Branch–Induced Sparsity in Rigid–Body Dynamics

Roy Featherstone
Dept. Information Engineering, RSISE
The Australian National University
Branch–Induced Sparsity

What is it?

a pattern of zeros appearing in the joint–space inertia matrix (and some other matrices) as a direct consequence of branches in a kinematic tree

Why is it interesting?

exploiting this sparsity greatly improves the efficiency of $O(n^3)$ dynamics algorithms

What is the main application?

efficient dynamics calculations
Branch–Induced Sparsity

What is it?
a pattern of zeros appearing in the joint–space *inertia matrix* (and some other matrices) as a direct consequence of branches in a *kinematic tree*

Why is it interesting?
exploiting this sparsity greatly improves the efficiency of $O(n^3)$ dynamics algorithms

What is the main application?
efficient dynamics calculations
Kinematic Trees

A rigid–body system can be represented by a connectivity graph in which:

- one node represents a fixed base, or fixed reference frame
- this special node is the root node of the graph
- all other nodes represent bodies
- arcs represent joints

If the connectivity graph is a tree, then the system it represents is a kinematic tree.
Example

- Body 1
- Body 2
- Body 3
- Joint 1
- Joint 2
- Base

Connectivity Graph:
- Root Node
- Joint 1
- Body 1
- Body 2
- Body 3
Numbering Scheme

- the root node is numbered 0
- the other nodes are numbered 1 to N in any order such that each node has a higher number than its parent
- arcs are numbered such that arc i connects node i to its parent
- bodies and joints have the same numbers as their nodes and arcs

Examples
Floating Bases

A mobile robot, or other mobile device, is connected to a fixed base via a \textit{6DoF joint} — a joint that does not impose any motion constraints.

The body that is connected directly to the fixed base is called a \textit{floating base}.
Describing Connectivity

$\kappa(i)$ — all the joints between node i and the root
$\lambda(i)$ — the parent of node i
$\mu(i)$ — the children of node i
$\nu(i)$ — all the bodies beyond joint i
Describing Connectivity

\[\lambda(1) = 0 \quad \mu(0) = \{1\} \]
\[\lambda(2) = 1 \quad \mu(1) = \{2,4\} \]
\[\lambda(3) = 2 \quad \mu(2) = \{3\} \]
\[\lambda(4) = 1 \quad \mu(3) = \{\} \]

\[\kappa(1) = \{1\} \quad \nu(1) = \{1,2,3,4,5,6\} \]
\[\kappa(2) = \{1,2\} \quad \nu(2) = \{2,3\} \]
\[\kappa(3) = \{1,2,3\} \quad \nu(3) = \{3\} \]
\[\kappa(4) = \{1,4\} \quad \nu(4) = \{4,5,6\} \]
Describing Connectivity

The parent array, λ, defines both the connectivity and the numbering scheme.

$$\lambda = [\lambda(1), \lambda(2), \ldots, \lambda(N)]$$

\begin{align*}
\lambda &= [0, 1, 2, 1, 4, 4] \\
\lambda &= [0, 1, 1, 2, 3, 2] \\
\lambda &= [0, 1, 2, 0, 1, 2, 5, 5, 2]
\end{align*}
Describing Connectivity

- λ provides a complete description of the connectivity; so the sets $\mu(i)$, $\nu(i)$ and $\kappa(i)$ can all be calculated from λ.

- Most dynamics algorithms only need λ.

Many algorithms rely on the property $0 \leq \lambda(i) < i$.
Joint–Space Inertia Matrix

The equation of motion of a kinematic tree can be expressed in the following canonical form:

\[\tau = H \ddot{q} + C \]

where

\(\tau \) is a vector of joint force variables

\(\ddot{q} \) is a vector of joint acceleration variables

\(H \) is the joint–space inertia matrix

\(C \) is a vector containing Coriolis, centrifugal and gravity terms
Joint–Space Inertia Matrix

The joint–space inertia matrix of a kinematic tree is given by the equation

\[
H_{ij} = \begin{cases}
S_i^T I_i^c S_j & \text{if } i \in \nu(j) \\
S_i^T I_j^c S_j & \text{if } j \in \nu(i) \\
0 & \text{otherwise}
\end{cases}
\]

The third case in this equation applies whenever \(i\) and \(j\) lie on different branches of the tree. This is the case that gives rise to \textit{branch–induced sparsity}.

\[
H_{ij} = 0 \text{ if } i \text{ and } j \text{ are on different branches}
\]
Joint–Space Inertia Matrix

The joint–space inertia matrix of a kinematic tree is given by the equation

\[
H_{ij} = \begin{cases}
S_i^T I_i^c S_j & \text{if } i \in \nu(j) \\
S_i^T I_j^c S_j & \text{if } j \in \nu(i) \\
0 & \text{otherwise}
\end{cases}
\]

in general, this is a submatrix

The third case in this equation applies whenever \(i \) and \(j \) lie on different branches of the tree. This is the case that gives rise to *branch–induced sparsity*.

\[H_{ij} = 0 \text{ if } i \text{ and } j \text{ are on different branches} \]
Sparsity Patterns

- Nonzero submatrix or element
How can we exploit the sparsity?

1. If we factorize H into either $L^T L$ or $L^T D L$, rather than the usual $L L^T$ (Cholesky) or $L D L^T$, then the sparsity pattern in H is preserved in the factors.

2. Algorithms that perform matrix multiplication and back-substitution can be modified to iterate over only the nonzero elements.

3. The more sparsity there is in H, the faster it can be calculated and factorized.
Maximizing Sparsity

Choose a floating base near the middle.

\[H = \]

\[H = \]
Maximizing Sparsity

Choose a branchy spanning tree.

closed-loop system

spanning tree

$H = \begin{bmatrix}
 1 & 1 & 0 \\
 1 & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix}$

$H = \begin{bmatrix}
 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$
$L^T L$ Versus LL^T

$H = LL^T$ (Cholesky)

$H = L^T L$
Innovations Factorization

The L^TDL factorization is numerically almost identical to the innovations factorization of the joint–space inertia matrix that was discovered by Rodriguez, Jain, et al. at NASA JPL.

\[
M = (1 + H\phi K) D (1 + H\phi K)^* \\
H \quad L^T \quad D \quad L
\]

\[
M^{-1} = (1 - H\psi K)^* D^{-1} (1 - H\psi K) \\
H^{-1} \quad L^{-1} \quad D^{-1} \quad L^{-T}
\]
Sparse Factorization Algorithms

\[
\begin{align*}
LTL(H, \lambda_e) & \rightarrow L \\
LTDL(H, \lambda_e) & \rightarrow L, D
\end{align*}
\]

Inputs

- \(H \) — the matrix to be factorized
- \(\lambda_e \) — the *expanded parent array*

Outputs

- \(L, D \) — factors returned in \(H \)

Applicability

\(H \) can be *any* symmetric positive-definite matrix with the sparsity pattern described by \(\lambda_e \). It does not have to be an inertia matrix.
Expanded Parent Array

\(\lambda \) is an \(N \)-element array, where \(N \) is the number of joints.

\(\lambda_e \) is an \(n \)-element array, where \(n \) is the number of joint variables.

\(H \) is an \(N \times N \) block matrix

\(H \) is an \(n \times n \) matrix

\(\lambda \) describes the sparsity pattern in the submatrices of \(H \).

\(\lambda_e \) describes the sparsity pattern in the elements of \(H \).

\(\lambda_e \) is obtained from \(\lambda \) by formally replacing each multi-DoF joint with an equivalent chain of single-DoF joints and renumbering the nodes and arcs.
Expanded Parent Array

original graph

expanded graph

3 DoF joint

$\lambda = [0,1,1,2,2,3]$

$\lambda_e = [0,1,2,3,1,4,4,5]$
function \texttt{LTDL}(\mathbf{H}, \lambda_e)
for \(k = n \) to 1 do
\(i = \lambda_e(k) \)
while \(i \neq 0 \) do
\(a = \frac{H_{ki}}{H_{kk}} \)
\(j = i \)
while \(j \neq 0 \) do
\(H_{ij} = H_{ij} - H_{kj} \ a \)
\(j = \lambda_e(j) \)
end
\(H_{ki} = a \)
\(i = \lambda_e(i) \)
end
end
How the algorithm works

By iterating only over the ancestors of k, the algorithm performs the least possible amount of work, e.g. by updating only 5 elements at $k = 7$ instead of 27.
By iterating only over the ancestors of k, the algorithm performs the least possible amount of work, e.g. by updating only 5 elements at $k = 7$ instead of 27.
How the algorithm works

By iterating only over the ancestors of \(k \), the algorithm performs the least possible amount of work, e.g. by updating only 5 elements at \(k = 7 \) instead of 27.
Computational Cost Formulae

\[L^T D L \] factorization \[D_1 d + D_2 (m + a) \]
back-substitution \[nd + 2D_1 (m + a) \]

where

\[D_1 = \sum_{i=1}^{n} (d_i - 1) \quad \text{and} \quad D_2 = \sum_{i=1}^{n} \frac{d_i (d_i - 1)}{2} \]

\[d_i = 1 + d_{\lambda_e(i)} \quad (d_0 = 1) \]

\(d_i \) is the depth of node \(i \) in the expanded connectivity graph; and \(d, m \) and \(a \) are the costs of floating-point divide, multiply and add/subtract operations.
Computational Complexity

D_1 and D_2 are bounded by

$$D_1 \leq n(d - 1) \quad \text{and} \quad D_2 \leq nd(d - 1)/2$$

where $d = \max_i d_i$ is the depth of the expanded connectivity graph.

The complexity of factorization is therefore $O(nd^2)$
Dynamics Calculation Efficiency

- **$O(n)$** algorithms
 - branches have little effect on these algorithms.

- **$O(n^3)$** algorithms
 - branches substantially improve the efficiency of these algorithms, and reduce their complexity from $O(n^3)$ to $O(nd^2)$.
Dynamics Calculation Efficiency

A typical $O(n^3)$ algorithm performs three steps:

1. calculate C \hspace{2cm} $O(n)$
2. calculate H \hspace{2cm} $O(n^2) \rightarrow O(nd)$
3. solve $H\ddot{q} = \tau - C$ \hspace{2cm} $O(n^3) \rightarrow O(nd^2)$

Branches accelerate steps 2 and 3, and reduce their computational complexity.
Calculating H

The *composite–rigid–body algorithm* (CRBA) is the best available algorithm for calculating H.

Branch–induced sparsity *improves the efficiency* of this algorithm, and *reduces its complexity* to $O(nd)$, because

1. the CRBA implicitly exploits branch–induced sparsity by calculating only the nonzero elements of H, and

2. there are only $n + 2D_1$ nonzero elements in H, which is $O(nd)$.
A Numerical Example

Let us compare the computational cost of forward dynamics for a 30–DoF unbranched chain and the 30–DoF humanoid (or quadruped) shown below.
A Numerical Example

\[H = \]

\begin{align*}
\text{each} \ \square \ \text{is a} \\
\text{6x6 matrix}
\end{align*}

\(H \) contains:
- 468 nonzero elements
- 432 zero elements

\(H \) is therefore 48% zeros
Cost Figures for Unbranched Chain

\[O(n^3) \]

<table>
<thead>
<tr>
<th>O(n^3)</th>
<th>RNEA</th>
<th>CRBA</th>
<th>Factor & Solve</th>
</tr>
</thead>
</table>

\[O(n) \]

ABA

(total arithmetic operations)

5000 10,000 15,000 20,000 25,000

RNEA: Recursive Newton–Euler Algorithm
CRBA: Composite Rigid Body Algorithm
ABA: Articulated–Body Algorithm
Cost Figures for Humanoid/Quadruped

CRBA exploits sparsity

new factorization algorithm
Summary

- branches in a kinematic tree cause sparsity in the joint-space inertia matrix
- exploiting this sparsity, using the new factorization algorithms presented here, greatly improves the efficiency and computational complexity of $O(n^3)$ dynamics algorithms

Further Reading