tbp bag ;

dead : candidate set ;

excluded : candidate set ;

done_successes : candidate set ;

quota : num ;

num_to_elect : num |>

‘;

Defines:
state, used in chunks 21–24, 29–31, 37, and 39.

Uses candidate 8b, cinfo 13a, set 57a, and tbp 9b.

20

It is clear from Part 4.2, clauses 7 & 8, that the algorithm must have access to
previous stages of the vote-counting. That is, the algorithm must have access
to a list of previous states from previous iterations of the process. This will be
done by providing a list of previous states as another argument to each function
implementing the various stages of the algorithm. Also, each such function will
return both a new state, and a potentially new history. In this sense, the full
state being manipulated by the algorithm is actually a pairing of a state with
another list of states, the latter being the history. A state coupled with another
list of states will be a fullstate:

21a 〈Algorithm State Type 20〉+≡ (19) / 20

val _ = type_abbrev("fullstate", ‘‘:state # state list‘‘)

Defines:
fullstate, used in chunks 28, 33, 35, 36, and 38.

Uses state 20.

4.1 Functions over Algorithm States

In this section, necessary auxiliary functions over ballot papers and algorithm
states are described.

4.1.1 Which are all the ballot papers?

This function returns all of the ballot papers stored within the given state:

21b 〈Functions over Algorithm States 21b〉≡ (19) 22a .

val state_ballots_def = Define‘

state_ballots (s : state) : tbp bag =

BAG_UNION (pile_ballots s.vote_pile) s.set_aside

‘;

Defines:
state ballots, never used.

Uses pile ballots 16a, state 20, and tbp 9b.

21

4.1.2 Which are all the candidates?

This function returns the set of all the candidates mentioned in a state. As
candidates only move from one set to another, and are never dropped, this set
should stay the same through all of the algorithm’s phases. It is possible that a
valid candidate should have no first round votes at all. This possibility explains
the complicated definition of pile candidates below; it’s not enough to simply
take the domain of the vote pile map as this set only includes those candidates
who are at the top of a ballot paper.

22a 〈Functions over Algorithm States 21b〉+≡ (19) / 21b 22b .

val all_candidates_def = Define‘

all_candidates (s:state) =

s.dead UNION s.excluded UNION

pile_candidates s.vote_pile UNION

s.done_successes UNION

tbp_bag_candidates s.set_aside

‘;

Defines:
all candidates, used in chunks 23–25, 42c, 47, and 55.

Uses pile candidates 16b, state 20, and tbp bag candidates 11b.

4.1.3 How many votes does a (continuing) candidate have?

This is easy to calculate: if the candidate is in the vote pile, return the count

field of that candidate’s information record. Otherwise the candidate has no
votes.

22b 〈Functions over Algorithm States 21b〉+≡ (19) / 22a 23a .

val candidate_votes_def = Define‘

candidate_votes s (c : candidate) : num =

if c IN dom(s.vote_pile) then (s.vote_pile ’ c).count else 0

‘;

Defines:
candidate votes, used in chunks 23a, 29, 31, 35, 37, 42c, 47, and 55.

Uses candidate 8b and dom 57a.

22

4.1.4 What is the set of successful candidates?

Given an algorithm state, return the set of candidates that are successful, in
the sense of Schedule 4.

23a 〈Functions over Algorithm States 21b〉+≡ (19) / 22b 23b .

val successful_candidates_def = Define‘

successful_candidates s =

s.done_successes UNION

(all_candidates(s) INTER {c | s.quota <= candidate_votes s c})

‘;

Defines:
successful candidates, used in chunks 23b, 25, 29–31, and 34.

Uses all candidates 22a and candidate votes 22b.

4.1.5 Which candidates can be ignored?

Given a state, this function returns the set of candidates that can now be ig-
nored. An ignored candidate is one whose presence on a ballot is ignored when
deciding where a ballot is to be transferred in a redistribution.

23b 〈Functions over Algorithm States 21b〉+≡ (19) / 23a 23c .

val ignored_candidates_def = Define‘

ignored_candidates (s:state) =

s.dead UNION s.excluded UNION successful_candidates(s)

‘;

Defines:
ignored candidates, used in chunks 24, 25, 33, 39, 47, and 55.

Uses state 20 and successful candidates 23a.

4.1.6 What is the total value of remaining, “live” votes?

Given a set of candidates to ignore, sum the values of the ballot papers that
have not been “set aside” (because they only mention candidates in the set to
ignore). This sum is the “genuine” sum of all the ballots, computed by summing
the ballots’ transfer values.

23c 〈Functions over Algorithm States 21b〉+≡ (19) / 23b 24 .

val total_live_votes_def = Define‘

total_live_votes s =

let total ci = sum_vote_bag (cinfo_votebag ci)

in

ITBAG (+) (FRANGEB (total o_f s.vote_pile)) 0

‘;

Defines:
total live votes, used in chunks 25 and 47.

Uses cinfo votebag 14a and sum vote bag 11a.

23

4.1.7 What is the set of continuing candidates?

Given an algorithm state, return the set of candidates that are continuing, in
the sense of Schedule 4.

24 〈Functions over Algorithm States 21b〉+≡ (19) / 23c

val continuing_candidates_def = Define‘

continuing_candidates (s:state) =

all_candidates(s) DIFF ignored_candidates(s)

‘;

Defines:
continuing candidates, used in chunks 25, 29, 30, and 37.

Uses all candidates 22a, ignored candidates 23b, and state 20.

24

4.1.8 Algorithm State Well-formedness

Not all states are well-formed. The predicate wf state requires that:

• the quota is positive;

• the vote pile is well-formed;

• the set aside is of finite size;

• all of the votes in the set aside are well-formed;

• the ballots in the set aside pile do not overlap with those in the vote pile;

• there are only finitely many votes;

• there are only finitely many successful candidates;

• the continuing candidates, the dead candidates, the excluded candidates
and the successful candidates are mutually disjoint;

• the cardinality of done successes is always no more than the num to elect

field; and

• there are never too many “live votes”: this constraint is expressed by treat-
ing every candidate in done successes as equivalent to quota many votes,
adding this number to the value of the remaining votes, and insisting that
this be less than the quota multiplied by one more than num to elect.

25 〈Algorithm State Well-formedness (Invariant) 25〉≡ (19)

val wf_state_def = Define‘

wf_state s =

0 < s.quota /\

wf_pile (all_candidates s) (ignored_candidates s) s.vote_pile /\

finite s.set_aside /\

(!b. BAG_IN b s.set_aside ==> wf_tbp (all_candidates s) b) /\

disjoint (set s.set_aside) (set (pile_ballots s.vote_pile)) /\

finite (successful_candidates s) /\

card (successful_candidates s) <= s.num_to_elect /\

disjoint_sets {| continuing_candidates(s); s.dead;

s.excluded; successful_candidates(s) |} /\

total_live_votes s + &(s.quota * card (s.done_successes))

<

&(s.quota * (s.num_to_elect + 1))

‘;

Defines:
wf state, used in chunk 42.

Uses all candidates 22a, card 57a, continuing candidates 24, disjoint 57a,
disjoint sets 58a, finite 57a, ignored candidates 23b, pile ballots 16a, set 57a,
successful candidates 23a, total live votes 23c, wf pile 17, and wf tbp 10b.

25

Chapter 5

The Algorithm Defined

3: First preferences: This phase of the algorithm must take a bag of votes,
a set of candidates divided into dead and alive subsets, and the number
of candidates to be elected. Given these inputs, the action of Clause 3 is
to create an algorithm state. It must therefore be a function of type

ballot bag× num× candidate set× candidate set → fullstate

4: Scrutiny to cease: This phase must examine a state and determine whether
or not the algorithm is to finish. It will be a function of type

state → bool

where bool is the type of boolean values, true or false.

5: Scrutiny to continue: This phase must examine a state and determine
whether or not there are any successful candidates with surplus votes. It
is also a function of type

state → bool

6: Surplus votes: This phase redistributes the surplus votes of a successful
candidate. In addition to the current state, it will also take the selected
candidate as an input, so its type will be

fullstate× candidate → fullstate

7: More than 1 surplus: This phase determines which successful candidate
with surplus votes should have their surplus votes redistributed. Because
circumstances may require the electoral commissioner to make a choice by
lot, this function needs to allow for this possibility. The most straight-
forward way of modelling this is to have the function take a candidate

26

as input, represeting the commissioner’s choice, when needed. The con-
straint that the commissioner’s choice must be one from the relevant set
will be expressed elsewhere. The type will be

fullstate× candidate → candidate

In those situations, where the commissioner doesn’t have to make a choice
by lot, the extra parameter to this parameter will be ignored.

8: Exclusion of candidates: This phase determines which candidate to ex-
clude in situations where there are no successful candidates with surpluses.
Again, there are circumstances when the commissioner has to choose a
candidate by lot, and this is represented by an extra candidate input to
the function, whose type is

fullstate× candidate → candidate

9: Votes of excluded candidates: This phase redistributes the votes of an
excluded candidate. As in the phase implementing clause 6, this function
will take the excluded candidate as an additional input, so that its type
will be

fullstate× candidate → fullstate

Components constructed in direct reflection of the flow-chart, combine to create
the final algorithm:

27 〈Algorithm Definition 27〉≡ (5b)

〈Clause 3: First preferences 28〉
〈Clause 4: Scrutiny to cease 29〉
〈Clause 5: Scrutiny to continue 31〉
〈Clause 6: Surplus votes 33〉
〈Clause 7: More than 1 surplus 34〉
〈Clause 8: Exclusion of candidates 37〉
〈Clause 9: Votes of excluded candidates 39〉

5.1 Clause 3: First preferences

The action of Clause 3 is simply one of creating an initial state. This is the
HOL function create initial state. The calculation of the quota field uses
the DIV function, which takes two natural numbers, and computes their quotient,
rounding down. Thus, the model computes

⌊

BP

N + 1

⌋

+ 1

where the Act calls for
⌊

BP

N + 1
+ 1

⌋

but it’s clear that these two are the same.

27

3 First preferences

(1) For each ballot paper recording a first preference for a continuing
candidate, 1 vote shall be allotted to the candidate.

(2) For subclause (1), a ballot paper on which a first preference for a
candidate who died before polling day is recorded shall be taken
to record a first preference for the candidate for whom the next
available preference is recorded.

(3) After the allotment of votes under subclause (1), each continuing
candidate’s total votes shall be calculated and, if the votes equal
or exceed the quota, the candidate is successful.

Figure 5.1: Part 4.2, clause 3

Conforming to the Act The provision of Clause 3(1) is handled by valuing
all votes from the input with the value 1. The provision in Clause 3(2) is handled
by the way the function ballot is for can be told to ignore certain candidates.
In particular, candidates in the dead set are always ignored. Finally, Clause 3(3)
is a calculation that the model allows to be performed at any time through the
use of the successful candidates function.

28 〈Clause 3: First preferences 28〉≡ (27)

val clause3_def = Define‘

clause3 (bbag, n, dead) : fullstate =

let add_to_pile b fm =

let c = HD (FILTER (\c. ~(c IN dead)) b) in

let oldv = if c IN dom fm then fm ’ c else {||}

in

fm |+ (c, BAG_INSERT (b, 1) oldv) in

let initial_fm = ITBAG add_to_pile bbag FEMPTY in

let transform b = <| count := card b; old_votes := {||};

latest_votes := b |>

in

(<| vote_pile := transform o_f initial_fm ;

set_aside := {||} ;

dead := dead ;

excluded := {};

done_successes := {};

num_to_elect := n;

quota := (card(bbag) DIV (n+1)) + 1 |>,

[])

‘;

Defines:
clause3, used in chunk 42a.

Uses card 57a, dom 57a, and fullstate 21a.

28

5.2 Clause 4: Scrutiny to cease

4 Scrutiny to cease

(1) If, after a calculation under clause 3 (3), 6 (4), or 9 (2)(d),
the number of successful candidates is equal to the number of
positions to be filled, the scrutiny shall cease.

(2) If, after a calculation under clause 3 (3) or 6 (4) or after all the
ballot papers counted for an excluded candidate have been dealt
with under clause 9—

(a) the number of continuing candidates is equal to the
number of positions remaining to be filled; and

(b) no successful candidate has a surplus not already dealt
with under clause 6;

each of those continuing candidates is successful and the scrutiny
shall cease.

Figure 5.2: Part 4.2, clause 4

The text of Clause 4 is presented in Figure 5.2. As previously dicussed, the
formalisation of this clause is as a function that determines whether or not
the algorithm is finished. This makes it a function from the state type to
either true or false. The definition admits two ways in which the algorithm
might be ready to terminate. These correspond to the two sub-clauses ((1) and
(2)) of Clause 4. The first disjunct checks to see if the number of successful
candidates is equal to the number of candidates to elect. If this is true, the
algorithm can finish. Alternatively, there are as many continuing candidates
as there are positions still needing to be filled, and no successful candidate
has a surplus. These two sub-conditions correspond to sub-clauses (2)(a) and
(2)(b). Recall that the done successes component of the state records precisely
those successful candidates who have no surplus. The assertion that there are
no successful candidates with a surplus is thus the same as stating that the
successful candidates are the same as those recorded in done successes.

29 〈Clause 4: Scrutiny to cease 29〉≡ (27) 30 .

val clause4_def = Define‘

clause4 (s : state) =

(card (successful_candidates(s)) = s.num_to_elect) \/

((card (continuing_candidates(s)) = s.num_to_elect) /\

~?c. c IN successful_candidates(s) /\

s.quota < candidate_votes s c)

‘;

Defines:
clause4, never used.

Uses candidate votes 22b, card 57a, continuing candidates 24, state 20,
and successful candidates 23a.

29

By making the formalisation of Clause 4 simply determine whether or not to stop
the algorithm, it omits the “movement” of continuing candidates to successful
status that is required in Clause 4(2). This is handled by defining a special
function, winners, which determines the winners of an election when given a
final state.

30 〈Clause 4: Scrutiny to cease 29〉+≡ (27) / 29

val winners_def = Define‘

winners (s : state) =

if card(successful_candidates(s)) = s.num_to_elect then

successful_candidates(s)

else

successful_candidates(s) UNION continuing_candidates(s)

‘;

Defines:
winners, never used.

Uses card 57a, continuing candidates 24, state 20, and successful candidates 23a.

30

5.3 Clause 5: Scrutiny to continue

5 Scrutiny to continue

If the scrutiny has not ceased in accordance with clause 4 and—

(a) 1 or more successful candidates have a surplus not al-
ready dealt with under clause 6—subject to clause 4,
each surplus shall be dealt with in accordance with
clause 6; or

(b) there are not successful candidates with such a surplus—
1 continuing candidate shall be excluded in accordance
with clause 8 and the ballot papers counted for him or
her shall be dealt with in accordance with clause 9.

Figure 5.3: Part 4.2, clause 5

The text of Clause 5 is presented in Figure 5.3. As previously discussed, the
formalisation of this clause is as a function which determines whether or not
there exists a successful candidate with a surplus. If this function returns true,
then the next stage of the algorithm will be to deal with a successful candidate,
according to clauses 6 and 7. If it returns false, then the algorithm will exclude
a candidate.

31 〈Clause 5: Scrutiny to continue 31〉≡ (27)

val clause5_def = Define‘

clause5 (s : state) =

?c. c IN successful_candidates(s) /\

s.quota < candidate_votes s c

‘;

Defines:
clause5, never used.

Uses candidate votes 22b, state 20, and successful candidates 23a.

31

6 Surplus votes

(1) Subject to clause 7, this clause applies in relation to the surplus
of a successful candidate.

(2) Each ballot paper counted for the purpose of allotting votes to
the successful candidate at the count at which the candidate
became successful shall be dealt with as follows:

(a) if it does not specify a next available preference—it shall
be set aside as finally dealt with for this part;

(b) if it specifies a next available preference—it shall be
grouped according to the candidate for whom that pref-
erence is recorded.

(3) The count votes for each continuing candidate shall be deter-
mined and allotted to him or her.

(4) After the allotment under subclause (3), the continuing candi-
dates’ total votes shall be calculated and, if the total votes of a
candidate equal or exceed the quota, the candidate is successful.

Figure 5.4: Part 4.2, clause 6

5.4 Clause 6: Surplus votes

The text of Clause 6 is presented in Figure 5.4. The formalisation makes Clause 6
a function that takes a state and a candidate as input, and returns a new state
as output. This new state is one in which the given candidate has moved
from open to done successes, and where the last batch of votes received by
that candidate have been transferred. This function is quite complicated. In
particular, there is a great deal of complexity due to the fact that votes are
transferred in “bundles”.

Now the definition of clause6 can be made. The first two definitions (ignores
and successes) are just abbreviations for standard components of the state.
The values c’s ballots and c’s lastballots are together the multi-set of
votes that were cast for the successful candidate, and c’s count is the count
total of those votes. Those votes in c’s lastballots are subject to transfer.
The surplus is the candidate’s surplus. The value with next cand are those
of c’s last ballots that have a next available candidate. This is assessed by
ignoring the usual “ignores”, which will include the candidate c. All of the other
ballots are included in the bag, to set aside. The value CP is the “number of
ballot papers counted for the candidate at the count at which he or she became
successful and that specify a next available preference”. The value base tv is the
base transfer value that will be used to value all transferred ballots, calculated
in accordance with Clause 4.1(1). The local function bfor returns the candidate
that a ballot paper is for by taking the first name on the list of candidates that

32

is not to be ignored.

33 〈Clause 6: Surplus votes 33〉≡ (27)

val clause6_def = Define‘

clause6 ((s, history) : fullstate, c : candidate) =

let ignores = ignored_candidates s in

let ci = s.vote_pile ’ c in

let surplus = ci.count - s.quota in

let with_next_cand : tbp bag =

filter (\b. ?c. ballot_is_for ignores c b)

ci.latest_votes in

let to_set_aside =

BAG_UNION ci.old_votes

(BAG_DIFF ci.latest_votes with_next_cand) in

let CP = card(with_next_cand) in

let base_tv = &surplus / &CP in

let adjust_tv (b, tv) = if tv < base_tv then (b, tv)

else (b, base_tv) in

let bundle = image adjust_tv with_next_cand in

let bfor (b,tv) = HD (filter (\c. ~(c IN ignores)) b) in

let new_pile = transfer_bundle bundle bfor s.vote_pile

in

(s with <| done_successes := c INSERT s.done_successes ;

set_aside := BAG_UNION s.set_aside to_set_aside ;

vote_pile := new_pile \\ c |>,

s :: history)

‘;

Defines:
clause6, used in chunk 42c.

Uses ballot is for 12a, candidate 8b, card 57a, filter 57a, fullstate 21a,
ignored candidates 23b, image 57a, tbp 9b, and transfer bundle 18.

33

5.5 Clause 7: More than 1 surplus

The mechanisation’s clause7 is required to be a function which is given a state
and a candidate, and returns a candidate. The candidate returned must be one
that has a surplus, and satisfies the constraints of Clause 7. The input candidate
is the mechanisation’s representation of the commissioner’s choice by lot of the
“relevant candidate”, needed in Clause 7(3)(c)(ii).

One important aspect of Clause 7 is its use of the notion of “earliest count”.
The time of success scans a history list to determine when a candidate became
successful (remembering that history lists have most recent states ahead of older
ones). The greater the index returned, the earlier in time the candidate became
successful.

34 〈Clause 7: More than 1 surplus 34〉≡ (27) 35 .

val time_of_success_def = Define‘

(time_of_success c t [] = t) /\

(time_of_success c t (s::ss) =

if c IN successful_candidates s then

time_of_success c (t + 1) ss

else t)

‘;

Defines:
time of success, used in chunk 35.

Uses successful candidates 23a.

34

Next is the definition of a function called clause7 set. This function examines
the algorithm state and returns a set of candidates eligible to be selected to be
the candidate whose surplus votes are to be redistributed. In most cases, this
set will contain just one candidate, but it is possible that the commissioner has
to make a decision by lot. In this case, clause7 set returns a set of multiple
candidates. The code is a series of if-then-else tests, with various branches
labelled with comments (in (*-*) pairs) containing the sub-clause numbers that
this test corresponds to. Thus the first test is to see whether or not there is a
successful candidate with a surplus who became successful first.

35 〈Clause 7: More than 1 surplus 34〉+≡ (27) / 34 36 .

val clause7_set_def = Define‘

clause7_set ((s,h) : fullstate) : candidate set =

let possibles = { c | c IN dom(s.vote_pile) /\

s.quota < candidate_votes s c }

in

if card (possibles) = 1 then possibles

else

let earliest =

{ c | c IN possibles /\

(time_of_success c 0 h =

MAX_SET (IMAGE (\c. time_of_success c 0 h)

possibles)) }

in

if card earliest = 1 then earliest (* 3(a) *)

else

let greatest_surplus =

{c | c IN earliest /\

(candidate_votes s c =

MAX_SET (IMAGE (candidate_votes s)

earliest))}

in

if card greatest_surplus = 1 then

greatest_surplus (* 3(b) *)

else if ?t. INJ (candidate_votes (nth t h))

greatest_surplus UNIV

then (* 3(c)(i) *)

let t = LEAST t. INJ (candidate_votes (nth t h))

greatest_surplus UNIV in

let s0 = nth t h

in

{ c | c IN greatest_surplus /\

(candidate_votes s0 c =

MAX_SET (IMAGE (candidate_votes s0)

greatest_surplus)) }

else greatest_surplus (* 3(c)(ii) *)

‘;

Defines:
clause7 set, used in chunk 36.

Uses candidate 8b, candidate votes 22b, card 57a, dom 57a, fullstate 21a, nth 57a,

35

set 57a, and time of success 34.

Finally, the clause7 function itself can be defined. This function assumes
that the commissioner makes their choice from among the candidates that
clause7 set decides are possible. The CHOICE function takes a set and returns
an arbitrary element from it (because we know the set has just one member,
this “arbitrariness” is not an issue).

36 〈Clause 7: More than 1 surplus 34〉+≡ (27) / 35

val clause7_def = Define‘

clause7 (sh: fullstate, c : candidate) =

let possibles = clause7_set(sh)

in

if card(possibles) = 1 then CHOICE possibles

else c

‘;

Defines:
clause7, never used.

Uses candidate 8b, card 57a, clause7 set 35, and fullstate 21a.

36

5.6 Clause 8: Exclusion of candidates

Clause 8 is concerned with the selection of a candidate to be excluded, if there
are no successful candidates with surplus votes. As in Clause 7 (section 5.5),
this process may produce a situation where the commissioner has to choose a
candidate to exclude by lot. The definition of this clause is divided into two
parts. The first of these is clause8 set, which is given an algorithm state and
returns a set of candidates to exclude. If this set is not a singleton, then the
commissioner will have to make their decision by lot.

Clause 8(1) says “... the candidate with the least total votes shall be excluded.”
This is modelled below by first calculating what the least number of votes is
(the local definition of least votes), and then the set of candidates with this
many votes (with least). If this set has one member, this set is returned.
Otherwise, the test is to see whether or not there was ever a time “at which all
those candidates had unequal votes”. This test is modelled by the test to see
whether or not the function returning a candidate’s count at time t was ever
injective over the set with least. If it was then there was a time when they all
had unequal votes. Then t is taken to be the “least” time when this was true
(remembering that the lower t is, the more recent in the past t was), and the
appropriate (one-element) set is returned.

37 〈Clause 8: Exclusion of candidates 37〉≡ (27) 38 .

val clause8_set_def = Define‘

clause8_set (s: state, h : state list) =

let least_votes = LEAST v. ?c. c IN continuing_candidates s /\

(candidate_votes s c = v) in

let with_least = { c | candidate_votes s c = least_votes }

in

if card(with_least) = 1 then with_least (* 1 *)

else

if ?t. INJ (candidate_votes (nth t h)) with_least UNIV then

(* 2(a) *)

let t = LEAST t. INJ (candidate_votes (nth t h))

with_least UNIV in

let s0 = nth t h

in

{ c | c IN with_least /\

(candidate_votes s0 c =

MIN_SET (IMAGE (candidate_votes s0) with_least))}

else with_least (* 2(b) *)

‘;

Defines:
clause8 set, used in chunk 38.

Uses candidate votes 22b, card 57a, continuing candidates 24, nth 57a, and state 20.

37

Finally, as with Clause 7, the definition of clause8 can be made.

38 〈Clause 8: Exclusion of candidates 37〉+≡ (27) / 37

val clause8_def = Define‘

clause8 (sh: fullstate, c : candidate) =

let possibles = clause8_set(sh)

in

if card(possibles) = 1 then CHOICE possibles

else c

‘;

Defines:
clause8, never used.

Uses candidate 8b, card 57a, clause8 set 37, and fullstate 21a.

38

5.7 Clause 9: Votes of excluded candidates

The formalisation of clause9 is the most complicated of all the clauses because
it embeds multiple counts, each corresponding to the transfer of packets of votes
of different transfer values. It is otherwise similar to clause6 (see section 5.4).

Each count is performed by the local function do one count, which takes a
fullstate and a bundle of votes known to have the same transfer value. These
bundles are in processed in order of decreasing transfer value. The bundles are
created by first partitioning those ballots of the excluded candidate that have
continuing candidates remaining on them, and then performing a sort.

39 〈Clause 9: Votes of excluded candidates 39〉≡ (27)

val clause9_def = Define‘

clause9 ((s: state, h: state list), c: candidate) =

let votes = s.vote_pile in

let ct = votes ’ c in

let ballots = BAG_UNION ct.old_votes ct.latest_votes in

let ignores = c INSERT ignored_candidates s in

let has_next_candidate =

filter (\b. ?c. ballot_is_for ignores c b) ballots in

let to_set_aside = BAG_DIFF ballots has_next_candidate in

let tveq (b1, tv1) (b2, tv2) = (tv1 = tv2) in

let tv_groups = partitionb tveq has_next_candidate in

let group_tv gp = SND (BAG_CHOICE gp) in

let order gp1 gp2 = group_tv gp2 <= group_tv gp1 in

let tv_groups_ordered = sort order (SET_TO_LIST tv_groups) in

let bfor (b, tv) = HD (filter (\c. ~(c IN ignores)) b) in

let do_one_count (s,h) gp =

(s with vote_pile updated_by (transfer_bundle gp bfor),

s::h)

in

let base_s =

s with <| set_aside updated_by ((BAG_UNION) to_set_aside);

vote_pile := votes \\ c ;

excluded updated_by ((INSERT) c) |>

in

FOLDL do_one_count (base_s, h) tv_groups_ordered

‘;

Defines:
clause9, never used.

Uses ballot is for 12a, candidate 8b, filter 57a, ignored candidates 23b,
partitionb 61a, sort 62b, state 20, and transfer bundle 18.

39

Chapter 6

Theorems

This chapter includes the statement of the verification results proved about the
electoral algorithm. Proofs will be commented on here, but (mainly unreadable)
HOL tactics will be relegated to an appendix.

The key arithmetic property, which states that the quota is not so large as to
allow more than the desired number of candidates to win election:

40 〈Theorems 40〉≡ (5b) 41 .

val key_property = store_thm(

"key_property",

‘‘!x n. x DIV (x DIV (n + 1) + 1) <= n‘‘,

〈Proof of the key property 45a〉)

40

6.1 Clause 3 creates well-formed states

41 〈Theorems 40〉+≡ (5b) / 40 42a .

val sum_image_empty_bag = store_thm(

"sum_image_empty_bag",

‘‘!s. finite s ==> (SUM_IMAGE {||} s = 0)‘‘,

SIMP_TAC (srw_ss()) [EMPTY_BAG] THEN

HO_MATCH_MP_TAC FINITE_INDUCT THEN

SRW_TAC [][SUM_IMAGE_THM] THEN

Q_TAC SUFF_TAC ‘s DELETE e = s‘ THEN1 SRW_TAC [][] THEN

SRW_TAC [][EXTENSION] THEN PROVE_TAC []);

val sum_image_bag_insert = store_thm(

"sum_image_bag_insert",

‘‘!s. finite s ==>

!e b. SUM_IMAGE (BAG_INSERT e b) s =

if e IN s then SUM_IMAGE b s + 1

else SUM_IMAGE b s‘‘,

SIMP_TAC (srw_ss()) [BAG_INSERT] THEN

HO_MATCH_MP_TAC FINITE_INDUCT THEN

SRW_TAC [][SUM_IMAGE_THM] THEN

‘s DELETE e = s‘ by (SRW_TAC [][EXTENSION] THEN PROVE_TAC []) THEN

SRW_TAC [][] THEN FULL_SIMP_TAC (srw_ss()) [] THEN

SIMP_TAC arith_ss []);

val finite_bag_sum_image = store_thm(

"finite_bag_sum_image",

‘‘!b. finite b ==>

!s. finite s ==> SUM_IMAGE b s <= card b‘‘,

HO_MATCH_MP_TAC STRONG_FINITE_BAG_INDUCT THEN

ASM_SIMP_TAC (srw_ss()) [BAG_CARD_THM, sum_image_bag_insert,

sum_image_empty_bag] THEN

SRW_TAC [][] THEN RES_TAC THEN

SRW_TAC [numSimps.ARITH_ss][]);

val card_bag_image = store_thm(

"card_bag_image",

‘‘!b: ’a bag. finite b ==> (card (image f b) = card b)‘‘,

HO_MATCH_MP_TAC STRONG_FINITE_BAG_INDUCT THEN

SRW_TAC [][BAG_IMAGE_EMPTY, BAG_IMAGE_FINITE_INSERT,

BAG_CARD_THM, BAG_IMAGE_FINITE]);

Uses card 57a, finite 57a, and image 57a.

41

42a 〈Theorems 40〉+≡ (5b) / 41 42b .

val clause3_wf = store_thm(

"clause3_wf",

‘‘finite votes /\ set votes SUBSET wf_ballot UNIV /\

finite deads /\

(!b. b IN set votes ==> ?c. MEM c b /\ ~(c IN deads)) ==>

wf_state (FST (clause3(votes, num_to_elect, deads)))‘‘,

〈Proof that clause3 preserves well-formed states 47〉);

Defines:
clause3 wf, never used.

Uses clause3 28, finite 57a, set 57a, wf ballot 10a, and wf state 25.

6.2 Clause 6 preserves well-formed states

First a proof that the transfer bundle function preserves the set of candidates
mentioned in a the system’s finite map (that is, s.vote pile for some state s):

42b 〈Theorems 40〉+≡ (5b) / 42a 42c .

val transfer_bundle_preserves_votes = store_thm(

"transfer_bundle_preserves_votes",

‘‘(p ’ c = (n, ignored1, BAG_UNION ignored2 bnd)) ==>

(pile_candidates (transfer_bundle bnd bfor p \\ c) UNION

ignored1 UNION ignored2 =

pile_candidates p)‘‘,

〈Proof that transfer bundle transfers votes 54〉);

Defines:
transfer bundle preserves votes, never used.

Uses pile candidates 16b and transfer bundle 18.

42c 〈Theorems 40〉+≡ (5b) / 42b

val clause6_wf = store_thm(

"clause6_wf",

‘‘s0.quota < candidate_votes s0 c /\ c IN all_candidates s0 ==>

wf_state s0 ==> wf_state(FST (clause6((s0, h), c)))‘‘,

〈Proof that clause6 preserves well-formed states 55〉)

Defines:
clause6 wf, never used.

Uses all candidates 22a, candidate votes 22b, clause6 33, and wf state 25.

42

Chapter 7

Change Log

Version 1 This version of the document was prepared by Michael Norrish with
reference only to the Electoral Act, and without any discussion of the Act’s
possible intricacies with anyone previously involved in the eVACS project.

Version 2 This version of the document was prepared by Michael Norrish after
consulting with Jeremy Dawson. There were two significant problems with
version 1:

• when doing a transfer of surplus votes, the system should only trans-
fer those parcel of votes that tipped a candidate over from being
unsuccessful to successful.

• redistribution of excluded candidates’ votes really does need to be in
the separate phases described in the act because each such phase is a
“count”, and the choice of successful candidates whose surplus votes
are to be redistributed is done with earliest candidate first. Version 1
would make it seem as if all successful candidates became so at the
same time.

I also chose to rework the states so that they did not include their own
histories, but rather to have the current history accompany the current
state as an argument to all clauses.

Version 2.01: Noticed that the implementation of Clause 9 (Section 5.7)
didn’t move an excluded candidate into the state’s excluded field, though
it did remove the candidate from the domain of the vote pile map.

Version 2.02: Noticed an error in the definition of all candidates,
which would have caused this set to incorrectly exclude candidates with
no (first) votes. The same problem afflicted the definition of the function

43

continuing candidates. The domain of s.vote pile is that set of can-
didates who are continuing and have votes, or those candidates who are
successful but without a surplus. Given this, it’s difficult to imagine the
context in which a reference to dom(s.vote pile) could make any sense.

Version 2.03: An error in clause8 set, which calculated the least num-
ber of votes for a candidate. It looked at all possible candidates rather
than just continuing candidates. Also fixed all candidates, which ig-
nored continuing candidates mentioned only on ballots in the set aside

area. These candidates can not play any further role except to be ex-
cluded, but defining all candidates this way would wreck the invariant
that the system never “loses” candidates.

Version 2.04: This new version should be equivalent to the previous,
but is quite different in its expression of the basic algorithm. A new type,
that of the candidate information record, is introduced, and the notion
of ignored candidate is expanded to include all successful candidates, not
just those that have had surplus votes transferred away from them. The
presentation should be logically cleaner, and easier to understand.

It is still undecided as to whether or not successful candidates with exactly
the right number of votes should be withdrawn from the algorithm state’s
“vote pile”. This would move these candidates’ votes into the set aside

part of the state, and the candidates into the done successes set.

The advantage of doing this is that it would tighten the correspondence
between the algorithm states and the states in the Act, where all suc-
cessful candidates have their votes set aside. The disadvantage is that it
introduces a new phase into the algorithm’s basic loop, “clean up exact
successes”, which doesn’t really look like anything in the Act.

44

Appendix A

Proofs

A.1 Clause 3 creates only well-formed states

This appendix contains proofs that have been elided from the main body of the
text. These are for consumption by HOL, and this means that they are not
human-readable, unfortunately.

45a 〈Proof of the key property 45a〉≡ (40)

‘!x y z. 0 < y ==> (x DIV y <= z = x < (z + 1) * y)‘

by PROVE_TAC [arithmeticTheory.DIV_LE_X] THEN

ASM_SIMP_TAC (srw_ss() ++ numSimps.ARITH_ss) [] THEN

Q_TAC SUFF_TAC ‘!n x. 0 < n ==> x < n * (x DIV n + 1)‘ THEN1

ASM_SIMP_TAC (srw_ss() ++ numSimps.ARITH_ss) [] THEN

POP_ASSUM (K ALL_TAC) THEN REPEAT STRIP_TAC THEN

Q.SPEC_THEN ‘n‘ MP_TAC DIVISION THEN

ASM_REWRITE_TAC [] THEN

DISCH_THEN (Q.SPEC_THEN ‘x‘ STRIP_ASSUME_TAC) THEN

Q.ABBREV_TAC ‘q = x DIV n‘ THEN

Q.ABBREV_TAC ‘r = x MOD n‘ THEN

ASM_SIMP_TAC (srw_ss()) [AC MULT_ASSOC MULT_COMM,

LEFT_ADD_DISTRIB]

45b 〈Properties of ballot papers 45b〉≡ (12b) 46 .

val wf_tbp_subset = prove(

‘‘wf_tbp s b /\ s SUBSET t ==> wf_tbp t b‘‘,

Cases_on ‘b‘ THEN SRW_TAC [][wf_tbp_def, wf_ballot_def] THEN

PROVE_TAC [pred_setTheory.SUBSET_TRANS]);

val wf_tbp_subset’ = prove(

‘‘!s t. s SUBSET t ==> (wf_tbp s b ==> wf_tbp t b)‘‘,

PROVE_TAC [wf_tbp_subset]);

Uses wf tbp 10b.

45

The next two properties are particularly trivial. The first should probably be
part of the system’s “standard library”.

46 〈Properties of ballot papers 45b〉+≡ (12b) / 45b

val filter_eq_nil = prove(

‘‘!l. (filter P l = []) = (!x. MEM x l ==> ~P x)‘‘,

Induct THEN SRW_TAC [boolSimps.DNF_ss][]);

val DIFF_INTER_disjoint = prove(

‘‘disjoint (X DIFF (Y UNION Z)) Z‘‘,

SRW_TAC [][EXTENSION, DISJOINT_DEF] THEN PROVE_TAC []);

Uses disjoint 57a and filter 57a.

46

And the following is the main proof, in one indigestible chunk:

47 〈Proof that clause3 preserves well-formed states 47〉≡ (42a)

SIMP_TAC bool_ss [clause3_def] THEN

RAISE_LETS_TAC THEN

ASM_SIMP_TAC (srw_ss() ++ numSimps.ARITH_ss)

[pairTheory.UNCURRY, wf_state_def,

IN_SET_OF_BAG, o_f_FAPPLY,

BAG_IN_BAG_INSERT, BAG_OF_EMPTY,

DISJ_IMP_THM, FORALL_AND_THM] THEN

STRIP_TAC THEN

‘!b1 b2 fm. add_to_pile b1 (add_to_pile b2 fm) =

add_to_pile b2 (add_to_pile b1 fm)‘

by (REPEAT GEN_TAC THEN

Q.PAT_ASSUM ‘x = add_to_pile‘

(fn th => REWRITE_TAC [SYM th]) THEN

RAISE_LETS_TAC THEN SIMP_TAC bool_ss [] THEN

Cases_on ‘c = c’‘ THENL [

FULL_SIMP_TAC (srw_ss())

[FUPD11_SAME_KEY_AND_BASE] THEN

SRW_TAC [][bagTheory.BAG_INSERT_commutes],

FULL_SIMP_TAC (srw_ss()) [FAPPLY_FUPDATE_THM] THEN

ASM_SIMP_TAC (srw_ss()) [FUPDATE_COMMUTES]

]) THEN

Q.ABBREV_TAC ‘top_cand = \b. HD (filter (\c. ~(c IN deads)) b)‘ THEN

‘!b fm. add_to_pile b fm =

let c = top_cand b in

let oldv = (if c IN dom fm then fm ’ c else {||}) in

fm |+ (c, BAG_INSERT (b,1) oldv)‘ by SRW_TAC [][] THEN

‘wf_pile <| vote_pile := (\b. (card b, {||}, b)) o_f initial_fm;

set_aside := {||}; dead := deads; excluded := {};

done_successes := {};

quota := card votes DIV (num_to_elect + 1) + 1;

num_to_elect := num_to_elect |>‘

by (REPEAT STRIP_TAC THEN

ASM_SIMP_TAC (srw_ss()) [wf_pile_def, pairTheory.UNCURRY,

o_f_FAPPLY, BAG_IN_BAG_INSERT] THEN

GEN_TAC THEN STRIP_TAC THEN

ASM_SIMP_TAC (srw_ss()) [sum_vote_bag_def] THEN

‘!votes. finite votes ==>

!c. c IN dom (ITBAG add_to_pile votes FEMPTY) ==>

finite (ITBAG add_to_pile votes FEMPTY ’ c)‘

by (HO_MATCH_MP_TAC bagTheory.STRONG_FINITE_BAG_INDUCT THEN

ASM_SIMP_TAC (srw_ss()) [bagTheory.COMMUTING_ITBAG_RECURSES] THEN

GEN_TAC THEN STRIP_TAC THEN REPEAT GEN_TAC THEN

Cases_on ‘c’ = top_cand e‘ THENL [

ASM_SIMP_TAC (srw_ss()) [] THEN COND_CASES_TAC THEN

ASM_SIMP_TAC (srw_ss()) [],

ASM_SIMP_TAC (srw_ss()) [FAPPLY_FUPDATE_THM]

]) THEN

47

SIMP_TAC (srw_ss()) [FORALL_AND_THM, IMP_CONJ_THM] THEN

ASM_SIMP_TAC (srw_ss()) [ignored_candidates_def, all_candidates_def] THEN

Q.UNDISCH_THEN ‘c IN dom initial_fm‘ MP_TAC THEN

Q.UNDISCH_THEN ‘set votes SUBSET wf_ballot UNIV‘ MP_TAC THEN

Q.UNDISCH_THEN ‘!b. BAG_IN b votes ==> ?c. MEM c b /\ ~(c IN deads)‘

MP_TAC THEN

Q.UNDISCH_THEN ‘finite votes‘ MP_TAC THEN

Q.PAT_ASSUM ‘x = initial_fm‘ (SUBST_ALL_TAC o SYM) THEN

Q.ID_SPEC_TAC ‘votes‘ THEN

HO_MATCH_MP_TAC bagTheory.STRONG_FINITE_BAG_INDUCT THEN

ASM_SIMP_TAC (srw_ss()) [BAG_IN_BAG_INSERT] THEN

GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN

SIMP_TAC (srw_ss()) [DISJ_IMP_THM, FORALL_AND_THM,

SET_OF_BAG_INSERT] THEN

REPEAT (DISCH_THEN STRIP_ASSUME_TAC) THEN

Q.PAT_ASSUM ‘x ==> y‘ MP_TAC THEN ASM_SIMP_TAC (srw_ss()) [] THEN

STRIP_TAC THEN

Q.PAT_ASSUM ‘c IN dom x‘ MP_TAC THEN

Cases_on ‘c IN dom (ITBAG add_to_pile votes FEMPTY)‘ THENL [

Cases_on ‘c = top_cand e‘,

ALL_TAC

] THEN

TRY (Q.UNDISCH_THEN ‘c = top_cand e‘ SUBST_ALL_TAC) THEN

ASM_SIMP_TAC (srw_ss()) [COMMUTING_ITBAG_RECURSES,

FAPPLY_FUPDATE_THM, BAG_IN_BAG_INSERT,

SET_OF_BAG_INSERT] THEN

‘!r1 r2 r3:real. r1 + (r2 + r3) = r2 + (r1 + r3)‘

by RealArith.REAL_ARITH_TAC THEN

REPEAT STRIP_TAC THENL [

(* ballot exists in pile *)

SIMP_TAC bool_ss [EXISTS_OR_THM],

(* pile count <= size of pile *)

ASM_SIMP_TAC (srw_ss()) [COMMUTING_ITBAG_RECURSES,

BAG_IMAGE_FINITE, BAG_CARD_THM] THEN

REWRITE_TAC [

GSYM realTheory.REAL_ADD,

RealArith.REAL_ARITH

‘‘!x y c:real. x + c <= c + y = x <= y‘‘] THEN

ASM_SIMP_TAC (srw_ss()) [],

(* every ballot well-formed - b = (e, 1) *)

Q.UNDISCH_THEN ‘e IN wf_ballot UNIV‘

(MP_TAC o REWRITE_RULE [SPECIFICATION]) THEN

ASM_SIMP_TAC (srw_ss()) [wf_ballot_def, wf_tbp_def, SUBSET_DEF,

SET_OF_BAG_INSERT, pile_candidates_def] THEN

STRIP_TAC THEN MAP_EVERY Q.EXISTS_TAC [‘1‘,‘1‘] THEN

SRW_TAC [][],

(* every ballot well-formed - b IN pile for candidate (top_cand e) *)

48

Q.PAT_ASSUM ‘x ==> y‘ MP_TAC THEN ASM_SIMP_TAC (srw_ss()) [] THEN

STRIP_TAC THEN

REPEAT (FIRST_X_ASSUM (Q.SPEC_THEN ‘b‘ MP_TAC)) THEN

ASM_SIMP_TAC (srw_ss()) [] THEN REPEAT STRIP_TAC THEN

Q.PAT_ASSUM ‘wf_tbp x y‘ MP_TAC THEN

MATCH_MP_TAC wf_tbp_subset’ THEN

ASM_SIMP_TAC (srw_ss() ++ boolSimps.DNF_ss ++ boolSimps.CONJ_ss)

[SUBSET_DEF, IN_RAN, pairTheory.FORALL_PROD,

pairTheory.EXISTS_PROD, o_f_FAPPLY, pile_candidates_def,

DOMSUB_FAPPLY_THM, SET_OF_BAG_INSERT] THEN

REPEAT GEN_TAC THEN Cases_on ‘y = top_cand e‘ THEN

ASM_SIMP_TAC (srw_ss()) [] THEN PROVE_TAC [],

(* ballot is for (top_cand e) - b = (e, 1) *)

ASM_SIMP_TAC (srw_ss()) [ballot_is_for_def] THEN

Q.PAT_ASSUM ‘x = top_cand‘ (SUBST_ALL_TAC o SYM) THEN

ASM_SIMP_TAC (srw_ss()) [filter_eq_nil] THEN PROVE_TAC [],

(* ballot is for (top_cand e) - b IN pile for candidate (top_cand e) *)

ASM_SIMP_TAC (srw_ss()) [],

(* ballot is well-formed *)

Q.PAT_ASSUM ‘x ==> y‘ MP_TAC THEN

ASM_SIMP_TAC (srw_ss()) [] THEN

REPEAT STRIP_TAC THEN

Q.PAT_ASSUM ‘!b. BAG_IN b x ==> wf_tbp y b‘

(Q.SPEC_THEN ‘b‘ MP_TAC) THEN

ASM_SIMP_TAC (srw_ss()) [] THEN

MATCH_MP_TAC wf_tbp_subset’ THEN

ASM_SIMP_TAC (srw_ss() ++ boolSimps.DNF_ss ++ boolSimps.CONJ_ss)

[SUBSET_DEF, IN_RAN, pairTheory.FORALL_PROD,

pairTheory.EXISTS_PROD, o_f_FAPPLY, pile_candidates_def,

DOMSUB_FAPPLY_THM, SET_OF_BAG_INSERT] THEN

REPEAT GEN_TAC THEN Cases_on ‘y = top_cand e‘ THEN

ASM_SIMP_TAC (srw_ss()) [] THEN PROVE_TAC [],

(* pile non-empty *)

FULL_SIMP_TAC (srw_ss()) [],

(* pile count <= size of piles - c = top_cand e *)

Q.UNDISCH_THEN ‘c = top_cand e‘ SUBST_ALL_TAC THEN

ASM_SIMP_TAC (srw_ss()) [BAG_CARD_THM, COMMUTING_ITBAG_RECURSES],

(* b well-formed - b = (e, 1), c = top_cand e *)

Q.UNDISCH_THEN ‘c = top_cand e‘ SUBST_ALL_TAC THEN

Q.UNDISCH_THEN ‘b = (e, 1)‘ SUBST_ALL_TAC THEN

Q.UNDISCH_THEN ‘e IN wf_ballot UNIV‘

(MP_TAC o REWRITE_RULE [SPECIFICATION]) THEN

ASM_SIMP_TAC (srw_ss() ++ boolSimps.DNF_ss ++ boolSimps.CONJ_ss)

[SUBSET_DEF, IN_RAN, pairTheory.FORALL_PROD,

49

pairTheory.EXISTS_PROD, o_f_FAPPLY, wf_ballot_def,

wf_tbp_def, DOMSUB_FAPPLY_THM, SET_OF_BAG_INSERT,

pile_candidates_def] THEN

STRIP_TAC THEN MAP_EVERY Q.EXISTS_TAC [‘1‘, ‘1‘] THEN SRW_TAC [][],

Q.UNDISCH_THEN ‘c = top_cand e‘ SUBST_ALL_TAC THEN

Q.PAT_ASSUM ‘BAG_IN b (COND x y z)‘ MP_TAC THEN

ASM_SIMP_TAC (srw_ss()) [],

Q.UNDISCH_THEN ‘c = top_cand e‘ SUBST_ALL_TAC THEN

Q.UNDISCH_THEN ‘b = (e, 1)‘ SUBST_ALL_TAC THEN

Q.PAT_ASSUM ‘x = top_cand‘ (SUBST_ALL_TAC o SYM) THEN

ASM_SIMP_TAC (srw_ss()) [ballot_is_for_def, filter_eq_nil] THEN

PROVE_TAC [],

Q.UNDISCH_THEN ‘c = top_cand e‘ SUBST_ALL_TAC THEN

Q.PAT_ASSUM ‘BAG_IN b (COND x y z)‘ MP_TAC THEN

ASM_SIMP_TAC (srw_ss()) []

]) THEN

REPEAT GEN_TAC THEN STRIP_TAC THEN REPEAT CONJ_TAC THENL [

(* wf_pile - already proved *)

ASM_REWRITE_TAC [],

(* successful candidates are finite *)

ASM_SIMP_TAC (srw_ss()) [successful_candidates_def] THEN

MATCH_MP_TAC pred_setTheory.INTER_FINITE THEN

ASM_SIMP_TAC (srw_ss() ++ boolSimps.DNF_ss)

[IN_RAN, all_candidates_def, pairTheory.FORALL_PROD,

o_f_FAPPLY, GSYM LEFT_FORALL_IMP_THM, pile_candidates_def,

DOMSUB_FAPPLY_THM, SET_OF_BAG_INSERT] THEN

REPEAT STRIP_TAC THEN

MATCH_MP_TAC IMAGE_FINITE THEN

Q.PAT_ASSUM ‘X = initial_fm‘ (SUBST_ALL_TAC o SYM) THEN

Q.PAT_ASSUM ‘y IN dom X‘ MP_TAC THEN

Q.ID_SPEC_TAC ‘y‘ THEN

Q.UNDISCH_THEN ‘finite votes‘ MP_TAC THEN

Q.ID_SPEC_TAC ‘votes‘ THEN

HO_MATCH_MP_TAC STRONG_FINITE_BAG_INDUCT THEN

ASM_SIMP_TAC (srw_ss()) [COMMUTING_ITBAG_RECURSES] THEN

GEN_TAC THEN STRIP_TAC THEN REPEAT GEN_TAC THEN

Cases_on ‘y = top_cand e‘ THENL [

ASM_SIMP_TAC (srw_ss()) [SET_OF_BAG_INSERT] THEN

COND_CASES_TAC THENL [PROVE_TAC [], SRW_TAC [][BAG_OF_EMPTY]],

ASM_SIMP_TAC (srw_ss()) [FAPPLY_FUPDATE_THM]

],

(* cardinality of successful candidates is <= num_to_elect *)

ASM_SIMP_TAC (srw_ss()) [successful_candidates_def] THEN

‘!n. 0 < n ==>

!s. wf_pile s ==>

50

{ c | n <= candidate_votes s c } SUBSET all_candidates s‘

by (REPEAT (POP_ASSUM (K ALL_TAC)) THEN

GEN_TAC THEN STRIP_TAC THEN

‘!P x. n <= (if P then x else 0) = P /\ n <= x‘

by SRW_TAC [numSimps.ARITH_ss][] THEN

REWRITE_TAC [wf_pile_def] THEN REPEAT STRIP_TAC THEN

Q_TAC SUFF_TAC ‘!c. c IN {c | n <= candidate_votes s c} ==>

c IN all_candidates s‘ THEN1

SRW_TAC [][SUBSET_DEF] THEN

SRW_TAC [boolSimps.DNF_ss]

[all_candidates_def, candidate_votes_def,

pile_candidates_def, pairTheory.UNCURRY,

pairTheory.EXISTS_PROD, IN_RAN] THEN

Q.PAT_ASSUM ‘!c. c IN dom s.vote_pile ==> X‘

(Q.SPEC_THEN ‘c‘ MP_TAC) THEN

ASM_SIMP_TAC (srw_ss()) [pairTheory.UNCURRY] THEN

STRIP_TAC THEN

‘wf_tbp (all_candidates s) b /\

ballot_is_for (ignored_candidates s) c b‘ by PROVE_TAC [] THEN

‘?b0 tv. b = (b0, tv)‘

by PROVE_TAC [TypeBase.nchotomy_of "prod"] THEN

POP_ASSUM SUBST_ALL_TAC THEN

‘?pile1 pile2 cnt. (s.vote_pile ’ c) = (cnt, pile1, pile2)‘

by PROVE_TAC [TypeBase.nchotomy_of "prod"] THEN

FULL_SIMP_TAC (srw_ss()) [ballot_is_for_def, filter_eq_nil] THEN

Q_TAC SUFF_TAC ‘MEM c b0‘ THEN1 PROVE_TAC [] THEN

Q.UNDISCH_THEN ‘MEM c’ b0‘ MP_TAC THEN

Q.UNDISCH_THEN ‘~(c’ IN ignored_candidates s)‘ MP_TAC THEN

Q.UNDISCH_THEN

‘HD (filter (\c. ~(c IN ignored_candidates s)) b0) = c‘

MP_TAC THEN

Q.ID_SPEC_TAC ‘b0‘ THEN

REPEAT (POP_ASSUM (K ALL_TAC)) THEN Induct THEN

SRW_TAC [][] THEN PROVE_TAC []) THEN

‘!s t:candidate set. s SUBSET t ==> (t INTER s = s)‘

by PROVE_TAC [SUBSET_INTER_ABSORPTION, INTER_COMM] THEN

ASM_SIMP_TAC (srw_ss() ++ numSimps.ARITH_ss) [] THEN

Q.PAT_ABBREV_TAC ‘s = r with vote_pile := v‘ THEN

‘(candidate_votes s = image top_cand votes) /\

!c. c IN dom initial_fm ==> finite (initial_fm ’ c)‘

by (ASM_SIMP_TAC (srw_ss())[candidate_votes_def, FUN_EQ_THM,

BAG_IMAGE_DEF] THEN

Q.PAT_ASSUM ‘X = s‘ (SUBST_ALL_TAC o SYM) THEN

ASM_SIMP_TAC (srw_ss()) [o_f_FAPPLY] THEN

Q.PAT_ASSUM ‘X = initial_fm‘ (SUBST_ALL_TAC o SYM) THEN

Q.UNDISCH_THEN ‘finite votes‘ MP_TAC THEN

Q.ID_SPEC_TAC ‘votes‘ THEN

HO_MATCH_MP_TAC STRONG_FINITE_BAG_INDUCT THEN

ASM_SIMP_TAC (srw_ss()) [COMMUTING_ITBAG_RECURSES] THEN

REPEAT STRIP_TAC THEN

51

Cases_on ‘x = top_cand e‘ THEN ASM_SIMP_TAC (srw_ss()) [] THENL [

ASM_SIMP_TAC (srw_ss()) [FINITE_BAG_FILTER, BAG_CARD_THM] THEN

Cases_on

‘top_cand e IN dom (ITBAG add_to_pile votes’ FEMPTY)‘

THENL [

ASM_SIMP_TAC (srw_ss()) [BAG_CARD_THM] THEN

METIS_TAC [],

ASM_SIMP_TAC (srw_ss()) [BAG_CARD_THM] THEN

‘card (filter (\e0. top_cand e0 = top_cand e) votes’) = 0‘

by METIS_TAC [] THEN

ASM_SIMP_TAC (srw_ss()) []

],

ASM_SIMP_TAC (srw_ss()) [FAPPLY_FUPDATE_THM],

COND_CASES_TAC THEN ASM_SIMP_TAC (srw_ss()) [],

COND_CASES_TAC THEN ASM_SIMP_TAC (srw_ss()) [],

COND_CASES_TAC THEN

ASM_SIMP_TAC (srw_ss()) [FAPPLY_FUPDATE_THM] THEN

COND_CASES_TAC THEN ASM_SIMP_TAC (srw_ss()) [],

COND_CASES_TAC THEN

ASM_SIMP_TAC (srw_ss()) [FAPPLY_FUPDATE_THM] THEN

COND_CASES_TAC THEN ASM_SIMP_TAC (srw_ss()) []

]) THEN

‘card (candidate_votes s) = card votes‘

by SRW_TAC [][card_bag_image] THEN

Q.PAT_ABBREV_TAC ‘putatives = {c | x <= candidate_votes s c}‘ THEN

‘putatives SUBSET set (candidate_votes s)‘

by (Q.PAT_ASSUM ‘X = putatatives‘ (SUBST_ALL_TAC o SYM) THEN

SIMP_TAC (srw_ss() ++ numSimps.ARITH_ss)

[SUBSET_DEF, BAG_IN, BAG_INN]) THEN

‘finite (candidate_votes s)‘ by PROVE_TAC [BAG_IMAGE_FINITE] THEN

‘finite putatives‘ by PROVE_TAC [FINITE_SET_OF_BAG, SUBSET_FINITE] THEN

‘SUM_IMAGE (candidate_votes s) putatives <= card (candidate_votes s)‘

by PROVE_TAC [finite_bag_sum_image] THEN

Q.ABBREV_TAC ‘Q = card votes DIV (num_to_elect + 1) + 1‘ THEN

‘!c. c IN putatives ==> Q <= candidate_votes s c‘ by SRW_TAC [][] THEN

‘card putatives * Q <= SUM_IMAGE (candidate_votes s) putatives‘

by PROVE_TAC [SUM_IMAGE_lower_bound] THEN

‘card putatives * Q <= card (candidate_votes s)‘ by DECIDE_TAC THEN

‘0 < Q‘ by (SRW_TAC [][] THEN DECIDE_TAC) THEN

Q.UNDISCH_THEN ‘card (candidate_votes s) = card votes‘ SUBST_ALL_TAC THEN

‘card putatives <= card votes DIV Q‘

by ASM_SIMP_TAC (srw_ss())[X_LE_DIV] THEN

‘card votes DIV Q <= num_to_elect‘ by PROVE_TAC [key_property] THEN

DECIDE_TAC,

(* continuing candidates and deads are disjoint *)

ASM_SIMP_TAC (srw_ss()) [continuing_candidates_def,

all_candidates_def,

successful_candidates_def,

ignored_candidates_def, DIFF_INTER_disjoint],

52

(* continuing candidates and successful candidates are disjoint -

follows immediately from definition of continuing candidate *)

ASM_SIMP_TAC (srw_ss()) [continuing_candidates_def, DISJOINT_DEF,

EXTENSION] THEN PROVE_TAC [],

(* deads and successful candidates are disjoint *)

ASM_SIMP_TAC (srw_ss()) [successful_candidates_def, candidate_votes_def,

DISJOINT_DEF, EXTENSION] THEN

Q.X_GEN_TAC ‘c‘ THEN

Cases_on ‘c IN deads‘ THEN ASM_SIMP_TAC (srw_ss()) [] THEN

Q_TAC SUFF_TAC ‘~(c IN dom initial_fm)‘ THEN1 ASM_SIMP_TAC (srw_ss()) [] THEN

Q.UNDISCH_THEN ‘c IN deads‘ MP_TAC THEN

Q.ID_SPEC_TAC ‘c‘ THEN

Q.UNDISCH_THEN ‘!b. BAG_IN b votes ==> ?c. MEM c b /\ ~(c IN deads)‘

MP_TAC THEN

Q.PAT_ASSUM ‘X = initial_fm‘ (SUBST_ALL_TAC o SYM) THEN

Q.UNDISCH_THEN ‘finite votes‘ MP_TAC THEN

Q.ID_SPEC_TAC ‘votes‘ THEN HO_MATCH_MP_TAC STRONG_FINITE_BAG_INDUCT THEN

ASM_SIMP_TAC (srw_ss()) [COMMUTING_ITBAG_RECURSES, BAG_IN_BAG_INSERT,

DISJ_IMP_THM, FORALL_AND_THM] THEN

Q.PAT_ASSUM ‘X = top_cand‘ (SUBST_ALL_TAC o SYM) THEN

ASM_SIMP_TAC (srw_ss()) [] THEN NTAC 2 STRIP_TAC THEN

Induct THEN SRW_TAC [][] THEN PROVE_TAC [],

(* total live votes doesn’t get too big *)

‘!x y z. x + (y + z:real) = y + (x + z)‘ by RealArith.REAL_ARITH_TAC THEN

Q.PAT_ABBREV_TAC ‘s = R with vote_pile := X‘ THEN

‘!c. c IN dom initial_fm ==> finite (initial_fm ’ c)‘

by (Q.UNDISCH_THEN ‘finite votes‘ MP_TAC THEN

Q.PAT_ASSUM ‘X = initial_fm‘ (SUBST_ALL_TAC o SYM) THEN

Q.ID_SPEC_TAC ‘votes‘ THEN

HO_MATCH_MP_TAC STRONG_FINITE_BAG_INDUCT THEN

ASM_SIMP_TAC (srw_ss()) [COMMUTING_ITBAG_RECURSES] THEN

GEN_TAC THEN STRIP_TAC THEN REPEAT GEN_TAC THEN

Cases_on ‘c = top_cand e‘ THEN

ASM_SIMP_TAC (srw_ss()) [FAPPLY_FUPDATE_THM] THEN

COND_CASES_TAC THEN ASM_SIMP_TAC (srw_ss()) []) THEN

‘(total_live_votes s = &(card votes)) /\

!c. c IN dom initial_fm ==> finite (initial_fm ’ c)‘

by (Q.UNDISCH_THEN ‘finite votes‘ MP_TAC THEN

Q.PAT_ASSUM ‘X = s‘ (SUBST_ALL_TAC o SYM) THEN

Q.PAT_ASSUM ‘X = initial_fm‘ (SUBST_ALL_TAC o SYM) THEN

Q.ID_SPEC_TAC ‘votes‘ THEN

HO_MATCH_MP_TAC STRONG_FINITE_BAG_INDUCT THEN

ASM_SIMP_TAC (srw_ss()) [total_live_votes_def,

o_ABS_R, COMMUTING_ITBAG_RECURSES,

FRANGEB_THM, sum_vote_bag_def,

BAG_CARD_THM] THEN

GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN STRIP_TAC THENL [

53

COND_CASES_TAC THENL [

ASM_SIMP_TAC (srw_ss()) [COMMUTING_ITBAG_RECURSES] THEN

Q.ABBREV_TAC ‘fm = ITBAG add_to_pile votes’ FEMPTY‘ THEN

‘?fm0 v. (fm = fm0 |+ (top_cand e, v)) /\

~(top_cand e IN dom fm0)‘

by PROVE_TAC [FM_PULL_APART] THEN

Q.PAT_ASSUM ‘X = &(card votes’)‘ MP_TAC THEN

ASM_SIMP_TAC (srw_ss()) [DOMSUB_NOT_IN_DOM, FRANGEB_THM,

COMMUTING_ITBAG_RECURSES] THEN

REWRITE_TAC [GSYM REAL_ADD] THEN

RealArith.REAL_ARITH_TAC,

ASM_SIMP_TAC (srw_ss() ++ numSimps.ARITH_ss)

[DOMSUB_NOT_IN_DOM, COMMUTING_ITBAG_RECURSES]

],

GEN_TAC THEN Cases_on ‘c = top_cand e‘ THEN

ASM_SIMP_TAC (srw_ss()) [FAPPLY_FUPDATE_THM] THEN

METIS_TAC [FINITE_EMPTY_BAG]

]) THEN

ASM_SIMP_TAC (srw_ss()) [] THEN

ASM_SIMP_TAC (srw_ss() ++ numSimps.ARITH_ss)[GSYM DIV_LT_X]

]

Uses all candidates 22a, ballot 9a, ballot is for 12a, candidate 8b, candidate votes 22b,
card 57a, disjoint 57a, dom 57a, filter 57a, finite 57a, ignored candidates 23b,
image 57a, set 57a, total live votes 23c, wf ballot 10a, wf pile 17, and wf tbp 10b.

A.2 Clause 6 preserves well-formed states

54 〈Proof that transfer bundle transfers votes 54〉≡ (42b)

ALL_TAC

54

55 〈Proof that clause6 preserves well-formed states 55〉≡ (42c)

SIMP_TAC bool_ss [clause6_def] THEN

RAISE_LETS_TAC THEN

‘?c’s_count c’s_ballots c’s_lastballots.

x = (c’s_count, c’s_ballots, c’s_lastballots)‘

by PROVE_TAC [TypeBase.nchotomy_of "prod"] THEN

POP_ASSUM SUBST_ALL_TAC THEN

SIMP_TAC bool_ss [pairTheory.UNCURRY, pairTheory.FST, pairTheory.SND] THEN

RAISE_LETS_TAC THEN

Q.PAT_ABBREV_TAC ‘s1 = X with done_successes := Y‘ THEN

‘s1.dead = s0.dead‘ by SRW_TAC [][] THEN

‘s1.excluded = s0.excluded‘ by SRW_TAC [][] THEN

‘ignored_candidates s1 = c INSERT ignored_candidates s0‘

by (SIMP_TAC (srw_ss()) [ignored_candidates_def] THEN

ASM_SIMP_TAC (srw_ss()) [] THEN

SRW_TAC [][EXTENSION] THEN mesonLib.MESON_TAC []) THEN

‘s1.quota = s0.quota‘ by SRW_TAC [][] THEN

‘s1.num_to_elect = s0.num_to_elect‘ by SRW_TAC [][] THEN

‘s1.done_successes = c INSERT s0.done_successes‘ by SRW_TAC [][] THEN

STRIP_TAC THEN

‘c IN successes‘ by SRW_TAC [][successful_candidates_def, LESS_OR_EQ] THEN

‘c IN FDOM s0.vote_pile‘

by (Q.UNDISCH_THEN ‘s0.quota < candidate_votes s0 c‘ MP_TAC THEN

SIMP_TAC (srw_ss()) [candidate_votes_def] THEN SRW_TAC [][]) THEN

‘all_candidates s1 = all_candidates s0‘

by (ASM_SIMP_TAC (srw_ss()) [all_candidates_def]) THEN

ASM_SIMP_TAC (srw_ss()) [wf_state_def] THEN REPEAT STRIP_TAC THENL [

(* wf_pile *)

ASM_SIMP_TAC (srw_ss()) [wf_pile_def, DOMSUB_FAPPLY_THM] THEN

Q.X_GEN_TAC ‘d‘ THEN

‘?d’s_count d’s_ballots d’s_lastballots.

new_pile ’ d = (d’s_count, d’s_ballots, d’s_lastballots)‘

by PROVE_TAC [TypeBase.nchotomy_of "prod"] THEN

ASM_SIMP_TAC (srw_ss()) []

]

Uses all candidates 22a, candidate votes 22b, ignored candidates 23b, and wf pile 17.

55

Appendix B

Additional HOL Material

This is the material necessary to make the source code “work” when passed to
the HOL system, but is otherwise of limited interest.

56a 〈Preliminaries 56a〉≡ (5b)

〈Open standard HOL context 56b〉
〈Include parent theories 56c〉
〈Declare new theory 56d〉
〈Make parsing/pretty-printing alterations 57a〉
〈Auxiliary Definitions 57c〉

First open a standard HOL context:

56b 〈Open standard HOL context 56b〉≡ (56a)

open HolKernel Parse boolLib bossLib BasicProvers metisLib

The theory of the Electoral Act needs to refer to the built-in HOL theories of
bags (multi-sets), real numbers and sets.

56c 〈Include parent theories 56c〉≡ (56a)

open realTheory bagTheory pred_setTheory finite_mapTheory

open arithmeticTheory

local open containerTheory in end

The theory will be called ElectoralAct.

56d 〈Declare new theory 56d〉≡ (56a)

val _ = new_theory "ElectoralAct"

56

Issue some overloading commands, to let functions from the HOL theory of bags
be used with prettier names:

57a 〈Make parsing/pretty-printing alterations 57a〉≡ (56a) 57b .

val _ = overload_on ("card", ‘‘BAG_CARD‘‘);

val _ = overload_on ("card", ‘‘pred_set$CARD‘‘);

val _ = overload_on ("dom", ‘‘finite_map$FDOM‘‘);

val _ = overload_on ("disjoint", ‘‘pred_set$DISJOINT‘‘);

val _ = overload_on ("filter", ‘‘BAG_FILTER‘‘);

val _ = overload_on ("filter", ‘‘list$FILTER‘‘);

val _ = overload_on ("finite", ‘‘FINITE_BAG‘‘);

val _ = overload_on ("finite", ‘‘pred_set$FINITE‘‘);

val _ = overload_on ("image", ‘‘BAG_IMAGE‘‘);

val _ = overload_on ("image", ‘‘pred_set$IMAGE‘‘);

val _ = overload_on ("nth", ‘‘list$EL‘‘);

val _ = overload_on ("ran", ‘‘finite_map$FRANGE‘‘);

val _ = overload_on ("set", ‘‘SET_OF_BAG‘‘);

val _ = overload_on ("set", ‘‘list$LIST_TO_SET‘‘);

Defines:
card, used in chunks 18, 25, 28–30, 33, 35–38, 41, 47, and 59.
disjoint, used in chunks 25, 46, and 47.
dom, used in chunks 17, 18, 22b, 28, 35, 47, 59, and 60.
filter, used in chunks 12a, 33, 39, 46, 47, and 61a.
finite, used in chunks 15a, 25, 41, 42a, 47, and 59.
image, used in chunks 11, 33, 41, and 47.
nth, used in chunks 35, 37, and 62b.
set, used in chunks 10a, 11b, 17, 20, 25, 35, 42a, 47, 60, and 61.

Also, hide the open constant from the topology theory, which we don’t need
here:

57b 〈Make parsing/pretty-printing alterations 57a〉+≡ (56a) / 57a

val _ = hide "open";

B.1 Auxiliary HOL Definitions

Define functions that should probably be in the standard HOL library.

57c 〈Auxiliary Definitions 57c〉≡ (56a) 59 .

〈Testing a bag of sets for disjointness 58a〉

57

A predicate on a bag of sets that is true when all of the sets are mutually disjoint:

58a 〈Testing a bag of sets for disjointness 58a〉≡ (57c) 58b .

val disjoint_sets_def = Define‘

disjoint_sets b =

!s1 s2. BAG_IN s1 b /\ BAG_IN s2 (BAG_DIFF b {|s1|}) ==>

DISJOINT s1 s2

‘;

Defines:
disjoint sets, used in chunks 25 and 58b.

Two obvious properties of disjoint sets (for all that the second one is sur-
prisingly painful to prove):

58b 〈Testing a bag of sets for disjointness 58a〉+≡ (57c) / 58a

val disjoint_sets_empty = store_thm(

"disjoint_sets_empty",

‘‘disjoint_sets {||} = T‘‘,

SRW_TAC [][disjoint_sets_def]);

val disjoint_sets_insert = store_thm(

"disjoint_sets_insert",

‘‘disjoint_sets (BAG_INSERT s b) =

(!s2. BAG_IN s2 b ==> DISJOINT s s2) /\

disjoint_sets b‘‘,

SRW_TAC [][disjoint_sets_def, bagTheory.BAG_IN_BAG_INSERT,

RIGHT_AND_OVER_OR, LEFT_AND_OVER_OR,

DISJ_IMP_THM, FORALL_AND_THM] THEN

EQ_TAC THEN REPEAT STRIP_TAC THENL [

ASM_SIMP_TAC bool_ss [],

FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC [] THEN

‘?b0. b = BAG_INSERT s1 b0‘

by PROVE_TAC [BAG_IN_BAG_DELETE, BAG_DELETE] THEN

‘BAG_INSERT s b = BAG_INSERT s1 (BAG_INSERT s b0)‘

by SRW_TAC [][BAG_INSERT_commutes] THEN

FULL_SIMP_TAC (srw_ss()) [BAG_IN_BAG_INSERT],

ASM_SIMP_TAC bool_ss [],

‘?b0. b = BAG_INSERT s1 b0‘

by PROVE_TAC [BAG_IN_BAG_DELETE, BAG_DELETE] THEN

‘BAG_INSERT s b = BAG_INSERT s1 (BAG_INSERT s b0)‘

by SRW_TAC [][BAG_INSERT_commutes] THEN

FULL_SIMP_TAC (srw_ss()) [] THEN

FIRST_X_ASSUM (Q.SPECL_THEN [‘s1‘,‘s2‘] MP_TAC) THEN

FULL_SIMP_TAC (srw_ss()) [BAG_IN_BAG_INSERT] THEN

PROVE_TAC [pred_setTheory.DISJOINT_SYM]

]);

val _ = export_rewrites ["disjoint_sets_empty",

"disjoint_sets_insert"]

Uses disjoint sets 58a.

58

Some properties of finite maps, and finite maps with bags as the range type.
FRANGEB returns the range of a finite map as a bag. An element is in the bag n

times if n keys in the map point at it.

59 〈Auxiliary Definitions 57c〉+≡ (56a) / 57c 60a .

val FRANGEB_def = Define‘

FRANGEB fm x = card { k | k IN dom fm /\ (fm ’ k = x) }

‘;

val FRANGEB_THM = store_thm(

"FRANGEB_THM",

‘‘(FRANGEB FEMPTY = {||}) /\

(FRANGEB (fm |+ (k, v)) = BAG_INSERT v (FRANGEB (fm \\ k)))‘‘,

SRW_TAC [][BAG_EXTENSION, FRANGEB_def, BAG_INN, BAG_INSERT] THENL [

SRW_TAC [numSimps.ARITH_ss][],

SIMP_TAC (srw_ss() ++ boolSimps.CONJ_ss) [DOMSUB_FAPPLY_THM] THEN

‘{k’ | ((k’ = k) \/ k’ IN dom fm) /\ ((fm |+ (k, v)) ’ k’ = e)} =

(if v = e then {k} else {}) UNION

{k’ | (k’ IN dom fm /\ ~(k’ = k)) /\ (fm ’ k’ = e)}‘

by (SRW_TAC [boolSimps.CONJ_ss, boolSimps.COND_elim_ss,

boolSimps.DNF_ss][EXTENSION, FAPPLY_FUPDATE_THM] THEN

EQ_TAC THEN REPEAT STRIP_TAC THEN SRW_TAC [][]) THEN

POP_ASSUM SUBST_ALL_TAC THEN

COND_CASES_TAC THENL [

SRW_TAC [][GSYM INSERT_SING_UNION] THEN

AP_THM_TAC THEN AP_TERM_TAC THEN

Q_TAC SUFF_TAC

‘finite {k’ | (k’ IN dom fm /\ ~(k’ = k)) /\ (fm ’ k’ = e)}‘

THEN1 SRW_TAC [numSimps.ARITH_ss][] THEN

SRW_TAC [][GSPEC_AND],

SRW_TAC [][]

]

]);

val FINITE_FRANGEB = store_thm(

"FINITE_FRANGEB",

‘‘!fm. FINITE_BAG (FRANGEB fm)‘‘,

HO_MATCH_MP_TAC fmap_INDUCT THEN

SRW_TAC [][FRANGEB_THM] THEN

‘fm \\ x = fm‘ by

(SRW_TAC [][GSYM fmap_EQ_THM, DOMSUB_FAPPLY_THM] THEN

PROVE_TAC [DELETE_NON_ELEMENT]) THEN

SRW_TAC [][]);

val _ = export_rewrites ["FINITE_FRANGEB"]

Uses card 57a, dom 57a, and finite 57a.

59

Then, ranb is a function that merges all of the bags in a finite map’s range to
create one big bag.

60a 〈Auxiliary Definitions 57c〉+≡ (56a) / 59 60b .

val ranb_def = Define‘

ranb fm = ITBAG BAG_UNION (FRANGEB fm) {||}

‘;

val IN_RAN_FCOMP = prove(

‘‘!g. x IN ran (f o_f g) = ?y. (x = f y) /\ y IN ran g‘‘,

HO_MATCH_MP_TAC fmap_INDUCT THEN SRW_TAC [][] THEN

EQ_TAC THENL [

Cases_on ‘x = f y‘ THENL [

METIS_TAC [],

ASM_SIMP_TAC (srw_ss()) [DOMSUB_NOT_IN_DOM] THEN METIS_TAC []

],

ASM_SIMP_TAC (srw_ss()) [DOMSUB_NOT_IN_DOM] THEN METIS_TAC []

])

val IN_RAN = prove(

‘‘x IN ran f = ?y. y IN dom f /\ (x = f ’ y)‘‘,

SRW_TAC [][FRANGE_DEF] THEN PROVE_TAC []);

val BOOL_UNIV = store_thm(

"BOOL_UNIV",

‘‘UNIV = {T; F}‘‘,

SRW_TAC [][EXTENSION]);

val _ = export_rewrites ["BOOL_UNIV"]

Defines:
ranb, used in chunk 16a.

Uses dom 57a.

The function fmrangeset takes a finite map into bags, and returns the union
of all of the elements mapped to.

60b 〈Auxiliary Definitions 57c〉+≡ (56a) / 60a 61a .

val fmrangeset_def = Define‘

fmrangeset (fm:’a |-> ’b bag) =

{ x | ?c. c IN dom fm /\ x IN set (fm ’ c) }

‘;

val _ = overload_on("ran", ‘‘fmrangeset‘‘);

Defines:
fmrangeset, never used.

Uses dom 57a and set 57a.

60

To partition a bag into a set of bags, according to an equivalence relation R,
use the function partitionb. Note that one need only produce a set of bags
because a particular partition element could hardly occur twice.

61a 〈Auxiliary Definitions 57c〉+≡ (56a) / 60b 61b .

val partitionb_def = Define‘

partitionb (R : ’a -> ’a -> bool) (b : ’a bag) : ’a bag set =

pred_set$IMAGE (\s. filter s b) (partition R (set(b)))

‘;

Defines:
partitionb, used in chunks 18 and 39.

Uses filter 57a and set 57a.

All finite sets of real numbers have maximum elements. The function RMAX SET

returns this maximum element.

61b 〈Auxiliary Definitions 57c〉+≡ (56a) / 61a 61c .

val RMAX_SET_lemma = prove(

‘‘!s : real set. FINITE s ==> ~(s = {}) ==>

?x. x IN s /\ !y. y IN s ==> y <= x‘‘,

HO_MATCH_MP_TAC FINITE_INDUCT THEN

SIMP_TAC bool_ss [NOT_INSERT_EMPTY, IN_INSERT] THEN

REPEAT STRIP_TAC THEN

Q.ISPEC_THEN ‘s‘ STRIP_ASSUME_TAC SET_CASES THENL [

ASM_SIMP_TAC (srw_ss()) [],

‘?m. m IN s /\ !y. y IN s ==> y <= m‘

by PROVE_TAC [NOT_INSERT_EMPTY] THEN

Cases_on ‘e <= m‘ THENL [

PROVE_TAC [],

‘m <= e‘ by PROVE_TAC [REAL_NOT_LE, REAL_LE_LT] THEN

PROVE_TAC [REAL_LE_REFL, REAL_LE_TRANS]

]

]);

val RMAX_SET_DEF = new_specification(

"RMAX_SET_DEF", ["RMAX_SET"],

SIMP_RULE bool_ss [AND_IMP_INTRO, GSYM RIGHT_EXISTS_IMP_THM,

SKOLEM_THM] RMAX_SET_lemma)

val _ = overload_on ("MAX_SET", ‘‘RMAX_SET‘‘)

Defines:
RMAX SET, never used.

Uses set 57a.

Take the natural number truncation of a real with real to num trunc:

61c 〈Auxiliary Definitions 57c〉+≡ (56a) / 61b 62a .

val real_to_num_trunc_def = Define‘

real_to_num_trunc (r:real) = (LEAST n. r < &n) - 1

‘;

val _ = overload_on ("trunc", ‘‘real_to_num_trunc‘‘);

61

And some properties of the same:

62a 〈Auxiliary Definitions 57c〉+≡ (56a) / 61c 62b .

val real_to_num_trunc_thm = store_thm(

"real_to_num_trunc_thm",

‘‘real_to_num_trunc (&n) = n‘‘,

SRW_TAC [][real_to_num_trunc_def] THEN

CONV_TAC (UNBETA_CONV ‘‘LEAST x. n < x‘‘) THEN

MATCH_MP_TAC LEAST_ELIM THEN SRW_TAC [][] THENL [

Q.EXISTS_TAC ‘n + 1‘ THEN SRW_TAC [numSimps.ARITH_ss][],

SPOSE_NOT_THEN ASSUME_TAC THEN

‘n < n’ - 1‘ by DECIDE_TAC THEN

‘~(n’ - 1 < n’)‘ by PROVE_TAC [] THEN

FULL_SIMP_TAC (srw_ss() ++ numSimps.ARITH_ss) []

]);

Lists can be sorted by a relation. In order to define what it is to be sorted, it’s
necessary to define what it is for two lists to be permutations of each other, and
what it is for a list to be sorted with respect to a relation.

62b 〈Auxiliary Definitions 57c〉+≡ (56a) / 62a 63 .

val permutation_def = Define‘

permutation l1 l2 = (LIST_TO_BAG l1 = LIST_TO_BAG l2)

‘;

val sorted_def = Define‘

sorted R l = !m n. m < n /\ n < LENGTH l ==> R (nth m l) (nth n l)

‘;

val sort_def = Define‘

sort R l = @l’. permutation l l’ /\ sorted R l’

‘;

Defines:
sort, used in chunk 39.

Uses nth 57a.

62

B.2 Auxiliary Tactics

A tactic for moving lets to the top of a term and then moving into the assump-
tions as abbreviations.

63 〈Auxiliary Definitions 57c〉+≡ (56a) / 62b 64a .

val LET_FORALL = prove(‘‘LET f v = !x. (v = x) ==> f x‘‘, SRW_TAC [][]);

val LET_RAND’ = prove(‘‘P (LET f v) = LET (P o f) v‘‘, SRW_TAC [][])

val LET_RATOR’ = prove(

‘‘(LET f v) x = LET (combin$C f x) v‘‘,

SRW_TAC [][combinTheory.C_THM]);

val o_ABS_R = prove(

‘‘f o (\x. g x) = (\x. f (g x))‘‘,

SRW_TAC [][FUN_EQ_THM])

val o_UNCURRY_R = prove(

‘‘f o UNCURRY g = UNCURRY ((o) f o g)‘‘,

SRW_TAC [][pairTheory.UNCURRY, FUN_EQ_THM]);

val C_ABS_L = prove(

‘‘combin$C (\x. f x) y = (\x. f x y)‘‘,

SRW_TAC [][FUN_EQ_THM])

val C_UNCURRY_L = prove(

‘‘combin$C (UNCURRY f) x = UNCURRY (combin$C (combin$C o f) x)‘‘,

SRW_TAC [][FUN_EQ_THM, pairTheory.UNCURRY])

val RAISE_LETS_CONV =

SIMP_CONV bool_ss [o_ABS_R, o_UNCURRY_R, C_ABS_L, C_UNCURRY_L,

LET_RATOR’, LET_RAND’]

fun ELIM_LET t = if is_let t andalso is_var (rand t) then

(REWR_CONV LET_THM THENC BETA_CONV) t

else NO_CONV t

val RAISE_LETS_TAC = CONV_TAC RAISE_LETS_CONV THEN

REPEAT (CONV_TAC (HO_REWR_CONV LET_FORALL) THEN

GEN_TAC THEN

DISCH_THEN (fn th => REWRITE_TAC [th] THEN

ASSUME_TAC th) THEN

CONV_TAC (DEPTH_CONV ELIM_LET))

63

A tactic to remove some record fields, and replace them with more convenient
names.

64a 〈Auxiliary Definitions 57c〉+≡ (56a) / 63

open bagTheory

val std_state_abbrev =

Q.ABBREV_TAC ‘N = s.num_to_elect‘ THEN

Q.ABBREV_TAC ‘dead = s.dead‘ THEN

Q.ABBREV_TAC ‘votes = s.votes‘ THEN

Q.ABBREV_TAC ‘excl = s.excluded‘ THEN

Q.ABBREV_TAC ‘dones = s.done_successes‘ THEN

Q.ABBREV_TAC ‘Q = s.quota‘ THEN

NTAC 6 (POP_ASSUM (K ALL_TAC))

Defines:
std state abbrev, never used.

B.3 Finishing

To close, it is only necessary to call export theory.

64b 〈Closing 64b〉≡ (5b)

val _ = export_theory()

64

Appendix C

Chunk Index

All of the document’s chunks are listed here.

〈Algorithm Definition 27〉
〈Algorithm State Type 20〉
〈Algorithm State Well-formedness (Invariant) 25〉
〈Algorithm States 19〉
〈Auxiliary Definitions 57c〉
〈Ballot Paper Functions 10a〉
〈Ballot Papers 9a〉
〈Candidate Information 13a〉
〈Candidate Information Functions 14a〉
〈Candidates 8b〉
〈Clause 3: First preferences 28〉
〈Clause 4: Scrutiny to cease 29〉
〈Clause 5: Scrutiny to continue 31〉
〈Clause 6: Surplus votes 33〉
〈Clause 7: More than 1 surplus 34〉
〈Clause 8: Exclusion of candidates 37〉
〈Clause 9: Votes of excluded candidates 39〉
〈Closing 64b〉
〈Declare new theory 56d〉
〈Functions over Algorithm States 21b〉
〈HOL Theory of the Electoral Act 1992 5b〉
〈Include parent theories 56c〉
〈Make parsing/pretty-printing alterations 57a〉
〈Open standard HOL context 56b〉
〈Preliminaries 56a〉
〈Proof of the key property 45a〉
〈Proof that clause3 preserves well-formed states 47〉

65

〈Proof that clause6 preserves well-formed states 55〉
〈Proof that transfer bundle transfers votes 54〉
〈Properties of ballot papers 45b〉
〈Sample 4a〉
〈Sample Details 4b〉
〈Testing a bag of sets for disjointness 58a〉
〈Theorems 40〉
〈Types 8a〉
〈Vote Pile Functions 16a〉
〈Vote Piles 15b〉

66

Appendix D

Identifier Index

All of the HOL definitions are indexed here. An underlined reference indicates
where a definition is made. Other references are to chunks where the term is
used.

all candidates: 22a, 23a, 24, 25, 42c, 47, 55
ballot: 9a, 9b, 10a, 47
ballot is for: 12a, 17, 33, 39, 47
candidate: 8b, 9a, 11b, 15b, 16a, 16b, 18, 20, 22b, 33, 35, 36, 38, 39, 47
candidate votes: 22b, 23a, 29, 31, 35, 37, 42c, 47, 55
card: 18, 25, 28, 29, 30, 33, 35, 36, 37, 38, 41, 47, 57a, 59
cinfo: 13a, 14a, 15b, 16a, 16b, 18, 20
cinfo candidates: 14b, 16b
cinfo votebag: 14a, 14b, 15a, 16a, 17, 23c
clause3: 28, 42a
clause3 wf: 42a
clause4: 29
clause5: 31
clause6: 33, 42c
clause6 wf: 42c
clause7: 36
clause7 set: 35, 36
clause8: 38
clause8 set: 37, 38
clause9: 39
continuing candidates: 24, 25, 29, 30, 37
disjoint: 25, 46, 47, 57a
disjoint sets: 25, 58a, 58b
dom: 17, 18, 22b, 28, 35, 47, 57a, 59, 60a, 60b
filter: 12a, 33, 39, 46, 47, 57a, 61a
finite: 15a, 25, 41, 42a, 47, 57a, 59

67

fmrangeset: 60b
fullstate: 21a, 28, 33, 35, 36, 38
ignored candidates: 23b, 24, 25, 33, 39, 47, 55
image: 11a, 11b, 33, 41, 47, 57a
nth: 35, 37, 57a, 62b
partitionb: 18, 39, 61a
pile ballots: 16a, 21b, 25
pile candidates: 16b, 22a, 42b
ranb: 16a, 60a
RMAX SET: 61b
set: 10a, 11b, 17, 20, 25, 35, 42a, 47, 57a, 60b, 61a, 61b
sort: 39, 62b
state: 20, 21a, 21b, 22a, 23b, 24, 29, 30, 31, 37, 39
state ballots: 21b
std state abbrev: 64a
successful candidates: 23a, 23b, 25, 29, 30, 31, 34
sum vote bag: 11a, 15a, 23c
tbp: 9b, 10b, 11a, 11b, 12a, 13a, 14a, 16a, 18, 20, 21b, 33
tbp bag candidates: 11b, 14b, 22a
time of success: 34, 35
total live votes: 23c, 25, 47
transfer bundle: 18, 33, 39, 42b
transfer bundle preserves votes: 42b
wf ballot: 10a, 10b, 42a, 47
wf cinfo: 15a, 17
wf pile: 17, 25, 47, 55
wf state: 25, 42a, 42c
wf tbp: 10b, 15a, 25, 45b, 47
winners: 30

68

