The Condition Number of the Joint Space Inertia Matrix

Roy Featherstone
Dept. Information Engineering, RSISE
The Australian National University
The condition number of a matrix measures its closeness to singularity:

\[\kappa(A) \rightarrow \infty \text{ as } A \rightarrow \text{ singular} \]

If \(\kappa(A) \) is large then \(A \) is said to be ill–conditioned.

If a physical system is described by an equation like

\[y = A \, x + b \]

and \(A \) is ill–conditioned, then it can be difficult to calculate \(y \) from \(x \), or \(x \) from \(y \), without loss of accuracy.
The joint–space inertia matrix (JSIM) of a kinematic tree is known to be a symmetric, positive–definite matrix.

- It is therefore nonsingular.

- But is it ill–conditioned? Yes!
Example:

Suppose we want to accelerate this planar 8R robot from rest with an acceleration of

\[\ddot{q}_d = [1,1,1,1,1,1,1,1]^T \]

The equation of motion is

\[\tau = H \ddot{q} + C \]

where

\(H \) is the JSIM, and \(C = 0 \) (gravity and velocity terms are zero).
The exact force required to produce an acceleration of \ddot{q}_d is

$$\tau_d = H \ddot{q}_d = \begin{bmatrix}
302.0450 \\
250.2104 \\
200.5413 \\
151.0375 \\
105.6992 \\
64.5263 \\
31.5188 \\
8.6767
\end{bmatrix}$$

But what if the actual joint force differs very slightly from the theoretically exact force?
Let τ_a be the exact force rounded to three significant figures. The acceleration caused by an applied force of τ_a is

$$\ddot{q}_a = H^{-1} \tau_a = H^{-1} \begin{bmatrix} 302 \\ 250 \\ 201 \\ 151 \\ 106 \\ 64.5 \\ 31.5 \\ 8.68 \end{bmatrix} = \begin{bmatrix} 0.7917 \\ 1.0281 \\ 1.4904 \\ 0.6886 \\ 1.1026 \\ 1.0911 \\ 0.5626 \\ 1.2384 \end{bmatrix}$$

A force error of $< 0.5\%$ has caused an acceleration error of 50%.
Measuring the Condition Number

The following graphs plot $\kappa(H)$ vs N (number of bodies) for robots with

- revolute joints
- identical or tapering links
- in curled and zigzag configurations
- unbranched or branched connectivity
- fixed or floating bases
identical links, unbranched, zigzag
identical links, unbranched, curled

\[\theta = 0, 0.012, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8, 1.4, 2.4 \]
tapered links, unbranched, curled
inertia–weighted metric

\[\rho = 0.9 \]

- scaled
- unscaled
branches (spherically symmetric robots)
floating base, unbranched, identical links
Summary

- in general, the JSIM is very ill-conditioned, and it gets worse as the number of bodies increases

- worst case: $\kappa(H) = 4N^4$

- tapering can increase or decrease ill-conditioning, depending on how you measure it

- branches reduce ill-conditioning

- a floating base can reduce ill-conditioning