Solving a Two-Body Dynamics Problem using 6-D Vectors

Roy Featherstone*

Problem Statement

We are given a rigid-body system consisting of two bodies, B_1 and B_2 , connected by a revolute joint. The bodies have inertias of I_1 and I_2 , respectively, and they are initially at rest. The joint's rotation axis is s. A force f is applied to B_1 , causing both bodies to accelerate. The problem is to calculate the acceleration of B_1 as a function of f.

Diagram

Solution

Let a_1 and a_2 be the accelerations of the two bodies, and let f_J be the force transmitted from B_1 to B_2 through the joint. The net forces acting on the two bodies are therefore $f - f_J$ and f_J , respectively, and their equations of motion are

$$\boldsymbol{f} - \boldsymbol{f}_{\mathrm{J}} = \boldsymbol{I}_{1} \, \boldsymbol{a}_{1} \tag{1}$$

and

$$\mathbf{f}_{\mathrm{I}} = \mathbf{I}_2 \, \mathbf{a}_2 \,. \tag{2}$$

(There are no velocity terms because the bodies are at rest.) The joint permits B_2 to accelerate relative to B_1 about the axis specified by s; so a_2 can be expressed in the form

$$\boldsymbol{a}_2 = \boldsymbol{a}_1 + \boldsymbol{s}\,\alpha\tag{3}$$

where α is the joint acceleration variable. (Again, there are no velocity terms because the bodies are at rest.) This motion constraint is implemented by $f_{\rm J}$, which is the joint constraint force, so $f_{\rm J}$ must satisfy

$$\boldsymbol{s}^{\mathrm{T}}\boldsymbol{f}_{\mathrm{I}} = 0 \tag{4}$$

(i.e., the constraint force does no work in the direction of motion allowed by the joint).

Given Eqs. 1 to 4, the problem is solved as follows. First, substitute Eq. 3 into Eq. 2, giving

$$\mathbf{f}_{\mathbf{J}} = \mathbf{I}_2 \left(\mathbf{a}_1 + \mathbf{s} \, \alpha \right). \tag{5}$$

Substituting this equation into Eq. 4 gives

$$\boldsymbol{s}^{\mathrm{T}}\boldsymbol{I}_{2}\left(\boldsymbol{a}_{1}+\boldsymbol{s}\,\boldsymbol{\alpha}\right)=0,$$

from which we get the following expression for α :

$$\alpha = -\frac{\mathbf{s}^{\mathrm{T}} \mathbf{I}_{2} \, \mathbf{a}_{1}}{\mathbf{s}^{\mathrm{T}} \mathbf{I}_{2} \, \mathbf{s}}.$$
 (6)

Substituting Eq. 6 back into Eq. 5 gives

$$m{f}_{\! ext{J}} = m{I}_2 \left(m{a}_1 - rac{m{s} \, m{s}^{ ext{T}} m{I}_2}{m{s}^{ ext{T}} m{I}_2 \, m{s}} \, m{a}_1
ight),$$

and substituting this equation back into Eq. 1 gives

$$egin{aligned} m{f} &= m{I_1} \, m{a_1} + m{I_2} \, m{a_1} - rac{m{I_2} \, m{s} \, m{r} \, m{I_2}}{m{s}^{ ext{T}} m{I_2} \, m{s}} \, m{a_1} \ &= \left(m{I_1} + m{I_2} - rac{m{I_2} \, m{s} \, m{s}^{ ext{T}} m{I_2}}{m{s}^{ ext{T}} m{I_2} \, m{s}}
ight) m{a_1} \, . \end{aligned}$$

The expression in brackets is non-singular, and may therefore be inverted to express a_1 in terms of f:

$$a_1 = \left(\mathbf{I}_1 + \mathbf{I}_2 - \frac{\mathbf{I}_2 \, \mathbf{s} \, \mathbf{s}^{\mathrm{T}} \mathbf{I}_2}{\mathbf{s}^{\mathrm{T}} \mathbf{I}_2 \, \mathbf{s}} \right)^{-1} \mathbf{f} \,. \tag{7}$$

^{*}School of Engineering, RSISE, ANU, Canberra, Australia. \odot 2010 Roy Featherstone