Spatial Vector Algebra

The Easy Way to do Rigid Body Dynamics

Roy Featherstone
Dept. Information Engineering, RSISE The Australian National University

A concise vector notation for describing rigid-body velocity, acceleration, inertia, etc., using 6D vectors and tensors.

- fewer quantities
- fewer equations
- less effort
- fewer mistakes

Velocity

Spatial velocity:

$$
\hat{\mathbf{v}}=\left[\begin{array}{c}
\omega \\
\mathbf{v}_{O}
\end{array}\right]
$$

$$
\left(\mathbf{v}_{O}=\mathbf{v}_{P}+\overrightarrow{O P} \times \omega\right)
$$

Acceleration

. . . is the rate of change of velocity:

$$
\hat{\mathbf{a}}=\frac{d}{d t} \hat{\mathbf{v}}=\left[\begin{array}{c}
\dot{\omega} \\
\dot{\mathbf{v}}_{0}
\end{array}\right]
$$

but this is not the linear acceleration of any point in the body!

Force

force \mathbf{f} through $P: \quad \hat{\mathbf{f}}=\left[\begin{array}{c}\overrightarrow{O P} \times \mathbf{f} \\ \mathbf{f}\end{array}\right]$
pure couple τ :

$$
\hat{\mathbf{f}}=\left[\begin{array}{l}
\tau \\
\mathbf{0}
\end{array}\right]
$$

Rigid Body Inertia

spatial inertia tensor: $\quad \hat{\mathbf{I}}=\left[\begin{array}{cc}\mathbf{I} & \mathbf{H} \\ \mathbf{H}^{T} & \mathbf{M}\end{array}\right]$
where $\quad \mathbf{M}=m \mathbf{1}$

$$
\begin{aligned}
& \mathbf{H}=m \overrightarrow{O P} \times \\
& \mathbf{I}=\mathbf{I}^{*}-m \overrightarrow{O P} \times \overrightarrow{O P} \times
\end{aligned}
$$

Operations on Spatial Quantities

- Composition of velocities

If $\quad \hat{\mathbf{v}}_{A}=$ velocity of body A
$\hat{\mathbf{v}}_{B}=$ velocity of body B
$\hat{\mathbf{v}}_{B A}=$ relative velocity of B w.r.t. A
Then $\hat{\mathbf{v}}_{B}=\hat{\mathbf{v}}_{A}+\hat{\mathbf{v}}_{B A}$

Composition of accelerations

If $\hat{\mathbf{a}}_{A}=$ acceleration of body A $\hat{\mathbf{a}}_{B}=$ acceleration of body B $\hat{\mathbf{a}}_{B A}=$ acceleration of B w.r.t. A

Then $\hat{\mathbf{a}}_{B}=\hat{\mathbf{a}}_{A}+\hat{\mathbf{a}}_{B A}$
Look, no Coriolis term!

- Composition of forces

If forces $\hat{\mathbf{f}}_{1}$ and $\hat{\mathbf{f}}_{2}$ both act on the same body then their resultant is

$$
\hat{\mathbf{f}}_{t o t}=\hat{\mathbf{f}}_{1}+\hat{\mathbf{f}}_{2}
$$

- Composition of inertias

If two bodies with inertias $\hat{\mathbf{I}}_{A}$ and $\hat{\mathbf{I}}_{B}$ are connected together then the inertia of the composite body is

$$
\hat{\mathbf{I}}_{t o t}=\hat{\mathbf{I}}_{A}+\hat{\mathbf{I}}_{B}
$$

Mathematical Structure

spatial vectors inhabit two vector spaces:
M^{6} - motion vectors
$F^{6} \quad$ - force vectors
with a scalar product defined between them

$$
\begin{aligned}
\mathbf{m} \cdot \mathbf{f} & =\text { work } \\
\quad & \text { ".": } \mathrm{M}^{6} \times \mathrm{F}^{6} \mapsto R
\end{aligned}
$$

Bases

If $\left\{\mathbf{d}_{1}, \ldots, \mathbf{d}_{6}\right\}$ is an arbitrary basis on M^{6} then there exists a unique basis $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{6}\right\}$ on F^{6} satisfying

$$
\mathbf{d}_{i} \cdot \mathbf{e}_{j}=\left\{\begin{array}{l}
0: i \neq j \\
1: i=j
\end{array}\right.
$$

In this basis, the scalar product of two coordinate vectors is

$$
\mathbf{m} \cdot \mathbf{f}=[\mathbf{m}]^{T}[\mathbf{f}]
$$

Plücker Coordinates

A Cartesian coordinate frame $O x y z$ defines twelve basis vectors:
$\mathbf{d}_{O x}, \mathbf{d}_{O y}, \mathbf{d}_{O z}, \mathbf{d}_{x}, \mathbf{d}_{y}, \mathbf{d}_{z}:$ rotations about the $O x, O y$ and $O z$ axes, translations in the x, y and z directions
$\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}, \mathbf{e}_{O x}, \mathbf{e}_{O y}, \mathbf{e}_{O z}$:
couples in the $y z, z x$ and $x y$ planes, and forces along the $O x, O y$ and $O z$ axes

Equations like $\hat{\mathbf{v}}=\left[\begin{array}{c}\omega \\ \mathbf{v}_{o}\end{array}\right]$ and $\hat{\mathbf{f}}=\left[\begin{array}{c}\tau_{o} \\ \mathbf{f}\end{array}\right]$
really mean

$$
\begin{aligned}
\hat{\mathbf{v}}= & \omega_{x} \mathbf{d}_{O x}+\omega_{y} \mathbf{d}_{O y}+\omega_{z} \mathbf{d}_{O z}+ \\
& +v_{O x} \mathbf{d}_{x}+v_{O y} \mathbf{d}_{y}+v_{O z} \mathbf{d}_{z} \\
\hat{\mathbf{f}=} & \tau_{O x} \mathbf{e}_{x}+\tau_{O y} \mathbf{e}_{y}+\tau_{O z} \mathbf{e}_{z}+ \\
& +f_{x} \mathbf{e}_{O x}+f_{y} \mathbf{e}_{O y}+f_{z} \mathbf{e}_{O z}
\end{aligned}
$$

Equation of Motion

$$
\mathbf{f}=\frac{d}{d t}(\mathbf{I} \mathbf{v})=\mathbf{I} \mathbf{a}+\mathbf{v} \times \mathbf{I} \mathbf{v}
$$

$\mathbf{f}=$ net force acting on a rigid body
I = inertia of rigid body
$\mathbf{v}=$ velocity of rigid body
Iv = momentum of rigid body
a $=$ acceleration of rigid body

Example 1: Robot Kinematics

$$
\begin{array}{ll}
\mathbf{v}_{i}=\mathbf{v}_{i-1}+\mathbf{s}_{i} \dot{q}_{i} & \left(\mathbf{v}_{0}=\mathbf{0}\right) \\
\mathbf{a}_{i}=\mathbf{a}_{i-1}+\dot{\mathbf{s}}_{i} \dot{q}_{i}+\mathbf{s}_{i} \ddot{q}_{i} & \left(\mathbf{a}_{0}=\mathbf{0}\right)
\end{array}
$$

$\mathbf{v}_{i}, \mathbf{a}_{i} \quad$ link velocity and acceleration
$\dot{q}_{i}, \ddot{q}_{i}, \mathbf{s}_{i}$ joint velocity, acceleration \& axis

Example 2: Inverse Dynamics

(Calculate the joint torques Q_{i} that will produce the desired joint accelerations \ddot{q}_{i}.)

$$
\begin{array}{ll}
\mathbf{v}_{i}=\mathbf{v}_{i-1}+\mathbf{s}_{i} \dot{q}_{i} & \left(\mathbf{v}_{0}=\mathbf{0}\right) \\
\mathbf{a}_{i}=\mathbf{a}_{i-1}+\dot{\mathbf{s}}_{i} \dot{q}_{i}+\mathbf{s}_{i} \ddot{q}_{i} & \left(\mathbf{a}_{0}=\mathbf{0}\right) \\
\mathbf{f}_{i}=\mathbf{f}_{i+1}+\mathbf{I}_{i} \mathbf{a}_{i}+\mathbf{v}_{i} \times \mathbf{I}_{i} \mathbf{v}_{i} & \left(\mathbf{f}_{n+1}=\mathbf{f}_{e e}\right) \\
Q_{i}=\mathbf{s}_{i}^{T} \mathbf{f}_{i} &
\end{array}
$$

(The Recursive Newton-Euler Algorithm)

