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Abstract

An exemplar-based algorithm has been proposed re-
cently to solve the image completion problem by using a
discrete global optimisation strategy based on Markov Ran-
dom Fields. We can apply this algorithm to the task of
completing colour images by processing the three colour
channels separately and combining the results. However,
this approach does not capture the correlations across the
colour layers and, thus, may miss out on information impor-
tant to the completion process. In this paper, we introduce
the use of quaternions or hypercomplex numbers in estimat-
ing the potential functions for the image completion algo-
rithm. The potential functions are calculated by correlating
quaternion image patches based on the recently developed
concepts of quaternion Fourier transform and quaternion
correlation. Experimental results are presented for image
completion which evidence improvements of the proposed
approach over the monochromatic model.

1. Introduction

Image completion has been a challenging and active re-
search topic in image processing and computer vision in re-
cent years. It is the process of replacing the unknown region
of an image by textures from the observed part in a visually
plausible way. Figure 1 shows an example.

There have been many advances in the development of
algorithms for solving this problem. Some examples are a
statistical-based method [10], a PDE-based method [1] that
propagates image Laplacians in the isophote direction, and
an exemplar-based method [2] that synthesises pixels or im-
age patches using texture synthesis techniques. Another re-
cently proposed exemplar-based technique [8] considers the
image completion problem as a discrete global optimisation
with a well defined objective function based on a Markov

Random Field (MRF) and uses Belief Propagation (BP).
Thus, this technique overcomes the limitations of other ap-
proaches such as greediness and ineffectiveness in complet-
ing images where complex structures exist in the unknown
region. This approach also carries two important improve-
ments over standard BP: priority-based message scheduling
and dynamic label pruning to significantly reduce the time
to perform the BP.

The algorithm in [8] can be applied to completing colour
images by processing each colour channel separately and
combining the results. However, this approach does not ex-
ploit the correlations between the different channels and,
thus, may leave out information that may be essential to ob-
tain a visually plausible result. This paper proposes a new,
systematic way of applying the algorithm of [8] to colour
images by applying quaternions in calculating the required
potential functions. Quaternions are hypercomplex num-
bers which have a real part and three orthogonal imaginary
parts. The remainder of the paper is organised as follows.
Section 2 gives an overviews of how MRFs and BP are ap-
plied to solve the problem of image completion, in partic-
ular the improvements in the algorithm in [8] and their ef-
fects in increasing the speed of BP computation. In Section
3, we will describe some basics of quaternion numbers and
their Fourier transform. Next, in Section 4, our method of
applying quaternions in the potential functions is proposed.
In Section 5, we show a number of experimental results to
demonstrate the effectiveness of our approach. Finally, the
conclusions are given in Section 6.

2. Image Completion by Global Optimisation

2.1. Markov Random Fields

By using the same notations as in [8], we can define
the general framework for the image completion problem
as follows. Let I0 be the input image with a target region



(a) Original image

(b) Completion output

Figure 1. An example of image completion.
The foreground person was manually seg-
mented and then automatically removed.

T and a source region S (S ⊂ I0 − T ). Let M be the bi-
nary mask, non-zero only in region S. The target region T
will need to be filled by copying patches from a label set
L formed in S in a visually plausible way using a discrete
MRF.

The input image I0 will be divided into a lattice with
horizontal and vertical spaces (gapx, gapy) between nodes,
respectively. Lattice points whose w×h neighbourhood in-
tersects the target region T will form a set of MRF nodes
{n}Ni=1. A 4-neighbourhood system is then created by
edges E of the MRF. Figure 2 shows the binary mask M
and the resulting discrete MRF for Figure 1a. Each label
l in the label set L is a w × h patch from S that does not
intersect with T .

The single node potential, Vi, for placing a patch l over
node ni is defined as

Vi(l) =
∑

p∈[−w
2

w
2 ]×[−h

2
h
2 ]

M(ni+p)(I0(ni+p)−I0(l+p))2

(1)
where Vi is an indication of the similarity between the patch
and the region around ni. The pairwise potential Vij(li, lj)
is defined similarly as the cost of assigning labels (li, lj)
to two neighbouring nodes (ni, nj) and is calculated as the
sum of squared differences (SSD) over the overlapping re-

(a) Binary mask

(b) MRF nodes

Figure 2. Binary mask and the MRF nodes for
Figure 1a.

gion of the two labels. It is also known as the compatibility
function as it measures how well these patches agree [5].
The optimal labelling L̂ = {l̂i}Ni=1 is found by minimising
the energy function

E({li}) =
N∑
i=1

Vi(li) +
∑

(i,j)∈E

Vij(li, lj) . (2)

2.2. Priority Belief Propagation and Label
Pruning

BP is an optimisation technique that works by passing
local messages along the nodes of a MRF [4]. A message
from node ni to a neighbouring node nj at time t is defined
using negative logarithmic probabilities

mt
ij(l) = min

li∈L
{Vi(li)+Vij(li, lj)+

∑
k:k 6=j,(k,i)∈E

mt−1
ki (li)}

(3)
Assuming that all messages stabilise after s iterations (con-
vergence), the label l̂i = arg maxl∈L bi(l) that maximises
the belief is selected individually at each node. bi(l), the
belief of node i for label l ∈ L, is computed as

bi(l) = −Vi(l)−
∑

k:(k,i)∈E

ms
ki(l) . (4)



However, standard BP is slow [5], heuristic [4], and requires
user intervention [12]. In [8], two improvements to BP were
introduced to increase the speed and to make the algorithm
converge after a small number of iterations.

The first extension is the use of message scheduling.
The confidence of a node about its labels is used to de-
termine the transmitting order for that node. The node
most confident about its labels should be the first one to
transmit outgoing messages to its neighbours [8]. This
scheduling principle will help the node that has the most
informative messages transmit first in order to increase the
confidence of its neighbours. As a result, the neighbours
will be more tolerable to label pruning. The algorithm
also converges faster after a small fixed number of itera-
tions. The priority of a node is defined as the inverse of
the cardinality of set P priority(ni) = 1

|P | where P (ni) =∣∣{l ∈ L : breli (l) ≥ bconf}
∣∣, bconf is the confidence thresh-

old belief, breli (l) = bi(l) − bmaxi is the relative belief, and
bmaxi is the maximum belief of node ni.

The second improvement in [8] is dynamic label prun-
ing. This process is applied to a node if the number of ac-
tive labels for that node is greater than Lmax, a user spec-
ified constant. When a node is visited, its labels are tra-
versed in descending order of relative belief and those with
breli (l) ≥ bprune are marked as active. bprune is the label
pruning threshold belief. Furthermore, a label is declared as
active only if it is not too similar to any of the already active
labels in order to avoid choosing many similar labels for a
node. As a consequence, the SSD between this label and
any of the other chosen labels must be less than a thresh-
old SSDsimilar. Note that a minimum number of labels
Lmin is always kept for each node. Applying label pruning
to BP helps reducing the complexity of updating the mes-
sages from O(|L|2) to O(|Lmax|2) which is still quadratic
but as Lmax � L, the computation time is signficantly re-
duced [8]. The speed of BP can also be enhanced by pre-
computing the reduced matrices of pairwise potentials.

3. Quaternion Numbers

3.1. Introduction to Quaternion Numbers

Quaternions or hypercomplex numbers are a non-
commutative extension of complex numbers to four dimen-
sion. They were first introduced by Hamilton in [6]. Fol-
lowing [14], a quaternion q is a number with a scalar S(q)
real part and a vector v(q) imaginary part. In Cartesian
form, q can be written as

q = S(q) + V (q) = a + bi + cj + dk (5)

where a, b, c, and d are all real and i, j and k are orthogonal
imaginary operators [9] that obey

i2 = j2 = k2 = ijk = −1 (6)
ij = −ji = k jk = −kj = i ki = −ik = j (7)

The quaternion conjugate and modulus of q are given by

q = a− bi− cj− dk (8)

|q| =
√

a2 + b2 + c2 + d2 (9)

If a = 0, q is a pure quaternion. If |q| = 1, it is a unit
quaternion.

Given two pure quaternions u and v, u may be resolved
into components parallel and perpendicular to v as below
[9]

u‖ =
1
2
(u− vuv), u‖‖v (10)

u⊥ =
1
2
(u + vuv), u⊥⊥v (11)

The above equations can also be extended to a full quater-
nion q such that q‖ = S(q) + V‖(q) and q⊥ = V⊥(q). If q
is a full quaternion and p is a vector where V(q)⊥p, we can
reorder them such that qp = pq. As a result, it can be seen
that parallel quaternions commute. This result is important
for the practical form of quaternion correlation [14].

A colour image in RGB space may be represented using
hypercomplex numbers by encoding the three colour com-
ponents of the image as a pure quaternion:

f(x, y) = r(x, y)i + g(x, y)j + b(x, y)k (12)

where r(x, y), g(x, y), b(x, y) are the red, green, and blue
components at the coordinate (x, y), respectively. This rep-
resentation is chosen because a point in an RGB image rep-
resents a 3-space vector as does the pure quaternion [9].

3.2. Quaternion Fourier Transform

From the definition of a quaternion, the earliest Quater-
nion Fourier Transform (QFT) was introduced in [3]. There
are many different QFT formulations available. The one de-
fined in [9] is used in this paper as it has been proven to be
the best so far for the computation of correlation which will
be relevant in our approach. Because quaternion multipli-
cation is not commutative, there are two different QFTs for
a quaternion function f(x): the left side transform FL[f(x]
and the right side transform FR[f(x]. They are defined as

F±L[f(x)] = 1
2π

∫ +∞
−∞ e∓µuT xf(x)dx = F±L[u]⇔

F∓L[F±L[u]] = 1
2π

∫ +∞
−∞ e±µuT xF±L[u]du = f(x)

F±R[f(x)] = 1
2π

∫ +∞
−∞ f(x)e∓µuT xdx = F±R[u]⇔

F∓R[F±R[u]] = 1
2π

∫ +∞
−∞ F±R[u]e±µuT xdu = f(x)

(13)



where x = (x, y),u = (u, v) (u, v are quaternion fre-
quencies) and µ represents a pure quaternion unit that de-
fines the axis of the transformation. µ is chosen to be
µ = (i+j+k)/

√
3 in [9] for processing of natural RGB im-

ages as it is aligned with the grayline axis of the unit RGB
colour cube.

4. Quaternion Potential Functions

4.1. Calculating Potential Functions using
Quaternion Cross-Correlation

As already mentioned in Section 2.1, both the single
node potential Vi and the pairwise potential Vij(li, lj) are
calculated by taking the SSD of the two image regions. Sup-
pose that f and g are two image regions, the similarity be-
tween the shifted f and g within a region of interest in g is
evaluated as [13]

SSD(δ) =
∑
χ

(f(χ− δ)− g(χ))2w(χ) (14)

where χ = (x, y) indicates the coordinate of a pixel, δ rep-
resents the shift and w is the binary mask of the same size
as f and g that is only non-zero in the interested region (w
is a matrix of all 1s when estimating the pairwise potential).

Equation (14) can be rewritten as

SSD(δ) =
∑
χ

(f2(χ− δ)w(χ))

−2
∑
χ

(f(χ− δ)g(χ)w(χ)) +
∑
χ

(g2(χ)w(χ))
(15)

The last term of equation (15) is independent to δ, so we
only need to calculate it once by summing the squares of all
the values in g in the interested region (i.e. where w(χ) =
1). The first two terms can be evaluated by calculating the
cross-correlation of f and g∑

χ

(f2(χ− δ)w(χ)) = [f2(χ) ? w(χ)]δ (16)

∑
χ

(f(χ− δ)g(χ)w(χ)) = [f(χ) ? (g(χ)w(χ))]δ (17)

where ? is the correlation operator and f(χ) is the quater-
nion conjugate of f . Note that all the computations above
are performed in the quaternion domain. Thus, we need to
convert the input colour images into quaternion matrices us-
ing equation (12) and then calculate their cross-correlation.

The cross-correlation of two quaternion images f and g
was originally extended from standard complex correlation
using basic quaternion arithmetic [9, 11]

C(f, g) =
M−1∑
m=0

N−1∑
n=0

f(m, n)g(m− k, n− l)⇒ cr(k, l) .

(18)

cr(k, l) is the resulting correlation surface as an M × N
quaternion image. The SSD is then calculated by taking the
modulus of the values in the correlation surface cr(k, l).

4.2. QFT for Calculating Quaternion Cross-
Correlation

It is impractical to evaluate the cross-correlation function
in equation (18) directly due to the high computational cost
(O(N4) for a N × N image [9]). Thus, a method of cal-
culating the quaternion cross-correlation based on fast QFT
was developed in [9].

C(f, g)

= F−R{F+R[u]G+R
‖ [u]}+ F+R{F+R[u]G+R

⊥ [u]}

= F∓R{F+R[u]G±L‖ [u] + F−R[u]G±L⊥ [u]}
(19)

where u = (u, v), G(u) = QFT{g(m, n)}, G‖[u]‖u and
G⊥[u]⊥u

Using equation (19), we can rewrite equations (16) and
(17) as

f2(χ) ? w(χ) = F∓R{F+R[f2(χ)]G±L‖ [w(χ)]

+F−R[f2(χ)]G±L⊥ [w(χ)]}
(20)

f(χ) ? (g(χ)w(χ)) = F∓R{F+R[f(χ)]G±L‖ [g(χ)w(χ)]

+F−R[f(χ)]G±L⊥ [g(χ)w(χ)]}
(21)

5. Experiments and Discussion

The proposed image completion method using hyper-
complex potential functions was tested on a broad range
of colour images including infrared images and images
taken in both indoor and outdoor conditions. We com-
pared the outputs obtained by performing the completion
method on gray-scale images using the monochromatic
model and colour images using quaternion potential func-
tions to demonstrate the effectiveness of our method. For
all experiments, we chose w = h and gapx = gapy = 1

2h
to get a good overlap region between two labels. The op-
timum size of patches and label pruning parameters used
in the tests for gray-scale images were selected based on
the automatic parametrisation method proposed in [7]. For
colour images, we could calculate the standard deviation of
the patch entropies for each channel and then take the av-
erage of the results in order to determine the optimum size.
Figure 3 shows the plots of the standard deviation of the
patch entropies versus patch size for Figure 5a in both gray-
scale and colour. In both plots, we can see that patch size 16



(a) Gray-scale image (b) colour image

Figure 3. Standard deviation of the patch entropies versus patch size.

gives the largest standard deviation for the patch entropies.
Thus, the optimum size for the completion process for the
given input image is 16 for both colour and monochromatic
models.

For the far-infrared image (Figure 4), the results are sim-
ilarly good for both gray-scale and colour images. This is
not surprising as this far-infrared image essentially displays
temperature values and thus only has one channel. The
colour representation is merely a different way of visual-
ising the different temperature values in the scene, although
we treated the ‘colour’ representation for the sake of the
experiments here as if it was a true 3-channel colour im-
age. As the colour distribution of the background is nearly
uniform in far-infrared images, the difference between the
colour and gray-scale output is not significant. Another rea-
son is that there are no complex background structures un-
der the interested region in this example, so it is simpler to
complete the image even in the gray-scale domain.

For the outdoor scene, there is a considerable difference
in the quality of the gray-scale and the colour outputs (Fig-
ure 5). It is clear that the outputs for colour images (Figures
5d, 5h) are perceptually better than the gray-scale outputs
(Figures 5c, 5g). In Figure 5c, we can still see implausible
blocks when filling the lake surface and the fountain which
are not present in Figure 5d. Although the water surface is
completed well in both cases, the background region behind
the boat is filled in a more plausible way in Figure 5h than
in Figure 5g. Naturally, what happens in this case is that
by using hypercomplex numbers to model colour images,
the correlations across the channels are captured which pro-
vides more information to complete those images.

A number of further examples in Figure 6 show the effec-
tiveness of our approach in completing images in the pres-
ence of a variety of structures in the background. These

input images were taken indoors, containing complex struc-
tures like tables, chairs and other objects. In all cases, these
images were convincingly reconstructed by applying the
hypercomplex colour model (Figures 6d, 6h). These results
outperformed the ones for gray scale images (Figures 6c,
6g).

6. Conclusions

In this paper, we have presented a method of using hy-
percomplex numbers, also known as quaternions, and their
Fourier transforms to calculate the similarity of colour im-
age patches and then estimate the potential functions of
an image completion algorithm using MRFs and BP. This
method provides a systematic, unified way of solving colour
image completion instead of processing each channel sepa-
rately. By using quaternions to model RGB pixels, we can
improve the performance of the completion algorithm. The
proposed approach can also be used in other problems that
need to calculate the similarity of image regions includ-
ing colour image alignment, object recognition in colour
images, and super-resolution. Results comparing this ap-
proach to the completion method for monochromatic im-
age show the effectiveness of our approach. In future work,
the same quaternion idea can be applied to the automatic
parametrisation process to achieve a better estimation of pa-
rameters for the image completion problem.
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(a) Infrared image (b) Mask
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Figure 4. Image completion results for the far-infrared input image.
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Figure 5. Image completion results for outdoor scene. (a), (e): Background images, (b), (f): Binary
masks, (c), (g): Results for gray-scale images, (d), (h): Results for colour images.
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Figure 6. Image completion results for indoor scene. (a), (e): Background images, (b), (f): Binary
masks, (c), (g): Results for gray-scale images, (d), (h): Results for colour images.


