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Question A2

(a) dx, dy and dz are the same in both bases because these vectors depend only on the x, y
and z directions, which are the same for both coordinate frames. We also have dQy = dOy

because Qy = Oy. Thus, the only two vectors that are different in DQ are

dQx = dOx − l dz and dQz = dOz + l dx .

Tip: A quick way to work out the answer is to imagine a rigid body performing the
rotation you want to represent, and ask what happens to the body-fixed point at O. For
example, if the body performs a rotation about Qx at unit angular velocity then the
body-fixed point at O will move straight down with a linear velocity magnitude of l, so
dQx = dOx − l dz.

(b) The coordinates ωx, ωy and ωz are the same in both vectors. To obtain expressions for

the linear coordinates, we use the formula vQ = vO −

−−→

OQ × ω with
−−→

OQ = [0 l 0]T. This
gives

vQx = vOx − l ωz

vQy = vOy

vQz = vOz + l ωx

(c) ωxdQx + ωydQy + ωzdQz + vQxdx + vQydy + vQzdz

= ωx(dOx − ldz) + ωydOy + ωz(dOz + ldx) + (vOx − lωz)dx + vOydy + (vOz + lωx)dz

= ωxdOx + ωydOy + ωzdOz + vOxdx + vOydy + vOzdz .
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Question B1
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(b) v1 = s1 q̇1 =
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(where O is the origin, and ω and vO refer to v̂2)

Question B2

(a) Let f̂ be the spatial force equivalent to a 3D force of f acting on a line passing through
P . The Plücker coordinates of f̂ are therefore

f̂ =
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Let f̂1 and f̂2 be the forces transmitted from the base to B1 through joint 1, and from
B1 to B2 through joint 2, respectively. For static equilibrium, the net force on each body
must be zero. The net force on B1 is f̂1 − f̂2, and the net force on B2 is f̂2 + f̂ ; so the
condition for static equilibrium is

f̂1 = f̂2 = −f̂ =
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(b) τ1 = sT
1
f̂1 = −1 and τ2 = sT

2
f̂2 = −1.
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Question C1

a1 = s1 q̈1 + ṡ1 q̇1 = s1 q̈1 =
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= a1 + s2 q̈2 + v1 × s2 q̇2

=

















0
0
q̈1

0
0
0

















+

















0
0
q̈2

0
−q̈2

0

















+

















0
0
q̇1

0
0
0

















×

















0
0
q̇2

0
−q̇2

0

















=

















0
0

q̈1 + q̈2

0
−q̈2

0

















+

















0
0
0

q̇1 q̇2

0
0

















=

















0
0

q̈1 + q̈2

q̇1 q̇2

−q̈2

0

















Question C2

Let C denote the position of a point on the central axis of the cylinder. The coordinates of C
are then (0, y0 + v t, r), where y0 is the y coordinate of C at t = 0. The angular velocity of the
cylinder is ω = [−v/r 0 0 ]T, and the linear velocity at C is vC = [ 0 v 0 ]T. The linear velocity
at O is therefore

vO = vC +
−−→
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Let âO be the coordinate vector expressing the spatial acceleration of the cylinder at O. As O
is a fixed point in space, âO is just the componentwise derivative of the spatial velocity, v̂O:

âO =
d

dt
v̂O =

d
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Note: if we wish to perform this calculation at the moving point C, instead of the fixed point O,
then we must calculate âC using the formula for differentiation in a moving Plücker coordinate
system.

Question D1

Substitute a = Sα̇ + Ṡα into the equation of motion:

f + f c = I(Sα̇ + Ṡα) + v×∗Iv .

Find α̇:
ISα̇ = f + f c − IṠα − v×∗Iv

STISα̇ = ST(f − IṠα − v×∗Iv)
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α̇ = (STIS)−1ST(f − IṠα − v×∗Iv) .

Substitute this expression for α̇ back into a = Sα̇ + Ṡα:

a = S(STIS)−1ST(f − IṠα − v×∗Iv) + Ṡα .

This equation can be expressed in the form

a = Φf + b

where Φ and b are the apparent inverse inertia and bias acceleration of the constrained body,
respectively, and are given by

Φ = S(STIS)−1ST

and
b = Ṡα − Φ(IṠα + v×∗Iv) .
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