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Abstract ods, for example [6, 10, 11, 20], have retained the linear-
ity assumption, focussing mainly on feature represematio
The Active Appearance Model (AAM) is a powerful gen- which adhere better to this assumption. Work on generative
erative method for modeling and registering deformable vi- methods, for example [2, 4, 14], has focused on reformula-
sual objects. Most methods for AAM fitting utilize a linear tions of the analytic optimization problem of AAM fitting
parameter update model in an iterative framework. De- to achieve more flexible and efficient linear update models.
spite its popularity, the scope of this approach is severely Some work has also been performed on image filtering, for
restricted, both in fitting accuracy and capture range, due example [12], tasmooththe cost function, allowing the fit-
to the simplicity of the linear update models used. In this ting process to better avoid local minima.

paper, we present an new AAM fitting formulation, which  ajthough the use of nonlinear update models for para-
utilizes a nonlinear update model. To motivate our ap- metric model fitting has been demonstrated in a number of
proach, we compare its performance against two popular yecent publications, for example [1, 22, 24], there havabee
fitting methods on two publicly available face databases, in g jmplementations for AAM fitting as of yet. Perhaps the
which this formulation boasts significant performance im- 1,5in reason for this is the storage requirements and evalu-
provements. ation cost of nonlinear functions. For example, the method
in [24], which uses the relevance vector machine regressor,
) affords fast evaluation using raw image pixels since it uses
1. Introduction a small image patch and fits only the affine parameters. The
Since its advent by Edward al. [7], the Active Ap- mthods in [1] and [22] afford efﬁcient evaluation due to
pearance Model (AAM) has been widely used to match de- the_|r compact feature represe_ntanon,_the shape context de
formable visual objects to images, with applications raggi ~ SCTPtors, wh|ch_are useful mainly for silhouette objeats]
from medical image analysis [21] to industrial vision prob- hence, not applicable to AAMs.
lems [16]. The power of this generative model stems from  In this paper, we propose a formulation which allows a
a coupling of compact the representation of appearancenonlinear update model to be implemented efficiently with
through the use of principle component analysis (PCA) on the AAM. As the nonlinear function class, we use a boosted
a set of labeled data, with a rapid fitting procedure. ensemble of multimodal Haar-like decision stumps, which
Compared to other parametric models of deformable vi- allow efficient online evaluation using the integral image.
sual objects, the AAM is unique in its fitting regime. Here, To avoid overlearning, we embed the boosting procedure
the relationship between the generative texture errorfaad t into an iterative framework with an intermediate resantplin
parameter updates around the optimum has been shown tetep. This process affords well regularized update models
be closeto linear for simple visual objects, which exhibit by limiting the ensemble size and indirectly increasing the
small intrinsic shape and texture variations. In initiabpu sample size. In Section 2, we give a brief overview of the
cations [5, 7], this was justified by arguing that since the er AAM’s parameterization. A review of the state of the art
ror image is evaluated in the pose normalized frame, the er-in AAM fitting is then presented in Section 3, covering the
ror function around the true minimum is close to quadratic, discriminative and generative approaches. In Section 4, we
allowing an iterative scheme of fixed linear updates with present our nonlinear discriminative method for AAM fit-
adaptive step sizes to converge. ting. To motivate our method, we compare its performance
From these initial publications, research into AAM fit- against two popular AAM fitting approaches on two pub-
ting has diverged into two camps: discriminative and gen- licly available databases in Section 5. We conclude in Sec-
erative. To date, most research on discriminative meth-tion 6 with additional remarks and directions of future work



2. Active Appearance Models

The AAM simultaneously models the intrinsic variation

3. Review of AAM Fitting

AAM fitting is the process of finding the model param-

in shape and texture of a deformable visual objects as linearetersp = [«, 3, a,b, t,. t,, Ps, P:] Which best fit a given
combination of basis modes of variation. The reason for thisimage.#. This is usually an iterative process which se-

choice is the observation that intrinsic variations in ghap
and texture of many deformable visual objects follow that

guentially updates the model parametpréhrough an up-
date function:

of a degenerate Gaussian distribution. As such the modes

of variation can be easily calculated by applying PCA to

a normalized training set. The result is a compact model,

capable of generating large variations in shape and textur
with a relatively small parameter set.

The shape of an AAM consists of a setf2D land-
marks, generated as follows:

%(Ps) = §+Bspsv (1)

wheres is the mean shape vectdB; is the shape basis
matrix with M columns obtained by applying PCA to a
set of registered training shapes agnd are the non-rigid

(S

Ap =% (p)o Z(J;p). (4)

Here, 7 is a vector valued update function, with optional
dependence on the current parameters,apdare the up-
dates to be applied to the current parameters, for example in
an additive fashion:

(5)

Z is a feature extraction function which represents the im-
age.7 from the perspective of the AAM at parameter set-
tingsp. A good coupling betwee® and.Z is required to

p < p+ Ap.

shape parameters. To account for global shape variationsgnsure good predictions of the updates.

the AAM composes this non-rigid shape model with a sim-
ilarity transform as follows:

y(p) = jq(a, b, ts, ty) o %(Ps)

= (I@ {“Zl a+b1D S(p) +1@ m 7
where p is a concatenation of all the parameters,
(a,b,tz,t,) are similarity transform parameterk,is the
(n x n) identity matrix andl is an-length vector of ones.
Here,® is the Kronecker (tiling) product andis the func-
tion composition operator.

The texture of an AAM is defined within the so called
“shape free” frame. It consists &¥ pixels, usually chosen
to lie within the convex hull of the mean shagpeAs with

There are two general approaches to AAM fitting: dis-
criminative and generative. In the following, we will brigfl
discuss each in turn.

3.1. Discriminative Fitting

Discriminative methods directly learn a fixed relation-
ship between the feature8(.7; p) and the parameter up-
datesAp, given a training set of perturbed model parame-
ters:

{Z(7;p" — Ap), Ap}*, (6)

wherep* is the optimal parameter setting for tifésample
and N, is the total number of perturbations in the training
set. The advantage of this approach is tharibelongs to

a simple function class, then the computation of the updates

the shape model, the texture is also generated using a lineak;, pe done efficiently, sinc® is fixed. Its main drawback

combination of basis variation vectors:

(p1) =t + Bypy, (2

wheret is the vectorized mean imagB; is the texture ba-
sis matrix withM,; columns obtained by applying PCA to a

is that the functional form ofZ and.# that supports it,
must be chosen heuristically.

The original AAM [7] was formulated based on the ob-
servation that, for some visual objects, the relationsleip b
tween the residual texture:

set of images, warped to the shape free frame and normal-

ized, andp; are the local texture parameters. To generate
the texture in the image frame, the linear model is usually

composed with a linear lighting function as follows:

T(P) = Ty(a,B) o Ti(pe) = aZi(p) + 8, (3)

wherep is a concatenation of all the parameters &nd3)
are the global lighting gain and bias parameters.
Itis also common to take into account the correlation be-

tween shape and texture by applying a second level of PCA

on the concatenatqsl, andp,; parameters. This procedure

usually yields a more compact representation. The inter-

ested reader is referred to [7] for details.

F(S5p) =7 (p) = I o ¥ (p) (7)

and the parameter updatAg, where”” is a warping func-
tion, iscloseto linear around the optimal parameter settings
of a given image. As sucl¥/ can be easily found through
linear regression on the data set in Equation (6). Since this
linear relationship holds only loosely, fitting here is aar-t
ative process which incorporates adaptive step size gealin

(8)

where 1 is progressively halved until a reduction in
|.Z(.7;p)|? is attained.

p—p+nAp



From this basic approach, there have been a number othe shape parameters exclusively. Despite being the fastes
methods which boastimprovements through a more suitablemethod to date, it works well only for objects exhibiting
choice of.#. The direct appearance model method [10], small amounts of variation [9]. This problem is overcome
for example, performs PCA on the residual vectors and per-by the simultaneous method [2], which solves for the shape
forms linear regression between the principle componentsand texture parameters simultaneously. However, singlar t
of the residual vector and the pose parameters. The methothe method in [4], its update model depends on the current
in [6] learns a linear regression between the canonical pro-texture parameters, again resulting in a computationaly e
jections of the texture residuals and parameter updates. Th pensive fitting procedure
method utilizes canonical correlation analysis to find the
subspaces which best adheres tq a linear regression. Thesg Nonlinear Discriminative Updates
methods have been shown to exhibit faster convergence and
better accuracy compared to the original formulation in [7] Current methods for AAM fitting, which utilize linear

update models, require adaptive models to achieve high fi-
3.2. Generative Fitting delity but prefer fixed models for efficiency reasons. In this

Generative methods pose fitting as minimizing some section, \We propose a r?o.”"”ear method where the trade-off
measure of error between the model's texture and thebetween fidelity and efficiency can be better managed. Our
warped image. Essentially a nonlinear optimization prob- methf’d -tak.e_s inspiration from the.work i_n [25], bUt departs
lem, this approach affords the utilization of general psgo fromit S|gn|f|cant_ly In some pqrts,_mcludmg the fitting pro
function optimizers, the convergence properties of which, cedure, formulation of the_ objective function ".md the type
are well understood. The most common measure of errorof learners used. The main components of this method are

utilized in AAM fitting is the least squares fit (or a robust t_he |teraéuvr(]a embeidln%,.whlghlencolglrages goodr?err]\erf?hzda
variation thereof): tion, and the use of multimodal weak learners, which affor

efficient evaluation whilst maintaining good functionat ca
> [Z(xip) - I o ¥ (x;p)]”, Q)  pacity.
xEQ

where) is the domain over which the AAM’s texture is de- 4.1 Iterative Discriminative L earning

fined. As such, the Gauss-Newton method, which resultsin  The aim of discriminative learning, here, is to find a
a linear update model, has become the optimizer of choicenonlinear regressor from feature to parameter update space
for generative AAM fitting. However, a straight forward im-  given the training set in Equation (6). We propose learn-
plementation is computationally expensive. As such, mosting the multivariate regressor through a boosting proagdur
generative approaches to AAM fitting either assume somewhere the update function for thé" parameter takes the
parts of the method are fixed or reformulate the problem following form:
such that they are.

The original generative approach in [5], assumes that the Ny
Jacobian of Equation (9), is fixed. This allowed a fixed wEE) =Y ot Ll (f) ; Lrer, (10)
linear update model to be pre-computed through a pseudo- t=1
inverse of the fixed Jacobian. More recently, in a method
coined adaptive AAM [4], the fixed Jacobian assumption
is relaxed by decomposing the Jacobian and assuming only f=F(Ip)=AN 0S¥ (p) (11)
the component pertaining to the derivative of the warping is our feature vector of raw pixel values (normalized by
function is fixed. The resulting method exhibited improved o mean zero and a variance of one) arfl is a weak non-
accuracy, however, as the linear update model depends Ofinear learner, a number of which can combine to form a
the current texture parameters, the fitting procedure is com strong ensembl@ *. Here, £ is adictionaryof weak learn-
putationally expensive. ers, the details of which will be discussed in Section 4.2.

Another direction of the generative approach, which has Starting with an empty ensemble, we add one weak learner
gained much attention recently, is the adaptation of the gt 5 time

inverse-compositional image alignment [3] to AAM fitting kE gk k cok

problems. By reversing the roles of the image and the model Uy = W7+ o 27, (12)

in the error function, the derivative of the warping funectio  choosing(af,.#}) to maximally decrease the objective
is fixed, resulting in significant computational savingseTh function for each addition. The final update model is a con-
project-out method [14], for example, minimizes the cost catenation of the updates for every parameter:

in a subspace orthogonal to the modes of texture variation,

resulting in an analytically fixed linear update model over Ap =% o #(.¥;p) = [%1(f); U N (f)] , (13)

where



whereN,, is the total number of parameters. In this work,
since we are using the raw pixel feature in Equation (11), we
estimate only the shape parameters: [a, b, t,,t,, Ps). Quadratic Penalizer------
One of the main difficulties in boosting for regression is Asymptotic Penalizer
the tendency to overlearn the data. To overcome this prob-
lem we employ two measures. First, we perform shrinkage
on the ensemble [8]. This common regularizing method in-
volves shrinking the optimak for Fhe _newly selected? 0 Absolute Target residual
by a factory € [0,1] before adding it to the e_nse_mble. Figure 1. Cost function for every element in the sum of Equa-
For the second measure, we note that overlearning in boosts;g, (14). The asymptotic penalizer reduces spread by zimg!
ing for regression is related to the number of weak learnersigrge residuals more severely.
used [8]. Therefore, if we can reduce the total number of
weak learners we can guard against overlearning. One of
the peculiarities of AAM fitting compared to generalimage ~ After the capacity ofC on the current iteration is ex-
based regression methods is that the function defining thehausted or a fixed number of learners have been chosen,
true regression beconsimplerthe less spread the distribu- We resample a new set of perturbations, propagate them
tion of samples is about the optimum. This is because vari-through previously learnt iterations and train the curient
ations in pixel values becomes more constrained. Simplererations using this data. This resampling process further
functions generally require fewer weak learners to describ regularizes the solution as new iterations also correct pre
it. dictions on samples which were poorly learnt previously
Therefore, we propose embedding the boosting proce-due to overlearning. The complete training algorithm is out
dure into an iterative framework, where at each iteration, lined in Algorithm 1. Note that steps 10 to 20 apply to each
the boosting procedure needs only learn a function which AAM parameter independently.
can reduce the spread of the samples about the optimum . . _ _ .
A similar training paradigm on the linear update model has Algorithm 1 Iterative Discriminative Training Algorithm
been applied sucessfully in [19]. To this end, for A& Require: N;, Ng, Ns and Ny
learner to be added to an ensemble at a given iteration, we 1: for i = 1to N; do
minimize the following objective for each AAM parameter: 22 {Ap}}%, {sample perturbations

Boosting Cost Function

€

N 3 forl=1toi—1do
. < 1 4: for j = 1to Ny do
Flor, Zr) =3 c—1Ap =S i) 4 s fj = A 0.7 0 W (p} — Ap;) {get featurg
=t bt ' 6: Ap; — Ap, — %(f;) {propagate samplis
subject toar € [a,b] and % € L, where the parameter  7: end for
indexk has been dropped for clarity. Here, 8:  end for
A A 9. % = 0 {initialize ensemble of" iteration}
pi| — € . Di +6) 10.  for t =1to N;do
a=max|———— | , b=min | ———— 15 : f
( Zr(f) ) ( Zr(f:) (15) 11: of =0and.Z* =0
and 12: for s =1to N, do
_ Ap;| +6 16 13: Sample(a, .Z) {see Algorithm 2
¢ = max|Api[ +9, 1 it ¢(a, Z) < €(a*, %) then
whered is a small positive constant and 15: (a*, %) — (0, &)
o 16: end if
Ap; = Ap; — (£, 17 17: end for
v g ; o i(f) an 18: U, — U + o £* {Updatei ensembl
_ ) 19:  end for
is the current residual target updates affer- 1 learners 20: end for
have been added to the ensemble. This objective asymptot—1. return U, ... U,

ically penalizes the distance of each sample from the opti-
mum, placing more emphasis on samples with large pertur-
bf';mons compared to, for example, _the quadratic Io§s (_see4_2_ Weak Eunction Set

Figure 1). As each entry in the sum is convex, the objective

of each round of boosting is also convex. Therefore, fora  There are two requirements of the weak functionset
given Zr(f), the optimalar can be found through a 1D our method. Firstly, their evaluation must be computation-
line search betweemnandb. ally cheap, such that efficient fitting can be achieved with




a reasonably sized ensemble. Secondly, they must be sufwith positive/negative target values:
ficiently rich, such that complex regression functions can

be accurately estimated by a linear combination of them. H,(v) = Z ; : Ap; >0 (20)
The Haar-like feature sét, popularized by Viola and Jones A= € Ap;

in [23], act as a good basis for our weak function set as they 1

fulfill both of the required criteria: efficient evaluatiorsu H_(v) = Z v Ap; <0,  (21)
ing the integral image and a capacity for complex represen- (= © bi

tations through their similarity to Haar wavelets. In fact, L ) ) ) ]
in this work we utilize the extended Haar-like features [13] WNereAp; is given in Equation (17). The idea here to build

which include diagonal features, useful for approximating -+ SUch that the functional direction is in that which re-
rotations. duces the error over the most difficult samples in each bin,

with the aim of reducing sample spread.

The only parameter which needs adjusting for this weak
function set is the number of bins in the histogramsToo
if s.2(F) > s8 many bins may cause overlearning in sparsely sampled bins,

-, (18) but too few bins may not capture enough of the nonlinearity

of the target function, limiting the capacity of these learn
ers. In our work, we fixy, to an empirically good value and
avoid overlearning by settingZ at sparsely sampled bins
to zero (i.e. avoid making decisions which are not well sup-
ported by the training data). A summary of the generation
of our weak learner is given in Algorithm 2.

A common choice ofZ which utilizes these features is
the one-dimensional decision stump:

206 = {+1

—1 otherwise

where J# is a Haar-like filtering functiong is a deci-

sion threshold and € {1,—1} is a parity direction in-

dicator. Although this weak function has been utilized in

many works, for example [13, 23, 25], it has some ma-

jor drawbacks. Firstly, most functions in this set are non-

discriminative in the sense that, for a giveff, the best

choice ofs andé will still result in a poor.Z. Secondly, - ~

for those which are discriminative, the optimal choicesof ~ Require: {f, Ap}3,,  andn,

and@ must be found through trial and error, an expensive 1: Calculate weight of each sample: — |Ap;|)

process. This is especially potent in our case where the size 2: Sample a Haar-like featur#” € H {see [13}

of H is extremely large due to the size of the image region 3: Build £ andH_ histogramg/Eqn. (20) & (21}

to be analyzed, which is around 5 to 10 times that of the 4: Compute weak learne¥’ {Eqn. (19}

images used in [23] and [25]. 5: Find optimale through 1D line searchEqn. (14}
Rather than using the weak function set described above, 6 return (a, %)

we follow the response binning approach in [18], which

maximizes the utility of weak learners derived from the

Haar-like features. In their method, the weak learners of a4.3. Nonlinear AAM Fitting

classification problem, take the form of the relative indqua

ity between histograms of the positive and negative exam-

ples:

Algorithm 2 Weak Learner Sampling Algorithm

With a model trained according to Algorithm 1, the non-
linear fitting of an AAM follows the following procedure
outlined in Algorithm 3. Notice that no checks need to be
made regarding the reduction of texture error or the magni-
tude of parameter updates. The fitting is simply performed
for all iterations for which the model is trained for with no
early termination.

2(f) = +1 if H(s2(f)) > H_(2(f)) (19)
—1 otherwise

whereH, andH_ are 1D histograms of the distribution of

the feature evaluations on the positive and negative eXamx|gorithm 3 Nonlinear Discriminative AAM Fitting
ples respectively. This method affords a multimodal deci- Require. 7, {7 Zn.} and

sion surface whilst maintaining efficiency as it requirelyon 1 for Z.' _ 1’,[0 ]\1[’ .d.(; N p

a table lookup for its evaluation. 2: Get featurezvectoi" (Eqn. (11}

To adapt this approach to the regression case, a few mod- _ Calculate integral imagés frofn{see [13}
ifications need to be made. The objective function we want Calculate parameter updates usi#ig{Eqn. (13)
to minimize in Equation (14) aims to reduce the spread of Update parameteréEqn. (5) '
the training data about the optimum. Therefore, in formu- 6 end for '
lating .Z, preference should be made on reducing the error 7: return p
over samples with large, compared to small, error. To this __
end, we defind/_,_ as the histogram of weighted samples

a kR w




Samples in Boosting Resamples in Iterations
0.1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.3

@ 0.09 2 . %;(1)00 —-—.
:—El 0.08 :—El 0.25¢ i 2/100 -rseeeens
% 0.07 © 02+t 4
— 0.06 "U—)
o o
c 005 c 015} i ]
o o x
'*g 0.04 -g o1
g- 0.03 g— ) A
0.01
0 ‘ ‘ ‘ 0 : ‘ ‘ ‘
-20 -15 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20
Error on x-translation Error on x-translation

(a) (b)
Figure 2. Distribution of the training samples of the IMM alase throughout the training process on the x-transla@)nRedistribution
of samples about the optimum as weak learners are addeddngkeble of the firstiteration. Legend denotes the numbegeak learners
in the ensemble. (b). The effect of resampling betweentiters. Legend denotes (iteration)/(number of weak leariteensemble of that
iteration).

5. Experiments amount of variation as in the IMM database. The resulting

) ) model consisted of 45, 328 and 262 modes of shape, texture
_ To motivate the nqnllnear update method, we compared,,q combined appearance variation, respectively.
its performance against two common methods for AAM

fitting: the fixed Jacobian method [5] and the project-out 52 Results
inverse compositional method [14]. The fixed Jacobian =

method is generally considered a good baseline indicator  For the nonlinear method proposed in Section 4, we set
for evaluating new fitting methods. The project-out method Ny, Ny and N, to be 10, 100, 2000 and 200 respec-

is currently the fastest method for AAM fitting, which tively (see Algorithm 1), chosen as a good trade-off between
we utilize to demonstrate the computational efficiency of training time and model quality. For the weak learners we
our approach. The comparisons with these two methodsysed 32 bin histograms with a threshold of 10 samples/bin.
were performed on two separate databases: the IMM Facepne used a shrinkage factor of= 0.5 which we found to

database [17] and the XM2VTS database [15]. sufficiently regularize the solution.
Figure 2 shows the distribution of the IMM training sam-
5.1. Databases ples at different stages of the training process. Plot i@-il

trates the capacity of the weak function set, described in
Section 4.2, to significantly reduce the spread of the train-
ing samples despite the relative small valueNaf which
amounts to a very sparse sampling-af From Figure 2(b),
it is clear that with the modest training set size used, the

The IMM face database consists of 240 images of 40
individuals, exhibiting variations in pose, expressiom an
lighting. We used 30 randomly selected subjects for train-
ing, leaving the rest for testing. Using the supplied 583poi

markup, we built an appearance model of 28074 pixels, re—b " by itself sianificantl | thedat
taining 95% of shape and texture variation and 98% of com- 00sting process by 'SETr significantly overiearns thaga

bined appearance variation. The resulting model consisted> shown by thepreading-oubf the resampled data in the

of 19, 94 and 72 modes of shape, texture and combined apfnext |ter?rt1|on. However, 'f{h'j :\rtlf_actthof the ltJ(_)tostlpg ms&;
pearance variation, respectively. is more than compensated for in the next iteration, where

The XM2VTS database consists of 2360 frontal images the final distribution is even less sp_regd thar_1 its predeces-
) . . . o sor. The other AAM parameters exhibit a similar trend.
of 295 subjects with large inter-subject variability. Haff

the subjects were used for training and the others for test- T_O compare_the nonlinear method against the fixed Ja-
ing. Using a publicly available 68-point marképwe built cobian and project-out methods, we randomly perturbed all

an appearance model of 46677 pixels, retaining the samd“AM parar_neters_from their optimal settings 100 times for
every test image in both databases. The perturbations were

Ihtt p: // www. i sbe. man. ac. uk/ ~bi nf dat a/ xn2vt s/ taken randomly Withini.:l(_)o, +0.1, £20 pix_els,j:O.l, +20
xn2vt s_mar kup. ht ni and=1.5 standard deviations for the rotation, scale, transla-
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Figure 3. Convergence performance of the fixed Jacobiafegirout and nonlinear methods on the IMM and XM2VTS databa®lots
(a) and (c) : histograms of accuracy at convergence (pexgernn legend is the convergence frequency). Plots (b) gndrdial error vs.
average convergence accuracy.

tion, lighting gain, lighting bias and combined appearance database, but it also exhibits significant proportions at th
parameters respectively. The fixed Jacobian and project-oularger error range. Furthermore, as the convergence rate of
methods were fitted using 3 levels of a Gaussian pyramidthis method is extremely low, especially on the XM2VTS
to avoid local minima, but the nonlinear method was fitted database, the small number of samples with good conver-
to the highest resolution image only, using the procedure ingence can be attributed to images of subjects which are
Algorithm 3. close to the mean texture, one of the conditions under which

Figure 3 shows the convergence performance of the threethe prOjgct-out method.works weII..
tested methods on both databases. Plots (a) and (c) show the DeSF_"te the large dlsgrepancy in performance betvyeen
accuracy at convergence of the different methods with theirthe prOJe_ct-out and nonlinear meth_od_s, the computational
convergence frequencies given in the legends. Here, we de€OMPlexity of both methods are similar, 376 ms for the

clare convergence if the final point-to-point RMS error is Project-out an_dé403_ ms for the nonlinear method on a
smaller than at initialization. On both databases, the non-1-8GHz machiné. With optimized code, we see no reason

linear method significantly outperforms the other methods, Whythe_nonllnegr method cgnnqt achle_ve fra}me rate speeds
both in convergence accuracy and frequency. The project-(the project-out implementation in [14] is claimed to run at

out method does exhibit larger proportions of it$ converged  2reported processing times do not include the computatiothef
samples at the lower end of the error range in the IMM Gaussian pyramid for the project-out method.




230 frames/sec for a person specific AAM).

Apart from the fitting efficiency, perhaps one of the main
strengths of the nonlinear method is illustrated through th
results in Figure 3(b) and (d). Here, the average conver-
gence accuracy is plotted against the point-to-point extor

(8]

9]

initialization. Whereas the average convergence accuracy

of the project-out and fixed Jacobian methods deterioratel

the further the initialization is from the optimum, due teth
increasing likelihood of getting trapped in local minimiagt

[11]

nonlinear method maintains the accuracy of convergence

until around 20 pixels point-to-point RMS initializatiom-e
ror.

6. Conclusion

In this paper, we have proposed a new nonlinear dis-
criminative approach to AAM fitting which is fast, accurate
and exhibits exceptionally good convergence rates with a

[12]

[13]

[14]

large capture range. We compared the method against two

popular fitting methods on two publicly available databases
on which the nonlinear method significantly outperformed

[15]

them in both accuracy and convergence frequency. Through

the use of multimodal weak learners, based on the Haar-
like features, the method achieves good efficiency with rea-
sonable training time, while regularization is maintaibgd

embedding the training, and later the fitting procedure, in 7

an iterative framework.

Future directions of research for this method include in-
vestigations into different types of features, for example
the texture residuals, and weak learners, for example kerne
functions on principle components of the residual vectors.
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