
A Composite Framework for Affective Sensing

Gordon McIntyre, Roland Goecke

Research School of Information Sciences and Engineering,
Australian National University, Canberra, Australia

gordon.mcintyre@anu.edu.au, roland.goecke@ieee.org

Abstract
A system capable of interpreting affect from a speaking face
must recognise and fuse signals from multiple cues. Building
such a system requires the integration of software components
to perform tasks such as image registration, video segmenta-
tion, speech recognition and classification. Such software com-
ponents tend to be idiosyncratic, purpose-built, and driven by
scripts and textual configuration files. Integrating components
to achieve the necessary degree of flexibility to perform full
multimodal affective recognition is challenging. We discuss the
key requirements and describe a system to perform multimodal
affect sensing which integrates such software components and
meets these requirements.
Index Terms:emotion recognition, affective sensing

1. Introduction
The term “composite framework” is used to denote a structure
made up of discrete components while at the same time con-
noting a sense of heterogeneity and challenge in the integration
of the individual entities. Indeed, one of the biggest hurdles in
building a system to perform multimodal sensing is the integra-
tion of multiple idiosyncratic software components, purpose-
built and typically driven by scripts and configuration files.

If one contemplates the operation of a full-lifecycle sys-
tem that can be trained from audio and video samples and then
used to perform multimodal affect recognition, the requirements
are extensive and diverse. For example, to detect emotion in
the voice the system must be capable of training, say, Hidden
Markov Models (HMM) from prosody in the speech signals.
Another requirement might be that a Support Vector Machine
(SVM) is to be trained to recognise still image facial expres-
sions, e.g. fear, anger, happiness, sadness, disgust, surprise,
neutral. More complex, is the requirement to grab a sequence
of video frames and, from the sequence, recognise temporal ex-
pressions. In order to perform the latter, it might be necessary
to use a deformable model, e.g. an Active Appearance Model
(AAM) [2] to fit to each image and provide parameters that can
then, in turn, be trained using some classifier - possibly another
HMM. Other features might also be considered for input to the
system, e.g. eye gaze and blink rate. Ultimately, some strat-
egy is required to assess the overall mdeaning of the signals,
whether that involves fusion using a combined HMM or some
other technique.

From the concise consideration of the requirements it can
be seen that a broad range of expertise and software is needed.
It is not practical to develop the software from first principles.
Software capable of the recognition of voice and facial expres-
sions implement techniques from different areas of speciali-
sation. Automatic speech recognition (ASR) techniques have
evolved over several decades while computer vision has become

practical in the last ten years with the evolution of statistical
techniques and computer processing power.

Here we discuss the functional requirements of a system ca-
pable of sensing multiple variable inputs from voice, facial ex-
pression and movement, making some assessment of the signals
of each, and then fusing them to provide some degree of affect
recognition. Due to space constraints, the reasons for choosing
one software product over another is not within the scope of this
paper. We present a brief overview of some of the critical com-
ponents and the ”composite framework” used to harness them.

Section 2 discusses the functional system requirements fol-
lowed by a summary of the operational requirements in section
3. Section 4 describes some of the key features of the system
that we believe makes it significant. Section 5 highlights the
progress to date and, finally, future directions are discussed in
section 6.

2. Functional requirements of a system to
perform affective sensing

There are several levels of sophistication that a system capable
of sensing affect could provide:

1. recognition of affect from audio only

2. recognition of affect from image only

3. recognition of affect from video without audio

4. recognition of affect from video with audio

Indeed, the ultimate is to be able to recognise emotion from
both audio and video inputs from a speaking face. Consider a
speaking face in a real world situation. Voice expression is not
necessarily continuous. There may be long pauses or periods
of sustained speech. Vocal speech and facial expression may
not necessarily be contemporaneous. The verisimilitude of the
voiced expression might be confirmed or contradicted by the
facial expressions. The face might be expressionless, hidden,
not available or occluded to some extent for certain periods of
time. This implies that the system needs to be able to:

1. detect the voice and facial expressions independently;

2. operate on only one modality in some cases; and

3. weigh one signal against the other

Lastly, the system must be flexible so that alternative soft-
ware products and techniques can be substituted without a large
amount of effort involved. For example, to compare classifica-
tion performance, it might be desirable to substitute an Artificial
Neural Network (ANN) package with an SVM package or sim-
ply evaluate different types of SVMs.

The following sections present a minimalist requirement
statement of some of the key functional areas.



2.1. Audio processing

The most common approach to recognising affect in speech is to
use existing ASR software and to try to detect prosody from the
energy levels and variance in the the signals. There are several
ASR packages freely available, some with better support than
others. Whatever the choice, this capability is mandatory.

2.2. Image processing

A major issue in recognising facial expressions from video is
boundary detection, i.e. the boundary between the onset and
offset of each expression. One approach to this is to try to
recognise either the onset or the apex of a facial expression. For
example, in a simple situation a subject might begin with a neu-
tral expression and then progress to an expression of surprise.
[10] have attempted expressions from peak to peak. Whatever
the temporal position in the expression, this implies training a
classifier of still images and then grabbing one or more video
frames from a video sequence and attempting to match the ex-
pression.

Before we can recognise a face in an image it is necessary
to have a software capability to first detect the face. Once we
have found the face, it is necessary to fit some type of model,
e.g. an AAM to the face. This will yield parameters that can be
used by the classifier.

2.3. Video processing

As mentioned previously, there needs to be some capability to
grab frames from the video at certain intervals. This function
will be performed both manually and sutomatically. The frames
need to be grabbed for training and recognition phases.

2.4. Classification

It is essential that the system be capable of incorporating dif-
ferent types of classifiers for individual inputs and possibly an
ensemble of classifiers for fusing the individual classifications
and weighting them..

2.5. Miscellaneous

In order to compare different techniques it must be possible to
re-run training and testing phases, i.e. persisting all the avail-
able inputs, interim and final results. It is also desirable to be
able to compare studies or projects and store the results sepa-
rately for later comparison.

The system must be capable of running in batch or online
mode. Likely this will be batch mode for training and online
mode for the recognition phase.

3. Operational requirements of a system to
perform affective sensing

3.1. Implementation platforms

Ideally the system should have broad platform support. In prac-
tical terms, this translates to variants unix and linux, Mac OS
and Windows.

3.2. Audio and Video formats

One of the first hurdles that one encounters, especially with
video processing, is the number of different video container for-
mats and their lack of availability on one or more operating en-
vironments. Where possible the system should be capable of

supporting multiple audio and video container formats. At a
minimum these should include WAV, AVI, MP4, MPEG2, and
MOV. If support is not available then there should be some sim-
ple way of converting between formats where this is possible.

3.3. Image processing

The system needs the capability to train a classifier on a corpus
of still emotional expressions. The corpus could be images of
jpeg, png or some other format. Alternatively, there may be no
image corpus, rather, a video collection that will require signif-
icant images to be grabbed into a suitable format, thus creating
a de facto corpus. The images will then be subjected to some
recognition process.

3.4. Video processing

A video can be hours in duration or it could simply be, as in the
Cohn-Kanade database [4], collections of short, sample expres-
sions. Both in training and testing, the system needs to be able
to grab frames from a video segment. The frames will then be
subjected to a treatment similar to the images processing men-
tioned previously, and the resulting parameters input to, say, a
HMM.

3.5. Classification

Several subsystems require some form of classification compo-
nent. It is essential that the system be able to perform some data
reduction of any input vectors that are large in dimensionality,
e.g. principal component analysis (PCA) or linear discriminant
analysis (LDA).

3.6. System performance

The system must make use of multi-threading and multi-
processing capabilities of the operating system. Performance
is critical, as is efficient memory usage. It is preferable that the
system be able to execute in online mode.

3.7. User interface

The core system must be simple to use so that the effort required
to integrate components and to re-run exercises is minimised.

4. System description
4.1. Software selection for the core system

In order to meet the cross-platform operating environment re-
quirement, C++ or Java was considered suitable for develop-
ment of the core system. However, given the critical per-
formance requirements and the fact that most high-perfoming
video processing libraries are C or C++ based, C++ has been se-
lected. Trolltech’s Qt product [9] was selected for development
of the core system and user interface. Qt has another very attrac-
tive feature - its MetaObject Pattern - supports reflection which
is a feature found in many object oriented (OO) languages (na-
tively in Java) but not natively in C++. Qt’s metaobject proces-
sor can generate code to support reflection.

The benefits of reflection are realised when it comes to sav-
ing and restoring exercises. The state and values of objects
and their properties are “reflected” fairly simply into, in our
case, extensible markup language (XML). Making use of this
metaobject, we can do “round-trip” xml - serialising our ob-
jects, persisting them, and then deserialising them. In practical
terms, this is the means to saving and restoring projects.



4.2. Software selection for major functions

We have decided on use of the Vision-something-Libraries
(VXL) for image processing [12]. The libraries are written
in C++ and are very efficient. OpenCV is used for simple
video display and to grab images from videos [7]. SVMLIB
[6] will be used for facial expression recognition, Sphinx [11]
will be evaluated for use in the recognition of prosodic features
in speech.

4.3. Class structure

The system has been built for using design patterns as described
by [5]. Qt lends itself to building C++ in accordance with design
patterns [3]. Figure 1 depicts the conceptual class structure. We
also make use of serializer and composite patterns to effect the
round-trip processing, mentioned above.

Multimedia

Image

Video

Audio

AudioVisual

Segment

ImageSegment

VideoSegment

AudioSegment

AVSegment

Figure 1: Class hierarchy.

Factories are used to produce the various objects that go to
make up an project. A “project”, which is our top level con-
cept, is simply a collection of segments (discussed in the next
section) and is created by a software factory. Facades are used
to abstract the details of external classes such as those used to
perform AAM processing. A form factory is used to create sim-
ple dialog boxes for user input, reducing the amount of effort
that would have otherwise have been required if the dialogs had
been hand-crafted.

4.4. Segments

Central to the design of the system is the concept of segments.
This borrows to some extent from, but is simpler than, MPEG-7
[1] and its concept of segment types. This is no coincidence.
MPEG-7, previously known as “Multimedia Content Descrip-
tion Interface”, is a standard for describing the multimedia con-
tent data that supports some degree of interpretation of the in-
formation meaning, which can be passed onto, or accessed by, a
device or a computer code. However, our implementation devi-
ates slightly in that segment and multimedia data members and
operations are combined.

The various types of segments are created by a segment fac-
tory. As was seen in figure 1, these include Image Segments,
Image Sequence Segments, Image Collections, Audio Collec-
tions and Video Collections. Using factories to provide a layer
of abstraction not only conceals the implementation complex-
ity from the calling functions but simplifies the creation of new
types of segments. Figure 2 depicts the segment factory class
diagram.

Figure 2: Class diagram of the Segment Factory.

4.5. User interface

4.5.1. Dialog creation

User dialogs are, in keeping with the design pattern approach,
created by factories. Figure 3 demonstrates the simplicity in
creating new dialogs through the use of a form factory [3].

Figure 3: Dialog creation.

4.5.2. Processing scenario

Rather than simply list each function, this is better described by
a practical walk through a typical processing scenario. Most
major functions are accessible by right-clicking to present a
context menu as shown in figure 4.

Figure 4: The system menu.



The starting point is the creation of a “Project” as seen in
figure 5.

Figure 5: Project creation.

Figure 6 shows the project tree structure after a project
has been created, an image segment, image collection segment,
video segment, and model segment have been added to the
project. The tree structure is effectively the xml that reflects
the objects’ states and data member values. From here the xml
can be saved and reopened later.

Figure 6: User Interface.

5. Progress to date
We have created a framework that, without much effort, allows
us to substitute different software components. It also allows
us to easily set up new exercises, or “projects” as we call them,
saving and restoring them. In summary, the benefit of the frame-
work is that it vastly reduces the amount of time spent in:

1. adding or substituting software components or functions

2. setting up and running recognition experiments

3. re-running experiments with different parameters and
software components

To date the system is capable of defining projects, and to
those projects, collections of images, sequences of images, au-
dio and video samples. One can train an AAM from the image
collections and fit the AAM to previously unseen images. The
shape and texture parameters from fitting the AAM can be used

to train a classifier. Sequences of images can be grabbed from
videos. Within the next three months we will add functionality
to train HMMs from the image sequences.

6. Future work
More software components will be added. Eye tracking and
blink rate are not yet implemented. However, with the flexibil-
ity of the framework adding these with a wrapper class will be
a fairly simple task. It is possible that the authors will make
the software available to promote and improve research into the
field of affective computing [8]

7. Acknowledgements
The authors would like to thank Jason Saragih and appreciate
the use of the DeMoLib AAM processing software library.

8. References
[1] O. Avaro and P. Salembier. Mpeg-7 systems: overview.

Circuits and Systems for Video Technology, IEEE Trans-
actions on, 11(6):760–764, Jun 2001.

[2] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active Ap-
pearance Models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(6):681–685, 2001.

[3] A. Ezust and P. Ezust. An Introduction to Design Patterns
in C++ with Qt 4 (Bruce Perens Open Source). Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2006.

[4] Facial Expression Database, http://vasc.ri.cmu.edu/
idb/html/face/facial expression/index.html, last accessed
8 May 2008.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[6] LIBSVM – A Library for Support Vector Machines,
http://www.csie.ntu.edu.tw/ cjlin/libsvm/, last accessed 8
May 2008 .

[7] Open Source Computer Vision Library,
http://www.intel.com/technology/computing/opencv/, last
access 8 May 2008.

[8] R. Picard. Affective Computing. MIT Press, Cambridge
(MA), USA, 1997.

[9] Qt Cross-Platform Application Framework (2008),
http://trolltech.com/products/qt, last accessed 6 May
2008.

[10] S. Lucey, I. Matthews, C. Hu, Z. Ambadar, F. de la Torre
and J. Cohn. AAM Derived Face Representations for Ro-
bust Facial Action Recognition. In FGR ’06: Proceedings
of the 7th International Conference on Automatic Face
and Gesture Recognition (FGR06), pages 155–162, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[11] The CMU Sphinx Group Open Source Speech
Recognition Engines, http://cmusphinx.sourceforge.net/
html/cmusphinx.php, last accessed 8 May 2008 .

[12] The VxL Homepage, http://vxl.sourceforge.net/, last ac-
cessed 8 May 2008.


