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Abstract

The Active Appearance Model (AAM) is a powerful gen-
erative method for modeling and registering deformable vi-
sual objects. Most methods for AAM fitting utilize a linear
parameter update model in an iterative framework. De-
spite its popularity, the scope of this approach is severely
restricted, both in fitting accuracy and capture range, due
to the simplicity of the linear update models used. In this
paper, we present an new AAM fitting formulation, which
utilizes a nonlinear update model. To motivate our ap-
proach, we compare its performance against two popular
fitting methods on two publicly available face databases, in
which this formulation boasts significant performance im-
provements.

1. Introduction

Since its advent by Edwardset al. [7], the Active Ap-
pearance Model (AAM) has been widely used to match de-
formable visual objects to images, with applications ranging
from medical image analysis [21] to industrial vision prob-
lems [16]. The power of this generative model stems from
a coupling of compact the representation of appearance,
through the use of principle component analysis (PCA) on
a set of labeled data, with a rapid fitting procedure.

Compared to other parametric models of deformable vi-
sual objects, the AAM is unique in its fitting regime. Here,
the relationship between the generative texture error and the
parameter updates around the optimum has been shown to
be closeto linear for simple visual objects, which exhibit
small intrinsic shape and texture variations. In initial publi-
cations [5, 7], this was justified by arguing that since the er-
ror image is evaluated in the pose normalized frame, the er-
ror function around the true minimum is close to quadratic,
allowing an iterative scheme of fixed linear updates with
adaptive step sizes to converge.

From these initial publications, research into AAM fit-
ting has diverged into two camps: discriminative and gen-
erative. To date, most research on discriminative meth-

ods, for example [6, 10, 11, 20], have retained the linear-
ity assumption, focussing mainly on feature representations
which adhere better to this assumption. Work on generative
methods, for example [2, 4, 14], has focused on reformula-
tions of the analytic optimization problem of AAM fitting
to achieve more flexible and efficient linear update models.
Some work has also been performed on image filtering, for
example [12], tosmooththe cost function, allowing the fit-
ting process to better avoid local minima.

Although the use of nonlinear update models for para-
metric model fitting has been demonstrated in a number of
recent publications, for example [1, 22, 24], there have been
no implementations for AAM fitting as of yet. Perhaps the
main reason for this is the storage requirements and evalu-
ation cost of nonlinear functions. For example, the method
in [24], which uses the relevance vector machine regressor,
affords fast evaluation using raw image pixels since it uses
a small image patch and fits only the affine parameters. The
methods in [1] and [22] afford efficient evaluation due to
their compact feature representation, the shape context de-
scriptors, which are useful mainly for silhouette objects,and
hence, not applicable to AAMs.

In this paper, we propose a formulation which allows a
nonlinear update model to be implemented efficiently with
the AAM. As the nonlinear function class, we use a boosted
ensemble of multimodal Haar-like decision stumps, which
allow efficient online evaluation using the integral image.
To avoid overlearning, we embed the boosting procedure
into an iterative framework with an intermediate resampling
step. This process affords well regularized update models
by limiting the ensemble size and indirectly increasing the
sample size. In Section 2, we give a brief overview of the
AAM’s parameterization. A review of the state of the art
in AAM fitting is then presented in Section 3, covering the
discriminative and generative approaches. In Section 4, we
present our nonlinear discriminative method for AAM fit-
ting. To motivate our method, we compare its performance
against two popular AAM fitting approaches on two pub-
licly available databases in Section 5. We conclude in Sec-
tion 6 with additional remarks and directions of future work.
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2. Active Appearance Models

The AAM simultaneously models the intrinsic variation
in shape and texture of a deformable visual objects as linear
combination of basis modes of variation. The reason for this
choice is the observation that intrinsic variations in shape
and texture of many deformable visual objects follow that
of a degenerate Gaussian distribution. As such the modes
of variation can be easily calculated by applying PCA to
a normalized training set. The result is a compact model,
capable of generating large variations in shape and texture
with a relatively small parameter set.

The shape of an AAM consists of a set ofn 2D land-
marks, generated as follows:

Sl(ps) = s̄ + Bsps, (1)

where s̄ is the mean shape vector,Bs is the shape basis
matrix with Ms columns obtained by applying PCA to a
set of registered training shapes andps are the non-rigid
shape parameters. To account for global shape variations,
the AAM composes this non-rigid shape model with a sim-
ilarity transform as follows:

S (p) = Sg(a, b, tx, ty) ◦Sl(ps)

=

(

I⊗

[

a + 1 −b

b a + 1

])

Sl(ps) + 1⊗

[

tx
ty

]

,

where p is a concatenation of all the parameters,
(a, b, tx, ty) are similarity transform parameters,I is the
(n × n) identity matrix and1 is an-length vector of ones.
Here,⊗ is the Kronecker (tiling) product and◦ is the func-
tion composition operator.

The texture of an AAM is defined within the so called
“shape free” frame. It consists ofN pixels, usually chosen
to lie within the convex hull of the mean shapes̄. As with
the shape model, the texture is also generated using a linear
combination of basis variation vectors:

Tl(pt) = t̄ + Btpt, (2)

wheret̄ is the vectorized mean image,Bt is the texture ba-
sis matrix withMt columns obtained by applying PCA to a
set of images, warped to the shape free frame and normal-
ized, andpt are the local texture parameters. To generate
the texture in the image frame, the linear model is usually
composed with a linear lighting function as follows:

T (p) = Tg(α, β) ◦Tl(pt) = αTl(pt) + β, (3)

wherep is a concatenation of all the parameters and(α, β)
are the global lighting gain and bias parameters.

It is also common to take into account the correlation be-
tween shape and texture by applying a second level of PCA
on the concatenatedps andpt parameters. This procedure
usually yields a more compact representation. The inter-
ested reader is referred to [7] for details.

3. Review of AAM Fitting

AAM fitting is the process of finding the model param-
etersp = [α, β, a, b, tx, ty,ps,pt] which best fit a given
imageI . This is usually an iterative process which se-
quentially updates the model parametersp through an up-
date function:

∆p = U (p) ◦F (I ;p). (4)

Here,U is a vector valued update function, with optional
dependence on the current parameters, and∆p are the up-
dates to be applied to the current parameters, for example in
an additive fashion:

p← p + ∆p. (5)

F is a feature extraction function which represents the im-
ageI from the perspective of the AAM at parameter set-
tingsp. A good coupling betweenU andF is required to
ensure good predictions of the updates.

There are two general approaches to AAM fitting: dis-
criminative and generative. In the following, we will briefly
discuss each in turn.

3.1. Discriminative Fitting

Discriminative methods directly learn a fixed relation-
ship between the featuresF (I ;p) and the parameter up-
dates∆p, given a training set of perturbed model parame-
ters:

{F (I ;p∗ −∆p) , ∆p}
Nd

i , (6)

wherep∗ is the optimal parameter setting for theith sample
andNd is the total number of perturbations in the training
set. The advantage of this approach is that ifU belongs to
a simple function class, then the computation of the updates
can be done efficiently, sinceU is fixed. Its main drawback
is that the functional form ofU and F that supports it,
must be chosen heuristically.

The original AAM [7] was formulated based on the ob-
servation that, for some visual objects, the relationship be-
tween the residual texture:

F (I ;p) = T (p)−I ◦W (p) (7)

and the parameter updates∆p, whereW is a warping func-
tion, iscloseto linear around the optimal parameter settings
of a given image. As such,U can be easily found through
linear regression on the data set in Equation (6). Since this
linear relationship holds only loosely, fitting here is an iter-
ative process which incorporates adaptive step size scaling:

p← p + η ∆p (8)

where η is progressively halved until a reduction in
‖F (I ;p)‖2 is attained.



From this basic approach, there have been a number of
methods which boast improvements through a more suitable
choice ofF . The direct appearance model method [10],
for example, performs PCA on the residual vectors and per-
forms linear regression between the principle components
of the residual vector and the pose parameters. The method
in [6] learns a linear regression between the canonical pro-
jections of the texture residuals and parameter updates. The
method utilizes canonical correlation analysis to find the
subspaces which best adheres to a linear regression. These
methods have been shown to exhibit faster convergence and
better accuracy compared to the original formulation in [7].

3.2. Generative Fitting

Generative methods pose fitting as minimizing some
measure of error between the model’s texture and the
warped image. Essentially a nonlinear optimization prob-
lem, this approach affords the utilization of general purpose
function optimizers, the convergence properties of which,
are well understood. The most common measure of error
utilized in AAM fitting is the least squares fit (or a robust
variation thereof):

∑

x∈Ω

[T (x;p)−I ◦W (x;p)]
2
, (9)

whereΩ is the domain over which the AAM’s texture is de-
fined. As such, the Gauss-Newton method, which results in
a linear update model, has become the optimizer of choice
for generative AAM fitting. However, a straight forward im-
plementation is computationally expensive. As such, most
generative approaches to AAM fitting either assume some
parts of the method are fixed or reformulate the problem
such that they are.

The original generative approach in [5], assumes that the
Jacobian of Equation (9), is fixed. This allowed a fixed
linear update model to be pre-computed through a pseudo-
inverse of the fixed Jacobian. More recently, in a method
coined adaptive AAM [4], the fixed Jacobian assumption
is relaxed by decomposing the Jacobian and assuming only
the component pertaining to the derivative of the warping
function is fixed. The resulting method exhibited improved
accuracy, however, as the linear update model depends on
the current texture parameters, the fitting procedure is com-
putationally expensive.

Another direction of the generative approach, which has
gained much attention recently, is the adaptation of the
inverse-compositional image alignment [3] to AAM fitting
problems. By reversing the roles of the image and the model
in the error function, the derivative of the warping function
is fixed, resulting in significant computational savings. The
project-out method [14], for example, minimizes the cost
in a subspace orthogonal to the modes of texture variation,
resulting in an analytically fixed linear update model over

the shape parameters exclusively. Despite being the fastest
method to date, it works well only for objects exhibiting
small amounts of variation [9]. This problem is overcome
by the simultaneous method [2], which solves for the shape
and texture parameters simultaneously. However, similar to
the method in [4], its update model depends on the current
texture parameters, again resulting in a computationally ex-
pensive fitting procedure

4. Nonlinear Discriminative Updates

Current methods for AAM fitting, which utilize linear
update models, require adaptive models to achieve high fi-
delity but prefer fixed models for efficiency reasons. In this
section, we propose a nonlinear method where the trade-off
between fidelity and efficiency can be better managed. Our
method takes inspiration from the work in [25], but departs
from it significantly in some parts, including the fitting pro-
cedure, formulation of the objective function and the type
of learners used. The main components of this method are
the iterative embedding, which encourages good generaliza-
tion, and the use of multimodal weak learners, which afford
efficient evaluation whilst maintaining good functional ca-
pacity.

4.1. Iterative Discriminative Learning

The aim of discriminative learning, here, is to find a
nonlinear regressor from feature to parameter update space,
given the training set in Equation (6). We propose learn-
ing the multivariate regressor through a boosting procedure,
where the update function for thekth parameter takes the
following form:

U
k(f) =

Nf
∑

t=1

αk
t L

k
t (f) ; L

k
t ∈ L, (10)

where

f = F (I ;p) = N ◦I ◦W (p) (11)

is our feature vector of raw pixel values (normalized byN

to mean zero and a variance of one) andL k
t is a weak non-

linear learner, a number of which can combine to form a
strong ensembleU k. Here,L is adictionaryof weak learn-
ers, the details of which will be discussed in Section 4.2.
Starting with an empty ensemble, we add one weak learner
at a time

U
k

t+1 = U
k

t + αk
t L

k
t , (12)

choosing(αk
t , L k

t ) to maximally decrease the objective
function for each addition. The final update model is a con-
catenation of the updates for every parameter:

∆p = U ◦F (I ;p) =
[

U
1(f); . . . ; U Np(f)

]

, (13)



whereNp is the total number of parameters. In this work,
since we are using the raw pixel feature in Equation (11), we
estimate only the shape parametersp = [a, b, tx, ty,ps].

One of the main difficulties in boosting for regression is
the tendency to overlearn the data. To overcome this prob-
lem we employ two measures. First, we perform shrinkage
on the ensemble [8]. This common regularizing method in-
volves shrinking the optimalα for the newly selectedL
by a factorη ∈ [0, 1] before adding it to the ensemble.
For the second measure, we note that overlearning in boost-
ing for regression is related to the number of weak learners
used [8]. Therefore, if we can reduce the total number of
weak learners we can guard against overlearning. One of
the peculiarities of AAM fitting compared to general image
based regression methods is that the function defining the
true regression becomesimplerthe less spread the distribu-
tion of samples is about the optimum. This is because vari-
ations in pixel values becomes more constrained. Simpler
functions generally require fewer weak learners to describe
it.

Therefore, we propose embedding the boosting proce-
dure into an iterative framework, where at each iteration,
the boosting procedure needs only learn a function which
can reduce the spread of the samples about the optimum.
A similar training paradigm on the linear update model has
been applied sucessfully in [19]. To this end, for theT th

learner to be added to an ensemble at a given iteration, we
minimize the following objective for each AAM parameter:

C (αT , LT ) =

Nd
∑

i=1

1

ǫ− |∆pi −
∑T

t=1 αtLt(fi)|
, (14)

subject toαT ∈ [a, b] andLT ∈ L, where the parameter
indexk has been dropped for clarity. Here,

a = max

(

|∆p̂i| − ǫ

LT (fi)

)

, b = min

(

|∆p̂i|+ ǫ

LT (fi)

)

(15)

and
ǫ = max |∆pi|+ δ, (16)

whereδ is a small positive constant and

∆p̂i = ∆pi −

T−1
∑

t=1

αtLt(fi). (17)

is the current residual target updates afterT − 1 learners
have been added to the ensemble. This objective asymptot-
ically penalizes the distance of each sample from the opti-
mum, placing more emphasis on samples with large pertur-
bations compared to, for example, the quadratic loss (see
Figure 1). As each entry in the sum is convex, the objective
of each round of boosting is also convex. Therefore, for a
given LT (f), the optimalαT can be found through a 1D
line search betweena andb.

ε0

P
en

al
ty

Absolute Target residual

Boosting Cost Function

Quadratic Penalizer
Asymptotic Penalizer

Figure 1. Cost function for every element in the sum of Equa-
tion (14). The asymptotic penalizer reduces spread by penalizing
large residuals more severely.

After the capacity ofL on the current iteration is ex-
hausted or a fixed number of learners have been chosen,
we resample a new set of perturbations, propagate them
through previously learnt iterations and train the currentit-
erations using this data. This resampling process further
regularizes the solution as new iterations also correct pre-
dictions on samples which were poorly learnt previously
due to overlearning. The complete training algorithm is out-
lined in Algorithm 1. Note that steps 10 to 20 apply to each
AAM parameter independently.

Algorithm 1 Iterative Discriminative Training Algorithm
Require: Ni, Nd, Ns andNf

1: for i = 1 to Ni do
2: {∆p}Nd

j=1 {sample perturbations}
3: for l = 1 to i− 1 do
4: for j = 1 to Nd do
5: fj = N ◦Ij ◦W (p∗

j −∆pj) {get feature}
6: ∆pj ← ∆pj −Ul(fj) {propagate samples}
7: end for
8: end for
9: Ui = 0 {initialize ensemble ofith iteration}

10: for t = 1 to Nf do
11: α∗ = 0 andL ∗ = 0
12: for s = 1 to Ns do
13: Sample(α, L ) {see Algorithm 2}
14: if C (α, L ) < C (α∗, L ∗) then
15: (α∗, L ∗)← (α, L )
16: end if
17: end for
18: Ui ← Ui + α∗L ∗ {Updateith ensemble}
19: end for
20: end for
21: return U1, . . . , UNi

4.2. Weak Function Set

There are two requirements of the weak function setL in
our method. Firstly, their evaluation must be computation-
ally cheap, such that efficient fitting can be achieved with



a reasonably sized ensemble. Secondly, they must be suf-
ficiently rich, such that complex regression functions can
be accurately estimated by a linear combination of them.
The Haar-like feature setH, popularized by Viola and Jones
in [23], act as a good basis for our weak function set as they
fulfill both of the required criteria: efficient evaluation us-
ing the integral image and a capacity for complex represen-
tations through their similarity to Haar wavelets. In fact,
in this work we utilize the extended Haar-like features [13]
which include diagonal features, useful for approximating
rotations.

A common choice ofL which utilizes these features is
the one-dimensional decision stump:

L (f) =

{

+1 if sH (f) ≥ sθ

−1 otherwise
, (18)

where H is a Haar-like filtering function,θ is a deci-
sion threshold ands ∈ {1,−1} is a parity direction in-
dicator. Although this weak function has been utilized in
many works, for example [13, 23, 25], it has some ma-
jor drawbacks. Firstly, most functions in this set are non-
discriminative in the sense that, for a givenH , the best
choice ofs andθ will still result in a poorL . Secondly,
for those which are discriminative, the optimal choice ofs

andθ must be found through trial and error, an expensive
process. This is especially potent in our case where the size
of H is extremely large due to the size of the image region
to be analyzed, which is around 5 to 10 times that of the
images used in [23] and [25].

Rather than using the weak function set described above,
we follow the response binning approach in [18], which
maximizes the utility of weak learners derived from the
Haar-like features. In their method, the weak learners of a
classification problem, take the form of the relative inequal-
ity between histograms of the positive and negative exam-
ples:

L (f) =

{

+1 if H+(H (f)) > H−(H (f))

−1 otherwise
(19)

whereH+ andH− are 1D histograms of the distribution of
the feature evaluations on the positive and negative exam-
ples respectively. This method affords a multimodal deci-
sion surface whilst maintaining efficiency as it requires only
a table lookup for its evaluation.

To adapt this approach to the regression case, a few mod-
ifications need to be made. The objective function we want
to minimize in Equation (14) aims to reduce the spread of
the training data about the optimum. Therefore, in formu-
latingL , preference should be made on reducing the error
over samples with large, compared to small, error. To this
end, we defineH+/− as the histogram of weighted samples

with positive/negative target values:

H+(v) =
∑

H (fi)=v

1

ǫ−∆p̂i
; ∆p̂i > 0 (20)

H−(v) =
∑

H (fi)=v

1

ǫ + ∆p̂i
; ∆p̂i < 0, (21)

where∆p̂i is given in Equation (17). The idea here to build
L , such that the functional direction is in that which re-
duces the error over the most difficult samples in each bin,
with the aim of reducing sample spread.

The only parameter which needs adjusting for this weak
function set is the number of bins in the histogramsnb. Too
many bins may cause overlearning in sparsely sampled bins,
but too few bins may not capture enough of the nonlinearity
of the target function, limiting the capacity of these learn-
ers. In our work, we fixnb to an empirically good value and
avoid overlearning by settingL at sparsely sampled bins
to zero (i.e. avoid making decisions which are not well sup-
ported by the training data). A summary of the generation
of our weak learner is given in Algorithm 2.

Algorithm 2 Weak Learner Sampling Algorithm

Require: {f , ∆p}Nd

j=1,H andnb

1: Calculate weight of each sample:(ǫ− |∆pi|)
−1

2: Sample a Haar-like featureH ∈ H {see [13]}
3: Build H+ andH− histograms{Eqn. (20) & (21)}
4: Compute weak learnerL {Eqn. (19)}
5: Find optimalα through 1D line search{Eqn. (14)}
6: return (α, L )

4.3. Nonlinear AAM Fitting

With a model trained according to Algorithm 1, the non-
linear fitting of an AAM follows the following procedure
outlined in Algorithm 3. Notice that no checks need to be
made regarding the reduction of texture error or the magni-
tude of parameter updates. The fitting is simply performed
for all iterations for which the model is trained for with no
early termination.

Algorithm 3 Nonlinear Discriminative AAM Fitting

Require: I , {U1, . . . , UNi
} andp

1: for i = 1 to Ni do
2: Get feature vectorf {Eqn. (11)}
3: Calculate integral images fromf {see [13]}
4: Calculate parameter updates usingUi {Eqn. (13)}
5: Update parameters{Eqn. (5)}
6: end for
7: return p
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Figure 2. Distribution of the training samples of the IMM database throughout the training process on the x-translation. (a). Redistribution
of samples about the optimum as weak learners are added to theensemble of the first iteration. Legend denotes the number ofweak learners
in the ensemble. (b). The effect of resampling between iterations. Legend denotes (iteration)/(number of weak learners in ensemble of that
iteration).

5. Experiments

To motivate the nonlinear update method, we compared
its performance against two common methods for AAM
fitting: the fixed Jacobian method [5] and the project-out
inverse compositional method [14]. The fixed Jacobian
method is generally considered a good baseline indicator
for evaluating new fitting methods. The project-out method
is currently the fastest method for AAM fitting, which
we utilize to demonstrate the computational efficiency of
our approach. The comparisons with these two methods
were performed on two separate databases: the IMM Face
database [17] and the XM2VTS database [15].

5.1. Databases

The IMM face database consists of 240 images of 40
individuals, exhibiting variations in pose, expression and
lighting. We used 30 randomly selected subjects for train-
ing, leaving the rest for testing. Using the supplied 58-point
markup, we built an appearance model of 28074 pixels, re-
taining 95% of shape and texture variation and 98% of com-
bined appearance variation. The resulting model consisted
of 19, 94 and 72 modes of shape, texture and combined ap-
pearance variation, respectively.

The XM2VTS database consists of 2360 frontal images
of 295 subjects with large inter-subject variability. Halfof
the subjects were used for training and the others for test-
ing. Using a publicly available 68-point markup1, we built
an appearance model of 46677 pixels, retaining the same

1http://www.isbe.man.ac.uk/∼bim/data/xm2vts/
xm2vts markup.html

amount of variation as in the IMM database. The resulting
model consisted of 45, 328 and 262 modes of shape, texture
and combined appearance variation, respectively.

5.2. Results

For the nonlinear method proposed in Section 4, we set
Ni, Nf , Nd andNs to be 10, 100, 2000 and 200 respec-
tively (see Algorithm 1), chosen as a good trade-off between
training time and model quality. For the weak learners we
used 32 bin histograms with a threshold of 10 samples/bin.
We used a shrinkage factor ofη = 0.5 which we found to
sufficiently regularize the solution.

Figure 2 shows the distribution of the IMM training sam-
ples at different stages of the training process. Plot (a) illus-
trates the capacity of the weak function set, described in
Section 4.2, to significantly reduce the spread of the train-
ing samples despite the relative small value ofNs, which
amounts to a very sparse sampling ofH. From Figure 2(b),
it is clear that with the modest training set size used, the
boosting process by itself significantly overlearns the data,
as shown by thespreading-outof the resampled data in the
next iteration. However, this artifact of the boosting process
is more than compensated for in the next iteration, where
the final distribution is even less spread than its predeces-
sor. The other AAM parameters exhibit a similar trend.

To compare the nonlinear method against the fixed Ja-
cobian and project-out methods, we randomly perturbed all
AAM parameters from their optimal settings 100 times for
every test image in both databases. The perturbations were
taken randomly within±10◦,±0.1,±20 pixels,±0.1,±20
and±1.5 standard deviations for the rotation, scale, transla-
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Figure 3. Convergence performance of the fixed Jacobian, project-out and nonlinear methods on the IMM and XM2VTS databases. Plots
(a) and (c) : histograms of accuracy at convergence (percentage in legend is the convergence frequency). Plots (b) and (d) : initial error vs.
average convergence accuracy.

tion, lighting gain, lighting bias and combined appearance
parameters respectively. The fixed Jacobian and project-out
methods were fitted using 3 levels of a Gaussian pyramid
to avoid local minima, but the nonlinear method was fitted
to the highest resolution image only, using the procedure in
Algorithm 3.

Figure 3 shows the convergence performance of the three
tested methods on both databases. Plots (a) and (c) show the
accuracy at convergence of the different methods with their
convergence frequencies given in the legends. Here, we de-
clare convergence if the final point-to-point RMS error is
smaller than at initialization. On both databases, the non-
linear method significantly outperforms the other methods,
both in convergence accuracy and frequency. The project-
out method does exhibit larger proportions of its converged
samples at the lower end of the error range in the IMM

database, but it also exhibits significant proportions at the
larger error range. Furthermore, as the convergence rate of
this method is extremely low, especially on the XM2VTS
database, the small number of samples with good conver-
gence can be attributed to images of subjects which are
close to the mean texture, one of the conditions under which
the project-out method works well.

Despite the large discrepancy in performance between
the project-out and nonlinear methods, the computational
complexity of both methods are similar, 376 ms for the
project-out and 403 ms for the nonlinear method on a
1.8GHz machine2. With optimized code, we see no reason
why the nonlinear method cannot achieve frame rate speeds
(the project-out implementation in [14] is claimed to run at

2Reported processing times do not include the computation ofthe
Gaussian pyramid for the project-out method.



230 frames/sec for a person specific AAM).
Apart from the fitting efficiency, perhaps one of the main

strengths of the nonlinear method is illustrated through the
results in Figure 3(b) and (d). Here, the average conver-
gence accuracy is plotted against the point-to-point errorat
initialization. Whereas the average convergence accuracy
of the project-out and fixed Jacobian methods deteriorate
the further the initialization is from the optimum, due to the
increasing likelihood of getting trapped in local minima, the
nonlinear method maintains the accuracy of convergence
until around 20 pixels point-to-point RMS initialization er-
ror.

6. Conclusion

In this paper, we have proposed a new nonlinear dis-
criminative approach to AAM fitting which is fast, accurate
and exhibits exceptionally good convergence rates with a
large capture range. We compared the method against two
popular fitting methods on two publicly available databases,
on which the nonlinear method significantly outperformed
them in both accuracy and convergence frequency. Through
the use of multimodal weak learners, based on the Haar-
like features, the method achieves good efficiency with rea-
sonable training time, while regularization is maintainedby
embedding the training, and later the fitting procedure, in
an iterative framework.

Future directions of research for this method include in-
vestigations into different types of features, for example
the texture residuals, and weak learners, for example kernel
functions on principle components of the residual vectors.
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