
ARTICLE IN PRESS
Pattern Recognition () --

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.e lsev ier .com/ locate /pr

Learning AAM fitting through simulation

Jason Saragiha,b,∗, Roland Göckea,c

aResearch School of Information Sciences and Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 0200, Australia
bRobotics Institute, Carnegie Mellon University, Pittsburgh, USA
cHuman–Computer Communication Laboratory, Faculty of Information Sciences and Engineering, University of Canberra, Canberra, ACT 2601, Australia

A R T I C L E I N F O A B S T R A C T

Article history:
Received 29 January 2009
Received in revised form 16 April 2009
Accepted 20 April 2009

Keywords:
Active appearance model
Fitting
Discriminative
Linear model

The active appearance model (AAM) is a powerful method for modeling and segmenting deformable visual
objects. The utility of the AAM stems from two fronts: its compact representation as a linear object class
and its rapid fitting procedure, which utilizes fixed linear updates. Although the original fitting procedure
works well for objects with restricted variability when initialization is close to the optimum, its efficacy
deteriorates in more general settings, with regards to both accuracy and capture range. In this paper, we
propose a novel fitting procedure where training is coupled with, and directly addresses, AAM fitting in
its deployment. This is achieved by simulating the conditions of real fitting problems and learning the
best set of fixed linear mappings, such that performance over these simulations is optimized. The power
of the approach does not stem from an update model with larger capacity, but from addressing the whole
fitting procedure simultaneously. To motivate the approach, it is compared with a number of existing
AAM fitting procedures on two publicly available face databases. It is shown that this method exhibits
convergence rates, capture range and convergence accuracy that are significantly better than other linear
methods and comparable to a nonlinear method, whilst affording superior computational efficiency.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

First proposed by Edwards et al. [1], the active appearance model
(AAM) has attracted much interest in the computer vision commu-
nity for modeling and segmenting deformable visual objects. The
methodmakes ingenious use of linear subspaces, allowing a compact
representation of both shape and texture. Coupled with an efficient
fitting procedure, the AAM has found utility in many computer vi-
sion problems, ranging from face animation [2] and medical image
analysis [3], to industrial vision problems [4].

The AAM's rapid fitting stems from the utility of fixed linear up-
date models. Despite its simplicity, the linear update model has
been shown to approximately capture the relationship between the
AAM's texture residual and the optimal parameter updates [1,5].
However, this relationship holds only loosely, as it depends on the
current shape and texture parameters [6]. As such, extensions to
AAM fitting have diverged into two camps. In the first, improved

∗ Corresponding author at: Research School of Information Sciences and
Engineering, College of Engineering and Computer Science, The Australian National
University, Canberra, ACT 0200, Australia.

E-mail addresses: jsaragih@cs.cmu.edu (J. Saragih), roland.goecke@ieee.org
(R. Göcke).

0031-3203/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2009.04.014

fitting performance is attained by building feature vectors that bet-
ter adhere to a linear relationship with the parameter updates [7,8].
Proponents of the second camp reformulate the analytic fitting prob-
lem such that the linear update model is better justified [6,9,10].
To reduce computational complexity, these methods usually make
some assumptions about the forms of the analytic updates.

In this work, a new fitting procedure is proposed that couples
training and testing through simulations of real fitting conditions.
The method learns a set of fixed linear update models, each of which
accounts for different distributions of the AAM parameters about
their optimum, throughout the iterative fitting procedure. As these
updates are fixed, and by virtue of their sequential application to the
image, this approach affords an efficient evaluation.

The outline of this paper is as follows. In Section 2, a brief
overview of related work is presented. Next, we present our ap-
proach for AAM fitting in Section 3, addressing implementation
complexities in Sections 3.1 and 3.2. Empirical evaluations are
presented in Section 4. We conclude in Section 5 with additional
remarks and directions for future work.

2. Background

The AAM's intrinsic variations in shape and texture of deformable
visual objects as a linear combination of basis modes of variation

Please cite this article as: J. Saragih, R. Göcke, Learning AAM fitting through simulation. Pattern Recognition (2009), doi:10.1016/j.patcog.2009.04.014

http://www.sciencedirect.com/science/journal/pr
http://www.elsevier.com/locate/pr
mailto:jsaragih@cs.cmu.edu
mailto:roland.goecke@ieee.org
http://dx.doi.org/10.1016/j.patcog.2009.04.014

2 J. Saragih, R. Göcke / Pattern Recognition () --

ARTICLE IN PRESS

that are composed with a global transformation1 :

S(qs):R
ns�R2n = s(I⊗ R)(�s +Usps)+ 1⊗ t, (1)

T(qt):R
nt

�Rm = �(�t +Utpt)+ �1, (2)

where S and T denote the generative models for shape and texture,
parameterized by qs={s,R, t,ps} and qt={�,�,pt}, respectively. Here,
{�s,Us} and {�t ,Ut} denote the mean and basis of variations of the
shape and texture, which are typically obtained by applying PCA on
the training data. The intrinsic shape is composed with a similarity
transform, parameterized by a global scaling s, a rotation R and a
translation t. The intrinsic texture is scaled by a global gain � and
biased by �. Finally, n denotes the number of points in the model's
shape and m denotes the number of pixels in the model's texture.

AAM fitting is the process of finding the model parameters
p = {qs,qt} which best fit an AAM to an image I. This is usually an
iterative procedure that sequentially updates the model parameters
p through an update function:

�p= U(�;p) ◦ F(I;p). (3)

Here, F is a feature extraction function that represents the image I
from the perspective of the AAM at its current parameter settings
and �p are the updates to be applied to the current parameters. U
is typically chosen to be the linear update model:

U(f;p):Rm
�Rns+nt = Gf + b where f = F(I;p), (4)

although nonlinear mappings have also been used [11,12]. In any
case, a good coupling between U and F is required to ensure good
predictions of the updates. There are two general approaches to AAM
fitting: generative and discriminative. In the following, we will briefly
discuss each in turn.

2.1. Generative fitting

Generative methods pose fitting as the minimization of some
measure of error between the AAM's synthesized texture and the
warped image. The most common measure of fit is the least squares
error [5,6,10]:

Q(p)= ‖T(qt)− I ◦W ◦ S(qs)‖2, (5)

where W is a function that warps pixel locations in the refer-
ence frame onto the image. Robust variants of this objective have
been used also, in which case the problem takes the form of a
continually reweighted least squares problem [13]. In general, the
Gauss–Newton method has become the optimizer of choice, where
at each iteration the parameters are updated using the linear form
in Eq. (4). However, a naive implementation is computationally ex-
pensive as {G,b} depends on p. As such, most generative approaches
to AAM fitting either assume some parts of the update computation
are fixed or reformulate the problem such that they are.

The original generative approach in [5] assumes that the Jaco-
bian of Eq. (5) is fixed, allowing {G,b} to be precomputed. More re-
cently, in a method coined adaptive AAM [10], the fixed Jacobian (FJ)

1 Notation: Vectors are written in lowercase bold and matrices in uppercase
bold, where 1 denotes the all one vector and I the identity matrix. Greek letters
denote either vectors or matrices depending on context. The Kronecker (tiling)
product is written using ⊗. The vec{·} operator vectorizes a matrix by stacking its
columns. Functions are written in upper case with ◦ denoting their composition.
When composing functions with multiple parameters, � denotes a place-holder,
i.e.: A(B(x); y)= A(�; y) ◦ B(x).

assumption is relaxed by decomposing it and assuming only the
component pertaining to the derivative of the warping function is
fixed. The resulting method exhibits improved accuracy; however, as
the linear update model depends on the current texture parameters,
the fitting procedure is computationally expensive.

Adaptations of the inverse-compositional image alignment [14]
to AAM fitting has also attracted some interest. By reversing the roles
of the image and the model in the fitting objective, the derivative of
the warping function is fixed, resulting in significant computational
savings. The project-out method [6], for example, minimizes the cost
in a subspace orthogonal to the modes of texture variation, result-
ing in an analytically fixed linear update model. Despite being the
fastest method to date, it works well only for objects exhibiting small
amounts of variation, such as, for example, in person-specific face
tracking [15]. This problem is partially addressed by the simultane-
ous method [9], which solves for the shape and texture parameters
simultaneously. However, similar to the method in [10], its update
model depends on the current texture parameters, again resulting
in a computationally expensive fitting procedure.

2.2. Discriminative fitting

Although generative approaches have an intuitive appeal, they are
optimally constructed for synthesis, rather than fitting. To address
this drawback, a number of authors propose learning a fitting strat-
egy discriminatively, where both aligned and misaligned examples
are considered during training [1,7,12,16,17]. There are two general
strategies in discriminative fitting. The first is to learn an objective
function with desirable properties that promote convergence of a
gradient descent type search to the desired optimum [16,17]. The
second is to learn a fixed mapping between the features F(I;p) and
the parameter updates �p [1,7,12], given a training set of perturbed
model parameters:

{F(Ii;p∗i −�pi),�pi}di=1, (6)

where p∗i is the optimal parameter setting for the i th sample and d is
the total number of perturbations in the training set. The advantage
of the second approach is that no nonlinear optimization is required
during fitting, potentially leading to an efficient fitting procedure.

In the original AAM formulation [1], the linear update model was
shown to approximately explain the relationship between the AAM's
texture residual:

F(I;p)= T(qt)− I ◦W ◦ S(qs) (7)

and the parameter updates �p, around the optimal parameter set-
tings p∗ for a given image. The update U is easily found through
linear regression on the data set in Eq. (6). The direct appearance
model method [8] affords better memory efficiency during train-
ing as well as improves fitting performance by using the PCA re-
duced texture residuals and predicts the shape directly from the
texture. In [7], a linear relationship is learnt between the canoni-
cal projections of the texture residuals and parameter updates. The
method utilizes canonical correlation analysis to find the subspaces
which best adheres to a linear relationship. In [12], the mapping ca-
pacity is increased by using a boosted mapping function of weak
learners.

Finally, it should be noted that a number of discriminative ap-
proaches to template tracking have been proposed recentlywith sim-
ilar forms to the deformable model fitting methods described above.
Examples of this include [18–20]. However, the application of such
approaches to deformable model fitting requires a specialized treat-
ment due to the higher dimensionality of the motion model and the
typically larger variability of intrinsic appearance.

Please cite this article as: J. Saragih, R. Göcke, Learning AAM fitting through simulation. Pattern Recognition (2009), doi:10.1016/j.patcog.2009.04.014

http://dx.doi.org/10.1016/j.patcog.2009.04.014

ARTICLE IN PRESS
J. Saragih, R. Göcke / Pattern Recognition () -- 3

3. Learning the mappings through simulation

The major drawbacks of current AAM fitting methods are

• A fixed linear update model cannot accurately account for the
various error terrains about the optimum in different images.
• Adapting the update model to the image at hand requires a costly

process of re-calculating it for every iteration.
• Increasing the complexity of the mapping function in a discrimi-

native setting may lead to issues with generalizability as well as
computational complexity.

In this work, the drawbacks of a fixed linear model are addressed
whilst maintaining efficiency. To this end, we propose learning the
entire fitting procedure in a discriminative framework rather than
extracting the update model, or an approximation thereof, from a
generative stand point. Learning is performed on examples of real
fitting scenarios, simulated on the training data.

Consider the class of linear update models that utilize the addi-
tive parameter update: p ← p + �p. If no adjustments to the pa-
rameters are performed between iterations, such as projections onto
the three standard deviations ellipsoid, then the effective parameter
adaptation after k iterations is given by

p← p+
k∑

i=1
�pi. (8)

Utilizing a different update model in each iteration, the parameter
updates can be written as

�pi = GiF

⎛
⎝I;p+

i−1∑
j=1

�pj

⎞
⎠+ bi, (9)

where {Gi,bi} is the fixed updatemodel for the i th iteration. Given the
training set in Eq. (6), the optimal update models for all k iterations
can be found by minimizing a cost function of the form

Q(m)= 1
d

d∑
j=1

CD(Ij,pj, s
∗
j ;m), (10)

where s∗j are the hand-labeled annotations for the j th training sam-

ple: p∗ =minqs ‖s∗ −S(qs)‖2. The parameters of this cost function are
the update models themselves:

m= [vec(G1); . . . ; vec(Gk);b1; . . . ;bk]. (11)

The distance function CD in Eq. (10) penalizes the difference between
themanually annotated shapes and the predictedmodel's shape after
Ni iterations2 :

CD(I,p, s∗;m)= 1
2

∥∥∥∥∥∥S
⎛
⎝p+

k∑
i=1

�pi

⎞
⎠− s∗

∥∥∥∥∥∥
2

. (12)

Compared to texture based error measures, commonly used in gen-
erative AAM fitting, this distance function better encompasses all
available knowledge about the optimal parameter setting, i.e. the
hand-labeled annotations. With this formulation, the training

2 Note that, here, we consider mappings only over the shape parameters such
that p= qs .

procedure essentially simulates real fitting problems on the set of
training images and perturbations. If at deployment, the unseen im-
ages and their perturbations resemble those in the training set, then
the fitting performance of the minimizer of Eq. (10) can be expected
to approach that at training.

Having trained the update models that minimize Eq. (10), AAM
fitting then proceeds as outlined in Algorithm 1. Notice that no
checks need to be made regarding the reduction of texture error or
the magnitude of the parameter updates. Fitting is simply performed
for all trained iterations with no early termination.

Algorithm 1. Discriminative iterative AAM fitting.

Require I, {U1, . . . ,Uk} and p
1: for i= 1 to k do
2: f = F(I;p) {Get feature vector}
3: �p= Gif + bi {Calculate updates}
4: p← p+�p {Update current parameters}
5: end for
6: return p

Compared to the training procedure of generative methods, find-
ing the optimal update models by minimizing Eq. (10) presents a
number of difficulties. Firstly, the cost function is inherently nonlin-
ear with many local minima, due to the composition of the updates
with the feature vectors and the nonlinear relationship between the
pixel intensities and the warping parameters. Secondly, standard nu-
merical optimization techniques are not computationally practical
for this problem. Since the parameter updates at each iteration de-
pend on the update models for all previous iterations, the analytic
gradient of Eq. (12) is in general extremely complex, resulting in an
impractical computational burden. This matter is made worse by the
potentially large number of training samples required to ensure good
generalizability of the update models. In the following sections, we
discuss methods to make the optimization computationally tangible
as well as allowing a good local solution to the nonlinear problem in
Eq. (10) to be obtained.

3.1. Stochastic gradient descent

The training set in Eq. (6) is generally obtained by sampling from
a distribution that approximates the true distribution of perturba-
tion errors encountered in deployment [12,17]. Since the training set
consists of an unbounded number of samples for each training im-
age, we recast the problem as one of online estimation, where each
sample, or a small set of them, is treated as it arrives. Online esti-
mation is essentially a stochastic optimization problem, since only
noisy objective function evaluations are available due to restrictions
on the sample set size at each instance. There are a number of ad-
vantages of online/stochastic learning over batch learning.3 For ex-
ample, it has been widely reported that it can reduce training time
[21], has the ability to escape from shallow local minima [22], min-
imizes the true risk rather than the empirical risk [23], requires far
less memory, and it does not require the number of samples to be
chosen a priori.

Given the instantaneous cost function at time t:

Ct(m)= 1
nb

nb∑
j=1

CD(Ij,pj, s
∗
j ; m), (13)

3 Batch learning minimizes the empirical risk over the whole training set
simultaneously.

Please cite this article as: J. Saragih, R. Göcke, Learning AAM fitting through simulation. Pattern Recognition (2009), doi:10.1016/j.patcog.2009.04.014

http://dx.doi.org/10.1016/j.patcog.2009.04.014

4 J. Saragih, R. Göcke / Pattern Recognition () --

ARTICLE IN PRESS

where nb is the mini-batch size, stochastic optimization then pro-
ceeds by first calculating the gradient:

dt = 1
nb

nb∑
j=1

�CDj

�m
(14)

then updating the model parameters in a steepest descent fashion:

mt+1 =mt − �tdt , (15)

where the step size � is scheduled such that

�t >0; �t → 0 as t→∞;
∞∑
t=0

�t =∞ and
∞∑
t=0

�2
t <∞ (16)

to guarantee convergence to a local minimum. However, the deter-
ministic gradient of Eq. (13) cannot be trivially evaluated due to the
dependence of the updates on those of previous iterations. To see
this, note that the deterministic gradient of CD is given by

�CD
�m
= �CD

�z
�z
�m

, (17)

where z= [�p1; . . . ;�pNi
] is the concatenation of the parameter up-

dates of all iterations. The derivative �CD/�z can be easily computed
from Eqs. (12) and (1). Now, consider the simplest case, where

F(I;p)= I ◦W ◦ S(p). (18)

With this feature vector, the derivative of the j th parameter update
with respect to the bias vector of the k th iteration is given by the
following recursive form:

��pj

�bk
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if j< k,

I if j= k,

Gj
�F
�p

(
j−1∑
i=1

��pi

�bk

)
if j> k,

(19)

where the derivative of the warped image �F/�p is evaluated at
p+∑j−1

i=1 �pi. The derivative with respect to the k th gain matrix is
given by

��pj

�Gk
= ��pj

�bk
⊗ F

⎛
⎝p+

k−1∑
i=1

�pi

⎞
⎠ . (20)

The evaluation of these partial derivatives is computationally in-
tensive and memory demanding. Furthermore, the complexity of
evaluating these partials grows exponentially with the number of it-
erations k. In fact, we found that for k>3, the optimization becomes
impractical on typical hardware. This problem is amplified with the
use of more sophisticated feature vectors, especially those that in-
volve an adaptive normalization component.

To avoid the costly computation of deterministic gradients, we
utilize simultaneous perturbation stochastic approximation (SPSA)
[24]. This method computes stochastic gradients of a functionwith as
little as two function evaluations, allowing an efficient optimization
procedure to be constructed. Specifically, the stochastic gradient of
Eq. (13) is computed as follows:

d̂t = 1
2�t

[Ct(q+ �tDt)− Ct(q− �tDt)]Dt , (21)

where Dt is a vector of random perturbations for each model
parameter, independently generated from a zero-mean probabil-
ity distribution satisfying the conditions in [25], for example the

Bernoulli ±1 distribution with probability of 0.5 for each outcome.
The perturbation magnitude �t requires similar conditions to � in
Eq. (16) to guarantee convergence. Common choices for �t and �t ,
which satisfy these conditions, are

�t =
�

(a+ t)�
and �t =

�
t�

, (22)

where (�, �) are the initial values and (�,�) are the decay rates for
the step size and perturbation magnitudes, respectively. Here, a is
a stabilizing constant that allows a larger initial step size �, whilst
avoiding instabilities in early iterations. We should note here that
since the elements of m have very different magnitudes, depending
on which element of p they map onto, they are first scaled accord-
ing to the maximum expected perturbation of their respective AAM
parameter p before applying the update in Eq. (15). Finally, the per-
formance of SPSA depends on the choices made for the free variables
(�, �, a,�,�). A practical guide for choosing these variables is given in
[26].

By performing online estimation using SPSA, the noise in our
system is amplified: the noisy gradient approximation is made on
noisy cost evaluations Ct . As such, it is important to choose the SPSA
parameters such that the fluctuations due to noise do not overwhelm
the optimization process and cause instability. Estimation noise can
be further reduced by taking an average of a number of stochastic
gradient approximations [24]. In practice, optimization is run for a
number of iterations on different parameter settings, choosing the
one which induces the best efficiency per update, without making
the optimization unstable.

3.2. Spread minimized initialization

Although noise in the stochastic estimation helps the optimiza-
tion escape from local minima with shallow terrain, it may still ter-
minate in a poor local minimum. A good initialization for the update
models is, therefore, required to encourage good solutions to be ob-
tained by the optimization process. For this, consider first that we
utilize only linear models at every iteration. Therefore, the perfor-
mance of this method is limited by the estimation capacity of the
linear model in the final iteration. However, as all update models are
learnt simultaneously, all update models except the last one act as
sample redistributors such that the distribution of the samples around
their optimum in the last iteration can be well accounted for by the
final linear update model.

With this in mind, we cite the results by Cootes et al. [5], that
the relationship between the texture residuals and the parameter
updates is close to linear only within a small region around the
optimum of each AAM parameter. In fact, this relationship has been
shown to persist, though to a lesser extent, even for the simple
warped texture feature [27]. As such, we argue that a reasonable
initialization for the optimization in Section 3.1 is one that reduces
the spread of the samples about their optimum.

To this end, we propose performing a greedy learning process
for each iteration, in a sequential manner, each of which aims to
minimize the spread of samples about their respective optimum,
given the samples that have been updated by previous iterations.
We achieve this by learning a linear regressor for every parameter
independently, by minimizing the following cost function for each:

Cgreedy(g, b)=
1
d

d∑
j=1

Casy(Ij,pj,�pj;g, b)+
�
2
‖g‖2, (23)

where � is a regularization constant and

Casy(I,p,�p;g, b)= 1

�− (gT f + b−�p)2
. (24)

Please cite this article as: J. Saragih, R. Göcke, Learning AAM fitting through simulation. Pattern Recognition (2009), doi:10.1016/j.patcog.2009.04.014

http://dx.doi.org/10.1016/j.patcog.2009.04.014

ARTICLE IN PRESS
J. Saragih, R. Göcke / Pattern Recognition () -- 5

0

Pe
na

lty

Error

Quadratic

0 ε-ε

Pe
na

lty

Error

Asymptotic

 0 ε-ε

Pe
na

lty

Error

Constrained

Fig. 1. Quadratic, asymptotic and constrained penalizers. The asymptotic penalizer places more weight on samples far from the optimum compared to a quadratic penalizer.
Compared to the constrained penalizer, the asymptotic penalizer minimizes the spread of samples rather than their error margin only.

Here, f is as in Eq. (4) and

�=max(�p2j)+ �, j ∈ {1, . . . , k}, � ∈R+. (25)

Note that the full update model is composed of the regressor for
each parameter:

G= [gT1; . . . ;g
T
ns] and b= [b1; . . . ; bns], (26)

where ns is the total number of parameters.
Previously, we used a similar cost function as in Eq. (23) to train

nonlinear parameter update mappings in [11]. It asymptotically pe-
nalizes the distance of each sample from its optimum, placing more
emphasis on samples with large perturbations compared to, for ex-
ample, the quadratic loss (see Fig. 1). Furthermore, this asymptotic
penalizer is convex within the convex set:

{(g, b)| − √�<gT fj + b−�pj <
√

�; j= 1, . . . , d}, (27)

i.e. the intersection of d convex sets, each composed of the region
between two parallel hyperplanes. Due to the choice of � in Eq.
(25), the null model ((g, b) ← 0) lies within this convex region. As
such, starting with the null model and performing steepest descent
with a line search allows the globally optimum update model to be
found. Unlike the optimization problem discussed in Section 3.1, the
gradient of this cost function is easily computed: �Casy/�b = 	 and
�Casy/�g= 	f, where

	= 2r(�− r2)−2, r = gT f + b−�p. (28)

We previously proposed a similar greedy learning objective in [28]
using a constrained objective (see Fig. 1). However, that objective
does not penalize samples within the margin, which may lead to the
clustering of samples around the margin.

For optimization, we use the limited memory BFGS algorithm (L-
BFGS) [29], a variant of the quasi-Newton optimizer BFGS, which
avoids the cost of storing and updating the estimate of the cost
function's Hessian inverse. Given the L-BFGS step direction d, the
line search is performed by solving

�∗ =min
�

1
d

d∑
j=1

1

�− (�[fj 1]d+ gT f + b−�pj)
2 + �‖d‖2�

s.t. 0 ≤ � ≤min

(
±√�− gT fj − b+�pj

[fj 1]d

)
, j ∈ {1, . . . , d}, (29)

where the sign of
√

� is chosen to represent the asymptote in the
direction of the update. The training procedure is summarized in
Algorithm 2.

Algorithm 2. Greedy spread minimization.

Require: k and d
1: for i= 1 to k do
2: {Ij, s∗j ,pj}dj=1 {Sample training data}
3: for j= 1 to d do
4: fj = F(Ij,pj) {Get feature vector}
5: for l= 1 to i− 1 do
6: pj ← pj + Glfj + bl {Update parameters}
7: end for
8: fj = F(Ij,pj) {Get feature vector}
9: end for
10: Calculate {�1, . . . , �Np } {Eq. (25)}
11: (g, b)l ← 0 for l ∈ {1, . . . ,ns} {Initialize}
12: while !converged(Gi,bi) do
13: for l= 1 to ns do
14: Compute L-BFGS step dl {See [29]}
15: Perform line search to get �∗l {Eq. (29)}
16: (g, b)l ← [g; b]l + �∗l dl {Update model}
17: end for
18: end while
19: Assign update of i th iteration {Eq. (26)}
20: end for
21: return G1, . . . ,Gk and b1, . . . ,bk

4. Experiments

We conducted experiments on two publicly available face
databases: the IMM face database [30] and the XM2VTS database
[31]. The simulation learnt (SL) approach was compared against
the fixed Jacobian method [5], project-out inverse-compositional
method (POIC) [6], the efficient estimate of the simultaneous
inverse-compositional method (SIC) [9] and the nonlinear discrim-
inative (ND) method [11]. The performance of all methods was
compared on these two databases, evaluated using 4-fold cross-
validation, where each database was partitioned into four parts, in
such a way, that test images contain unseen subjects only.

4.1. Databases

The IMM face database consists of 240 images of 40 subjects, ex-
hibiting variations in pose, expression and lighting. Manual annota-
tions of 58-landmarks are supplied with the database. The XM2VTS
database consists of 2360 frontal images of 295 subjects with large
inter-subject variability, including glasses, facial hair and race. A 68-
landmark annotation of this database is publicly available from [32].
In both databases, we retained 95% of the intrinsic shape and tex-
ture variation. This gave an average of 19 modes of shape variation
and 99 texture modes for the IMM database. The models built for
the XM2VTS database exhibited on average 47 shape modes and 352
texture modes.

Please cite this article as: J. Saragih, R. Göcke, Learning AAM fitting through simulation. Pattern Recognition (2009), doi:10.1016/j.patcog.2009.04.014

http://dx.doi.org/10.1016/j.patcog.2009.04.014

6 J. Saragih, R. Göcke / Pattern Recognition () --

ARTICLE IN PRESS

4.2. Simulation training

To generate the training set in Eq. (6), the AAM was randomly
perturbed from its optimal parameter setting in each training image
within ±10◦ of rotation, ±0.1 global scaling, ±20 pixels translation
and ±1.5 standard deviations for the non-rigid shape parameters.

 0.0001

 0.001

 0.01

 0.1

 1

-20 -15 -10 -5 0 5 10 15 20

Pr
op

or
tio

n
of

 S
am

pl
es

Error on x-translation

Sample Redistribution in Greedy Training

initialisation
1st
3rd
7th

10th

Fig. 2. Redistribution of samples about the x-translation optimum in the greedy
training procedure on the IMM database. Legend denotes iteration.

 0 5 10 15 20

Pr
op

or
tio

n
of

 S
am

pl
es

Convergence point-to-point RMS Error

IMM Convergence Accuracy Histogram

Initial Distribution
FJ

POIC
SIC
ND
SL

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 2 4 6 8 10 12 14 16 18 20 22 24

A
ve

ra
ge

 C
on

ve
rg

ed
 p

t-t
o-

pt
 R

M
S

Er
ro

r

Initial point-to-point RMS Error

IMM Initialization vs Accuracy

FJ
POIC

SIC
ND
SL

Fig. 3. Convergence performance of the fixed Jacobian (FJ), project-out (POIC), simultaneous inverse compositional (SIC) and the iterative-discriminative methods (SL, ND)
on the IMM database. (a) Histograms of accuracy at convergence (percentage in legend is the convergence rate), (b) initial error vs. average convergence accuracy.

This distribution of samples was chosen to mimic the initialization
capacity of a generic detector. SL was trained for k = 10 iterations
using the normalized warped texture feature:

F(I;p)= N ◦ I ◦W ◦ S(p), (30)

where N normalizes the warped texture to a mean of zero and a
variance of one. The trained AAM drives only the shape parameters
during fitting.

4.2.1. Greedy training
For model initialization, we used d= 2000 samples in the proce-

dure outlined in Algorithm 2. Fig. 2 illustrates the redistribution of
samples throughout the greedy training process for the x-translation.
A similar trend can be observed for the other parameters. As de-
scribed in Section 3.2, the form of Eq. (23) places more emphasis on
samples exhibiting large error. This is reflected in the figure where
the spread of the samples about their optimum is reduced at each
iteration. Notice that the reduction of sample spread between the
7th and 10th iteration is marginal, suggesting that the capacity of
linear models has been exhausted, justifying the choice of k= 10.

4.2.2. Stochastic optimization
The stochastic optimization of all linear update models requires

an appropriate choice of mini-batch size and gradient estimates such
that the noise in the stochastic approximation does not make the
optimization unstable. Empirically, we found that a mini-batch size
of nb=50 and ng=2 gradient estimates gave a good balance between

Please cite this article as: J. Saragih, R. Göcke, Learning AAM fitting through simulation. Pattern Recognition (2009), doi:10.1016/j.patcog.2009.04.014

http://dx.doi.org/10.1016/j.patcog.2009.04.014

ARTICLE IN PRESS
J. Saragih, R. Göcke / Pattern Recognition () -- 7

 0 5 10 15 20

Pr
op

or
tio

n
of

 S
am

pl
es

Convergence point-to-point RMS Error

XM2VTS Convergence Accuracy Histogram

Initial Distribution
FJ

POIC
SIC
ND
SL

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16 18 20 22

A
ve

ra
ge

 C
on

ve
rg

ed
 p

t-t
o-

pt
 R

M
S

Er
ro

r

Initial point-to-point RMS Error

XM2VTS Initialization vs Accuracy

FJ
POIC

SIC
ND
SL

Fig. 4. Convergence performance of the fixed Jacobian (FJ), project-out (POIC), simultaneous inverse compositional (SIC) and the iterative-discriminative methods (SL, ND)
on the XM2VTS database. (a) Histograms of accuracy at convergence (percentage in legend is the convergence rate), (b) initial error vs. average convergence accuracy.

evaluation cost and convergence rate for models in both databases.
These values were the smallest for which the optimization remained
stable. The step and perturbation decay rateswere set to �=0.602 and
�=0.101, in accordance with suggestions in [26] (i.e. generic values
for SPSA that are not specific to our problem). The initial perturbation
size � was chosen such that the average shape perturbation due to
the update model perturbations was around one pixel, a good choice
for numerical differentiation on image based functions. The initial
step size was set to �=1.0−5 with the resulting model update in Eq.
(15) scaled according to the maximum magnitude of perturbation.

4.3. Fitting performance

To compare the five methods, the AAM parameters were ran-
domly perturbed from their optimal settings 100 times for each test
image in both databases for each of the four trials. The perturba-
tions were sampled as described in Section 4.2, with an additional
±0.1, ±20 and ±1.5 standard deviations for the global lighting gain,
lighting bias and the intrinsic texture parameters, respectively. FJ,
POIC and SIC were fitted using three levels of a Gaussian pyramid
to reduce their sensitivity to local minima. SL and ND were fitted
to the highest resolution image only, by virtue of their discrimina-
tive framework. For SIC, we implemented its efficient approximation
proposed in [9], where the Gauss–Newton Jacobian (and, hence, the
update models) are precomputed at qt = 0, since the large fitting
times for the full approach were impractical for the size the models
in our experiments.

Table 1
Summary of fitting time and convergence rate.

IMM XM2VTS

Time (ms) Rate (%) Time (ms) Rate (%)

Fixed Jacobian (FJ) [5] 326 85.7 1437 83.5
Project-out IC (POIC) [6] 193 19.5 454 1.46
Simultaneous IC (SIC) [9] 808 64.3 3189 20.4
Nonlinear discriminative
(ND) [11]

403 99.7 823 99.6

Simulation learnt (SL) 125 98.1 284 98.4

The convergence performance of all five methods are presented
in Figs. 3 and 4 for the IMM and XM2VTS databases, respectively. In
both figures, Plot (a) shows the final accuracy distribution of trials
that converged (i.e. a convergence accuracy plot). In Plot (b), the av-
erage convergence accuracies of the five methods are plotted against
their initial magnitude of perturbation. The convergence rates (i.e.
percentage of trails that converged) and average fitting times for
each method are presented in Table 1. In all fitting trials, we declare
convergence if the final point-to-point RMS error is smaller than
at initialization (i.e. the fitting procedure did not diverge). The re-
ported fitting times were obtained from running code, implemented
in C + +, on a 3GHz machine with 1GB of RAM, and does not in-
clude the time taken to build the Gaussian pyramids for FJ, POIC
and SIC.

Please cite this article as: J. Saragih, R. Göcke, Learning AAM fitting through simulation. Pattern Recognition (2009), doi:10.1016/j.patcog.2009.04.014

http://dx.doi.org/10.1016/j.patcog.2009.04.014

8 J. Saragih, R. Göcke / Pattern Recognition () --

ARTICLE IN PRESS

On both databases, the overall performance of SL is significantly
better than FJ, POIC and SIC, both in convergence rate and accuracy,
and comparable to ND. Out of the three generative methods tested,
FJ performed the best, achieving a smaller best error compared to
SL on the IMM database. However, the proportion of samples which
achieve this best error is relatively small. Overall, it exhibits a larger
proportion of samples at higher convergence errors above 6-pixels
RMS compared to SL. On the XM2VTS database, the superiority of SL
is even more pronounced. Furthermore, in both databases, the con-
vergence rate of SL is much higher than FJ, achieving a reduction in
shape RMS error in almost every trial. Compared to POIC and SIC,
again SL boasts a significant performance boost, both in convergence
accuracy and rate. This is especially evident in the XM2VTS database
where the models exhibit a large number of parameters. Although
the inapplicability of POIC for generic face fitting has been previously
discussed in [15], results here show that the efficient approximation
of SIC also performs poorly in this setting. We suspect the reason for
this is to do with the large number of parameters involved in the op-
timization, as SIC uses an independent appearance model, resulting
in a higher likelihood of getting trapped in local minima than FJ, for
example. Although a true SIC implementation may improve results,
the fitting times required by this method are impractical for the size
of the models used for generic face fitting. Even its efficient approxi-
mation, which uses a fixed update model, is impractically inefficient.
From initial experiments, we found that a full SIC implementation
can further increase the processing time by a factor of 10.

Examining Plot (b) of Figs. 3 and 4, the reason for the significant
performance improvement achieved by SL compared to the genera-
tive methods becomes apparent. The average convergence accuracy
of FJ, POIC and SIC deteriorates the further initialization is from the
optimum. This is due to their generative fitting regimes, which get
trapped in localminima, despite their application on a Gaussian pyra-
mid. In contrast, the deterioration of SL, which was trained discrim-
inatively on simulations of real fitting problems, is not as dramatic,
maintaining a good average convergence accuracy up to a capture
range of around 20 pixels RMS, which was the maximum translation
perturbation used in the training.

The performance of SL and ND in these experiments are compa-
rable. Although the final distribution of samples achieved by ND is
more compact it fails to achieve the same levels of accuracy as SL.
Despite using a more sophisticated discriminative mapping function,
its training regime is suboptimal. The boosting procedure over Haar-
like features is essentially a greedy training procedure. As such, the
model for each iteration significantly overfits the data, requiring the
next iteration to handle the poorly predicted samples.

Despite the significant discrepancy in performance between SL
and the generativemethods, this performance boost is attainedwith-
out sacrificing fitting efficiency. This is in contrast to other meth-
ods which either sacrifice accuracy for efficiency or vice versa. On
a per-iteration basis, SL is slightly faster than POIC, currently the
fastest method to date, since it uses the same update form and drives
the same number of parameters, but updates the parameters addi-
tively rather than in an inverse-compositional fashion. Comparisons
of overall fitting speeds depend on the initial perturbation magni-
tude as well as the error terrain between the initial parameter set-
tings and the optimum. Whereas SL fitting is performed for all the
iterations it was trained for, generative fitting procedures generally
have an early termination criterion, judged by some measure of pa-
rameter convergence. In our experiments, the number of iterations
to convergence for POIC is around 10 iterations per pyramid level,
whereas SL was trained on 10 iterations at the highest pyramid level
only. Furthermore, in practice, there is a computational overhead
of building the Gaussian pyramids, which increase the computation
time of POIC even further. In any case, the convergence rates of POIC
on the two generic face databases tested here is so poor, it negates

the computational advantage of thismethod for this problem. Finally,
SL is roughly three times more efficient than ND.

5. Conclusion

We have proposed a new approach to AAM fitting based on sim-
ulations of real fitting conditions. This approach boasts significant
improvements over the fixed Jacobian, project-out and an efficient
approximation of the simultaneous inverse-compositional methods
in both convergence accuracy and rate. Furthermore, these improve-
ments are afforded without sacrificing computational efficiency.
Also, the method affords excellent generalizability, as evidenced by
its high convergence rates.

Another advantage of this formulation is that the fitting proce-
dure can be customized to the detector used for initialization. By
building a set of training perturbations which adhere to a prior de-
fined by the detector, better fitting performance may be achieved as
the distribution of samples, and hence feature vectors, are more con-
strained than the uniform random perturbations used in this work.

Finally, it should be noted that the experiments in this work
involve a 4-fold cross-validation procedure, separately over each
of the databases. Although the results suggest that the proposed
approach generalizes well over the types of variations within the
training database, little can be said about its generalization be-
tween databases. However, such an evaluation is rarely reported in
the literature due to the lack of sufficient consistent annotations
(i.e. publicly available annotations for different databases are rarely
in correspondence). From initial qualitative experiments we found
that the performance of all methods evaluated in this work deteri-
orate significantly when fitting to images from a separate database.
This is because the method is required to extrapolate the types of
variations exhibited in the training database to those in the testing
database. In order to evaluate the generalization of the proposed
approach for the case of database invariant fitting, further consis-
tent annotations must be collected. Investigations into this aspect
will be the subject of future work.

References

[1] G. Edwards, C. Taylor, T. Cootes, Interpreting face images using active
appearance models, in: Proceedings of the Third IEEE International Conference
on Automatic Face and Gesture Recognition (FG'98), IEEE, Nara, Japan, 1998,
pp. 300–305, doi:10.1109/AFGR.1998.670965.

[2] T. Lehn-SchiBler, L. Hansen, J. Larsen, Mapping from speech to images using
continuous state space models, in: Proceedings of the First International
Workshop on Machine Learning for Multimodal Interaction (MLMI 2004),
Lecture Notes in Computer Science, vol. 3361, Springer, Martigny, Switzerland,
2004, pp. 136–145.

[3] M. Stegmann, H. Larsson, Fast registration of cardiac perfusion MRI, in:
International Society of Magnetic Resonance in Medicine, Toronto, Canada,
2003, p. 702.

[4] P. Mittrapiyanuruk, G. DeSouza, A. Kak, Accurate 3D tracking of rigid objects
with occlusion using active appearance models, in: Proceedings of the IEEE
Workshop on Motion and Video Computing (WACV/MOTION 2005), vol. 2,
Breckenridge, CO, USA, 2005, pp. 90–95, doi:10.1109/ACVMOT.2005.15.

[5] T. Cootes, G. Edwards, C. Taylor, H. Burkhardt, B. Neuman, Active appearance
models, in: Proceedings of the European Conference on Computer Vision
(ECCV'98), Lecture Notes in Computer Science, vols. 2, 1406, Springer, Freiburg,
Germany, 1998, pp. 484–498.

[6] I. Matthews, S. Baker, Active appearance models revisited, International Journal
of Computer Vision 60 (2) (2004) 135–164.

[7] R. Donner, M. Reiter, G. Langs, P. Peloschek, H. Bischof, Fast active appearance
model search using canonical correlation analysis, IEEE Transactions on Pattern
Analysis and Machine Intelligence 28 (10) (2006) 1690–1694.

[8] X. Hou, S. Li, H. Zhang, Q. Cheng, Direct appearance models, in: Proceedings
of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2001), vol. 1, Kauai, HI, USA, 2001, pp. 828–833,
doi:10.1109/CVPR.2001.990568.

[9] S. Baker, R. Gross, I. Matthews, Lucas-Kanade 20 years on: a unifying framework:
Part 3, Technical Report, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, USA, 2003.

[10] A. Batur, M. Hayes, Adaptive active appearance models, Transactions on Image
Processing 14 (11) (2005) 1707–1721.

Please cite this article as: J. Saragih, R. Göcke, Learning AAM fitting through simulation. Pattern Recognition (2009), doi:10.1016/j.patcog.2009.04.014

http://dx.doi.org/10.1016/j.patcog.2009.04.014

ARTICLE IN PRESS
J. Saragih, R. Göcke / Pattern Recognition () -- 9

[11] J. Saragih, R. Goecke, A nonlinear discriminative approach to AAM fitting, in:
Proceedings of the IEEE 11th International Conference on Computer Vision
(ICCV 2007), Rio de Janeiro, Brazil, 2007, doi:10.1109/ICCV.2007.4409106.

[12] S. Zhou, D. Comaniciu, Shape regression machine, in: Proceedings of the 20th
International Conference on Information Processing in Medical Imaging (IPMI
2007), Lecture Notes in Computer Science, vol. 4584, Springer, Kerkrade, The
Netherlands, 2007, pp. 13–25.

[13] B. Theobald, I. Matthews, S. Baker, Evaluating error functions for robust active
appearance models, in: Proceedings of the 7th International Conference on
Automatic Face and Gesture Recognition (FG'06), Southampton, UK, 2006, pp.
149–154, doi:10.1109/FGR.2006.38.

[14] S. Baker, I. Matthews, Equivalence and efficiency of image alignment algorithms,
in: Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2001), vol. 1, Kauai, HI, USA, 2001,
pp. 1090–1097, doi:10.1109/CVPR.2001.990652.

[15] R. Gross, I. Matthews, S. Baker, Generic vs. person specific active appearance
models, Image and Vision Computing 23 (12) (2005) 1080–1093.

[16] X. Liu, Generic face alignment using boosted appearance model, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR
2007), Minneapolis, MN, USA, 2007, doi:10.1109/CVPR.2007.383265.

[17] M. Nguyen, F. De la Torre Frade, Local minima free parameterized appearance
models, in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2008), 2008, doi:10.1109/CVPR.2008.4587524.

[18] O. Williams, A. Blake, R. Cipolla, A sparse probabilistic learning algorithm for
real-time tracking, in: Proceedings of the IEEE Ninth International Conference
on Computer Vision (ICCV 2003), vol. 1, Beijing, China, 2003, pp. 353–360.

[19] S. Avidan, Support vector tracking, IEEE Transactions on Pattern Analysis and
Machine Intelligence 26 (2004) 1064–1072.

[20] K. Zimmermann, Fast learnable methods for object tracking, Ph.D. Thesis, Czech
Technical University, 2008.

[21] D. Wilson, T. Martinez, The general inefficiency of batch training for gradient
descent learning, Neural Networks 16 (10) (2003) 1429–1451.

[22] L. Bottou, Stochastic learning, in: Advanced Lectures on Machine Learning,
Lecture Notes in Artificial Intelligence, vol. 3176, Springer, Berlin, 2004, pp.
146–168.

[23] J. Kivinen, A. Smola, R. Williamson, Online learning with kernels, in: Advances in
Neural Information Processing Systems 14 (NIPS 2001), MIT Press, Vancouver,
Canada, 2002, pp. 785–793.

[24] J. Spall, Stochastic optimization: stochastic approximation and simulated
annealing, in: J. Webster (Ed.), Encyclopedia of Electrical and Electronics
Engineering, vol. 20, Wiley, New York, USA, 1998, pp. 529–542.

[25] J. Spall, Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation, IEEE Transactions on Automatic Control
37 (3) (1992) 332–341.

[26] J. Spall, Implementation of the simultaneous perturbation algorithm for
stochastic optimization, IEEE Transactions on Aerospace and Electronic Systems
34 (3) (1998) 817–823.

[27] T. Cootes, G. Edwards, C. Taylor, A comparative evaluation of active appearance
model algorithms, in: Proceedings of the British Machine Vision Conference
(BMVC'98), Southampton, UK, 1998, pp. 680–689.

[28] J. Saragih, R. Goecke, Iterative error bound minimisation for AAM alignment, in:
Proceedings of the 18th International Conference on Pattern Recognition (ICPR
2006), vol. 2, Hong Kong, 2006, pp. 1192–1195, doi:10.1109/ICPR.2006.730.

[29] D. Liu, J. Nocedal, On the limited memory BFGS method for large scale
optimization, Mathematical Programming 45 (1–3) (1989) 503–528.

[30] M. NordstrBm, M. Larsen, J. Sierakowski, M. Stegmann, The IMM face
database—an annotated dataset of 240 face images, Technical Report,
Informatics and Mathematical Modelling, Technical University of Denmark, May
2004.

[31] K. Messer, J. Matas, J. Kittler, J. Lüttin, G. Maitre, XM2VTSDB: the extended
M2VTS database, in: Proceedings of the Second International Conference
on Audio- and Video-Based Biometric Person Authentication (AVBPA'99),
Washington, DC, USA, 1999, pp. 72–77.

[32] 〈http://www.isbe.man.ac.uk/∼bim/data/xm2vts/xm2vts_markup.html〉.

About the Author—JASON SARAGIH is a Post-doctoral Research Fellow at the Robotics Institute, Carnegie Mellon University. He received both his undergraduate degree in
Systems Engineering and his PhD in Computer Science from the Australian National University, Canberra, Australia, in 2004 and 2008, respectively. His research interests
are in pattern recognition, computer vision and human–computer interaction.

About the Author—ROLAND GOECKE is a Research Fellow at the Human–Computer Communication Laboratory, Faculty of Information Sciences and Engineering, University
of Canberra, and an Adjunct Research Fellow at the Research School of Information Sciences and Engineering, Australian National University, Canberra. He received his
Masters degree in Computer Science from the University of Rostock, Germany, in 1998 and his PhD in Computer Science from the Australian National University, Canberra,
Australia, in 2004. His research interests are in signal processing, pattern recognition, computer vision, human–computer interaction and affective computing.

Please cite this article as: J. Saragih, R. Göcke, Learning AAM fitting through simulation. Pattern Recognition (2009), doi:10.1016/j.patcog.2009.04.014

http://www.isbe.man.ac.uk/bim/data/xm2vts/xm2vts_markup.html
http://dx.doi.org/10.1016/j.patcog.2009.04.014

	Learning AAM fitting through simulation
	Introduction
	Background
	Generative fitting
	Discriminative fitting

	Learning the mappings through simulation
	Stochastic gradient descent
	Spread minimized initialization

	Experiments
	Databases
	Simulation training
	Greedy training
	Stochastic optimization

	Fitting performance

	Conclusion
	References

