Answers

for Spatial Vector Algebra
by Roy Featherstone*

Question A1

(a) $\left[\begin{array}{c}0 \\ \cos (\theta) \\ \sin (\theta) \\ 0 \\ 0 \\ 0\end{array}\right]$
(b) $\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ \cos (\theta) \\ \sin (\theta)\end{array}\right]$
(c) $\left[\begin{array}{c}0 \\ 0 \\ 1 \\ 2 \\ -1 \\ 0\end{array}\right]$
(d) $\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2\end{array}\right]$
(e) $\left[\begin{array}{c}0 \\ 0 \\ 2 \\ 4 \\ -2 \\ 1\end{array}\right]$

Question A2

(a) $\boldsymbol{d}_{x}, \boldsymbol{d}_{y}$ and \boldsymbol{d}_{z} are the same in both bases because these vectors depend only on the x, y and z directions, which are the same for both coordinate frames. We also have $\boldsymbol{d}_{Q y}=\boldsymbol{d}_{O y}$ because $Q y=O y$. Thus, the only two vectors that are different in D_{Q} are

$$
\boldsymbol{d}_{Q x}=\boldsymbol{d}_{O x}-l \boldsymbol{d}_{z} \quad \text { and } \quad \boldsymbol{d}_{Q z}=\boldsymbol{d}_{O z}+l \boldsymbol{d}_{x}
$$

Tip: A quick way to work out the answer is to imagine a rigid body performing the rotation you want to represent, and ask what happens to the body-fixed point at O. For example, if the body performs a rotation about $Q x$ at unit angular velocity then the body-fixed point at O will move straight down with a linear velocity magnitude of l, so $\boldsymbol{d}_{Q x}=\boldsymbol{d}_{O x}-l \boldsymbol{d}_{z}$.
(b) The coordinates ω_{x}, ω_{y} and ω_{z} are the same in both vectors. To obtain expressions for the linear coordinates, we use the formula $\boldsymbol{v}_{Q}=\boldsymbol{v}_{O}-\overrightarrow{O Q} \times \boldsymbol{\omega}$ with $\overrightarrow{O Q}=[0 l 0]^{\mathrm{T}}$. This gives

$$
\begin{aligned}
& v_{Q x}=v_{O x}-l \omega_{z} \\
& v_{Q y}=v_{O y} \\
& v_{Q z}=v_{O z}+l \omega_{x}
\end{aligned}
$$

(c) $\omega_{x} \boldsymbol{d}_{Q x}+\omega_{y} \boldsymbol{d}_{Q y}+\omega_{z} \boldsymbol{d}_{Q z}+v_{Q x} \boldsymbol{d}_{x}+v_{Q y} \boldsymbol{d}_{y}+v_{Q z} \boldsymbol{d}_{z}$

$$
\begin{aligned}
& =\omega_{x}\left(\boldsymbol{d}_{O x}-l \boldsymbol{d}_{z}\right)+\omega_{y} \boldsymbol{d}_{O y}+\omega_{z}\left(\boldsymbol{d}_{O z}+l \boldsymbol{d}_{x}\right)+\left(v_{O x}-l \omega_{z}\right) \boldsymbol{d}_{x}+v_{O y} \boldsymbol{d}_{y}+\left(v_{O z}+l \omega_{x}\right) \boldsymbol{d}_{z} \\
& =\omega_{x} \boldsymbol{d}_{O x}+\omega_{y} \boldsymbol{d}_{O y}+\omega_{z} \boldsymbol{d}_{O z}+v_{O x} \boldsymbol{d}_{x}+v_{O y} \boldsymbol{d}_{y}+v_{O z} \boldsymbol{d}_{z}
\end{aligned}
$$

[^0]
Question B1

(a) $\boldsymbol{s}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right] \quad \boldsymbol{s}_{2}=\left[\begin{array}{c}0 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0\end{array}\right]$
(b) $\quad \boldsymbol{v}_{1}=\boldsymbol{s}_{1} \dot{q}_{1}=\left[\begin{array}{c}0 \\ 0 \\ \dot{q}_{1} \\ 0 \\ 0 \\ 0\end{array}\right] \quad \boldsymbol{v}_{2}=\boldsymbol{v}_{1}+\boldsymbol{s}_{2} \dot{q}_{2}=\left[\begin{array}{c}0 \\ 0 \\ \dot{q}_{1}+\dot{q}_{2} \\ 0 \\ -\dot{q}_{2} \\ 0\end{array}\right]$
(c) $\boldsymbol{J}=\left[\begin{array}{ll}\boldsymbol{s}_{1} & \boldsymbol{s}_{2}\end{array}\right]=\left[\begin{array}{cc}0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & -1 \\ 0 & 0\end{array}\right]$
(d) $\boldsymbol{v}_{P}=\boldsymbol{v}_{O}-\overrightarrow{O P} \times \boldsymbol{\omega}=\left[\begin{array}{c}0 \\ -\dot{q}_{2} \\ 0\end{array}\right]-\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] \times\left[\begin{array}{c}0 \\ 0 \\ \dot{q}_{1}+\dot{q}_{2}\end{array}\right]=\left[\begin{array}{c}-\dot{q}_{1}-\dot{q}_{2} \\ \dot{q}_{1} \\ 0\end{array}\right]$
(where O is the origin, and $\boldsymbol{\omega}$ and \boldsymbol{v}_{O} refer to $\hat{\boldsymbol{v}}_{2}$)

Question B2

(a) Let $\hat{\boldsymbol{f}}$ be the spatial force equivalent to a 3D force of \boldsymbol{f} acting on a line passing through P. The Plücker coordinates of $\hat{\boldsymbol{f}}$ are therefore

$$
\hat{\boldsymbol{f}}=\left[\begin{array}{c}
\overrightarrow{O P} \times \boldsymbol{f} \\
\boldsymbol{f}
\end{array}\right]=\left[\begin{array}{c}
{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \times\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]} \\
{\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1 \\
0 \\
0
\end{array}\right] .
$$

Let $\hat{\boldsymbol{f}}_{1}$ and $\hat{\boldsymbol{f}}_{2}$ be the forces transmitted from the base to B_{1} through joint 1 , and from B_{1} to B_{2} through joint 2 , respectively. For static equilibrium, the net force on each body must be zero. The net force on B_{1} is $\hat{\boldsymbol{f}}_{1}-\hat{\boldsymbol{f}}_{2}$, and the net force on B_{2} is $\hat{\boldsymbol{f}}_{2}+\hat{\boldsymbol{f}}$; so the condition for static equilibrium is

$$
\hat{\boldsymbol{f}}_{1}=\hat{\boldsymbol{f}}_{2}=-\hat{\boldsymbol{f}}=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1 \\
0 \\
0
\end{array}\right]
$$

(b) $\tau_{1}=\boldsymbol{s}_{1}^{\mathrm{T}} \hat{\boldsymbol{f}}_{1}=-1$ and $\tau_{2}=\boldsymbol{s}_{2}^{\mathrm{T}} \hat{\boldsymbol{f}}_{2}=-1$.

Question C1

$$
\boldsymbol{a}_{1}=s_{1} \ddot{q}_{1}+\dot{s}_{1} \dot{q}_{1}=s_{1} \ddot{q}_{1}=\left[\begin{array}{c}
0 \\
0 \\
\ddot{q}_{1} \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
\boldsymbol{a}_{2} & =\boldsymbol{a}_{1}+\boldsymbol{s}_{2} \ddot{q}_{2}+\dot{s}_{2} \dot{q}_{2} \\
& =\boldsymbol{a}_{1}+\boldsymbol{s}_{2} \ddot{q}_{2}+\boldsymbol{v}_{1} \times \boldsymbol{s}_{2} \dot{q}_{2} \\
& =\left[\begin{array}{c}
0 \\
0 \\
\ddot{q}_{1} \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\ddot{q}_{2} \\
0 \\
-\ddot{q}_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\dot{q}_{1} \\
0 \\
0 \\
0
\end{array}\right] \times\left[\begin{array}{c}
0 \\
0 \\
\dot{q}_{2} \\
0 \\
-\dot{q}_{2} \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\ddot{q}_{1}+\ddot{q}_{2} \\
0 \\
-\ddot{q}_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\dot{q}_{1} \dot{q}_{2} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\ddot{q}_{1}+\ddot{q}_{2} \\
\dot{q}_{1} \dot{q}_{2} \\
-\ddot{q}_{2} \\
0
\end{array}\right]
\end{aligned}
$$

Question C2

Let C denote the position of a point on the central axis of the cylinder. The coordinates of C are then $\left(0, y_{0}+v t, r\right)$, where y_{0} is the y coordinate of C at $t=0$. The angular velocity of the cylinder is $\boldsymbol{\omega}=\left[\begin{array}{lll}-v / r & 0\end{array}\right]^{\mathrm{T}}$, and the linear velocity at C is $\boldsymbol{v}_{C}=\left[\begin{array}{lll}0 & v\end{array}\right]^{\mathrm{T}}$. The linear velocity at O is therefore

$$
\boldsymbol{v}_{O}=\boldsymbol{v}_{C}+\overrightarrow{O C} \times \boldsymbol{\omega}=\left[\begin{array}{l}
0 \\
v \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
y_{0}+v t \\
r
\end{array}\right] \times\left[\begin{array}{c}
-v / r \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\left(y_{0}+v t\right) v / r
\end{array}\right] .
$$

Let $\hat{\boldsymbol{a}}_{O}$ be the coordinate vector expressing the spatial acceleration of the cylinder at O. As O is a fixed point in space, $\hat{\boldsymbol{a}}_{O}$ is just the componentwise derivative of the spatial velocity, $\hat{\boldsymbol{v}}_{O}$:

$$
\hat{\boldsymbol{a}}_{O}=\frac{\mathrm{d}}{\mathrm{~d} t} \hat{\boldsymbol{v}}_{O}=\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{c}
-v / r \\
0 \\
0 \\
0 \\
0 \\
\left(y_{0}+v t\right) v / r
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
v^{2} / r
\end{array}\right]
$$

Note: if we wish to perform this calculation at the moving point C, instead of the fixed point O, then we must calculate $\hat{\boldsymbol{a}}_{C}$ using the formula for differentiation in a moving Plücker coordinate system.

Question D1

Substitute $\boldsymbol{a}=\boldsymbol{S} \dot{\boldsymbol{\alpha}}+\boldsymbol{S} \boldsymbol{\alpha}$ into the equation of motion:

$$
\boldsymbol{f}+\boldsymbol{f}_{c}=\boldsymbol{I}(\boldsymbol{S} \dot{\boldsymbol{\alpha}}+\dot{\boldsymbol{S}} \boldsymbol{\alpha})+\boldsymbol{v} \times \times^{*} \boldsymbol{I} \boldsymbol{v}
$$

Find $\dot{\boldsymbol{\alpha}}$:

$$
\begin{gathered}
\boldsymbol{I} \boldsymbol{S} \dot{\boldsymbol{\alpha}}=\boldsymbol{f}+\boldsymbol{f}_{c}-\boldsymbol{I} \dot{\boldsymbol{S}} \boldsymbol{\alpha}-\boldsymbol{v} \times{ }^{*} \boldsymbol{I} \boldsymbol{v} \\
\boldsymbol{S}^{\mathrm{T}} \boldsymbol{I} \boldsymbol{S} \dot{\boldsymbol{\alpha}}=\boldsymbol{S}^{\mathrm{T}}\left(\boldsymbol{f}-\boldsymbol{I} \dot{\boldsymbol{S}} \boldsymbol{\alpha}-\boldsymbol{v} \times{ }^{*} \boldsymbol{I} \boldsymbol{v}\right)
\end{gathered}
$$

$$
\dot{\boldsymbol{\alpha}}=\left(\boldsymbol{S}^{\mathrm{T}} \boldsymbol{I} \boldsymbol{S}\right)^{-1} \boldsymbol{S}^{\mathrm{T}}\left(\boldsymbol{f}-\boldsymbol{I} \dot{\boldsymbol{S}} \boldsymbol{\alpha}-\boldsymbol{v} \times^{*} \boldsymbol{I} \boldsymbol{v}\right)
$$

Substitute this expression for $\dot{\boldsymbol{\alpha}}$ back into $\boldsymbol{a}=\boldsymbol{S} \dot{\boldsymbol{\alpha}}+\dot{\boldsymbol{S}} \boldsymbol{\alpha}$:

$$
\boldsymbol{a}=\boldsymbol{S}\left(\boldsymbol{S}^{\mathrm{T}} \boldsymbol{I} \boldsymbol{S}\right)^{-1} \boldsymbol{S}^{\mathrm{T}}\left(\boldsymbol{f}-\boldsymbol{I} \dot{\boldsymbol{S}} \boldsymbol{\alpha}-\boldsymbol{v} \times^{*} \boldsymbol{I} \boldsymbol{v}\right)+\dot{\boldsymbol{S}} \boldsymbol{\alpha}
$$

This equation can be expressed in the form

$$
a=\Phi f+b
$$

where $\boldsymbol{\Phi}$ and \boldsymbol{b} are the apparent inverse inertia and bias acceleration of the constrained body, respectively, and are given by

$$
\boldsymbol{\Phi}=\boldsymbol{S}\left(\boldsymbol{S}^{\mathrm{T}} \boldsymbol{I} \boldsymbol{S}\right)^{-1} \boldsymbol{S}^{\mathrm{T}}
$$

and

$$
b=\dot{\boldsymbol{S}} \boldsymbol{\alpha}-\boldsymbol{\Phi}\left(\boldsymbol{I} \dot{\boldsymbol{S}} \boldsymbol{\alpha}+\boldsymbol{v} \times{ }^{*} \boldsymbol{I} \boldsymbol{v}\right)
$$

[^0]: *Dept. Information Engineering, RSISE, ANU, Canberra ACT 0200, Australia. © 2008 Roy Featherstone

