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Abstract

In this paper, we present a novel method for assessing

image-feature stability. The method hinges on applying the

discrete wavelet transform to the image features under study

throughout a number of video frames in an image sequence.

For purposes of stability assessment, we recover the image-

feature vectors for each video frame and then track them

trough a series of consecutive frames in the image sequence.

We apply the discrete wavelet transform to the time se-

ries constructed from the pairwise Euclidean distances for

each of the image features under study and use the wavelet

transform coefficients to assess their stability. We then re-

cover the stable features by clustering together those time

series which exhibit largely constant low-pass wavelet co-

efficients. We present results of the stability analysis for

Harris corners, Maximally Stable Extremal Regions, and

Scale Invariant Feature Transform regions extracted from

two real-world video sequences. We also elaborate on the

applications of our method to indexing, retrieval, and com-

pression of stable image feature vectors.

1. Introduction

One of the central issues in many computer vision prob-

lems is the extraction of descriptive local image features (or

interest points) which can then be used to represent the in-

formation in the image in a compact way in applications

such as object recognition or image retrieval. For the image

features (or local descriptors) to be useful in such applica-

tions, they must be invariant to affine transformations and

changes in the viewing conditions. Furthermore, they need

to be distinctive for different objects. Many algorithms have

been suggested in recent years, for example, Harris corners

[9], scale invariant feature transform (SIFT) regions [14],

maximally stable extremal regions (MSER) [16], affine in-

variant interest points [17], visual salency [12], or local

grayvalue invariants [22]. Such local image features have

been applied to object tracking, object recognition, and im-

age retrieval, e.g. [12, 21]. Several authors have evaluated

the performance of such features, e.g. [8, 18, 23]. Common

to all these features is that they work in the spatial domain

of single images, i.e. they do not consdier spatio-temporal

relationships which occur in video sequences. To include

such relationships, [13] has proposed the space-time inter-

est points which extend Harris corners to 3D using a scale-

space representation. Another extension to spatio-temporal

features has been provided by [7] who build cuboids from

spatio-temporally windowed pixel values, which are then

clustered into prototypes that are used during recognition.

In this paper, we present a novel method for the assess-

ment of image feature stability which takes into account

spatio-temporal relationships. Further, the image features

assessed as stable by the algorithm are used to represent

the same part of an object over a number of consecutive

frames. The method is based on a wavelet analysis of the

pairwise Euclidean distance between image feature vectors.

It turns out that the wavelet transform (WT) coefficients of-

fer a way to cluster image feature vectors with an akin be-

haviour over time. Maximising WT coefficient similarity, a

normalised graph cut is used to separate stable from unsta-

ble image features. If the WT coefficients in a cluster are

largely low-frequency components, the image feature vec-

tors exhibit only small variation over time, which means

that the image features are stable. If the coefficients show

largely high-frequency components, the image features are

unstable. We perform stability analyses for Harris corners,

MSERs, and SIFT regions extracted from two real-world

video sequences. We also outline applications to indexing,

retrieval and compression of stable image feature vectors.

As mentioned earlier, throughout the paper, we use the

WT. The WT has been shown to be a very useful tool in

a number of signal processing application areas, such as

multiresolution analysis and denoising in image process-

ing, image and video compression, and speech analysis, e.g.

[11, 24]. In the computer vision community, image process-

ing and filtering techniques akin to wavelet analysis can be

found as early as the early 1980s [4, 5]. The WT bears sim-

ilarities with the Fourier transform (FT) in the sense that

both analyze the frequency spectrum of a signal. The main



difference between them resides in the fact that the FT as-

sumes stationarity of the time series. The WT, in contrast,

can handle non-stationary time series and capture both, fre-

quency and time information [6, 20]. The WT exists in both

a continuous as well as a discrete form. For practical appli-

cations with sample values at discrete time points, generally

the Discrete Wavelet Transform (DWT) is used [15].

The remainder of this paper is structured as follows. Sec-

tion 2 provides an overview of wavelet analysis in general

and the DWT in particular, as the latter is used in this work.

In Section 3, we present the application of wavelet analysis

to assessing image feature stability in video sequences. The

experimental results are presented and discussed in Section

4, where we also discuss applications for the feature stabil-

ity analysis. Finally, conclusions are drawn in Section 5.

2. Wavelet Analysis

In this section, before explaining in detail how we can

apply wavelet analysis to image feature stability in video

sequences, we introduce the necessary signal processing

background on wavelets. We commence, in Section 2.1,

by motivating the use of the wavelet analysis presented here

and setting up the background for the discrete domain treat-

ment pursued thereafter. We then introduce the discrete

wavelet transform in Section 2.2.

2.1. A General Overview

Various techniques for the analysis of time series exist,

the FT being one frequently used. In many application ar-

eas it is common for the signal to represent a (continuous

or discrete) function over time, which intuitively leads to a

time-amplitude representation. However, such a represen-

tation is not always the best representation for the analysis

because it is often the case that the most distinguished in-

formation is contained in the frequency domain. The FT

transforms a time-amplitude representation into a frequency

representation [19]. In this frequency representation, only

the frequency information is preserved, while all time in-

formation is lost. If one is only interested in the frequencies

which occur in the signal, then the FT is sufficient. How-

ever, if one also wants to know when a frequency occurred

in a signal, an alternative to the FT must be used.

One way of overcoming this shortfall is to use a short

time window [19], treating the time series as stationary for

the duration of the time window, and to assign the frequency

occurrence during the time window to some point in the

time window, e.g. the first time point. However, for many

practical applications, the assumption of the time series be-

ing stationary throughout the time window does not hold.

The choice of an appropriate time window is therefore

very important. From Heisenberg’s uncertainty principle –

applied to signal processing – it can be deducted that it is

impossible to know the exact frequency and the exact time

of occurrence of this frequency in the time series [10]. The

WT offers an approximate solution of arbitrary accuracy by

using a fully scalable window, which is shifted along the

time axis and the frequency spectrum is calculated for every

position. This process is then repeated multiple times with a

changing window size, giving rise to a multiresolution anal-

ysis. The result of the WT is a time-scale representation.

For completeness, let us first briefly look at the case of

the continuous wavelet transform (CWT)

CWT
ψ
f (τ, s) =

1
√

|s|

∫

f(t) ψ∗

(

t− τ

s

)

dt (1)

where f(t) denotes the time series function, ψ∗ the wavelet

function, t the time, s the scale, and τ the translation of the

wavelet. It is important to understand that ψ∗ describes a

family of functions derived from one basic wavelet function

ψ(t) – the mother wavelet – by scaling and translation

ψτ,s(t) =
1

√

|s|
ψ

(

t− τ

s

)

. (2)

Hence, the wavelet analysis is self-similar at all scales and

thus does not privilege any particular scale. It can be shown

that ψ(t) can be any band-pass function of finite energy and

the scheme holds [25]. As a result, the CWT acts like a

band-pass filter.

The basic wavelet function ψ(t) and discrete time-scale

parameters s, τ can be chosen such that the wavelets form

an orthonormal basis [6, 20]. This leads us to the discrete

case, which shall be looked at in more detail in the next

section, as the remainder of the paper assumes a DWT.

2.2. The Discrete Wavelet Transform

The CWT is not practical to use because (a) continuously

shifting a continuously scalable function over a signal leads

to a large amount of redundancy in the wavelet coefficients,

(b) the number of wavelets is infinite, and (c) for most func-

tions the CWT has no analytical solution and can only be

computed numerically. The DWT overcomes these prob-

lems by firstly choosing discrete wavelets, which only al-

low discrete translation and scale steps, and secondly by the

multiresolution formulation

f(2st) =
∑

τ

ψs+1(τ) f(2s+1t− τ) . (3)

The new time series f(2st) has half the bandwidth of the

previous one f(2s+1t− τ) but twice the frequency.

To avoid having to use an infinite number of wavelets

to cover the entire spectrum, a scaling function φ(t) is in-

troduced, which covers the frequency spectrum otherwise

taken care of by wavelets up to scale s

φ(t) =
∑

s,τ

γ(s, τ) ψs,τ (t) . (4)



The scaling function φ(t) is also known as an averaging

filter, as it is essentially a low-pass filter.

A time series is then analysed by using a combination

of the scaling function, acting as a low-pass filter, and the

wavelets, which act as a high-pass filter [15]. An iterative

filter bank can be built by using a series of wavelets at differ-

ent scales together with a scaling function, which provides

a simple way of computing the DWT. The outputs of the

different filter bank stages are the wavelet and scaling func-

tion coefficients. The filter bank iteratively splits the signal

into a high-pass and a low-pass part. The former contains

the high-frequency part of the time series, or noise, and is

commonly labelled as detail. The low-pass part, contain-

ing the low-frequency part of the time series at the current

scale, is the approximation of the time series once the high-

frequency information has been removed. Generally, and

also in the image feature stability analysis in this paper, it is

this noise-removed approximation that is of most interest.

The multiresolution formulation for the scaling function

can now be written as

ψ(2st) =
∑

τ

λs+1(τ) φ(2s+1t− τ) (5)

where ψ(2st) is the wavelet at scale s and φ(2s+1t − τ) is

the scaling function at scale s+ 1. The time series f(t) can

then be expressed as a sum of the scaling function and the

wavelets

f(t) =
∑

τ

λs(τ) φ(2st−τ) +
∑

τ

γs(τ) ψ(2st−τ) (6)

with λs(τ) and γs(τ) being the coefficients of the scaling

function φ(2st− τ) and wavelets ψ(2st− τ), respectively,

at scale s. Since the scaling function and the wavelets form

an orthonormal basis [15], the coefficients are found by tak-

ing the inner products 〈·〉 of the time series and the scaling

function and wavelets, respectively,

λs(τ) = 〈f(t), φs+1,τ (t)〉 (7)

γs(τ) = 〈f(t), ψs+1,τ (t)〉 . (8)

Without going into further detail (see, for example, [15] for

further details), these equations can be rewritten using suit-

ably scaled versions of equations 3 and 5 as

λs(τ) =
∑

t

φ(t− 2τ) λs+1(t) (9)

γs(τ) =
∑

t

ψ(t− 2τ) γs+1(t) (10)

where φ(t− 2τ) is the (low-pass) scaling or approximation

function,ψ(t−2τ) is the (high-pass) wavelet or detail func-

tion. These two equations state that the coefficients λ(τ)
and γ(τ) at a certain scale can be determined by calculating

a weighted sum of the coefficients at the previous scale. It is

these coefficients that we use in the image feature stability

analysis. Details are given in the next Section.

3. Feature Stability in the Wavelet Domain

As mentioned earlier, we aim to assess the stability over

time of a set of feature vectors making use of wavelet analy-

sis. The rationale here is that stable features will have a low-

pass wavelet coefficient set which is largely constant. So

far, we have taken this property for granted and presented

an overview of the machinery used to model the behaviour

of the time series corresponding to the image feature under

study. Now, we turn our attention to the formal relation-

ship between the image feature vectors and the wavelet co-

efficients. We also exploit this relationship for purposes of

stable feature recovery.

Thus, in this section, our aims are twofold. Firstly, we

make use of the equations in the previous section to provide

a direct link between the image feature vector under study,

its time series and the wavelet coefficients. Secondly, we

introduce the use of graph cuts for the purpose of separating

the stable features from the unstable ones.

3.1. Feature Stability Analysis

To provide a link between the behaviour of the image

features over a set of consecutive video frames, we employ

the DWT introduced in Section 2.2. In particular, Equations

7 to 10 are used in the stability analysis.

Suppose we have a sequence of N consecutive images

(frames) S = {I1, I2, . . . , Ii, . . . , IN} from a video se-

quence. Each image is described by its feature vectors. For

r consecutive images from S, a 1D DWT is performed on

the pairwise Euclidean distances between a pair of image

feature vectors α(t) and α(t+ 1) corresponding to the fea-

ture vector α at two consecutive frames in S indexed to the

time t. Hence, we have

f(t) = 〈α(t) − α(t+ 1), α(t) − α(t+ 1)〉 . (11)

As a result of the DWT, we get the wavelet and scaling func-
tion coefficients γs(τ) and λs(τ), respectively. We use the
λs(τ), as they describe the noise-removed time series. Sta-
ble features show a smaller amount of noise than unstable
features. We can write

λs(τ ) = 〈f(t), φs+1,τ (t)〉 (12)

= 〈〈α(t) − α(t + 1), α(t) − α(t + 1)〉, φs+1,τ (t)〉 .

From this equation, we can derive

f(t) =
〈〈α(t) − α(t + 1), α(t) − α(t + 1)〉, λs(τ )〉

φs+1,τ (t)
(13)

which gives us a relationship between the image features

and the wavelet analysis. We use this relationship in the

following section for purposes of separating the stable fea-

tures from the unstable ones.



3.2. Stabilitybased Feature Separation via Graph
Cuts

As mentioned earlier, our aim of computation is to as-

sess the stability of the time series fi(t) for the ith image

feature vector throughout the consecutive frames S under

study. This, ultimately, implies classifying image features

into stable and unstable ones. Due to the lack of training

data or ground truth to start with, we cast this problem as an

unsupervised learning one which we aim to solve making

use of the normalised cut [26].

Recall that Shi and Malik [26] have posed the problem

of pairwise clustering as that of finding the optimal parti-

tioning of a weighted graph G = (E, V ) by recovering the

graph cut whose cost is normalised by the sum of total edge

connections of all nodes in the graph. The clustering prob-

lem, hence, becomes that of finding the partition that min-

imises the ‘normalised’ cost given by

NCut(B1, B2) =
Cut(B1, B2)

Assoc(B1, V )
+

Cut(B1, B2)

Assoc(B2, V )
(14)

where B1 and B2 are two disjoint, connected clusters such

that V = B1 ∪ B2, Cut(B1, B2) is the cost of the cut and

Assoc(Bh, V ) is the association for the cluster indexed h.

In their mathematical analysis, Shi and Malik pose the

problem as a generalised eigensystem and arrive at an ex-

pression that is reminiscent of the Rayleigh quotient. They

show that the optimal solution to the normalised cut prob-

lem is given by the second smallest eigenvector (i.e. the

eigenvector corresponding to the second smallest eigen-

value) of the matrix C = D− 1

2 (D − A)D− 1

2 , where D =
diag(deg(1), deg(2), . . . , deg(| V |)) is a diagonal matrix

and deg(i) =
∑|V |

j=1
A(i, j) is the ith row-degree of the ad-

jacency matrix A.

Thus, to make use of the normalised cut, we first require

a graph-based representation of the similarity between time

series so as to capture their stability, as reflected by the

DWT coefficients. As mentioned earlier, we consider the

feature i to be stable if its time series fi(t) exhibits small

variation over time, i.e. its DWT low-pass coefficientsλs(τ)
are largely constant. Based on this characterisation of the

stability of fi(t), we abstract the clustering task to an all-

connected graph G whose adjacency matrix entries A(i, j)
are given by

A(i, j) =

{

exp(−κ ‖ Λi − Λj ‖) if i 6= j

0 otherwise
(15)

where κ is a constant and Λ is the matrix of DWT coeffi-

cients whose entry indexed i and j is Λ(i, j) = λj(i).
Defined in this manner, the adjacency matrix entries

A(i, j) can be viewed as a similarity measure between DWT
coefficients for every pair of image feature vectors indexed
i and j. As a result, if the DWT coefficients for two image

feature vectors are close to one another, the corresponding
entry of the adjacency matrix is close to one. If they are
far apart from one another, their adjacency matrix entry is
close to zero. Furthermore, we can write the cost of the cut
for two clusters B1 and B2, V = B1 ∪ B2, making use of
the adjacency matrix entries and Equation 13 as follows

Cut(B1, B2) =
X

i∈B1;j∈B2

A(i, j)

=
X

i∈B1;j∈B2

exp

�
− κ

X
s+1,τ

�
〈fi(t), φs+1,τ (t)〉

− 〈fj(t), φs+1,τ (t)〉
�2�

.

(16)

Similarly, we can express the association as

Assoc(Bh, V ) =
X

i∈Bh;j∈V

A(i, j)

=
X

i∈Bh;j∈V

exp

�
− κ

X
s+1,τ

�
〈fi(t), φs+1,τ (t)〉

− 〈fj(t), φs+1,τ (t)〉
�2�

.

(17)

From the equations above, we can conclude that, in max-

imising the DWT coefficient similarity between groups, the

normalised cut is encouraging the formation of clusters of

feature vectors with an akin behaviour over time. At the

same time, the normalised cut is minimising inter-cluster

proximity. This bipartition of the image feature vectors can

be viewed as a separation between those features whose

low-pass wavelet coefficients are large and those that ex-

hibit a dominant high-frequency wavelet component.

This observation is important since it allows us to use the

average norm for the matrices of DWT coefficients for the

image features in each cluster to determine whether B1 or

B2 corresponds to those feature vectors which are stable.

The average norm for the matrices of wavelet coefficients

corresponding to the image features in the cluster indexed h

is given by

β(Bh) =
1

| Bh |

∑

i∈Bh

‖ Λi ‖ . (18)

If the average norm is large, then the coefficients for

the image features in the cluster are largely low-pass and,

hence, the feature vectors have little variation over time and

are stable. If the quantity above is small, then the variation

is large and the image feature vectors are unstable. As a

result, we can separate the stable features from the unstable

ones by performing a normalised cut over the set of image

feature vectors and, once the two clusters are at hand, we

select those features in the cluster B∗ such that

B∗ =

{

Bi | β(Bi) = max
h={1,2}

(

β(Bh)
)

}

. (19)



Figure 1. Stable features on sample frames of the PETS 2000 (left) and PETS 2001 (right) sequences. From top-to-bottom: Harris corners,

MSERs and SIFT regions.

4. Experiments and Applications

In this section, we present results on two real-world

video sequences and elaborate on the applications of our

stability assessment method. To do this, we commence by

providing results on the separation between stable and un-

stable image feature vectors. We then explore the applica-

tions of the method to image feature compression and video

indexing and retrieval.

As experimental vehicles, we use two 100-frame frag-

ments of video sequences from the PETS data sets [1].

The first of these is a fragment of the outdoor and vehi-

cle tracking sequence from PETS 2000. The second of

these is a section of the first data set of PETS 2001. For



all our experiments, we have recovered the image features

and, once these are at hand, matched them over 15 consec-

utive frames using the KD-Tree relational matching algo-

rithm [3]. Throughout the section, we make use of three

alternatives for the image feature vectors whose stability is

being assessed. These are the Harris corner detector, the

MSERs, and the SIFT regions. Also, in all our experiments,

we employ Daubechies wavelets.

4.1. Recovery of Stable Image Feature Vectors

We first present results on stable image feature vector

separation. As mentioned earlier, we use 100 frames of the

video sequences and apply our wavelet-based approach to

the image features in every frame along a 15-frame window

(≈ 0.62 seconds). To compute the DWT coefficients cor-

responding to the features in the frame i, we use all frames

between the frames i−7 and i+7. After recovering the time

series for the features, we compute four DWT coefficients

using a single scale. Thus, in our experiments, the DWT

coefficients reflect the behaviour of the image features at

frame i throughout a time window of 15 frames.

In Figure 1, we show, from top-to-bottom, the stable fea-

tures for a sample frame of the PETS 2000 (left panels) and

the PETS 2001 (right panels) sequences, respectively, when

Harris corners, MSERs and SIFT regions are used as fea-

ture vectors. In the figure, we use a red ‘dot’ to denote the

point at which the image feature is in the sample frame. The

arrow shows the trajectory on the image plane of the feature

over time. The tail of the arrow is at the point at which the

image feature was at frame i−7. The head denotes the point

at which the feature will be at frame i+ 7. For the sake of

clarity, we only plot the dots and the arrows for the Harris

corners and the SIFT regions, whereas for the MSERs, we

also fit ellipses to the maximally stable regions.

From Figure 1, we can conclude that the features clas-

sified as stable by the algorithm are in good accordance

with the overall structure of the motion in the scene. For

instance, in the PETS 2000 sequence, the arrows on the red

car capture well the nature of its forward motion, towards

the parking at the cul-de-sac. In the PETS 2001 sequence,

the MSERs also capture both, the motion of the green car

and the stationary background regions.

Next, we perform a more quantitative analysis on the

quality of the separation between stable and unstable fea-

tures. Here, we plot the average norm for the matrices

of wavelet coefficients for both clusters, i.e. β(Bh), h =
{1, 2}, as a function of frame index. In Figure 2, we show,

from left-to-right, the plots for the PETS 2000 (top row) and

PETS 2001 (bottom row) sequences when Harris corners,

MSERs and SIFT regions are used as feature vectors.

From the plots, we note that, in general, the traces for the

mean wavelet coefficient norms corresponding to the two

clusters B1 and B2, i.e. the cluster of stable and unstable

features, are well separated. In all the panels, the upper

trace corresponds to the mean norm of the stable features.

4.2. Feature Vector Compression

As mentioned earlier, there is a wide variety of applica-

tions for our algorithm. One of the main consequences of

the treatment of the image feature vectors as a time series is

that, modelled in this way, the feature vectors in the image

frame can be compressed making use of the wavelet coeffi-

cients. This is due to the fact that, given the feature vector at

the frame indexed i and its wavelet coefficients, we can re-

cover the time series fi(t) making use of Equation 13. With

the time series at hand, we can recover the feature vectors

solving a system of linear equations governed by the time

series fi(t) and the image feature vector at the frame i.

As a result of this treatment, we only need to store a

single feature vector and the wavelet coefficients for every

stable features in the scene. Further, in the case of the SIFT

regions, we view the 128-order vector of the image feature

at the frame of reference as a one-dimensional function that

can be decomposed using a DWT and store it in its wavelet

coefficient form. In our experiments, this yields a compres-

sion rate that is on average 5 for the Harris corners, 8.33 for

the MSERs, and 32 for the SIFT regions.

4.3. Video Indexing and Retrieval

Another application is video indexing and retrieval. The

fact that our method captures the behaviour of the features

in the scene over a given amount of time makes it ideal for

tasks aiming at indexing or retrieving frames or regions of

interest. Furthermore, its utility for compression allows to

recover ‘compressed’ descriptors that can then be stored and

indexed to time along the video sequence.

Once the feature vectors for the regions of interest (ROI)

have been recovered, we separate the stable from the un-

stable ones and compress them. These compressed feature

vectors are then descriptors which are indexed to the ROI to

whom they belong. Since the stability assessment captures

the behaviour of the feature vectors over time, we only store

one descriptor every seven frames. With the wavelet repre-

sentation of the time-subsampled image descriptors at hand,

we follow Ancona et al. [2] and perform indexing and re-

trieval based on a tree search over the cross-correlation be-

tween the coefficients of the wavelet decomposition of the

descriptors corresponding to the ROIs in the database.

Thus, the indexing is not only efficient in terms of de-

scription length, but also the retrieval is faster. This is a

result of not having to search through the whole sequence,

but only on the compressed, time-subsampled descriptors.

In Figure 3, we show a sample frame for the PETS 2000

sequence in the top row and for the PETS 2001 sequence

in the bottom row. The background has been subtracted in

both sequences. In the top, left-hand panel, Harris corners
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Figure 2. Mean wavelet coefficient norms β(Bh), h = {1, 2}, for 100 frames of the PETS 2000 (top) and PETS 2001 (bottom) sequences.

From left-to-right: Plots for the Harris corners, MSERs and SIFT regions.

are used as image features. In the top, right-hand panel, we

show the results yield by the algorithm when MSERs are

used. In the bottom, left-hand panel, Harris corners are used

again and in the bottom, right-hand panel, SIFT regions are

used. It is worth noting that none of the stable features are

located on the spurious regions. This is in good accordance

with the notion that, for the regions of interest, the features

should remain stable over time.

5. Conclusions

In this paper, we have cast the problem of assessing im-

age feature stability as that of characterising the behaviour

over time of the feature vectors via a discrete wavelet trans-

form. We have also shown how the normalised cut can be

used for separating stable features from unstable ones in

video sequences. The formulation of feature stability pre-

sented here has a number of advantages and allows the use

of wavelet coefficients to tackle a variety of problems. In

this paper, we have presented two applications. The first of

these concerns the utility of the wavelet analysis for com-

pressing stable features. The second one, which is related

to the first one, employs the compressed features for index-

ing and retrieving regions of interest in video sequences.

6. Acknowledgement

National ICT Australia is funded by the Australian Gov-

ernment’s Backing Australia’s Ability initiative, in part

through the Australian Research Council.

References

[1] PETS Datasets. http://ftp.pets.rdg.ac.uk/.

[2] M. Ancona, W. Cazzola, P. Raffo, and M. Corvi. Image

database retrieval using wavelet packets compressed data. In

Proc. Sixty SIMAI National Conference, May 2002.

[3] J. Bentley. Multidimensional Binary Search Trees Used for

Associative Searching. Comm. of the ACM, 8(9), 1975.

[4] P. Burt and E. Adelson. A Multiresolution Spline with Ap-

plication to Image Mosaics. ACM Transactions on Graphics,

2(4):217–236, 1983.

[5] J. Crowley and A. Parker. A Representation for Shape Based

on Peaks and Ridges in the Difference of Low-pass Trans-

form. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 6(2):156–170, 1984.

[6] I. Daubechies. The Wavelet Transform, Time-Frequency Lo-

calization and Signal Analysis. IEEE Transactions on Infor-

mation Theory, 36(5):961–1005, Sept. 1990.

[7] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behaviour

Recognition via Sparse Spatio-Temporal Features. In Proc.

IEEE Int. Workshop Vis. Surveill. and Perf. Eval. of Tracking

and Surveill. VS-PETS 2005, Beijing, China, Oct. 2005.
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[10] W. Heisenberg. Über den anschaulichen Inhalt der quan-

tentheoretischen Kinematik und Mechanik. Zeitschrift für

Physik, 43:172–198, 1927.



Figure 3. Top: Stable Harris corners (left) and MSERs (right) on the regions of interest in a sample frame of the PETS 2000 sequence.

Bottom: Stable Harris corners (left) and SIFT regions (right) on the regions of interest in a sample frame of the PETS 2001 sequence.

[11] T.-C. Hsung, D. P.-K. Lun, and W.-C. Siu. Denoising by sin-

gularity detection. IEEE Transactions on Signal Processing,

47(11):3139–3144, Nov. 1999.

[12] T. Kadir and M. Brady. Saliency, Scale and Image Descrip-

tion. Int. J. Comp. Vis., 45(2):83–105, Nov. 2001.

[13] I. Laptev. On Space-Time Interest Points. International Jour-

nal of Computer Vision, 64(2/3):107–123, Sept. 2005.

[14] D. Lowe. Distinctive Image Features from Scale-Invariant

Keypoints. Int. J. Comp. Vis., 60(2):91–110, Nov. 2004.

[15] S. Mallat. A Theory for Multiresolution Signal Decompo-

sition: The Wavelet Representation. IEEE Trans. PAMI,

11(7):674–693, 1989.

[16] J. Matas, O. Chum, U. Martin, and T. Pajdla. Robust Wide

Baseline Stereo from Maximally Stable Extremal Regions.

In D. Marshall and P. Rosin, editors, Proceedings of the 13th

British Machine Vision Conference BMVC2002, volume 1,

pages 384–393, Cardiff, UK, Sept. 2002.

[17] K. Mikolajczyk and C. Schmid. An affine invariant interest

point detector. In Proc. ECCV2002, volume I, pages 128–

142, Copenhagen, Denmark, May 2002. Springer.

[18] K. Mikolajczyk and C. Schmid. A performance evaluation

of local descriptors. IEEE Transactions on Pattern Analysis

& Machine Intelligence, 27(10):1615–1630, Dec. 2005.

[19] A. Oppenheim and R. Schafer. Discrete-Time Signal Pro-

cessing. Prentice Hall Signal Processing Series. Prentice

Hall, Upper Saddle (NJ), USA, 2nd edition, 1999.

[20] O. Rioul and M. Vetterli. Wavelets and Signal Processing.

IEEE Signal Proc. Mag., 8(4):14–38, Oct. 1991.

[21] F. Schaffalitzky and A. Zisserman. Automated Scene Match-

ing in Movies. In Proc. CIVR 2002, volume 2383 of LNCS,

pages 186–197, London, UK, July 2002. Springer.

[22] C. Schmid and R. Mohr. Local grayvalue invariants for im-

age retrieval. IEEE Trans. PAMI, 19(5):530–535, May 1997.

[23] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of In-

terest Point Detectors. International Journal of Computer

Vision, 37(2):151–172, June 2000.

[24] J. Shapiro. Embedded image coding using zerotrees of

wavelet coefficients. IEEE Transactions on Signal Process-

ing, 41(12):3445–3462, Dec. 1993.

[25] Y. Sheng. Wavelet Transform. In A. Poularikas, editor,

The Transforms and Applications Handbook, The Electrical

Engineering Handbook Series, pages 747–827. CRC Press,

Boca Raton (FL), USA, 1996.

[26] J. Shi and J. Malik. Normalized Cuts and Image Segmen-

tation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(8):888–905, Aug. 2000.


