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Abstract

Human perception of the world is inherently multi-sensory because the information

provided is multimodal. The perception of spoken language is no exception. Beside

the auditory information, there is visual speech information as well, provided by the

facial movements as a result of moving the articulators during speech production.

Visual speech information contributes to speech perception in all kinds of audio

conditions, but its effect is perhaps most readily noticed in noisy audio conditions.

Various research groups around the world have studied the effects of incorporating

visual speech information in automatic speech recognition (ASR) systems in recent

years. They have found that audio-video (AV) ASR systems result in an improved

recognition rate compared to audio-only systems, in particular in noisy audio con-

ditions. Exactly how to incorporate the additional visual speech information best

is still not known.

This study aims to extend our knowledge of relationships between audio and

video speech parameters. It investigates ways of describing such relationships us-

ing statistical analyses and their application to the example of Australian English

(AuE). The work described in this thesis is multi-disciplinary. Apart from the sta-

tistical analyses, it also required algorithms to extract speech parameters and a

corpus of AV speech sequences, which were not readily available.

A novel non-intrusive automatic lip tracking algorithm is presented, which uses

a stereo camera system to enable accurate 3D measurements of facial feature points

without the need for artificial markers on the face. Due to the lack of an AV speech

corpus for AuE, a new modular framework for AV speech corpora was developed

and followed in a newly created corpus for AuE.

Equipped in such ways, it was possible to test the hypothesis that combinations

of audio and video speech parameters are related, rather than single parameters,

and that these combinations are phoneme-specific. Based on articulatory theory,

it is clear that the audio and video domain are related in some way and to some
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extent because the visible speech articulators form a part of the whole set of ar-

ticulators. However, it also means that not all of the information contained in the

audio modality has equivalent information in the video modality. The set of audio

speech parameters was formed by voice source excitation frequency F0, formant

frequencies F1, F2, F3, and RMS energy. Mouth width, mouth height, protrusion

of upper and lower lip, and the novel teeth visibility measure relative teeth count

formed the video speech parameter set.

Extensive univariate and multivariate statistical analyses, such as pairwise lin-

ear correlation analysis, principal component analysis, statistical shape analysis,

canonical correlation analysis, and coinertia analysis, were performed to explore

the AV relationships in AuE. The AV relationships found by this study support

the hypothesis that linear combinations of parameters correlate well (r = 0.5−0.8)

across the two modalities and that their composition is phoneme-specific. The re-

sults show that with the given parameter sets, between one fifth and one third of

the variance in either modality can be recovered from the other modality. For visi-

ble speech information purely based on the lips, this agrees with studies on human

speech perception found in current literature. Further investigations are required

to test the stability of the found relationships and their suitability for a rule-based

AV ASR system.
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Chapter 1

Introduction

The Australian often speaks without obviously opening his lips at all, through an

immobile slit, and in extreme cases through closed teeth.

Hector Dinning

The Australian Scene, Sydney, 1939

With the rapid advances in computer technology over the last two decades and its

many obvious and hidden uses in today’s life, the way people interact with com-

puter systems has become an important aspect and has received significantly more

attention in recent years. As computer systems become commonplace, they are

used more and more by non-experts, so that user-friendly systems are required.

Traditional ways of interaction through the usage of keyboards, mice, and moni-

tor displays are often cumbersome or simply impractical in many application areas

outside the laboratory or office environment. Human-computer interaction is in-

herently and unavoidably social. People often respond to computers as if they were

human. The social and emotional aspects of that interaction form an important part

of the field of human-computer interaction and the future direction is undoubtedly

towards more human-like interactions with computer systems.

Automatic speech processing has long been regarded as an important means of

human-computer interaction because of its naturalness, but only recent advances in

technology, combined with a significant reduction in cost, have made the widespread

1
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use of speech processing technology viable. For example, telephone companies such

as Telstra1 employ automatic speech recognition tools in their directory services.

PC-based automatic speech recognition systems like IBM’s ViaVoice are available

for dictating letters. Similarly, the synthesis of voices has progressed and is utilised

in many areas, the film industry being but one example.

Technology developments in recent years have made continuous speech recogni-

tion possible in reasonably good acoustic environments such as the office. However,

these systems can fail unpredictably if the conditions are not ideal, for example,

when faced with acoustic noise, changes in the rate of speaking, or certain speaker

characteristics which cause no problem to human perceivers.

Human perception of the environment is inherently multi-sensory because the

information provided is multimodal. Humans use single senses only rarely, usually

the different senses are employed in a coordinated way. When we touch an object,

we also see it with our eyes and we might also smell its odour. The information from

the object is transferred through different modalities and different sensors receive

the information, but our mind combines the various information channels again and

produces a coherent understanding of the object’s properties.

Human perception of spoken language is no exception to this multi-sensory,

multimodal perception of the environment. To the naive observer, speech per-

ception is often considered to be a unimodal process, purely based on the audio

modality. However, human beings make use of visual information, provided by the

facial movements during speech production, as well. As Burnham and Sekiyama

[Burnham 02] point out, visual speech information contributes to speech perception

not only when the acoustic information is degraded by noise or when the listener is

hearing-impaired, but also in clear audio conditions as can be seen in the McGurk ef-

fect [McGurk 76, MacDonald 78] (see the literature review in Chapter 2 for details).

Hence, human speech perception is really a multi-sensory, multimodal process.

In a similar fashion to human speech processing, the incorporation of additional

visual information, extracted from facial movements during speech production, has

1An Australian telecommunications company.
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been shown to overcome some of the limitations of audio-only automatic speech

recognition systems and to improve the recognition rate, particularly in conditions

where the auditory information is degraded by noise (see the literature review in

Chapter 2 for details). This combination of auditory and visual speech information

leads us to the relatively new, but fast growing field of Audio-Video (or Auditory-

Visual) Speech Processing (AVSP) and the research in this field will bring us closer

to natural, human-like interactions with computers.

1.1 Motivation and Aim

The aim of the work described in this thesis was to enhance the understanding of

some of the many complex aspects of AVSP for automatic speech recognition. Of

particular interest were a scientific understanding of the interplay of the auditory

and the visual modality of the speech signal. Although studies by various research

groups around the world have shown that adding visual speech information in the

recognition process is advantageous, little is known on how these two modalities

interact and how this interaction can be exploited best.

To gain such an understanding, the relationships of various parameters of the

audio and video speech signals were statistically analysed on the sequences of a

purpose-built, yet general and comprehensive, new audio-video speech data corpus

of Australian English (AVOZES). No such data corpus has previously been publicly

available for Australian English (AuE). While ‘standard’ parameters describing the

audio speech signal are known, the visual speech parameters most useful for auto-

matic speech recognition are still debated. This study investigated the empirical

relationship of visual speech parameters, derived from geometric features such as

the lip corners, with auditory speech parameters like formants. These parameters

were chosen because their more direct relation to the vocal tract and the articu-

lators, compared to other parameters, is expected to facilitate the interpretation

of the results. The central theme of this study was the investigation of the pres-

ence and the nature of the AV relationships in AuE. Along the way, the suitability

of the chosen visual speech parameters to explain variance in the auditory speech
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parameters (and vice versa) was explored.

Moreover, this study presents new methodology for the extraction of visual

speech parameters. Recently developed methods for fast and reliable facial feature

tracking, which is a pre-requisite for accurate parameter measurement, were applied

and tested. In particular, the use of a stereo vision system, new to the field of AVSP,

was expected to deliver more accurate and more reliable results than a monocular

system can, because of the superior capability of 3D reconstruction. This means the

speaker is free to move the head in a natural way during speech production, while

the system still provides accurate measurements of the location of facial feature

points in 3D. A novel lip tracking system extending the stereo vision face tracking

system is presented, which does not require the use of any artificial markers.

Furthermore, the relatively young multivariate statistical technique of coinertia

analysis was introduced to the field of AVSP. Coinertia analysis was developed for

ecological studies, where small sample sizes and large parameter sets often conflict.

This problem also occurs frequently in spoken language studies. Traditional multi-

variate statistical analyses can result in stability problems. Coinertia analysis has

the advantage that its results are independent of the sample size, which made it

very suitable for this investigation.

From Hector Dinning’s quote at the beginning of this chapter, one could expect

AVSP to be a lost cause for speakers of AuE. AuE is traditionally said to be lazy,

nasal, drawling, not clear, similar to Cockney, monotonous, flat, and marred by

lip-laziness. However, Mitchell and Delbridge [Mitchell 65] comprehensively refute

most of these views. AuE has its own characteristic rhythm and intonation as

well as a shift in vocalic sounds, particularly diphthongs, that make it stand out

when compared to other regional dialects of English but perhaps surprisingly for

such a large country, regional differences are very small. Only one AuE dialect

exists, but different pronunciation varieties occur. An interesting side aspect was

thus to compare the AV relationships of AuE within its varieties, although such a

comparison could only be a starting point for a more comprehensive study on this

aspect due to the limited sample size. If lip-laziness was indeed prominent in AuE,

AV relationships were expected, which are not as strong as they are for strong lip
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movements.

The AuE ‘speech varieties’ are usually categorised as broad, general, and culti-

vated but categories are not discrete entities, rather, they span a continuum with

considerable phonetic overlap. Perhaps broad AuE, with its characteristic vocalic

pronunciations and consonantal unclarity, is the variety that Dinning had in mind

when making the above mentioned critcisms. However, speech production is an

auditory-visual event in any case and is perceived as such. Hence, an investigation

of the statistical relationship between auditory and visual speech parameters is an

interesting topic for AuE, and certainly in general anyway, and one that has not

received much attention so far.

1.2 Chapter Outline

Chapter 2 contains a comprehensive literature review. First, AVSP by humans is

reviewed, including the McGurk effect, general aspects of human speech production

and perception, and models of the integration of the audio and the video modality.

Secondly, the characteristics of AuE are presented. Thirdly, the area of AVSP by

machines is visited which includes topics such as the fundamentals of audio-only and

video-only automatic speech recognition, the methods of automatic extraction of

video speech parameters, the ways of integrating the two modalities in AV automatic

speech recognition, and AV speech data corpora.

A novel real-time lip tracking system is presented in Chapter 3. This system

extends a real-time stereo vision face tracking system to deliver accurate video

speech parameters. The way the face and lip tracking systems work in measuring

facial feature points in 3D is explained in detail. The accuracy of the lip tracking

system is validated in an experiment and the results of this validation are given.

In Chapter 4, the design principles of the new AV speech data corpus for Aus-

tralian English (AVOZES) are introduced. A general framework for modular, ex-

tendable AV speech corpora is proposed and this framework is followed in the

AVOZES corpus. In addition, the chapter details the experimental setup and the

recording environment for the creation of the data corpus and the subsequent sta-
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tistical analysis of the relationship of audio and video speech parameters.

Chapter 5 describes the methods of analysis. This chapter is structured in two

parts. Firstly, methods for the separate analysis of the audio and the video modality

for extracting parameters that describe the speech signal in these modalities are

discussed. Secondly, the theoretical background of the performed statistical analyses

is presented. This study focussed on the analysis of the originally measured (static)

parameters and left the analysis of derived (dynamic) parameters to future work.

Both traditional methods of univariate and multivariate statistical analysis as well

the relatively new methods of coinertia analysis and functional data analysis were

used.

In Chapter 6, the results of the statistical analyses are presented and discussed.

This chapter starts with remarks about the extracted parameters by discussing

observations made on the measurements and by using linear discriminant analysis.

Next, each parameter set is tested for redundancies by applying principal component

analysis and linear correlation analysis to each set. This is followed by a statistical

shape analysis of the parameter curves for each phoneme under investigation to

determine patterns in the temporal domain. To test the hypothesis of combinations

of parameters being related across the two modalities, the multivariate statistical

analyses of canonical correlation analysis and coinertia analysis were performed and

their results discussed in detail. Also, an example is given on how curve registration

using functional data analysis can aid the analysis.

Finally, Chapter 7 presents a summary and the conclusions of the work described

in this thesis as well as an outlook on open issues for future work.



Chapter 2

Literature Review

In this chapter, a comprehensive overview of the related literature is given to set the

scene for the remaining parts of this study. Audio-video speech processing (AVSP)

is a complex field which draws from many other disciplines, for example, linguistics,

psychology, machine learning, and computer vision. Such a multi-disciplinary field

offers different angles on the same topic and research can be taken in different

directions. This chapter provides an overview of the most important areas in AVSP,

keeping in mind the aim of this study, to investigate the statistical relationship of

audio and video speech parameters.

This chapter consists of four main sections: AVSP by humans, characteristics

of Australian English (AuE), AVSP by machines, and statistical analyses of audio-

video (AV) relationships. Section 2.1 gives a detailed overview of human speech

production and perception mechanisms from an AVSP angle. It includes discussions

of the McGurk effect, of the sources of visual speech information, and of models

of the integration of the audio and the video modality. Section 2.2 describes the

characteristics of AuE in general and the continuum of accent variation spanned by

the varieties of AuE in more detail. Thirdly, Section 2.3 outlines the methods used

in audio-only, video-only, and AV automatic speech recognition (ASR) systems.

This includes a discussion of visual feature extraction methods as well as of ways

to integrate the two modalities. The section ends with an overview of AV speech

data corpora. Finally, Section 2.4 discusses previous analyses of AV relationships.

7
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2.1 Audio-Video Speech Processing by Humans

Extensive psychological and linguistic research has shown that human speech per-

ception does not only involve the processing of auditory information but also the

processing of visual speech information. Humans use single senses only rarely. The

different senses are employed in a coordinated way and the world is perceived mul-

timodally. Inspection of an object by one sense also leads to expectations and

predictions about what will be experienced by other senses. For example, simply

by looking at a surface, one’s mind creates an expectation of whether the surface is

likely to be smooth or rough, soft or hard, and so on, when touched.

This section starts with looking at the McGurk effect which generated a surge of

activity in the field of AVSP (Section 2.1.1). Section 2.1.2 introduces the important

concepts of phonemes and visemes, before background information on speech pro-

duction and perception mechanisms (Sections 2.1.3 – 2.1.5) are provided. Next, the

sources of visual speech information are discussed in Section 2.1.6. Finally, models

of integrating auditory and visual speech information are presented in Section 2.1.7.

2.1.1 The McGurk Effect

In many situations in which spoken communication between humans occurs, the

listener cannot only hear the speaker, but also see them. Although speech processing

is often regarded as merely an auditory process, it is influenced by vision as well.

McGurk and MacDonald showed this effect in their seminal work [McGurk 76].

In their experiments, sequences of /ba-ba/, /ga-ga/, /pa-pa/, and /ka-ka/ were

recorded. Audio and video signals were rearranged to create sequences such as

audio-ba + video-ga, audio-ga + video-ba, audio-pa + video-ka, and audio-ka +

video-pa. These sequences were shown to subjects from different age groups who

were asked to repeat what they had just ‘heard’.

Two types of responses were found: fused and combined. Audio-ba + video-ga

and audio-pa + video-ka resulted in fused responses of /da-da/ and /ta-ta/, respec-

tively. In other words, the subjects perceived something that was not present in

either modality — the so-called McGurk effect. Audio-ga + video-ba and audio-ka
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+ video-pa resulted in combined responses, such as /bagba/, /gabga/, and /kapka/,

/pakpa/ etc. These are composite responses comprising relatively unmodified el-

ements from each modality. These observations suggest that people with normal

hearing under good listening conditions employed lip reading skills. The informa-

tion received from the eye influenced the perceptual process in such a way, that

they were ‘hearing’ something different from what was presented directly to their

ears. Even with objective knowledge about the McGurk effect, the illusions do not

disappear. A previously auditory-visually perceived /da/ is heard correctly as /ba/

by simply closing the eyes, only to become /da/ again after opening the eyes again.

These findings were confirmed in a further study by MacDonald and McGurk

[MacDonald 78]. The authors proposed the theory that manner of articulation

(voiced or voiceless, oral or nasal, stopped or continuant, etc.) is detected by ear,

while place of articulation (e.g. front, central, or back articulation) is detected by

eye. Similar to the first study, audio and video recordings of /pa, ba, ta, da, ka,

ga, ma, na/ were combined in all possible ways and presented to subjects whose

responses were recorded. Their results showed that combinations within the group

of labials /p b m/ and within the group of non-labials /t d k g n/ produced very few

perception errors. In contrast, combinations of labial audio and non-labial video

(and vice versa) led to a considerable number of fused and combined responses as

predicted by their manner-place theory. However, the nature of these errors found

in responses to non-labial audio and labial video differed from what was expected.

McGurk effects exist for speakers of many languages. For example, they were

found for German and Spanish speakers [Fuster-Duran 96], Japanese speakers

[Sekiyama 98], Dutch speakers [Vroomen 92], French speakers [Colin 98], Finnish

speakers [Sams 97], and Thai speakers [Burnham 96].

Age Matters

An interesting result of McGurk’s initial experiments is that speech perception of

adults is more strongly influenced by visual stimuli than is that of children. Speech

perception is subject to age-related changes. When speech perception is dominated
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by a single modality, this tends to be the auditory for children and the visual for

adults [McGurk 76]. With increasing age and acquired language knowledge, the

awareness of the relationship between speech sounds and their associated visible

articulations grows. However, infants as young as four months have been shown to

perceive the McGurk effect [Burnham 96]. Through long experience with natural

conversation, humans have a strong expectation for lips and voices to convey the

same speech information and they seem to have an implicit understanding of the

constraints placed upon speech production by the activity of the visible articulators.

For example, the plosive /b/ is rarely perceived unless one sees the lips closing.

2.1.2 Phonemes and Visemes

Before giving an overview of the processes involved in speech production and

processing in the following sections, two important concepts shall be introduced:

phonemes and visemes. A phoneme is a member of the set of auditory speech sounds

(in any given language) that serves to distinguish the meaning of one word from

another. For example, /p/ and /b/ are separate phonemes1 in English because they

distinguish words such as pet and bet. It may consist of several phonetically distinct

articulations (allophones), which are regarded as identical by native speakers, since

one articulation may be substituted for another without any change of meaning.

By analogy, a viseme is a member of the set of visually distinguishable articu-

lations [Fisher 68]. Taking the example of /p/ and /b/ again, they belong to the

same viseme category as they are both bilabial sounds. /p/ and /b/ are more read-

ily separable auditorily than visually. In contrast, /T/ and /f/ are auditorily very

similar but visually distinguishable by the visibility of the tongue and the teeth,

respectively. Thus, the set of phonemes is at least partially different from the set of

visemes and, hence, there is no 1–1 mapping between the two. The difference can

be used to resolve ambiguities evolving in one modality but not in the other.

1 The alphabet of the International Phonetic Association (IPA) is used throughout this
thesis [IPA 99].
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No 1–1 Mapping between Phonemes and Visemes

Although visible speech articulation, particulary lip motion, is potentially infor-

mative, it is also inherently ambiguous. Spoken AuE consists of 44 separate

phonemes (24 consonants and 20 vowels/diphthongs) and their various combina-

tions [Bernard 81, Mitchell 46, Woodward 60]. On the other hand, there are only

11 distinguishable visemes2 in AuE, which means each viseme has to accommodate

more than one phoneme [Plant 77, Plant 80]. The phonemes and visemes of AuE

are shown in Tables 4.1, 4.2, and 4.3 in Chapter 4.

Moreover, a study by Kricos [Kricos 96] shows that viseme categories vary across

speakers both in the number of visemes and in their constitution. This fact is re-

lated to the ease with which talkers can be speechread, that is how clear their visible

articulation is. The visual expressiveness and distinctiveness of a speaker has a sig-

nificant effect on the speechreader’s perception. According to the same study, most

people are likely to be presenting significantly fewer than 11 or 12 visemes. Factors

affecting the number and constitution of perceived visemes are coarticulation effects

of accompanying sounds, environmental conditions such as lighting and the angle at

which the perceiver watches the speaker’s face, and articulatory differences among

the speakers. These factors must also be addressed in AV ASR systems.

Auditory Intelligibility �= Visual Intelligibility

Kricos [Kricos 96] found also that normal auditory intelligibility of a speaker does

not ensure high visual intelligibility because the visible movements of the articu-

lators, needed for successful speechreading, are not needed to produce auditorily

intelligible speech. In addition, a given speech sound can be produced in differ-

ent ways by various talkers and still sound the same. For example, the inter-dental

phonemes /T/ and /D/ can be satisfactorily produced by both protruding the tongue

through the teeth, or placing the tongue behind the teeth of the upper jaw. While

the auditory consequences are very much the same, the visual consequences are

clearly different. The tongue will be visible in the first case but not in the latter.

2 12 visemes if /aU/ is taken as a separate viseme.
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2.1.3 The Speech Chain

Speech production and speech perception in humans are related to each other.

In speech production, there are linguistic, physiological, and physical (acoustical)

stages, the order of which is reversed in speech perception. This has been called the

speech chain [Denes 93]. The very purpose of uttering speech is that it is received

and understood by a listener. An idea is transmitted from the mind of the speaker

to the mind of the listener. Speech production and speech perception both involve

processing in the brain to formulate or understand a message, to transfer to or from

a language code, and to control certain muscle groups to produce sounds or receive

signals from the hearing organs in the ear. An understanding of these processes can

help create good solutions for the difficult task of processing speech by machines.

After a general overview, details of speech production and speech perception,

that are considered useful background information and relevant to a study of AV

relationships, are given in Sections 2.1.4 and 2.1.5. For a detailed explanation of

all processes, see Denes and Pinson [Denes 93]. Also, most textbooks on speech

processing or phonetics give an overview of the processes involved (for example,

Ainsworth [Ainsworth 76], Clark and Yallop [Clark 95], Fry [Fry 76, Fry 79], Furui

[Furui 89, Furui 00], Ince [Ince 92], Rabiner and Juang [Rabiner 93]).

General Overview

Although not all details of every step have been discovered yet, the generally ac-

cepted view of the processes is as follows. Human speech communication starts with

the formulation of a message that the speaker wants to convey to a listener. This

message is converted via a linguistic structure into language code. The conversion

involves choosing words from a dictionary, ordering them in the appropriate order

according to grammatical rules, adding prosodic information (specifying pitch, loud-

ness, and duration of sequential segments), and stringing together the phonemes.

In the next step, the message is encoded in the physical properties of the speech

sounds. The speaker produces neuromuscular (motor nerve) commands which are

executed by the muscles of the vocal organs. These are broadly the muscles in the
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chest and abdomen used for breathing (which as a by-product produce the energy

to generate sound waves), the muscles of the larynx used in phonation, and the

muscles of the vocal tract which take part in the articulation of speech sounds. The

resulting movements of the vocal organs generate and shape continuous sound waves

(pressure waves) which travel from the speaker’s vocal operators in all directions.

The propagation of the sound waves with respect to velocity and energy loss

(damping) depends on the physical properties of the transmission medium (usually

air). Some of the sound waves travel to the listener’s ear as well as to the speaker’s

ear allowing continuous control of the vocal organs by this feedback. When the

sound waves reach the ear, the acoustic energy contained in the waves causes the

eardrum to vibrate, with the ear canal working as an acoustic resonator. The

ossicles of the middle ear connect the eardrum with the inner ear. The middle ear

also amplifies the acoustic energy delivered to the inner ear and protects it from

loud sounds. In the hair cells of the organ of Corti, contained within the cochlea, the

pressure waves are transduced into electrical signals, which are sent to the speech

centres of the brain via the nerves connecting the ear and the brain. In a way that

is as yet not well understood, the neural activity is converted into a language code

in the speech centre and the sequence of language units, originally formulated in

the speaker’s mind, is reconstructed to achieve understanding of the message.

2.1.4 Speech Production

In this section, the processes involved in speech production are described. The

generation and shaping of sound waves in the vocal organs are detailed because the

physical properties of these waves are measured and analysed later (see Chapter 5).

When the abdominal muscles force the diaphragm up, air is pushed up and out

of the lungs. The airflow passes through the trachea and the glottis — the opening

between the vocal cords — in the larynx and from there through the pharynx past

the velum to the oral and nasal cavities. The upper part beginning with the larynx

is called the vocal tract which ends at the lips and nostrils. The vocal tract is

an air-filled tube of about 15–17cm length (in adults). No two vocal tracts are of
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exactly the same size or shape. Human speech communication relies on the fact

that we learn to disregard the effects due to different vocal tracts and instead pay

attention to the effects of articulatory changes to the shape of the vocal tract. The

shape can be varied by moving the so-called articulators which are the tongue, the

lips, the jaw, and the velum.

The vocal cords act as an adjustable barrier to the airflow. They open and close

rapidly when under tension during speech production, turning the air stream into a

series of volume-velocity pulses. The intermittent airflow is called the glottal source

(or source of speech or voice source). In normal vocal cord vibration, the vocal

cords are first drawn together, so that the subglottal pressure builds up. When the

pressure becomes too large, the vocal cords are blown apart by the sudden release of

air. According to the myoelastic-aerodynamic theory, the Bernoulli effect assists the

closure of the vocal cords and the cycle is repeated [van den Berg 58]. The process

of vocal cord vibration is called phonation. The pressure wave generated is quasi-

periodic and the shape of the waves is approximately asymmetric-triangular. The

frequency of the vocal cord vibration is commonly referred to as the fundamental

frequency of the glottal source or the voice source excitation frequency F0.
3 The

range of F0 frequencies used in normal speech extends from about 60Hz to 350Hz

[Denes 93]. It should be noted that the sound wave generated by the glottal source

is a complex wave consisting of fundamental and harmonic components [Fry 79].

Acoustics of the Vocal Tract

The term acoustics refers to the scientific study of sound. Sound results from vi-

bration of one kind or another. In order to generate audible sound, a propagating

medium is required through which the sound can travel. In addition, the frequency

of the vibrations must be within the sensitivity range of the ear, which is usually

considered to be from 20Hz to 20kHz, although this varies among individuals. Fur-

3 Fundamental frequency and pitch are often used synonymously although it is impor-
tant not to confuse the two. Fundamental frequency is a physical property of the sound
source, while pitch is the sensation that this frequency gives rise to [Fry 79].
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thermore, the vibration must have an amplitude large enough to be audible.4 From

amplitude, we can derive a property called intensity which corresponds to power

per unit area. Power itself is a measure of the rate of energy being used and hence

intensity is also a measure of energy. Intensity is proportional to the square of

pressure, so from samples of the speech waveform the measure known as Root Mean

Square (or RMS) Value5 can be derived.

There are four main processes in sound generation and the acoustic consequences

of these processes can be considered independently [Fant 60]. The first process

involves the creation of sound waves at the glottis and / or in some turbulent

airstream in the vocal tract. Secondly, the shape of the vocal tract modifies these

waves and functions as a frequency-selective filter (more on articulation in the next

subsections). These two processes together are often considered as the source-filter

model of speech [Fant 60]. As a third process, energy losses due to the damping

effect of the vocal tract walls affect the acoustics. The final process involves the

radiation of the sound waves from the lips and / or the nostrils. The first two

processes are described in more detail in the following paragraphs. For more details

on all four processes, see Harrington and Cassidy [Harrington 99], for example.

In voiced sound production, the air in the vocal tract — acting as a resonator

— is set into vibration by the harmonic rich glottal source with the fundamental

frequency F0. The fundamental frequency is the lowest in a harmonic series, a series

in which the harmonic frequencies (or simply harmonics) are multiples of the funda-

mental frequency. The vocal tract responds more strongly to those harmonics which

coincide with its natural or resonant frequencies. The resonances of the vocal tract

are called formants and their frequencies formant frequencies, which are commonly

numbered F1, F2, F3, and so on, starting from the lowest. The lowest three or four

are considered to be the most useful in describing speech sounds. These frequencies

determine the frequency spectrum of the sound waves radiating from the lips and

nostrils. The formant frequencies of women are higher than those of men and chil-

4 Amplitude refers to what is commonly called loudness, although these are not the
same because the former is a physical property and the latter a sensation.

5 The terms RMS intensity and RMS energy are often used synonymously.
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dren’s formant frequencies are higher again. Changing the shape of the vocal tract

results in a change of the formants and thus creates different sounds. Resonances

only depend on the shape of the vocal tract, not on the fundamental frequency of

the sound source. Source and filter are independent in first approximation.

In unvoiced sound production, air turbulences in the vocal tract are the sound

source. This is achieved by constricting the airflow in the vocal tract with one

or more articulator(s), thereby changing the shape of the vocal tract and possibly

creating a front and a back cavity. Doing so creates resonances and anti-resonances,

the latter having a cancelling effect on frequencies. There is some evidence in the

literature (e.g. [Fant 60, Flanagan 72]) that the length of the front cavity accounts

for many frequency differences between unvoiced sounds with different places of

articulation. Shorter front cavities result in higher resonance frequencies. However,

in general, the relationship between vocal tract shape and sound production is less

understood for excitation forward of the glottis than it is for excitation at the glottis.

Formants are still present but are often considerably less distinct.

Vocal Tract Models

Vocal tract (or articulatory or speech production) models relate articulatory proper-

ties to acoustic (spectral) properties. The vocal tract is assumed to be a tube with

adjustable shape (cross-sectional area, length) [Maeda 79, Maeda 82, Maeda 88].

The most simplistic model is a circular tube with constant cross-sectional area and

no energy losses.6 Despite such large simplifications — the vocal tract is at best

ellipsoidal near the glottis and of more complex shape elsewhere — this single-tube

model is sufficient for the approximation of the central vowel /@/, which corresponds

to a virtually unrestricted vocal tract. The vocal tract can be approximated more

accurately by a series of short tube sections of fixed length (≈5–10mm) and vari-

able cross-sectional area which can be adjusted to reflect the vocal tract shape for

a certain sound. The effective frequency response of the vocal tract can then be

computed and the corresponding formant data be obtained [Dunn 50, Fant 60].

6 This is equivalent to a single Helmholtz resonator.
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Such a model is accurate but computationally expensive. Stevens and House

[Stevens 55, Stevens 56] as well as Fant [Fant 60] developed much simpler and less

computationally expensive, approximate models with circular tubes and only four

sections. These sections form a back cavity, a tongue constriction, a front cavity,

and the lip region.7 Apart from the neutral /@/ and /h/, all sounds are produced

by creating a constriction of some kind and some degree with the help of the ar-

ticulators. This view is supported by X-ray studies of the vocal tract in speech

production ([Fant 60, Wood 79]). Fant showed in his study that such a model can

calculate the formant pattern of voiced sounds and unvoiced sounds, although the

latter require more complex calculations, because they involve turbulent airstreams

as sound sources which are more difficult to model. In the special case of nasal

consonants, the nasal cavity is coupled with the totally obstructed oral cavity as

a branch resonator. Nasal formants can be found and they are relatively stable,

because the nasal cavity system cannot be varied in a systematic way like the oral

cavity by means of some articulators (e.g. [Fant 60, Harrington 99]).

Attempts have also been made to construct acoustic-to-articulator models but

the difficulty is that more than one articulator configuration can produce the re-

quired speech sounds. For example, intelligible speech can be produced when hold-

ing a bite block between the teeth [Gay 81, Hoole 87, Jones 03]. More details on

acoustic-to-articulator models can be found in the literature, for example, see Harsh-

man and Ladefoged [Harshman 77, Ladefoged 78, Ladefoged 79].

Stevens’ Quantal Theory

Stevens [Stevens 72, Stevens 89] suggests in his quantal theory of speech production

that there are regions in the vocal tract for which even relatively large changes

in the degree of constriction by articulators result only in relatively small changes

to the acoustic output. On the other hand, a small shift beyond the boundaries

of such a region produces a large change in the generated speech signal. Thus,

the relationship between vocal tract shape and frequency spectrum is not linear

7 Such a system with front and back cavities is equivalent to a double Helmholtz
resonator.
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but rather ‘step-wise’ or quantal. These comparatively large changes contribute to

phonological distinctiveness. Stevens suggests that articulation is organised in such

a way, that optimal use of the vocal tract to produce distinctive sounds is made.

Examples are the vowel triangle of /i/, /a/, and /u/ [Boë 94], or the sudden change

from laminar to turbulent airflow when a constriction reaches a critical point and

the sound changes suddenly from vocalic to fricative [Harrington 99].

Simulations with vocal tract tube models support the quantal theory. It can be

shown that if the location of the constriction is changed slightly within a quantal

region, the formants change little [Stevens 72]. So even when speakers are imprecise

in the actual positioning of the tongue constriction, the acoustic properties of the

produced sound can be recognisable by the listener. The quantal theory is also

supported by evidence from X-ray studies such as Wood’s [Wood 79].

Acoustical Consequences of Articulatory Movements

Lindblom and Sundberg [Lindblom 71] studied the acoustic effects of articulatory

movements using a vocal tract model similar to Fant’s [Fant 60] but with differ-

ent articulatory parameters. These were the larynx height, position and shape of

the tongue body, and the area of the mouth opening depending on jaw (mandible)

position and lip configuration which are interdependent to some degree. For ex-

ample, lowering the jaw leads to increased mouth opening even when the lips are

in a neutral position. The tongue body position describes the location of the vo-

cal tract constriction in the range from palatal to pharyngeal, while tongue body

shape relates to the degree of constriction. The larynx height determines the length

of the pharyngeal cavity. As mentioned before in ”Acoustics of the Vocal Tract”

in Section 2.1.4, the creation of front and back cavities of variable length changes

the resonance frequencies of the vocal tract and thereby enables the production of

different sounds. The formant frequencies from any combination of these param-

eters can then be determined through area function analogs as in previous work

[Dunn 50, Fant 60, Lindblom 71].

The findings of Lindblom and Sundberg with respect to the relationship between
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articulatory and acoustic features can be summarised as follows [Clark 95]:

• Jaw movement affects the acoustic properties of vowels. With all other param-

eters being constant, jaw movement alone causes F1 to rise markedly. F2 rises

when the tongue constriction is in a velar location and this effect is stronger

for spread lips. F3 rises slowly for small to moderate jaw openings but may

show a sharp increase when the tongue constriction is in palatal position.

• Movement of the tongue body position from front to back causes a moderate

increase in F1 but a large decrease in F2, most of which occurs between the

frontal and central positions. For small jaw openings, F2 rises again slightly

for central to back positions, while it continues to fall for large jaw openings.

F3 decreases sharply for frontal tongue position and spread lips, but then rises

again slowly as the tongue moves backwards for all lip configurations.

• The shape of the tongue body — determining the degree of constriction — has

little effect on F1, except for a slight decrease when the tongue is in a frontal

position and constriction is at a maximum. The effect of tongue body shape

is primarily in F2. It decreases significantly with increasing constriction when

the tongue is in neutral or back position. It rises with increasing constriction

when the tongue is in frontal position. F3 shows little effect.

• Lip rounding has the effect of lowering all formant frequencies due to the in-

crease in vocal tract length and the decrease in the size of the mouth opening.

The effect is modest in F1 but quite significant for F2 and F3. Tongue position

as well as the degree of jaw opening determine how strong the effect is.

• A lowering of the larynx increases the vocal tract length and results in a

lowering of all the formant frequencies, with the largest changes in F2 and F4.

The main conclusion of Lindblom and Sundberg [Lindblom 71] is that the position

and degree of tongue constriction are more suitable to characterise vowels in the

articulator-to-acoustic transformation than traditional ways by tongue height.
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Figure 2.1: Vowel quadrilateral: Vowel classification according to tongue position

[IPA 99]. In pairs of symbols, the right symbol represents a rounded vowel.

The Articulation of Vowels and Consonants in English

English vowels are generally voiced sounds in normal speech (not when whisper-

ing). A relatively stable vocal tract shape is maintained during their production

and quasi-periodic pulses of air are generated at the glottis. One common way of

classifying vowels is in terms of their articulatory configuration in a so-called vowel

quadrilateral (Figure 2.1) where the corners represent the extreme cases of tongue

position and a vowel’s place is determined approximately according to its tongue po-

sition [Jones 17]. Tongue position in this context means the location of the highest

part of the tongue body. On the vertical axis, the vertical tongue position or degree

of constriction of the vocal tract is shown. A low tongue position corresponds to a

low degree of constriction, a high tongue position to a high degree of constriction.

On the horizontal axis, the tongue position with respect to fronting or backing is

depicted. The literature (e.g. [Joos 48, Clark 95, Harrington 99]) illustrates that

such a schematic vowel classification corresponds well to acoustic properties of the

formant frequencies F1 and F2 (see previous subsection).

The vowel quadrilateral only reflects the tongue position but not the lip configu-

ration. Basically, any lip configuration could be used with any tongue position and

differences exist between languages. In English, front vowels are usually produced

with spread lips and back vowels with rounded lips. The lower the tongue position,

the more the lips tend to become open and the back vowels less rounded.
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Vowels can also be distinguished by duration. While short and long vowels are

produced by similar articulator positions, long vowels are distinguished from short

vowels by the amount of time they are pronounced.

The production of consonants is more complex. First, in addition to the vocal

cord vibration, two other methods are used to make the airstream from the lungs

audible. These are the mechanisms to produce fricatives and oral stops (plosives).

Fricatives, e.g. /f T s h/, are noise-like sounds which are generated by constricting the

airflow in the vocal tract by tongue or lips (in combination with teeth) which creates

turbulence. Each fricative corresponds to a fairly precisely located constriction.

Oral stops, e.g. /p t k/, are produced by stopping the airflow altogether by blocking

the vocal tract with the tongue or lips. The production of fricatives and oral stops

is independent of vocal cord vibration. When the vocal cords vibrate at the same

time, voiced oral stops and fricatives are produced. Otherwise, they are voiceless.

Other consonant groups are affricates, nasals, and liquids and glides (or semivow-

els or approximants). Affricates (/tS dZ/) consist of a brief oral stop shortly followed

by a fricative which merge into a new sound. In the production of nasals (/m n N/),

the velum is lowered and as a result, the nasal cavity is coupled with the pharynx

and oral cavity to become part of the vocal tract. The airflow through the mouth

is blocked and diverted to the nasal cavity.8 Liquids and glides (/l r w j/) are

produced in a similar way as vowels. They are voiced consonants. An articulator

moves quickly towards another, thereby constricting the airflow to some extent but

not blocking it completely, nor causing turbulence sufficient for a fricative.

Consonants are commonly classified by the place and manner of articulation (for

example, see the consonant chart of the International Phonetic Alphabet [IPA 99]).

Place of articulation describes the location of the constriction in the vocal tract

produced by teeth, tongue, or lips. Place of articulation classes correspond well to

the viseme classes (see Table 4.3 in Section 4.2.4). Manner of articulation describes

the differences in articulatory methods for the production of oral stops, fricatives,

affricates and so on. These methods correspond well to the phoneme classes (Table

8 Nasalised vowels are produced in the same way but are not phonemically distinctive
in the English language.
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4.1 in Section 4.2.4).

In continuous speech, vowels and consonants, voiced and unvoiced sounds alter-

nate (not necessarily 1–1). Therefore, formant transitions play an important role,

particularly in carrying consonant-related information. The formant transitions re-

flect the rapid, yet continuous shift of articulatory position between consonants and

vowels, i.e. between a constricted and an unobstructed resonant system. For more

details on the aspects involved, see Heinz and Stevens [Heinz 61] for an acoustic

perspective, Liberman et al. [Liberman 76] for a perception perspective, and Clark

and Yallop [Clark 95] for a phonetic perspective.

Coarticulation

Speech sounds are normally not produced in isolation, rather they are influenced

by the context in which they occur. Although we can think of spoken language as

a string of separate words made up of letters on a linguistic level, this is not the

case on an acoustic level. The acoustic pattern of a particular phoneme can vary

considerably depending on the neighbouring phonemes. Such an overlap of phonetic

features from phoneme to phoneme is called coarticulation and it is important to

also take its effects into account in automatic speech processing. The articulators

constantly position themselves for the phonemes in the sequence and in that process

they move ahead of time towards a position appropriate for the next phoneme

before the position for the current sound has been fully reached. As soon as the

target position of the current phoneme has been approached closely enough to be

intelligible for the listener, the articulators move towards the next target position.

Coarticulation is a necessary, natural part of speech production (Harrington and

Cassidy [Harrington 99]). It allows for a higher rate of speech because sounds are

transmitted partially in parallel. Coarticulation helps minimise the effort required

to produce speech because articulators do not have to move the full distance.

The nature and degree of coarticulation are affected by many factors. Different

allophones of the same phoneme can have different acoustic properties. For exam-

ple, the articulation of the phoneme /k/ depends strongly on the following vowel
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[Harrington 99]. If followed by a front vowel (e.g. keep), it is produced in a post-

palatal position. If followed by a central vowel (e.g. curd), it is realised as a velar

stop. Before back vowels (e.g. caught), articulation is in a postvelar or preuvular po-

sition. Furthermore, coarticulation patterns vary across languages, dialects within

languages, and speakers. The prosody of an utterance also influences coarticulation.

At faster rates of speech, the degree of coarticulation between sounds increases. The

phonetic overlap is also greater for stressed syllables than for unstressed syllables.

2.1.5 Theories of Speech Perception

In the general overview given in Section 2.1.3, it was discussed briefly how acoustic

signals are detected by the ears, transduced, and then sent to the brain for pro-

cessing. While some of the processes involved are not yet known, some theories of

speech perception exist and a brief overview is given at this point. The interested

reader is referred to the cited literature for more detailed information as well as

[Klatt 89] for a review.

The recognition of linguistic units (syllables, words, phrases) depends on a num-

ber of factors which include the acoustic structure of the speech sounds, the context,

the familiarity with the speaker, and the expectations as a listener. A lot of the

understanding of continuous speech involves ‘top-down’ linguistic processing, which

draws on the personal knowledge base of the listener. A segmental processing of the

acoustics of the speech signal is not necessarily needed to determine the phonological

structure and achieve understanding of a message’s meaning [Clark 95].

One common, although not unchallenged [Repp 84], theory is that of Categor-

ical Perception of Speech [Liberman 57], formalised by Massaro in the Categorical

Model of Perception [Massaro 87]. It suggests that phonemes are used as perceptual

categories. Listeners do not change their opinion gradually as the signal changes

but make a sudden, categorical change in the perception of a speech segment. It can

also be shown that sounds from the same (phoneme) category, e.g. oral stops, are

harder to distinguish from each other than sounds from a different category. The

categorical perception fits well as a counterpart to Stevens’ quantal theory (see Sec-
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tion 2.1.4) and is often considered to be further evidence of the interwoven nature

of speech production and perception. However, the categorical model of perception

does not handle the fusion of auditory and visual speech information well, which

gives rise to the Fuzzy Logical Model of Perception (see Section 2.1.7 below).

A widely acknowledged, but also controversial, theory is the Motor Theory

[Liberman 67, Liberman 85]. It suggests that humans decode the perceived acous-

tic signal in terms of articulatory patterns and compare these patterns with those

stored for articulation of their own messages. The advantage of this theory is that

the listener’s mental neuromuscular planning compensates for coarticulation effects.

How exactly the model works in detail and how the storage and accessing of artic-

ulator patterns function remains unclear.

The Analysis by Synthesis theory by Stevens and Halle is, in some aspects,

similar [Stevens 67]. Listeners perform a spectral analysis of the acoustic signal,

decoding it into features and parameters. This information is then further anal-

ysed to establish an estimate of the phonological structure of the speech signal. A

phonological rule system compares this estimate with an appropriate neural rep-

resentation of the analysed input and only if the match is good, it is accepted.

Otherwise the process is iterated until a good match is found.

Another theory is Klatt’s Lexical Access From Spectra (LAFS) [Klatt 79,

Klatt 81]. According to this theory, spectral templates of all familiar words are

stored in the listener’s memory. No segmental representation or analysis is required

and thus it avoids problems with context-dependent coarticulation. The spectrum

of the incoming signal is evaluated against a number of competing spectral templates

and the one closest to the input is chosen. This theory assumes the availability of

very powerful processes for storage, analysis, access, and decision.

Finally, the Trace theory by McClelland and Elman [McClelland 86, Elman 97]

was inspired by work on connectionist models9 of cognition. In this theory, spec-

tral slices of the acoustic signal are generated every 5ms and form the input to a

connectionist model. The nodes of the first level of the model act as feature detec-

9 Also known as neural networks, parallel distributed computing, or neuro-computing.
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tors. They are connected to segmental detection nodes which identify a particular

speech segment. The outputs of the segmental nodes are connected to a set of word

connection nodes. Connections between nodes generally work by activation and

inhibition and the structure of the network is typically learned in a training phase.

For a good review on connectionist models see [Medler 76] and [Christiansen 99].

2.1.6 Sources of Visual Speech Information

One of the central issues in AVSP is the question of which part or feature of the

face humans rely on as source of visible speech information. Silent speechreading is

different from the processing of AV speech stimuli [Campbell 96, Smeele 96]. They

are performed by different parts of the brain and involve different processes.

While visual evidence of speech articulation can be found everywhere on the face,

the lower half of the face carries the vast majority of information [Smeele 96]. The

major factors are the visible articulators consisting of the mouth region including

lips, teeth and tongue, as well as the lower jaw. From these, the following parameters

have typically been derived and analysed:

• the width and height of mouth opening,

• the area of mouth opening,

• the protrusion (or rounding) of upper and lower lip and lip contact point, and

• the vertical distance of the lower jaw from the upper lip or nose.

These parameters are not independent of each other. Cosi and Caldognetto [Cosi 96]

found a negative correlation between the width of the mouth opening and the

protrusion parameters as well as a positive correlation between the height of the

mouth opening and the jaw distance. Rounded and protruded lips lead to a small

width of the mouth opening, while the opposite is true for spread lips. Also, moving

the jaw up and down results, from a certain point on, in an opening and closing of

the mouth because the upper lip cannot move up and down much and the lower lip

is directly linked to the jaw by skin (see also Bailly et al. [Bailly 98]).
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Benôıt et al. [Benôıt 96] tested the intelligibility of AV speech with real and

synthetic faces in comparison to audio-only speech. The display of moving lips

alone restored about one third of the missing information irrespective of the level

of noise on the acoustic signal. Displaying movements of the jaw resulted in even

higher intelligibility. Nevertheless, the best results were obtained with a full face

display. The question remains whether this is due to additional information carried

on the rest of the face or simply because of the unnatural look of lips and jaw

moving without a face. The results were similar for both real and synthetic faces.

Smeele [Smeele 96] also investigated which parts of the face influence speech

processing most by determining the number of times that McGurk effects were en-

countered. The visual information from the lips and the oral cavity together were

sufficient to influence auditory speech processing. Additional facial parts added

only little to that effect. Jaw movements alone were not sufficient. This result is in

accordance with a study by Plant and Macrae [Plant 77]. They found that the move-

ment of the lower lip was the most important visible factor in vowel and diphthong

articulation while upper lip and jaw movements did not provide much information

to differentiate vowels. Yakel et al. [Yakel 95] as well as Green [Green 94, Green 96]

showed that the visibility of facial features has a strong influence on auditory speech

perception regardless of the face orientation (e.g. upside down or colour inverted).

Static vs. Dynamic Parameters

Beside static parameters, studies by Cosi and Caldognetto [Cosi 96], Campbell

[Campbell 96], Cathiard et al. [Cathiard 96], Goldschen et al. [Goldschen 96], Green

[Green 96], and Vatikiotis-Bateson et al. [Vatikiotis-Bateson 96] also investigated

the dynamic patterns — the first (velocity) and second (acceleration) derivatives

— of these parameters. In fact, some consider face kinematics as more use-

ful than shape parameters. This view is supported by Rosenblum and Saldaña

[Rosenblum 96] who used a moving light model. A speaker with 28 point lights

fixed on his face (lips, teeth, tongue tip, chin, cheeks, jaw, nose tip) was filmed in

the dark. The face was not recognised from static video frames but McGurk effects
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were reported for dynamic presentations (video sequences). However, the issue of

whether shape or motion is more important in AVSP has not yet been resolved and

contradicting evidence can be found in the literature. Beside the possibility that

shape is recovered from motion, it is also possible that a combination of both is

actually used. Based on a study of various visual speech parameters for ASR sys-

tems, Scanlon [Scanlon 01] suggested that a certain amount of static information

is required as a base before dynamic parameters improve the recognition process.

Human speech perception might be similar.

Although some studies have attempted to measure protrusion parameters, al-

most all have only looked at the effects of visual speech in a frontal view of the

face. An exception is the work by Cathiard et al. [Cathiard 96] who performed ex-

periments for frontal and profile views with both static images and dynamic image

sequences. For their experiments limited to the French vowels /i/ and /y/, which

cause rounded lips, the profile view gave comparable results to the frontal view.

On the other hand, the information to be gained from any particular view angle

appears to depend on the viseme, too, as some are more readily speechread from a

frontal view and others from a profile view. A 45◦ angle might be the solution to

make best use of the total visual speech information.

Visual Cues Enhance Speech Sound Detection

Visual speech cues do not only enhance the intelligibility of spoken language, but

also improve the detection of speech sounds, in particular in noisy conditions. Grant

and Seitz [Grant 00, Grant 01a] recently showed that as the visible speech articu-

lators move to be in position for the articulation of the next speech sound, these

cues help the perceiver to detect speech sounds and to filter them in a noisy acous-

tic environment. These results have been confirmed by Bernstein [Bernstein 03],

Kim [Kim 01, Kim 03], and Schwartz [Schwartz 02, Schwartz 03]. Visual speech

cues typically precede auditory cues by 50ms and more (see [Kohlrausch 00] for a

review) and perceivers tolerate AV asynchronies where the video leads the audio

more than where the audio leads the video, which suggests that they are more used
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to visual evidence preceding auditory evidence [Conrey 03, Grant 01b, Grant 03].

Girin et al. [Girin 01, Sodoyer 03] showed that visual speech cues can also help to

separate the sources in the case of multiple audio speech signals.

2.1.7 The Integration of the Two Modalities

A final important issue in human AVSP is when and how the information from the

two modalities is integrated and processed. As crucial as the answer to this issue

is for the understanding of how humans process AV speech information, as contro-

versially it is debated in the field. Intersensory fusion and intermodal transfer is a

well-studied area of psychology. For more information, see for example [Stein 93].

In speech perception, four categories of fusion models are commonly considered

(based on [Summerfield 87], adapted by [Robert-Ribes 96]):

• Direct Identification (DI) based on the Lexical Access From Spectra theory

[Klatt 79, Klatt 81],

• Separate Identification (SI) as in the Vision Place Auditory Mode model

[McGurk 76] or the Fuzzy Logical Model of Perception [Massaro 87],

• Recoding in the Dominant (auditory) modality (DR),

• Recoding in the Motor space (MR) based on the Motor Theory [Liberman 67,

Liberman 85].

Robert-Ribes et al. [Robert-Ribes 96] present a taxonomy of these sensor-fusion

models (Figure 2.2). The taxonomy is based on three basic questions:

1. Is there a common, intermediate representation of the audio and video stimuli?

2. When does the integration happen: early or late?

3. What is the nature of the common representation?

The two extremes in terms of sensor-fusion models are the DI model and the SI

model. In the DI model, both input signals go directly into a bimodal classifier. In
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Figure 2.2: Taxonomy of four basic AV integration models by Robert-Ribes et al.

the SI model, two separate recognition processes for the auditory and visual infor-

mation run in parallel. The results of each recognition process are then integrated to

yield the final outcome. Robert-Ribes et al. [Robert-Ribes 94, Robert-Ribes 95a,

Robert-Ribes 95b] suggest two additional models. The DR model considers the

auditory modality as dominant and the visual information is recoded into a repre-

sentation of the auditory modality. This model is considered as unlikely by Robert-

Ribes et al. In the fourth model, the MR model, both inputs are transformed into

an amodal common space and then fused in that space before classification.

Robert-Ribes et al. draws the following conclusions. Based on studies that used

conflicting auditory and visual stimuli, the direct identification model was rejected.

Subjects were able to detect AV incompatibilities, to estimate a perceptual distance

between the two stimuli, and still fuse both inputs. Hence, the stimuli can be

compared in a common space before fusion.

The issue of early versus late integration is one of the most controversial ones in

the field of AVSP. The literature presents conflicting evidence for both claims, al-

though a majority seems to favour an early integration model (e.g. Green [Green 96],

Robert-Ribes et al. [Robert-Ribes 96]). One argument in favour of an early inte-

gration model is the fact that humans are able to extract temporal coordinations

between the audio and video signals. This would not be the case in a late integration

model where the separate classifiers lose the temporal coordination information.

The third question distinguishes the DR model and the MR model. The DR

model was rejected by Robert-Ribes et al. because studies on a particular French

vowel had shown that it was perceived as rounded when presented auditorily but
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judged as unrounded when presented visually or auditory-visually. It is hard to

account for this fact in a model where the visual input is recoded into an auditory

representation. Robert-Ribes et al. conclude that the MR model is the only model

compatible with all experimental data, but that a more complex hybrid model as a

combination of DI and SI models could also explain the experimental data.

The Modified Fuzzy Logical Model of Perception

Robert-Ribes’ conclusions are supported by a bimodal speech perception model

developed by Massaro [Oden 78, Massaro 83, Massaro 87, Massaro 96]. Its theoret-

ical framework is based on an information processing approach which assumes that

there is a sequence of processing stages in spoken language understanding. The

Modified Fuzzy Logical Model of Perception (FLMP) assumes that, firstly, both

audio and video sources of information support speech perception and, secondly,

continuously-valued features — hence a fuzzy logical model — are evaluated, inte-

grated, and matched against prototype representations in memory (Figure 2.3).

The central point of the model is the independent evaluation of auditory (Ai)

and visual features (Vj) before integration. For example, the degree of visible mouth

opening at the beginning of a syllable can be evaluated independently of whether

auditory information is available. In addition, bimodal information (Bij) about the

temporal asynchrony between auditory and visual information is also evaluated.

The evaluation stage transforms the sources of information into psychological values

(ai, vj, bij) which are then integrated to give an overall degree of support for a given

representation in memory. Finally, the decision stage maps this overall value into

some response, Rk, such as a discrete decision or a rating. Hence, according to the

FLMP, humans have information about the degree to which a given alternative is

present rather than just the information about which alternatives are present.

The original FLMP is mathematically equivalent to Bayes’ Theorem and hence

is optimal for combining multiple sources of information. As such, the FLMP

is more appropriate to describe multimodal speech perception than the theory of

categorical perception (see Section 2.1.5). The CMP is equivalent to a SI model
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Figure 2.3: The three stages of the modified Fuzzy Logical Model of Perception.

in the taxonomy by Robert-Ribes et al. [Robert-Ribes 96]. The CMP is as fit to

describe the results from the individual sources as the FLMP, but it fails on the

description of the overall results, i.e. on the integration of the different sources of

information. This supports the view by Robert-Ribes that early integration is more

likely than late integration. The FLMP predicts that two sources of information can

be more informative than just one. It gives a good description of the results not only

in speech perception but also in reading, object recognition, sentence interpretation,

recognition of affect, memory, and decision making.

Information �= Information Processing

Massaro [Massaro 92] distinguishes between information and information process-

ing. One component of information corresponds to the outcome of the evaluation

stage (Figure 2.3), i.e. how much does a particular stimulus presented to a given

input channel support the various alternatives? On the contrary, one component of

information processing corresponds to the process of integrating the various sources

of information. There are significant differences in the information value of audible

and visible speech as a function of age, but no differences in the information pro-

cessing. These processes appear to exist at age 3 and remain constant for the rest

of life. Pre-school children still acquire language knowledge and speech perception

skills and therefore do not speechread as well as adults [Massaro 96]. On the other

hand, ageing decreases the resolution of the sensory systems which results in less
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accurate speech perception but the availability of, and the ability to process, multi-

ple sources of information appears to compensate for that effect. For example, some

older adults report they ‘hear’ the TV better with their glasses on [Massaro 96].

Massaro [Massaro 96] also rejects the frequent claim that speakers of different

linguistic backgrounds are influenced differently by visible speech. Even in the often

stated example of Japanese, who are not used to watching the speaker’s face because

it is considered to be impolite, Massaro found that perceivers are similarly affected

by visible speech as perceivers from other cultural backgrounds. The information

processing in the integration and decision making is identical across languages, but

the information made available by the evaluation stage differs. This view is in

contrast to studies by Sekiyama (e.g. [Sekiyama 93]) which showed that Japanese

speakers are less influenced by visible speech information than speakers of English.

The Influence of Experience

Linguistic experience also influences human speech processing. Exposure to a spe-

cific language, in particular the native language, results in stored representations

of language units and also alters the person’s phonetic perception [Kuhl 92]. Of

what kind these representations in the brain are, remains unclear. It has been sug-

gested that cross-language effects, i.e. when utterances spoken by a foreign speaker

in the native language of the perceiver are misunderstood, are due to the fact

that listeners employ the stored information about auditory and visual character-

istics of their native language during speech perception and that the productions

of foreign talkers fail to match these stored representations [Kuhl 94]. Similar re-

sults have been experienced for persons perceiving AV speech in a foreign language

[Fuster-Duran 96]. When facing incongruent AV speech, as in the study by McGurk

and MacDonald [McGurk 76], subjects make use of the knowledge and experience of

their own language to find the best fit using both auditory and visual information.

The interlanguage differences, however, lead to misperceptions [Fuster-Duran 96].
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2.2 Characteristics of Australian English

Australian English can be described as a regional dialect of English. It is spoken

by people who are born in Australia, or who arrive in Australia at a linguistically

impressionable age, and who grow up in an AuE speaking peer group [Bernard 81].

Despite there being only one AuE dialect, different pronunciations exist. These

so-called ‘speech varieties’ are usually categorised as: broad, general, and culti-

vated [Mitchell 65].10 AuE is characterised by specific vowel (and diphthong) pro-

nunciations, intonation patterns, lexical items, and various paralinguistic features

[Clark 89, Cochrane 89, Harrington 97, Mitchell 46, Mitchell 65]. All the varieties

share characteristically Australian intonation, rhythm and stress patterns.

Regional variation in AuE is minor and is usually limited to a small number of

words or phonemes. Unlike dialects in places like Britain or the USA, varieties of

AuE do not differ in the number or disposition of phonemes to a significant extent,

but only in the pronunciations which span a continuous range. It is therefore

fair to speak of only one AuE dialect. Or in the words of Bernard [Bernard 81]:

“The picture is of a widespread homogeneity stretching from Cairns to Hobart, from

Sydney to Perth, a uniformity of pronunciation extending over a wider expanse than

anywhere else in the world.” This is often attributed to the fact that Australia is a

migrant country with immigration originally from all parts of the British Isles and,

since the end of World War II, from other parts of Europe and later Asia. Hence,

AuE can be considered as a ‘mixing-bowl’ for English from various backgrounds with

a tendency towards British English as the former colonial homeland [Bernard 81]

On the other hand, an AuE speaker’s accent is much more influenced by socio-

economic factors as well as by age and gender (see [Harrington 97] for references

to various studies on these factors). Broad AuE has long been associated with

the working class, less educated part of the population, whereas cultivated AuE has

been associated with the educated and verbally more skilled population. Harrington

10 Bernard [Bernard 81] adds modified AuE as another category, which is more ‘culti-
vated’ than cultivated AuE. It is spoken by a numerically insignificant part of the Aus-
tralian population and therefore not further considered in this study.
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Figure 2.4: Distribution of AuE varieties in percent.

et al. [Harrington 97] point to a larger proportion of the older population as well as

female population speaking cultivated AuE than the young and male populations.

A Continuum of Accent Variation

It should be noted that the AuE varieties are not discrete entities but rather span a

continuum in the order broad-general-cultivated with considerable phonetic overlap.

Speakers from one variety may well use, for example, a particular pronunciation of

a diphthong from another variety, either habitually or temporarily because it seems

appropriate under certain social pressure. Speakers may also change their position

within the spectrum of AuE over the span of their lives.

Figure 2.4 shows the percentages of occurence for the three varieties [Bernard 81,

Harrington 97]. At one end of the continuum is broad AuE which has some vowel

features similar to London Cockney English [Cochrane 89]. Vowels and in partic-

ular diphthongs are given their own characteristic pronunciation, while consonant

pronunciation is similar to that in other forms of English. However, speakers of

broad AuE are not noted for consonantal clarity and make frequent use of assimila-

tion and elision. At the other end of the continuum of variation, the ‘prestige’ form

cultivated AuE most closely approximates Southern British English (or Received

Pronunciation of British English). General AuE lies between these two varieties. It

is spoken by the majority of the population and some evidence suggests that it is

the most rapidly expanding of the three categories [Blair 93].
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Differences between the Varieties of Australian English

Harrington et al. [Harrington 97] studied the phonetics of the three accent varieties

in AuE by analysing the formant frequencies F1, F2, and F3. Their findings are

consistent with earlier work by Mitchell and Delbridge [Mitchell 65]. The main

phonetic difference between broad, general, and cultivated AuE lies in the rising

diphthongs /aI aU/. In /aI/, the effect is that F1 and F2 are significantly lower in

the first vocalic target for broad AuE than for cultivated AuE, with general AuE

between these two extremes. In /aU/, broad AuE exhibits a lower F1 but a higher

F2 in the first target than cultivated AuE, general AuE again being between these

two. To a lesser extent, there are also differences in the rising diphthongs /eI oU/.

For /eI/, broad and general AuE exhibit higher F1 values and lower F2 values for

the first target compared to cultivated AuE. In /oU/, the accent effect is in F2 of

the first target which is raised for broad AuE speakers which indicates fronting.

Harrington et al. found considerably fewer differences between accent varieties of

AuE in the second targets of the diphthongs.

As far as the falling diphthongs /I@ E@ U@/ are concerned, the same study by

Harrington et al. showed some accent effects. For /I@ E@/, broad AuE shows higher

F2 values in the first and second target and higher F1 values in the second target only

than both general and cultivated AuE. In the case of /U@/, there are no significant

differences in the first target but broad AuE has clearly higher F2 values in the

second target. While mostly produced as diphthongs, the falling diphthongs can

also be found as a long monophthong or two syllables. In fact, some variation is

phonemic. For example, /U@/ as in words like ‘tour’ is produced as /O:/ by about

a quarter of the population. This can also be found in Southern British English.

In any case, the context in which these sounds are produced appears to have an

impact on how they are pronounced [Bernard 81, Harrington 97].

The same study [Harrington 97] also showed that accent variations of monoph-

thong vowels are much smaller than for diphthongs. They are mostly confined to

/u:/ which is found to have higher F2 values for broad AuE than for cultivated

AuE, with general AuE being between these two extremes. A similar effect can
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be found for /3:/ in female speakers. In both /I/ and /E/, F2 is higher for broad

AuE speakers, compared to both general and cultivated AuE. In addition, broad

AuE has a longer onglide in /i:/ and /u:/ than general and cultivated AuE. The F2

onglide is lowest in frequency for broad /i:/ and the F2 and F3 onglides are highest

for broad /u:/. The degree of onglide in /i:/ also varies with age, where it is less

marked for younger speakers compared to older speakers.

In summary, the acoustic differences between the varieties of AuE seem to be

mostly in F1 and F2. Based on the discussion of the acoustic consequences of artic-

ulator movements in Section 2.1.4, it is possible to hypothesise that the differences

between the varieties are mostly a result of differences in the position and shape

of the tongue. If this hypothesis holds, significant differences in the visible speech

articulation are not expected. A discussion of this issue for the speakers in the

AVOZES data corpus used in this study, can be found in Section 6.1.11.

2.3 Audio-Video Speech Processing by Machines

A number of AVSP systems have been developed over the past two decades, for

various application areas such as automatic speech recognition (ASR), speaker iden-

tification / verification, and speech synthesis. This section gives an overview of the

most prominent system architectures for ASR, because the investigations in this

study are from an ASR angle, but many issues apply equally to other AVSP ap-

plication areas. By no means can this section account for every system that has

been built. The reader is referred to Hennecke et al. [Hennecke 96] for an extensive

comparison of different automatic AV speech recognition systems, and to a general

review of AVSP by Chen [Chen 01].

Firstly, a brief overview of methods used in audio-only ASR systems is given

in Section 2.3.1, followed by the fundamentals in visual-only ASR systems (Section

2.3.2). An oveview of facial feature extraction is presented in Section 2.3.3 and

more details on lip feature extraction methods are given in Section 2.3.4. Next,

combined AV ASR systems are described in Section 2.3.5, including the issue of

integration of the two modalities. Finally, this section ends with an overview of AV



2.3. AUDIO-VIDEO SPEECH PROCESSING BY MACHINES 37

speech data corpora (or databases) in Section 2.3.6.

2.3.1 Fundamentals of Audio Automatic Speech

Recognition

Audio-only ASR has been an ongoing research topic for decades and hence a

plethora of publications in the literature exists, describing various approaches at

all levels of detail. The discussion here focuses on a general overview and the

interested reader is referred to books like [Rabiner 93, Furui 00] for more details.

Following Rabiner and Juang [Rabiner 93], approaches to audio ASR can be

categorised as:

1. the rule-based acoustic-phonetic approach,

2. the data driven pattern recognition approach, and

3. the artificial intelligence approach, which is a mixture of the first two.

In addition, connectionist models, or artificial neural networks, can be seen as a

fourth approach to audio ASR, or they can be regarded as an implementational

technique (just as Hidden Markov Models (HMM)) used in any of the other three

approaches. A review of the use of artificial neural networks in speech recognition

can be found in Section 2.5.4 of [Rabiner 93]. The other approaches are discussed

in the following sections.

Acoustic-Phonetic Approach

This approach is based on the theory of acoustic phonetics. According to this theory,

finite, distinctive phonetic units exist and they are characterised by the frequency

spectrum of the speech signal over time. It is assumed that these properties of

the phonetic units can be learned and applied readily. However, the properties

are highly variable among speakers as well as depending on the phonetic context

(coarticulation, see Section 2.1.3), which is one of the problems in implementing a

reliable ASR system based on this approach.
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Acoustic-phonetic ASR systems typically consist of a four-step process. First,

like in other ASR systems, a speech analysis method is required that measures

certain features which describe the speech signal (or usually its frequency spectrum)

appropriately over time. Common methods of spectral analysis are filter bank

analysis, linear predictive coding (LPC) analysis, cepstral analysis and discrete

Fourier transform (DFT) analysis (see Section 5.1.1 for an overview of the first two

and, for example, [Furui 00, Harrington 99] for more details on all methods).

Secondly, in the feature-detection step, the measured features are converted to

another set of features which describe the acoustic properties of the various phonetic

units. Features can be continuous, such as formant frequencies and energy, or

binary, as in voiced-unvoiced, nasality, and frication classifications.

In the segmentation and labelling step, the ASR system attempts to find stable

or salient regions and then label these with matching phonetic units. This step is

the core step of the acoustic-phonetic approach, and the most difficult one. One

way of accomplishing the labelling task is by classifying each speech segment into

one of several broad classes (e.g. unvoiced stop, voiced fricative, etc.) based on

predetermined rules. However, this method is error-prone.

As a result of the segmentation and labelling step, a phoneme lattice is created

from which a lexical access procedure determines, in the final step, the best matching

word (if we assume word recognition for the moment) as the output of the recogniser.

Pattern Recognition Approach

Good reviews of this approach are given by Padmanabhan and Picheny

[Padmanabhan 02] and Ney [Ney 03]. Typically, the audio signal is sampled every

10ms and feature vectors are formed using similar methods of spectral analysis as

in the acoustic-phonetic approach [Juang 00]. Widely used are filter bank methods

which simulate the human auditory system (see also Section 5.1.1). The sensitivity

to the energy in each filter follows a logarithmic relationship, where the ratio of the

centre frequencies of adjacent filters is constant and the filter bandwidth is propor-

tional to the centre frequencies. Differences exist in modelling perceptual aspects of
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the frequency scales, such as mel and bark frequency scales. Temporal information

is captured through first and second derivatives of these features.

In the recognition phase, the approach seeks the word sequence with the highest

likelihood, given the measured feature vectors and the trained models. Using Bayes’

theorem and ignoring the denominator term, this is equivalent to maximising the

product of the probability of the measured features given the word sequence and

the probability of the word sequence itself. Such a system uses a lexicon of all

possible words, each represented as a sequence of phonemes, a language model

which models the linguistic structure, and an acoustic model which models the

relationship between the feature vector and the phonemes. Language and acoustic

models are learned in the training phase requiring a large amount of data to create

good models. Language models are often based on word trigrams, assuming that

the probability of a word only depends on the previous two words, to reduce the

complexity. Acoustic models typically use HMMs whose parameters are commonly

estimated by a maximum likelihood estimation process.11

The performance depends on many factors like vocabulary size, language model

perplexity, background noise, speech spontaneity, sampling rate, and the amount of

training data [Padmanabhan 02]. Speaker-dependent systems perform better than

speaker-independent ones but require acoustic model adaptation, for example vocal

tract normalisation [Wegmann 96]. Many commercially available ASR systems use

the pattern recognition approach, which has proven to perform well. It is robust and

invariant to differences in vocabularies, speakers, feature sets, pattern classification

algorithms and decision algorithms, because no speech-specific knowledge is used. It

is also insensitive to the recognition unit (e.g. subword units, whole words, phrases)

and hence the basic techniques are applicable to a wide range of applications.

Artificial Intelligence Approach

This approach can be considered to lie somewhere between the other two ap-

proaches, because concepts of both approaches are used. The central concept is the

11 Millar and Davis [Millar 99] suggest to build better acoustic models by representing
time relative to the acoustic-phonetic structure rather than physical time.
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use of knowledge from a variety of sources to improve performance. In particular,

expert systems for the difficult task of segmentation and labelling in the acoustic-

phonetic approach have proven to be useful as they combine acoustic knowledge

with lexical, syntactic, semantic and pragmatic knowledge. The higher-level knowl-

edge is capable of correcting incorrectly chosen speech units by the lower-level stages

before a decision is finally made on the measured features. Another advantage of

the artificial intelligence approach is the ability to learn and adapt over time, which

corresponds well to the idea that knowledge is both static and dynamic, and that

expert systems must adapt to those dynamic changes.

An interesting problem is how to integrate the knowledge. Rabiner and Juang

[Rabiner 93] report three different approaches. These are the bottom-up approach,

the top-down approach, and the blackboard approach. In the bottom-up approach,

lower-level processes precede higher-level processes in a sequential way, which means

that each stage is constrained as little as possible. In the top-down approach, the

language model generates word hypotheses that are compared to the speech signal.

Syntactically correct and semantically meaningful sentences are then generated on

the basis of the similarity scores of the tested word hypotheses. In the blackboard

approach, all knowledge sources are considered to be independent. A hypothesis-

and-test paradigm communicates between the knowledge sources which compare the

speech signal patterns with stored representations individually. An overall rating

policy is used to combine the results from the knowledge sources.

2.3.2 Fundamentals of Visual Automatic Speech

Recognition

Fundamental to visual speech recognition are the abilities to, first of all, automat-

ically find the face in an image and track it over a sequence of video frames, and

secondly, to extract useful parameters that describe the visible speech-related move-

ments of the articulators. In terms of speech recognition, similar approaches are

taken as in the case of audio-only ASR described in the previous section.
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Finding the Face

A fundamental requirement is the ability to find the mouth region in an image. This

equates to first determining the face position and then, within the face, the position

of the mouth region, which carries the largest amount of visible speech information

(cf. Section 2.1.6). A large number of face tracking systems is described in the

literature. Common methods are discussed below and examples given.

Using Colour. A simple face tracking method is based on finding artificial mark-

ers attached to the face in the image. Revéret [Revéret 98] developed an elaborate

system, in which a 3D lip model is fitted to the image data for lip tracking, speech

recognition and visual speech animation purposes, but the face tracking is done by

a marker on the nose. Bothe [Bothe 96] uses colour patches on the forehead and

the nose to find the face.

A common method is skin colour detection. In normal RGB colour space, the

skin colour is overlayed with highlights (reflections of light sources). Simple thresh-

olding does not work well. Yang et al. [Yang 98] developed an adaptive stochastic

model of the skin colour distribution in RGB colour space using colour histograms.

A colour histogram characterises the distribution of colours in the colour space.

Human skin colours cluster in a small region in RGB colour space. They vary more

in intensity than in colour. The skin colour distribution of each individual is a mul-

tivariate normal distribution, with the parameters of the distribution accounting

for differences among people and lighting conditions [Yang 96].

Yang’s adaptive approach transforms the original skin colour model into the

new environment of viewing conditions, which can be done in real-time because the

Gaussian model has only few parameters (mean vector and covariance matrix). In

addition, a motion model is used to estimate the speaker’s motion and to predict the

location of the search window in the next frame. Inside the found face area, a search

for the pupils is started by looking for two dark regions that satisfy certain face

constraints. The approximate positions of the lip corners are then predicted from

the position of the eyes and the face orientation in the previous frame. A window
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containing the mouth region is extracted for further processing. Using horizontal

and vertical integral projection within the window, the lip corners are determined.

Senior [Senior 99] presented an approach based on the Fisher discriminant and

eigenspaces. An image pyramid over a range of scales is used to search for face

candidates. Each candidate is given a score based on several features like skin tone,

proximity to face space, and the Fisher discriminant. Iyengar et al. [Iyengar 01a,

Iyengar 01b] add a verification step by using trained Gaussian mixture models to

differentiate correctly found mouth regions from incorrectly found other face regions.

Normalised RGB colour offers another solution [Graf 96, Wark 98] but a trans-

formation into a colour space such as the HSI space (sometimes also called HLS

colour space [Foley 96]) is better still. In the HSI space, hue and saturation are

separated from intensity [Vogt 96]. The hue and saturation values can be used to

find skin colour regions in the image. These values are also surprisingly consistent

across human skin colour types [Kjeldsen 96].

Petajan and Graf [Petajan 96] used a face tracking system based on morpholog-

ical filtering of single frames to find the relative positions of eyes, nose and mouth.

The processing was done on colour images with colour thresholds used to distin-

guish skin colour and non-skin colour parts. The results (head position, scale due to

distance from camera, and tilt) were used to initialise a nostril tracking algorithm

from which the position of the mouth was derived. With a camera placed slightly

below the face, the nostrils were claimed to be practically always visible and never

obscured, not even by facial hair.

Applying Geometrical Constraints. To make the face tracking system more

robust, typically a model enforcing geometrical constraints is applied to the skin

colour blob. This often takes the form of positional information (e.g. the eyes are

above the mouth) and relative distances (e.g. the horizontal distance between the

eyes is roughly the same as the vertical distance from the eyes to the mouth). Such

information is either based on heuristics or gathered when the face model for a

specific speaker is built. The first automatic speechreading system, developed by

Petajan [Petajan 84], used the information from tracking the nostrils to identify
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the mouth region. Another example is the face tracking system of the Robotic Sys-

tems Laboratory at the Australian National University [Heinzmann 97, Newman 00,

Zelinsky 99]. In order to make the tracking more robust, the tracked facial features

are interconnected as a rigid structure which pulls badly tracked features to their

correct position. Furthermore, the position of the features in the next frame is

estimated from the motion information during the change from the previous frame

to the current frame using a Kalman filter. Other motion-prediction methods use

optical flow techniques (e.g. McKenna and Gong [McKenna 96]).

Other Approaches. Sobottka and Pitas [Sobottka 96] applied an active shape

model (see ‘Explicit Lip Feature Extraction’ in Section 2.3.3) after the skin colour

segmentation in HSV colour space (similar to the HSI colour space [Foley 96]).

The mouth and other facial features were found using morphological filtering and

geometrical models. Although the face and mouth were found in the test images,

the documented results appeared to be rather rough and not very accurate.

Last but not least, systems that learn to track a face shall be mentioned here.

Features (or landmarks) are selected — often manually — and their geometri-

cal distribution is learned by a statistical model. The models can be statisti-

cal feature models (Cootes and Taylor [Cootes 96]), face graphs (Maurer and von

der Malsburg [Maurer 96]), maximum likelihood models (Colmenarez and Huang

[Colmenarez 96]), artificial neural networks (Reinders et al. [Reinders 96]), or Gaus-

sian mixture models (Iyengar and Neti [Iyengar 01a]).

Practical Issues

For real-world applications, face tracking systems must be able to cope with multiple

faces in the scene. The systems mentioned above almost all assumed that there was

only one face in the scene. Zelinsky et al. [Zelinsky 99] used a face tracker based

on skin colour segmentation to find face candidates in the image. The candidates

were then tested for certain geometrical constraints such as the relative position

of the eyes and the mouth. The largest skin colour blob fulfilling the constraints

was taken as the head to be tracked. A multi-person system needs to test all face
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candidates and, if found to be valid, track them as well [Krumm 00, Nakadai 01].

A final issue is the head pose towards the camera. Most systems simply assume

the face to be in a (near) frontal position but for real-world applications, it is

questionable how realistic such an assumption is. One solution is the use of a stereo

camera system, as was done by Newman et al. [Newman 00], which recovers depth

information and thus offers truly 3D information independent of the exact face

position towards the cameras. This approach is also used in the work described in

this thesis. Another solution was presented by Holden et al. [Holden 00a], where

a 3D head pose model, based on the outer corners of the eyes and the corner of

one nostril, is projected into 2D image space, compared to the measured feature

locations, and its 3D position adapted to reflect the actual head pose.

2.3.3 Automatic Facial Feature Extraction — An Overview

While well-established parameters exist for the audio modality of the speech signal,

it is not clear which parameters best describe the visual speech information. Facial

features must be extracted on which video speech parameters can be based. Two

main streams of feature extraction can be identified: implicit feature extraction and

explicit feature extraction. These are discussed in the following sections. Note, that

combinations of implicit and explicit features have also been proposed, for example

by Chan [Chan 01] who used geometric and appearance features. For the sake of

providing a concise overview, such approaches are not considered further here.

Implicit Feature Extraction

A part of the image data which contains the mouth area is taken as is, and the pixel

values are used as input of the recognition engine (e.g. HMM, artificial neural net-

work). Thus, the recogniser learns the typical pixel patterns associated with certain

lip movements. A principal component analysis (PCA) or linear discriminant anal-

ysis (LDA) can be employed to reduce the dimensionality of the input vector and to

define the main directions of variation. Only a few principal components are typi-

cally required to account for almost all variation. Examples of such implicit feature
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extraction systems are the ones by Meier et al. [Meier 96, Meier 00], Movellan and

Chadderdon [Movellan 96], and Potamianos et al. [Potamianos 00, Potamianos 01].

Holden and Owens [Holden 00b] used shift-invariant, computationally inexpen-

sive higher order local autocorrelation (HLAC) features extracted from cepstral

images. The cepstral images were generated by applying LPC to image sequences

and by converting the LPC coefficients into cepstral coefficients, which were then

taken as pixel values to form the cepstral images.

Optical flow techniques also fall into the category of implicit feature extrac-

tion methods [Horn 81]. Mase and Pentland suggested an automatic speechreading

system on the basis of optical flow [Mase 91]. Motion rather than shape was ex-

tracted which follows the earlier argument that the dynamic patterns of the visible

speech articulation are perhaps more important to the recognition than the static

lip shapes. The flow field was computed from two adjacent frames and used for

recognition (the velocity components comprising the flow fields, to be more exact).

Implicit feature extraction avoids explicitly finding facial feature points and pre-

serves both shape and appearance information [Scanlon 01]. The disadvantages are

that without a PCA or similar technique, the dimensionality of the input vector

becomes very large (e.g. a 20×15 pixels window results in a vector with 300 ele-

ments!) and some effort must be made to compensate illumination changes (either

by having a well-illuminated face or by using a normalised colour space at least).

Most important of all, however, is the fact that the systems can only be trained

for one specific angle of the face towards the camera and can thus not cope with a

freely moving head, unless several recognisers were trained for different head poses

and some sort of interpolation between these were used. Alternatively, some head

pose compensation method based on image warping could be employed.

Explicit Feature Extraction

Here, image processing techniques are used to extract the position of certain facial

features, such as eye corners or nostrils in general, or the mouth features in the case

of AVSP. Mouth features are certain points on the lips (e.g. lip corners) as well as



46 CHAPTER 2. LITERATURE REVIEW

the internal and external lip contour line or the position of the teeth. Parameters

describing the shape and the movements in the mouth region are then derived

from the positions of these features in the image data. The effect of the overall

head movement must be eliminated in the set of parameters to be extracted. Only

components comprising mouth region movements are wanted. Parameter sets are

often based on studies on what human perceivers appear to use for AV speech

perception (see Section 2.1.6 and [Cathiard 96, Cosi 96, Smeele 96]). The mouth

region with the visible articulators carries most of the visual speech information.

Other facial features (e.g. lower jaw) contribute as well but they are harder to track

automatically in a non-intrusive way and are therefore not considered in this study.

Methods for the extraction of mouth features are described in more detail below,

as this approach is followed in this study. Using explicit features has the advantage

that they can be chosen to be directly related to the visible speech articulators

which facilitates the interpretation of the results of a statistical analysis of the

relationship between audio and video speech parameters (see Chapter 6). Generally,

measurement problems can arise from a number of observed features. Firstly, the

lip corners are often in a shady area, if normal illumination is used in the scene.

As a result, the internal and external lip contour lines are hard to distinguish at

the lip corners. Secondly, the lip colour can be very similar to the surrounding

skin colour, so that it is hard to find the external lip contour line [Eveno 01]. The

same is true for the tongue, which will affect the extraction of the internal contour

line. Thirdly, lips move very quickly while speaking, so any method must be able

to adjust rapidly to different shapes in the area surrounding the feature points.

2.3.4 Automatic Explicit Lip Feature Extraction

Once the approximate location of the mouth region has been determined, the po-

sition of the lip features needed to calculate the above mentioned parameters must

be found. Methods range from image-based methods to model-based approaches. An

overview of these methods is given now. The lip tracking algorithm used in this

study is presented in detail in Chapter 3.
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Image-based Methods

A simple method on greyscale images is the integral projection, in which the grey-

values of each row or column are summed up and yield an intensity distribution

curve [Yang 98]. Another simple image processing method is thresholding, specif-

ically targeted to the extraction of the lips [Petajan 84, Petajan 96, Wojdel 01b].

However, it suffers from the fact that intensity information from light source re-

flections (highlights) is superimposed on the skin values. The use of colour adds

a lot more information to the process. Colour spaces that separate hue and satu-

ration from intensity work best [Kjeldsen 96, Wark 01, Wojdel 01a]. Petajan and

Graf [Petajan 96] used the results of their nostril tracking system to find the mouth

region and then applied colour thresholding to determine the inner lip contour. Inte-

gral projection and thresholding work reasonably well for the extraction of the inner

lip contour because the dark mouth opening contrasts well to lips and skin. How-

ever, they cannot reliably distinguish the external lip contour from the surrounding

skin because the values both in greyscale and colour images are too close.

A third image-based method is edge detection by a suitable convolution filter, for

example a Sobel or Canny filter [Russ 95]. Edge detection methods typically work

well for the middle parts of the lip contours but often fail for the lip corners because

they lie in a shady area with little contrast. Since edge detectors are essentially

contrast enhancers, their failure to detect lip corners does not surprise.

Recently, Holden and Owens ([Holden 02b], personal communication, Robyn

Owens, University of Western Australia, Western Australia, Australia) showed that

wavelets can be used to efficiently represent facial points and their local surrounding

features. Facial feature points similar to a sample wavelet response of a facial point

were used to find candidate points which were then tested for compliance with

certain geometric relationships between facial feature points.

Many of the problems with image-based methods arise from the lack of sufficient

contrast in the mouth region. Moreover, the contrast of the lips to the surrounding

skin is illumination-dependent. While there is good contrast in well-illuminated

areas, there is very little in shady areas. Benôıt et al. [Benôıt 96] and Bothe
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[Bothe 96] use artificially coloured lips to enhance the contrast and to facilitate

the above mentioned image-based methods for feature extraction. Although that is

a valid way of simplifying the feature extraction problem, wearing blue lipstick is a

considerable step away from a natural, non-intrusive system, which is the applica-

tion scenario in mind for this study. Artificial facial markers, for example infrared

LEDs tracked by an infrared camera system (OPTOTRAK [Vatikiotis-Bateson 95],

Qualisys [Nordstrand 03]), offer another way of extracting feature points with high

accuracy, but again it is an intrusive system which requires familiarisation for the

speaker and is a step away from practical applications.

Template Matching

A step further towards model-based approaches is the use of template matching

algorithms [Russ 95]. They are based on the cross-correlation of images which are

taken as 2D functions. Some part of an image — the template — is moved across

the target image and the correlation values are calculated for each position. The

position with the highest correlation value is the one with the highest degree of

similarity. If the template was taken from the same image, then the exact position

is found. The idea of template matching is, however, to find a feature of interest

in a different image. Noise as well as shape or pose differences will thus affect the

matching process. Since the shape of the lips changes quickly and quite significantly

while speaking, static image templates do not work very well for the mouth region.

Deformable 2D Models

This led to the development of deformable 2D models or templates. Yuille et al.

[Yuille 92] developed a 2D deformable mouth template consisting of a mouth-closed

template and a mouth-open template. The mouth-closed template is attracted by

the deep intensity valley corresponding to the dark shadow line between upper and

lower lip. The mouth-open template uses the presence of teeth in addition. Energy

potentials are calculated to determine the goodness of fit.

Kass et al. [Kass 88] propose active contour models or snakes. They are energy-
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minimising splines guided by external constraint forces and influenced by image

forces that pull it toward features such as lines and edges. However, if the features

move too rapidly, the snake can lose them and be attracted by a different feature.

Given that lips can move very rapidly, this is a potential risk unless the video frame

rate is so high that inter-frame differences are small. Nevertheless, snakes have been

applied to lip tracking in ASR systems [Kass 88]. The relative position of the control

points of the splines serves as input to the recogniser. Such a system is thus closer to

an implicit feature extraction system. Barnard et al. [Holden 02a] combined snakes

with 2D template matching, so that the snakes were driven by matched templates

of lip contour points, thus safe-guarding the lip tracking process.

A way to make active contour models more robust is to imply constraints on the

shape of the snakes. Such a method was introduced by Cootes et al. [Cootes 95]

with their active shape models (ASM) and subsequently used by Luettin et al.

[Luettin 96] to track the internal and external lip contour for automatic speechread-

ing. An ASM can only deform in ways characteristic to the class of objects it rep-

resents. These characteristics are learned from a set of training images and stored

in a point distribution model. Whereas deformable templates and active contour

models align to strong gradients for locating the object, ASMs learn the typical

shape deformation and use it during feature search. The set of points compris-

ing the active shape undergo a PCA to obtain the main modes of variation which

are also used as input in the automatic speechreading system. Any normalised lip

shape can be approximated using the learned mean shape and the first few principal

modes of variation. A similar approach was used by Dalton et al. [Dalton 96]. The

possible motion patterns of a snake were learned from training image sequences and

a Kalman filter was used to predict the motion during tracking.

In order to make the ASM even more robust, Matthews et al. [Matthews 98]

employed an active appearance model (AAM) which is an extension of the ASM. It

combines an ASM with a statistical model of the grey-values in the region around

each point of the ASM. By iteratively minimising the difference of the grey-values

of the model and the image, the parameters of the shape model can be updated to

fit the model better to the object’s shape (the lips in this instance) in the image.
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Model-based Methods

Finally, fully model-based approaches are described. Based on the experience with

the previous system by Benôıt and Adjoudani [Adjoudani 96], Revéret [Revéret 98]

developed a system in which a 3D lip model is fitted to image data for lip tracking,

speech recognition and visual speech animation purposes. The lip model consists of

a 3D polynomial surface model controlled by three articulatory-oriented parameters

learned on the speaker. The surface is defined by three 3D contour curves which

are exactly interpolated by 10 control points, corresponding to geometrical features

such as the lip corners, each. Thus, a total number of 30 points control the surface.

During the training of the system, a graphical user interface is used to fit the

model onto the lip image. A combination of calibrated front and profile views is

employed to fit the 3D model. The XYZ positions of the control points form the

visual feature vector. From a viseme analysis, ten key lip shapes are defined and

a PCA on these is performed. The first three principal components account for

94% of the total shape variance and are thus subsequently used as direct control

parameters of the model. During lip tracking, a 2D projection of the 3D model is

calculated at each time step and the three control parameters are changed until the

projection resembles the lip contour in the image.

The lip tracking was tested on a single phonemically-balanced sentence. The

results show that internal width and height as well as external height are recovered

well, whereas the external width is harder to measure due to shadows around the

lip corners which make an exact extraction difficult.

A similar system based on the backprojection of a 3D model into 2D image

space and adjusting the model parameters until the model fits the mouth shape in

the image was developed by Basu et al. [Basu 98]. The model is built on physical

and statistical information about permissible mouth shapes from training image

sequences. Colour information is used to determine the similarity of the lip model

and the shape in the image data.

In summary, image processing methods work well, if appropriately chosen. More

robust feature extraction can be achieved with model-based approaches but the
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Figure 2.5: Schematic representation of an AVSP system for speech recognition.

increased computational complexity affects the real-time performance. An extra

level of speaker dependency is added through the model learning (training) phase.

2.3.5 Audio-Video Automatic Speech Recognition and

Integration

In this section, the various approaches to AV automatic speech recognition (ASR)

are summarised and categorised in terms of the method used for the visual feature

extraction. Illustrating examples from the literature are given and the approaches

to AV integration are discussed and classified using the taxonomy by Robert-Ribes

et al. [Robert-Ribes 96] (Section 2.1.7), where information was available.

Figure 2.5 shows a general schematic representation of an AVSP system for ASR.

It consists of a video subsystem and an audio subsystem. The video system captures

images of the scene including one or more talkers. Using an analogue camera, the

images first need to be digitised, e.g. by a framegrabber. This step can be omitted if

a digital camera is used. The images are then processed to determine the location of

the talking face (if any) and to extract parameters based on relevant facial features

for the speech recognition system. Such parameters describe the location, shape,

or motion of facial features such as the lips and the jaw.

Parallel to the video subsystem, the audio subsystem records the acoustic signal

through a microphone. The signal is subsequently also digitised and processed to

extract relevant features for the recognition task. The synchronisation of the audio

and video signals plays an important role if the additional visual information is to

be of any use. According to Hennecke et al. [Hennecke 96], an AV ASR system is not

much different from an audio-only recognition system in the sense that the available
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input is digitised and processed before it is fed into some kind of statistically-based

recognition engine. The recogniser responsible for the AV processing is often the

same as in an audio-only system. As discussed in the Section 2.1.7, the integration

of the audio and video information, both in terms of how and when, is still an open

research issue for both human beings and machines.

Using Image-based Methods for Visual Feature Extraction

The first automatic speechreading system to be combined with an acoustic ASR

system was developed by Petajan in 1984 [Petajan 84]. The system consisted of two

separate recognisers for the audio and video input. Audio processing was done by a

commercial discrete utterance recogniser (Voterm) which output the two most likely

recognition candidates together with their recognition scores. The video processing

was based on grey-value thresholding and contour coding to detect the nostrils

which were used for face tracking by a single camera. The mouth was assumed

at a fixed distance below the nostrils. Next, parameters of the mouth region such

as area, perimeter, width and height of the mouth opening were derived. Since

the acoustic information is a time series, the video recogniser was trained with the

difference in the parameter values from frame to frame for each utterance. During

recognition, the parameter template with the closest set of parameters was chosen.

The acoustic recogniser dominated the system. The word candidates from the

acoustic recogniser were the input into the video recogniser which chose the one

with the best lipreading score as the final recognition result. As such, the system

employed a combination of the SI and DR models of AV integration. The system

was tested on single-word utterances and showed an improvement in recognition

scores in comparison to the audio-only recognition. Apparently, no particular effort

was made to control the acoustic environment, which is only stated as “moderately

noisy due to cooling fans and air conditioners” in [Petajan 84]. The speaker’s face

was positioned directly in front of the camera with two light sources, pointing at

45◦ to the speaker, at either side of the camera.

While this early system required the user to maintain a steady, frontal pose to-
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wards the camera, a later system by Petajan and Graf [Petajan 96] incorporated a

face tracking system which allowed the user some head movement (see ‘Finding the

Face’ in Section 2.3.2). The face tracking system initialised a nostril tracking proce-

dure from which the mouth region and then the inner lip contour were determined.

The visibility of the teeth was detected by a colour search within the inner lip con-

tour area. Petajan and Graf refer to improved applications in AV ASR systems

without giving details about them or the way the two modalities were integrated.

Using Implicit Methods for Visual Feature Extraction

Yang’s real-time face tracking system [Yang 98] was used in an AV ASR system by

Meier et al. [Meier 96, Meier 00]. Using a modular multi-state time-delay neural

network (MS-TDNN) architecture, an acoustic and a visual TDNN were trained

separately. The position of the lip corners was used to determine a 24×18 pixels

‘lip window’. The grey-values of all pixels in it formed the visual input vector into

the network. The dimensionality of that vector was reduced using Linear Discrimi-

nant Analysis (LDA). Explicit feature extraction was thus avoided which made the

algorithm more robust but slower due to processing redundant information. The

acoustic input consisted of 16 mel-scale cepstral coefficients.

Different levels of combination of the two signals were tried: on a phonemic

level (SI model), on the input level (DI model), and on the hidden layer level

(MR model). The recognition task was the speaker-dependent continuous spelling

of German letter strings in different noise scenarios. All combination methods

resulted in an improved recognition performance over the audio-only recognition,

particularly with high background noise. The best results were obtained using a

combination on the phonemic level (SI model) [Meier 96].

A similar approach was taken by Movellan and Chadderdon [Movellan 96].

Again, instead of explicitly extracting facial features, a preprocessed part of the

image showing the lips was used as input vector, so that the recognition system

developed the feature detectors that best solved the task. The speakers had to

centre and align their lips to the camera; no further face tracking was incorporated.
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The image frames were symmetrised along the vertical axis, the temporal difference

to the previous frame was obtained, then low-pass filtered and soft-thresholded.

The acoustic input features came from a standard LPC/cepstral analysis. Hidden

Markov Models (HMMs) were used as recognition engines.

The auditory and visual features were either processed by separate banks of

HMMs and then their results were integrated (SI model), or by a common bank

of HMMs (DI model). The training and recognition was done with the Tulips1

database [Movellan 95] containing 12 speakers uttering the digits from “one” to

“four” twice. Assuming conditional independence in Bayesian analysis, as for the

late integration (SI) model, yielded marginally better results than the early inte-

gration (DI) model. However, the results must be treated with care because of the

small size of the database. Four isolated words per speaker cover only few phonemes

and visemes. Nevertheless, the results showed a clear improvement by using audio

and video signals over the audio-only speech recognition results.

Hierarchical LDA. Also in this category of systems is the IBM AV ASR system

[Potamianos 01]. In this system, first an LDA was applied separately to both input

signals to discriminantly reduce the dimensionality of the feature vector. This was

followed by a maximum likelihood linear transform (MLLT) which maximises the

observation data likelihood in the original feature space under the assumption of

diagonal data covariance in the transformed space.12 In a second stage, LDA and

MLLT were applied again, this time to the concatenated AV feature vector. This

two-stage process was therefore called Hierarchical LDA (HiLDA). It corresponds

to the recoding integration models but recoding is neither done in the motor space,

nor in the auditory space, but in a different space.

The audio and video feature vectors were concatenated ‘static’ features from

consecutive sampling points, as a way of incorporating dynamic information in

the ASR process. The static audio features were 24 mean normalised mel-cepstral

coefficients. The static video features were the 24 highest-energy coefficients of a

12 Diagonal covariances are typically assumed in ASR when modelling the observation
class probability distribution.
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discrete cosine transform (DCT) applied to the mouth region which was found using

a statistical face tracking algorithm [Potamianos 00, Senior 99].

Recognition experiments were done with the IBM AV large vocabulary continu-

ous speech database (see Section 2.3.6) [Neti 00, Neti 01]. Various other integration

methods were tested as described in [Luettin 01, Glotin 01]. Multi-stream HMMs

were shown to be able to handle asynchrony between the audio and video streams

which may be important as visual speech activity usually precedes acoustic activity

(e.g. [Kohlrausch 00, Massaro 98]). The best results were achieved for multi-stream

HMMs when the training of the HMMs was done jointly. Slight decreases in the

word error rate were reported for clean audio conditions, but significant decreases

found for noisy audio conditions.

Improved results were achieved when applying adaptive weights to the audio

and video input depending on an estimate of the audio reliability (cf. [Rogozan 97]),

which can be seen as a SI model of AV integration. Both clean and noisy audio

AV recognition improved considerably. In the discriminative model combination

(DMC) [Beyerlein 98], the audio and video streams were used independently to

train models which were then combined with a language model, with weights opti-

mised to minimise the word error rate on a held out training set. DMC aims at an

optimal integration of independent sources of information. Some improvements of

recognition performance were reported for clean audio conditions, while no exper-

iments were done on noisy audio conditions. As a general comment, it should be

noted that the DMC approach suffers from the lack of synchronisation between the

two streams, as they are used independently.

Using Model-based Methods for Visual Feature Extraction

Bregler and Omohundro [Bregler 94b] presented a system based on active contour

models which performs a PCA on the points of the snake to determine the ma-

jor components responsible for shape variations. The term ‘eigenlips’ was coined

for these components [Bregler 94a] and they were used as input into a hybrid con-

nectionist MLP/HMM speech recognition system. Bregler and Omohundro used a
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DI model to integrate the visual and acoustic input features already on the input

level. The MLP was trained to estimate the likelihoods that a ‘specific phone’ (sic -

[Bregler 94b]) was related to the current bimodal input vector and these likelihoods

were used as input for the HMM. The speech material came from a multi-speaker

spelling task database (6 speakers, 2955 connected letters in total). The system was

tested in different levels of acoustic noise. The results showed that the additional

visual information helped to reduce the word error rate by up to 20%.

Active Shape Models. A system based on active shape models (ASM) was in-

troduced by Luettin et al. [Luettin 96]. ASMs have been discussed in ‘Deformable

2D Models’ in Section 2.3.3. To restrict the model to only deform to shapes similar

to the ones in the training set, the shape parameters of each principal mode of vari-

ation were constrained to stay within ±3 standard deviations. The system assumed

that the mouth region had been extracted by another face tracking algorithm which

was not specified in the article. Movellan’s Tulips1 database [Movellan 95] was used

for the experiments. However, the results presented state only the outcome of the

lip extraction stage of the system. They showed that ASMs were able to represent

deformable objects such as lips with an acceptable degree of accuracy, although the

correctness of the lip extraction process was only judged visually. The advantage of

ASMs over snakes is that the deformation is purely governed by statistics learned

from a training set and is therefore neither too constrained nor too flexible.

Active Appearance Models. Matthews et al. [Matthews 98, Matthews 02] com-

pared three different methods of lip shape extraction for AV ASR systems: model-

based ASMs, intermediate active appearance models (AAMs), and image-based mul-

tiscale spatial analysis (MSA). The first two techniques have been described in

Section 2.1.6. MSA is a pixel-based method, which decomposes an image into a

granularity domain using a nonlinear scale-space decomposition, which is a mathe-

matical morphology serial filter (Matthews et al. [Matthews 02]). The granules are

the extrema which are progressively removed from the input signal by using the

filter with increasing scale. Scale histograms show the distribution of features over
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scale and are used as visual input in the recognition experiments.

Classification was done with HMMs. The acoustic features were not further

specified. The AV speech material consisted of the letters A to Z spelled by 10

speakers three times. Separate recognisers were applied to the audio and video

signals. The results were combined (SI model) using a confidence measure based on

the uncertainty of the acoustic recogniser about a word at a given SNR. In all three

methods, the AV recognition performed better than the audio-only one. AAMs and

MSAs performed similarly well but ASMs showed poorer results.

Lip Models. Dalton et al. [Dalton 96] used a dynamic contour tracker to track

the lips. The use of blue lipstick was required to enhance the contrast. The 2D

outline of the lips was parameterised by quadratic B-splines. Tracking was achieved

by generating estimates of the B-spline control points to match the lip contour.

Lip motions were described in terms of deformations to an average mouth shape,

controlled by some shape constraints. A PCA on the set of training data discovered

the main modes of variation of the model, with the first six modes expressing

99% of the variation. The acoustic features were 8 mel-scale cepstral coefficients.

Bimodal feature vectors were formed which relates to a DI model. Recognition

experiments were conducted using an AV dynamic time warping (DTW) isolated-

word recogniser. The performance was evaluated on a single speaker and 40 words

vocabulary with different levels of acoustic noise. The results showed an improved

performance for the combined input signals at all levels of noise.

The AV ASR system by Benôıt and Adjoudani [Adjoudani 96, Benôıt 96] con-

sisted of two calibrated cameras recording the carefully made up (blue lipstick)

mouth region from a frontal and a profile view, and a chroma-key system which

converts the blue lips into saturated black colour to ease edge-detection. Param-

eters measured included internal and external lip contour width and height, the

lip area, the area of the oral cavity, as well as the protrusion of the upper lip, the

lower lip, and the lip contact point measured to a vertical ruler mounted on the

speaker’s glasses. These protrusion parameters were not used in the recognition

experiments because they would be difficult to extract in a real application. 12
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cepstral coefficients were used as auditory features. The speech material consisted

of nine repetitions of 54 isolated non-sense words spoken by one speaker. The two

modalities were integrated in a HMM. Both a DI and SI models of AV integration

were tested. In the latter case, the decision to rely more strongly on either the

audio or the video modality was based on the uncertainty of the acoustic recog-

niser reflecting the signal-to-noise ratio (SNR). The experiments showed that the

SI model outperformed the DI model. In both cases, the combined AV recognition

results were better than the audio-only recognition ones.

2.3.6 Audio-Video Speech Data Corpora

For testing and comparing results published by various research groups in the field of

AVSP, a common basis in the form of a comprehensive, systematically designed AV

speech data corpus would be of great value. Such a publicly available ‘benchmark’

AV speech data corpus still does not exist, despite a number of corpora having been

produced over the last few years. Many corpora appear to have been designed with

a specific application in mind, rather than being based on a general phonemic and

visemic analysis. Some corpora have already been mentioned in previous sections.

This section only discusses some major corpora for the English language.

A good overview of existing AV speech corpora is given by Chibelushi et al.

[Chibelushi 96a]. Their study led to the creation of the well-designed DAVID cor-

pus [Chibelushi 96b] which consists of four different subcorpora, each addressing a

particular research issue. The first subcorpus addresses the issue of facial image

segmentation under different conditions, including variable illumination, variable

backgrounds, and facial distractors such as glasses and hats. This subcorpus has 6

subjects. The second subcorpus is designed for research in the area of automatic

speech and person recognition and contains recordings of 31 clients and 92 impos-

tors. A subset of 9 subjects has highlighted lips (blue make-up) to facilitate the

lip extraction process. Both the first and second subcorpus use the set of digits

from 0 to 9 as speech material. Subcorpus 3 is intended for speech-assisted video
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compression and the synthesis of talking heads. VCVCV13 utterances of 5 subjects

were recorded. The fourth subcorpus is concerned with automatic speech and per-

son recognition with application in video-conferencing systems. Hence, it contains

sentences from a business control set spoken by 31 clients and 92 impostors. All

recordings show a frontal and profile view, achieved by a mirror construction and a

single camera, together with the associated synchronous audio.

A well-established AV speech data corpus is the M2VTS database and its succes-

sor XM2VTSDB [Messer 98, Messer 99]. Whereas the M2VTS database contains

37 speakers, the XM2VTSDB database comprises recordings of 295 speakers. Four

sessions were recorded to account for natural changes in appearance of the speakers.

During each session, an AV speech recording was made as well as a head rotation

sequence. The speech material recorded consists of three sequences, two of which

contain the digits from 0 to 9 in different order. The third sequence is “Joe took

father’s green shoe bench out.” which was designed to maximise visible articulatory

movements. It contains all phoneme and viseme categories (but not all phonemes).

The XM2VTSDB is currently the largest publicly available AV corpus in terms of

numbers of speakers but suffers from the small number of different sequences for

each speaker with respect to a complete phonemic and visemic analysis.

The Tulips1 data corpus recorded by Movellan [Movellan 95, Movellan 96] con-

tains the four digits ‘one’, ‘two’, ‘three’, and ‘four’ repeated twice by 9 male and

3 female subjects. This speech material was chosen with a phone number spelling

task in mind. Only frontal views are recorded. As such, the corpus is rather small

and application-driven.

Other AV speech databases have been recorded by various research groups but

are not publicly available. One such proprietary data corpus is the IBM LVCSR14

AV corpus [Neti 00], which contains continuously spoken utterances of the IBM

ViaVoice training set from more than 290 American English speakers in different

environments (office, car). The video stream is compressed using MPEG-2.

Recently, the CUAVE corpus was introduced by Patterson et al. [Patterson 02].

13 VCVCV = Vowel-Consonant-Vowel-Consonant-Vowel
14 LVCSR = Large Vocabulary Continuous Speech Recognition
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It contains recordings from about 50 American English speakers, uttering connected

and isolated digits. The sequences are stored as MPEG-2 files. The data is fully

labelled at a millisecond level.

Although a comprehensive and systematically-designed audio data corpus exists

for AuE (ANDOSL [Millar 94]), no AV speech corpora exist. As a result, a new AV

corpus for AuE has been created for this study (see Chapter 4). The AVOZES data

corpus is systematically designed to contain the phonemes and visemes of AuE and

comprises utterances from 20 speakers.

2.4 Statistical Analyses of Audio-Video

Relationships

The literature is scarce with respect to statistical analyses of the relationships be-

tween audio and video speech parameters. Yehia et al. [Yehia 97, Yehia 98] pre-

sented a study with one speaker of American English and one of Japanese, in which

they investigated the degrees of correlation between vocal-tract, facial, and acoustic

parameters. Vocal-tract motion was tracked electro-magnetically using small trans-

ducers placed mid-sagittally on tongue, lips, and lower teeth. Facial motion was

captured as 3D trajectories of infrared LEDs placed on the lower face, including the

lips. RMS amplitude and line spectrum pairs (LSP) derived from linear prediction

coefficients were used as acoustic parameters. Vocal-tract data accounted for 91%

of the variance in the facial data, with the latter accounting for 80% of the variance

in the vocal-tract data. The acoustic data accounted for ≈60–70% of the variance

in both the vocal-tract data as well as the facial data. Surprisingly, the acoustic

data was also well estimated (≈75% correct) by the facial data alone.

A similar study of the correlation between facial movements, tongue movements,

and speech acoustics in American English was performed by Jiang et al. [Jiang 02].

An optical tracking system (Qualisys) tracked the position of markers on the entire

lower face, from which relative distances were computed as video speech parame-

ters. Tongue movements were captured by an electro-magnetic midsaggital artic-
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ulography system. The audio speech parameters were LSP and RMS parameters.

Averaged across the four speakers, ≈69% of the information in the video speech

parameters was accounted for by the audio speech parameters and 47% of the

acoustic information could be recovered from the video speech parameters. Tongue

movements were well (≈75% correlation) predicted from audio or video speech pa-

rameters, but in the opposite direction, the correlation values decreased to 52% for

the audio speech parameters and to 66% for the video speech parameters. Chin

movements were easiest to recover, then lip motion, and finally cheek movements.

Barker and Berthommier [Barker 99] tested both linear and non-linear models

for AV relationships in French, using similar techniques to Yehia et al. [Yehia 98].

Their facial parameters were purely related to lip and jaw movements, not the entire

lower face, measured using a chroma-key technique on blue made-up lips (see Section

2.3.4). The acoustic parameters were again LSP and RMS parameters. Acoustic

data accounted for ≈75% of the variance in the facial data but the opposite way was

only correlated at 55%, which is less than what Yehia et al. reported. The difference

was attributed to measuring the lip and jaw movement only, not the lower face.

Yehia et al. reported strong correlations between small movements of the cheeks and

the horizontal position of the tongue. Such movements could not be measured by lip

and jaw parameters. Barker and Berthommier demonstrated that non-linear models

are able to represent the AV relationships better than linear models, because of the

non-linear relationship between vocal tract shape, acoustics, and visible speech

articulation, but linear models provide a good first approximation.

2.5 Chapter Summary

This chapter has given a broad overview of methods presented in the literature on

the various aspects of audio-video speech processing (AVSP). First, the processes

involved in AVSP by humans have been described. Most notable is the so-called

McGurk effect which clearly shows that human speech processing is not only af-

fected by the acoustics, but also by visual speech information, which can be found

in particular on the lower face half. A review of the processes involved in speech
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production and speech perception from an AVSP angle has been given. This has

included the acoustics of the vocal tract as well as models which connect the vocal

tract shape with the acoustic properties, e.g. formant frequencies, of the speech

sounds generated. Of the articulators, only the lips and jaw (mandible) are fully

visible and the tongue and teeth are visible at times. Movements of these artic-

ulators lead to a change in the vocal tract geometry which results in changes to

the produced speech sound. An overview has been presented on theories of speech

perception and investigations into which face parts are most relevant for the visual

speech cues. Models of how the two modalities are integrated have been discussed.

Integration in a common, amodal space (motor space recoding) or in a hybrid model

(e.g. FLMP) appeared to be the models best explaining the integration.

Next, the characteristics of AuE, which shows little dialect variation due to

regional differences but more variation due to socio-economic factors, have been

discussed. Speakers of AuE are typically classified into broad, general, and culit-

vated pronunciation with the changes from one class to another being continuous

rather than discrete. The strongest differences are found for vowels and diphthongs.

Finally, literature on AVSP by machines has been presented. The discussion has

included an overview of fundamental techniques in audio- and visual-only speech

recognition systems. While well-established parameters exist for the audio modality

(in form of features from a spectral analysis), it is not clear which features describe

the visual speech information best. Implicit and explicit feature extraction meth-

ods have been described. Methods of the explicit lip feature extraction approach

followed in this study have been discussed in more detail. Next, some AVSP ASR

systems based on the various approaches have been compared. It should be noted

that common data corpora to enable close comparison of the various results re-

ported are still not available in the field of AVSP, with the XM2VTSDB corpus

coming closest to the requirements among the publicly available corpora.

In conclusion, the literature review has shown that several areas of AVSP need

further investigation. Among them are the non-intrusive extraction of visual speech

information from the face as well as a thorough investigation of the AV relationships

of extracted audio and video speech parameters. These two areas are investigated in
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this study. A novel non-intrusive lip tracking algorithm is presented which is based

on a stereo vision system. Such a system increases the naturalness of utterances

spoken by test subjects because they are not restricted by artificial markers on

their face. Modern statistical methodology offers interesting ways to investigate

relationships of AV speech parameters. The recent method of coinertia analysis is

introduced to the field of AVSP and applied to characterise the AV relationships for

AuE. As suitable AV speech corpora do not exist for AuE, the new AVOZES corpus

is created based on a proposed new design framework for AV speech corpora.
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Chapter 3

Lip Tracking Using Stereo Vision

To derive parameters describing the visible speech movements in the mouth region,

it is essential to track these movements. This chapter describes a set of techniques

to achieve this motion tracking. First of all, a method to find a human head (or

face) in the video data and to determine its pose was required. This is referred to as

the face tracking system. It is described in detail in Section 3.1. The 3D lip model

used in this study is presented in Section 3.2. Secondly, a way to localise the mouth

region and to track the motions in this region was needed. As discussed in the

literature review (Sections 2.3.3 and 2.3.4), feature extraction for the description of

movements in the mouth region is either implicit, i.e. using pixel-based techniques,

or explicit, i.e. using geometric techniques. In this study, an explicit geometric

feature extraction approach was followed, because it was judged to facilitate the

interpretation of the results of the statistical analyses of the relationship between

audio and video speech parameters. A novel real-time lip tracking algorithm based

on stereo vision was developed, which is able to track certain lip feature points

accurately without requiring manual adaption to the speaker (Section 3.3). Stereo

vision has the advantage that 3D coordinates of facial points can be measured

irrespectively of the head pose, while monocular systems measure only 2D image

coordinates without separating head pose-related effects from facial movements.

Finally, Section 3.4 describes an experiment to validate the accuracy of the new lip

tracking algorithm.

65
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3.1 Real-Time Stereo Vision Face Tracking

Before a lip tracking system can be applied, it is first necessary to estab-

lish the position and orientation of the human face in the video frames. Sev-

eral systems that achieved this were discussed in the literature review (Section

2.3.2). The face tracking system used in this study was developed by Newman

[Newman 99a, Newman 00]. It is based on earlier work by Matsumoto1 and Heinz-

mann [Heinzmann 98, Heinzmann 99, Matsumoto 99, Matsumoto 00, Zelinsky 99].

A detailed overview of the Robotic Systems Laboratory (RSL) face tracking system

is given below, as it forms the basis for the subsequent lip tracking system.

3.1.1 System Outline

The face tracking system is based on real-time stereo vision processing. A stereo

vision system has the advantage that depth information (distance from cameras to

object) can be recovered from the stereo disparity, if the cameras are calibrated.

A calibrated monocular camera system can only estimate depth — or the object’s

3D position in general — if the object dimensions and its orientation are known.

This is obviously not the case in unrestricted face tracking. The RSL face tracking

system allows for a non-intrusive way of tracking facial features. No markers or

special make-up are required, yet the system achieves a high degree of accuracy.

These properties are highly desirable in an analysis of AV relationships, because any

artificial tracking aids might inhibit the speaker from speaking naturally. Hence,

there would be a risk of generalising the results to normal speech.

Figure 3.1 illustrates the system configuration. The two video cameras are

standard, colour analogue NTSC cameras mounted side by side on a rig. The

video output signals from the cameras are multiplexed into a single channel using

field multiplexing [Matsumoto 97]. In this technique, a device containing a video

switching integrated circuit selects the signal from one video stream as the odd field

of the video output, while the signal from the other video stream becomes the even

1 Nara Institute of Science and Technology, Japan. The work mentioned here was
carried out during a visit to the Robotic Systems Laboratory, RSISE, ANU.
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Figure 3.1: Top: Configuration of the stereo vision face tracking system. Bottom:

Front and side view of the stereo camera rig.

field. This requires to first de-interleave the odd-even fields of the video frames from

each camera. Multiplexing video signals in the analogue phase has the advantage

that it can be applied to virtually any video hardware system. Images from two

cameras can be stored in a single video frame. Stereo image processing can be

performed within the computer’s memory using only one image processing board.

Single video stream processing is thus transformed into stereo vision processing.

A weakness of the field multiplexing technique is that only half the vertical

resolution of the original video frame from each camera is available, as two video

streams are compressed into a single frame. However, this disadvantage is more than

outweighed by the ability to perform stereo vision processing with a single video

card. Nevertheless, it would be worthwhile in future studies to consider rotating the

stereo cameras by 90◦, so that the halved resolution is in the horizontal direction

rather than the vertical direction, which is potentially the more informative axis in

visible speech articulation. Both face and lip tracking algorithms would have to be

adjusted. Based on the results of the validation experiments (see Section 3.4), it

was judged that the current setup was sufficiently accurate.

If displayed directly on a TV monitor, the multiplexed video output looks

strange to the human eye, as the images from the two video streams alternate every

other line. From an image processing point of view, this is no problem because
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corresponding lines can easily be put back together to form two separate images

(at half the original vertical resolution) again. One other weakness is the delay of

16.6ms between the images from the two video streams, which is inherent in the

NTSC standard, as it is an interlaced video/TV standard. That is, first all the lines

of one field, let’s say the odd lines, are processed, then all the lines of the other

field. The field frequency is 60Hz in the NTSC standard, or 30Hz frame frequency,

and hence there is a 16ms delay between fields. This delay poses no problem for

a face tracking application, but it is a potential error source for lip tracking (see

Section 3.1.4 for a discussion of error sources).

The multiplexed video frames are sent to a Hitachi IP5005 video card for fur-

ther processing. This video card was designed to perform a variety of fast image

processing functions in real-time, for example, filtering, smoothing, erosion, convo-

lution, normalised correlation. The card itself is a PCI-bus card running under the

Linux operating system on a PC with a 450MHz Pentium II CPU and 64MB RAM.

Image processing is done by the IP5005 video card hardware, while stereo recon-

struction and head tracking2 are performed in software in the PC memory. These

steps are described in Sections 3.1.2 – 3.1.5 below. Once tracking information has

been updated, the video output with overlayed tracking information is sent to a TV

monitor (see Figure 3.1).

3.1.2 From 2D to 3D — Stereo Reconstruction

The standard pinhole camera model was used in the face tracking system, because

any non-linear camera effects (radial and tangential lens distortions) were relatively

small compared to the errors due to noise and stereo matching inaccuracies. In this

model, the camera performs a linear perspective projection of an object point onto

a pixel in the image plane through the camera centre. The camera arrangement

and world coordinate system are shown in Figure 3.2. The cameras’ centres, �cl and

�cr, are located equidistantly (about 55mm in the experiments) from the origin of

2 The RSL face tracking system is also capable of gaze direction estimation. However,
details of this estimation are omitted here, as they have no relevance to this work.
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Figure 3.2: Stereo camera arrangement and stereo world coordinate system.

the world coordinate system on the x axis. The y axis is vertically upwards and

the z axis points horizontally out into the scene.

It is important to understand and distinguish the various coordinate systems

that will be referred to in the following. First of all, there is the image coordinate

system of each camera. This is a 2D coordinate system, which is represented by

(u, v) coordinates for the left camera and (r, s) coordinates for the right camera,

respectively. Secondly, there is the world coordinate system of each camera. These

are 3D coordinate systems with the origin (= centre of projection) in the camera

centre. Finally, there is the stereo world coordinate system, depicted in Figure 3.2,

with its origin halfway between the two camera centres.

Epipolar Geometry

Figure 3.3 shows the epipolar geometry, which is the basic constraint arising from

having two cameras (at different locations = viewpoints) looking at the same scene.

A very good introduction into epipolar geometry can be found in [Xu 96]. The line

through the two camera centres, �cl and �cr, projects to a point �el in the left image

plane and �er in the right image plane. The points �el and �er are called epipoles.

The camera centres �cl, �cr and point �m form a plane — the epipolar plane for the
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Figure 3.3: Epipolar Geometry.

point �m. The image points, �ml and �mr, must lie on the epipolar lines lml
and lmr ,

respectively. These epipolar lines are defined by the intersection of the epipolar

plane with the image planes of the cameras and must therefore, by definition, go

through the epipoles.

An algorithm for computing the 3D structure of a scene from a pair of perspec-

tive projections, where the spatial relationship between the two views is unknown,

was first presented by Longuet-Higgins [Longuet-Higgins 81]. He showed that if a

scene contains at least eight corresponding points in the images from both views,

the relative orientation of the two projections and the structure of the scene can be

computed by solving a set of simultaneous linear equations based on the eight sets

of image coordinates. This only accounts for extrinsic camera parameters, i.e. ro-

tation and translation (see Section 3.1.3 for an explanation of camera parameters).

The relationship between corresponding image points in the two camera images is

described in the Essential matrix E — a 3 × 3 matrix — and satisfies

�mT
r E �ml = 0 . (3.1)

Luong and Faugeras [Luong 96] generalised Longuet-Higgins’ algorithm to also in-

clude intrinsic camera parameters (see Section 3.1.3). The relationship between

corresponding image points is expressed in the 3 × 3 Fundamental matrix F, which

can be computed from coordinates of corresponding points in uncalibrated images,

see [Luong 93, Luong 96] for details. The Fundamental matrix satisfies

�mT
r F �ml = 0 . (3.2)
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Let us denote the (2D) image point of an object point �mi in the left and right image

planes respectively by

�ml
i =




xl
i

yl
i

zl
i


 and �mr

i =




xr
i

yr
i

zr
i


 (3.3)

with the zi element representing the distance of the image plane from the camera

centre. It is generally more convenient to use homogeneous coordinates, which can

be established by dividing the vector elements by the element in the third row

ui =
xl

i

zl
i

, vi =
yl

i

zl
i

, ri =
xr

i

zr
i

, si =
yr

i

zr
i

, (3.4)

�ml
i =




ui

vi

1


 and �mr

i =




ri

si

1


 . (3.5)

(Almost every textbook on computer graphics or computer vision will discuss the

use of homogeneous coordinates in detail, for example, consult [Foley 96].)

The perspective transformation matrix (or camera calibration matrix ) defines

the transformation from image coordinates to camera world coordinates. It is de-

termined during camera calibration as described in Section 3.1.3. If matrices for

both cameras are known, �ml
i and �mr

i can be transformed into vectors in camera

world coordinates. Not considering non-linear camera effects, this matrix repre-

sents a rotation as well as a translation. If the centre of projection coincides with

the camera centre (and origin of each camera’s world coordinate system), then the

translational component equals 0.

The resulting vectors �pi and �qi represent directions from the camera centres,

through the respective point on the image plane, to the object point in the scene

�pi = Ry(ϑl) Rz(φl) Rx(γl) fl �ml
i (3.6)

�qi = Ry(ϑr) Rz(φr) Rx(γr) fr �mr
i (3.7)

The scalars fl and fr are the focal lengths of the left and right cameras, respectively.

Rx, Ry, and Rz are rotations around the x, y, and z axes, respectively. As mentioned
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in the previous subsection, the cameras in this project were mounted on a rig with

a baseplate in the xz plane which allows one to verge the cameras around the y

axis, but limits rotation around the other two axes. In this study, the angles were

ϑl ≈ −5◦, ϑr ≈ 5◦, and φl ≈ φr ≈ γl ≈ γr ≈ 0.

Under ideal conditions, the vectors �pi and �qi intersect at the 3D point �mi =

(x, y, z)T . However, since �pi and �qi are likely to be corrupted by noise (lens distor-

tion, point correspondence), �mi is determined by minimising the error term

Ei = ‖�pi si + �cl − �mi‖2 + ‖�qi ti + �cr − �mi‖2 (3.8)

with respect to the three coordinates of �mi and the two scalars si and ti. If stereo

matching fails, i.e. if the image points �mi are found incorrectly, minimising the error

term Ei will not determine the coordinates of �mi correctly. Finding matching image

points — solving the ‘correspondence problem’ — is therefore of great importance.

The final step in 3D reconstruction is the stereo triangulation, which leads to the

coordinates of �mi in stereo world coordinates. If the orientation and distance of each

camera to the origin of the stereo world coordinate system is known, then, together

with the perspective transformations of each camera, the relative orientation of the

two cameras to each other and the stereo world coordinates of a point viewed in

both camera images can be calculated.

Setting the partial derivatives of Ei to zero gives the following solution for �mi

Pi =
�pi · �pT

i

‖�pi‖2
− I Qi =

�qi · �qT
i

‖�qi‖2
− I (3.9)

(Pi + Qi) �mi = Pi �cl + Qi �cr . (3.10)

Inverting the matrix coefficient (Pi + Qi) yields the three coordinates of �mi.

3.1.3 Camera Calibration

Camera calibration is the process of relating the camera’s image (pixel) coordi-

nates to the world coordinates. The relationship between the coordinate systems

is described in the perspective transformation matrix. In the most general case,

neither the intrinsic nor the extrinsic camera parameters are known. Intrinsic pa-

rameters define the perspective transformation from 3D object coordinates in the



3.1. REAL-TIME STEREO VISION FACE TRACKING 73

camera world coordinate system to the 2D camera image coordinate system. These

parameters are

• f : focal length (or distance from image plane to centre of projection),

• κ1, κ2: lens distortion coefficients for both directions in image plane,

• sx: uncertainty scale factor due to camera scanning and acquisition timing

error,

• (uO, vO): coordinates of origin of image coordinate system in image plane.

Extrinsic parameters define the transformation from the 3D object world coordinate

system to the 3D camera world coordinate system. In detail, these parameters are

• γ, ϑ, φ: rotation angles,

• T = (tx, ty, tz)
T : elements of the translation vector.

Tsai [Tsai 86] developed a camera calibration technique, for both a single cam-

era system as well as stereo camera systems, that takes all of these 12 camera

parameters into account. It is common to not calibrate the camera(s) for some pa-

rameters to simplify (and speed up) the calibration process by reducing the number

of corresponding image points required. For example, if a perfect linear perspective

transformation and no lens distortion are assumed, then the intrinsic parameters

κ1 and κ2 can be omitted. Faugeras and Toscani [Faugeras 86] presented another

approach to the calibration problem in stereo camera systems that assumes such a

perfect perspective transformation.

Newman’s Two-Step Process

However, the approach taken by Newman [Newman 99a] in the RSL face tracking

system is slightly different in that each camera is calibrated separately but using

the same algorithm. As mentioned in the previous paragraph, a linear perspective

transformation is assumed and non-linear camera effects (lens distortion) are not

considered. Camera calibration is achieved in a 2-step process
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Figure 3.4: The calibration pattern: normal (left) and after edge detection (right).

1. Define a set of known 3D points in the scene and determine their image

coordinates in the image plane.

2. Determine the perspective transformation matrix which maps the 3D object

points onto their 2D image points.

In the first step, the stereo camera rig is placed on one end of an exactly measured

calibration rig. The cameras observe an object plane parallel to the plane defined

by the x and y coordinate axes. It features a rectangular 5×6 grid of 30 black

rectangles on a white background similar to the grid used by Tsai [Tsai 86] (Figure

3.4). The object plane is placed at various distances from the stereo camera rig,

which are known exactly from the process of manufacturing the calibration rig.

The four corners of each rectangle are semi-automatically (the user has to click

the mouse pointer on the corner rectangles to start the process) detected using

edge detection in snapshots from both cameras. This procedure is repeated for

all five positions (650–850mm) in which the object plane is placed. In total, this

gives 30 rectangles × 4 corners × 5 positions = 600 corresponding image points for

determining the 10 intrinsic and extrinsic camera parameters. The procedure takes

only a few minutes and can be done offline, before using the stereo camera system

for face tracking or any other application.

In the second step, a minimisation procedure is usually necessary because of er-

rors introduced by image noise and incorrectly located corresponding image points.

As described in Section 3.1.2, the error between the measured and predicted 2D

positions is minimised. Many papers in the literature describe general non-linear
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minimisation techniques (see [Ganapathy 84, Tsai 86] for good overviews). Instead,

a direct method, proposed in [Ganapathy 84] and described in [Trucco 98], is used

here, because it is more accurate. Here, the perspective transformation matrix is

determined by finding a matrix A such that for all i

A =




aT
1

aT
2

aT
3


 ui =

aT
1 · �mi

aT
3 · �mi

vi =
aT

2 · �mi

aT
3 · �mi

(3.11)

where (ui, vi) are the image coordinates of the ith calibration point with world

coordinates �mi = (xi, yi, zi)
T . Errors in the measured image points (ui, vi) make it

practically impossible to satisfy these equations exactly, so A is found by minimising

E =
∑

i

(
(aT

3 · �mi) ui − aT
1 · �mi

)2
+
(
(aT

3 · �mi) vi − aT
2 · �mi

)2
. (3.12)

The camera parameters, and hence the transformation matrix, can then be ex-

tracted from the elements of A. However, because of noise, the rotational pa-

rameters will not necessarily form an exact rotation matrix. Choosing the closest

rotation matrix may not minimise the error E any more. Instead of employing an

iterative non-linear minimisation procedure, a more precise algorithm was devel-

oped by Newman et al. [Newman 00]. It can be shown that along each ordinate

representing a rotation angle, the differential of E is quartic in that angle’s cosine.

Similarly, E is quadratic along the ordinates of all other camera parameters. Since

closed form solutions of any quadratic, as well as the roots of any quartic, can be

obtained, E can be minimised precisely. A small number of iterations (≈ 5) is suf-

ficient to find the minimum. The resulting calibration is accurate to within 1mm

over the range (x = ±200mm, y = ±200mm, z = 600 ± 300mm) [Newman 99b].

3.1.4 Discussion of Error Sources in Camera Calibration

In the previous subsections, two main error sources were identified. Firstly, camera

lenses can show some radial and tangential distortions, which can be accounted for

by the lens distortion coefficients κ1 and κ2. As a result of such lens distortions, the

epipolar constraint may not hold. However, a perfect linear transformation is often
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assumed and the effects of lens distortions are neglected, because the effects are con-

sidered small and omitting the determination of κ1 and κ2 simplifies the calibration

process. Secondly, errors occur during the determination of corresponding points

in the stereo images. This can be due to inaccuracies in an automatic determina-

tion (depending on the method(s) used), incorrectly manually chosen points, image

quantisation, the delay between left and right images in the stereo vision system

used in this project, and the fact that the cameras view the scene from different

angles. The last point presents no problem for salient image features (the corner

of a cube, for example), but may lead to incorrectly chosen correspondences for

points on smooth surfaces. By using a specific calibration pattern of exactly known

dimensions, as was done in this study, the problems of finding corresponding points

in the stereo images can be avoided or at least reduced to a negligible level. For

the remainder of this thesis, correctly calibrated cameras were assumed.

3.1.5 The Tracking Procedure

Before the actual face tracking can start, the RSL system requires the creation of a

face model, which is stored in a ‘face model’ file. This model has three components

1. an edge map of the entire face,

2. template images of the facial features, and

3. 3D coordinates of the facial features.

The edge map of the whole face is used in the searching mode to find the approx-

imate position of the face in the stereo images. The facial features to be used for

tracking are identified interactively by the user during the face model creation. Up

to 32 features in total can be selected, but usually about 15–20 features are sufficient

for accurate face tracking. In principle, these facial features can be any landmarks

on the face but distinctive regions, for example the eye corners, the eyebrow ends,

the nose region, the ears, and moles, give the best results. In addition, the system

requires the user to select the corners of the eyes as well as the mouth corners.
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Figure 3.5: Small rectangles: Feature templates selected for face tracking. Large

rectangles: Automatically selected mouth region for lip tracking.

These are the face model points used in determining the head pose. They also

define the area of the image for the whole face edge map.

An image of the entire face is taken in full frontal position, as well as for views

of the face on a 45◦ angle to the left and right, for feature selection and subsequent

extraction of template images. By selecting the position of each feature in both

stereo images, their 3D coordinates can be computed as described in Section 3.1.2.

Figure 3.5 shows an example of a frontal view with features selected for tracking.

The face tracking system is always in one of two modes. In the searching mode,

the algorithm needs to find the face in the video stream. This is obviously necessary

at the beginning of the face tracking, but also every time the face is ‘lost’, due to

the face not being in the images or because of a tracking failure. In the tracking

mode, the algorithm performs the actual tracking of the selected facial features.

Searching Mode

The searching procedure firstly obtains a multiplexed stereo image and then splits it

into left and right views. Both images are smoothed and subsampled to reduce them

to quarter size. Next, the edge map of each image is computed using standard edge
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detection methods. Using the face model edge map, the left image is searched firstly

for instances of the area surrounding the bridge of the nose. Then, a second search

region located below the best result of the first search is defined and searched for

instances of the region around the mouth. This 2-stage search procedure introduces

additional scale and rotation invariance.

In the next step, templates of the nose bridge and mouth regions are extracted

from the best matches found in the left image. The search is then repeated with

these new templates in the right image. Template matching is done using hardware-

implemented normalised cross-correlation (NCC) in the Hitachi IP5005 video card.

NCC matching is more robust to changes in illumination than other methods. If the

combined certainty of the NCC matches exceeds the search threshold, the face is

considered to be found. Initial estimates of the rotation and translation parameters

of the head pose are calculated and the proper face tracking process started.

Tracking Mode

Based on the head pose from the previous video frame, an estimate of the pose in

the current frame is predicted from Kalman filters. The head is considered to be

a rigid object for this purpose, so that only rotation and translation parameters of

the current head pose need to be estimated. For each feature, 2D search regions are

computed for both left and right view using the uncertainty of the predicted pose

estimate to determine the size. In other words, search regions can be smaller, when

the head pose estimate is good and they need to be larger, when the estimate is not

so good. Of course, the size of the search region has an immediate impact on the

speed of processing. Next, the best match of each feature template from the face

model is found in the individual search regions of the left image. Then, a template

is extracted from each position of the best match in the left image and used to find

the best match in the corresponding search regions of the right image.

Once the best matches have been found in both images, the 3D coordinates of

each feature are computed using stereo reconstruction (see Section 3.1.2). Finally,

the optimal head pose is determined by finding the rotation and translation param-
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eters (R, T ) that map the face model points to the observed 3D coordinates. This

mapping is a mapping from the average of the model coordinates — the ‘model

centre point’ �mO — to the weighted average of the 3D feature coordinates �xc. The

uncertainty of each template correlation is used as the weight wi in computing �xc

�xc =

∑n
i=0 wi �xi

n
(3.13)

where n is the number of observed points �xi. Because of the noise inherent in any

observation of the transformed model, the transformation parameters (R, T ) are

found in a least squares minimisation of the error term E with respect to R and T

min E = ‖�xc − R �mO − T‖2 . (3.14)

Well-tracked features have high correlation values. The optimal head pose found

is, thus, biased towards these points, which makes the system more robust to oc-

clusions, perspective distortions, and image noise. If the overall tracking certainty

is above the tracking threshold, the Kalman filters that predict the head pose and

template search regions in the next frame are updated with the pose parameters,

and tracking continues. Otherwise, the face searching mode is started again.

The version of the RSL face tracking system used in this study is implemented

in the Java programming language. Depending on the number of features to be

tracked, face tracking was typically performed at 15–20Hz. Fewer features increased

the frame rate up to 30Hz, but led to inaccuracies in the head pose estimate. Accu-

rate real-time face tracking often requires a trade-off between speed and accuracy.

However, no such trade-off was necessary in this study, because offline processing

was available and the statistical analyses were done on a pre-recorded data corpus.

3.2 A Model of Lip Movements in 3D

In order to understand the lip parameters measured in the experiments, it is helpful

to define a lip model. A 3D model is more realistic and more accurate than a 2D

projection. Given that the stereo vision face tracking system enables the measure-

ment of the 3D coordinates of object points, such a 3D lip model is desirable and

was, therefore, used in this study.
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King et al. [King 00] presented an anatomically-based 3D parametric lip model

for synchronised speech and facial animation. Its parameter set corresponds to

21 muscles around the mouth that control the movement of the lips. These 21

parameters are mapped to a B-Spline surface. While this lip model is very realistic,

it is, in many aspects, too complex and more importantly, it is difficult to measure

muscle movements without using artificial markers or electromyographic equipment.

The 3D lip model used in our research was inspired by previous work on a

lip model for speech synthesis at the Institut de la Communication Parlée (ICP)

in Grenoble (France), mainly by Adjoudani [Adjoudani 93] and Guiard-Marigny

[Guiard-Marigny 94, Guiard-Marigny 97, Guiard-Marigny 96]. The ICP lip model

defines the inner and outer lip contours in 3D as a set of 12 curve segments, six

for the inner lip contour and six for the outer lip contour. Left and right half

of the lips are considered symmetrical, so that only six curve segments need to

be calculated. The parameters of the curve segments are controlled through ten

polynomial equations. An iterative process allows the prediction of the coefficients

of these equations from five control parameters, shown in Figure 3.6. They are

• the internal width w of the mouth opening,

• the internal height h of the mouth opening,

• the protrusion c of the lip contact point,

• the protrusion u of the midpoint of the upper lip, and

• the protrusion l of the midpoint of the lower lip.

The protrusion parameters are measured as distances to an imaginary vertical plane

— assuming the face to be in an upright position — behind the mouth. Mathemat-

ically, these distances are equivalent to the length of the normal vector of that plane

to the respective lip contour points. Guiard-Marigny placed a mirror next to the

speaker’s face at an angle of 45◦, so that both a frontal and a side view of the face

could be taken by a single camera concurrently. A vertical line marker attached to

the face served as an indication of the position of the vertical plane.
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Figure 3.6: Frontal (left) and side (right) view of the ICP 3D lip model.

The lip model in our research followed the same basic principle. Measuring the

3D coordinates of certain feature points on the inner lip contour leads to a variety

of parameters describing the shape of the lips in 3D. From just 4 feature points —

the lip corners as well as the midpoints of upper and lower lip — 3D measures such

as mouth width, mouth height, and lip protrusion can easily be determined. The

inner lip contour was preferred over the outer lip contour for a number of reasons.

Firstly, people differ in the generic shape of their lips.3 Some people have thicker

lips than others, some have stronger protrusion (in the rest state) than others.

Extracting the outer lip contour would mean that such personal characteristics

influence the measurements, while the inner lip contour can truly be considered as

the final boundary of the vocal tract. Hence, inner lip contour measurements are,

in my opinion, better suited for the investigation of relationships between audio

and video speech parameters. Secondly, the difference between lip colour and the

surrounding facial skin can be quite small. Many lip tracking methods described in

the literature review have difficulty in coping with this lack of contrast, if employed

on tracking the outer lip contour. Given the different appearance of the oral cavity,

the inner lip contour does not suffer from these problems.

3 In this context, lip shape means the ‘basic structure’ of the lip area between inner
and outer lip contour.
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Figure 3.7: Top: Outline of the combined stereo vision face and lip tracking system.

Bottom: Different degrees of mouth openness as well as teeth and tongue visibility.

3.3 Lip Tracking in 3D

3.3.1 Overview

The requirements of a lip tracking algorithm generally depend on the application.

In the case of AV speech processing, an algorithm that is both fast and accurate is

needed. Lip movements during speech production can be very quick and changes in

mouth shape (mouth closed, mouth partially open, mouth wide open, lips rounded,

lips spread etc.) can take place in a time span as short as 10ms. This highlights the

need for a real-time algorithm which tracks the lip movements continuously. At the

same time, accuracy is of great importance for the results of the statistical analyses

described in Chapter 6 to have any meaningful value. It is particularly important to

distinguish apparent distortions in mouth shape due to head pose (rotation) from

speech production-related mouth deformations (see Section 2.3.3). Furthermore, the

algorithm must be able to cope with different personally characteristic lip shapes

as well as various mouth shapes ranging from a completely closed mouth to a fully

open mouth in which upper and lower teeth as well as the tongue may or may not

be visible (Figure 3.7 bottom). Finally, a lip tracking algorithm must take the level

of illumination in the lower face half into account.
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As discussed in Section 2.3.3, lip tracking can be either implicit or explicit.

Implicit lip tracking analyses the statistical behaviour of feature vectors representing

the pixels of the mouth area. Explicit lip tracking, on the other hand, attempts to

fit a 2D or 3D lip model to the observations by locating facial feature points that

define the model. Such an explicit approach was followed in this work because it

was expected to facilitate the interpretation of the analysis of the AV relationships.

Extracting the Mouth Region

The newly developed lip tracking algorithm builds on the real-time stereo vision

face tracking system described in Section 3.1 (Figure 3.7). It assumes that the face

has been located in the video stream from the two cameras and that this face is

being tracked. The face tracking system estimates the head pose and from it, the

locations of eye and mouth corners according to the 3D face model. The face model

considers the position of the mouth corners to be static which is, of course, not the

case during speech production. It is merely an approximate estimate of the mouth’s

position in the images. However, by applying some heuristics, a suitably sized part

in each camera image containing the mouth area can be chosen automatically. The

heuristics used to determine the size of this mouth window in pixels are

X = Lx − 30 . . . Rx + 30 (3.15)

Y = Ly − 40 . . . Ly + 40 (or Ry ± 40) (3.16)

where (Lx, Ly) and (Rx, Ry) are the estimated image coordinates of the lip corners.

The mouth window is a rectangular part of the image containing the lips, oral

cavity, and some of the surrounding facial skin as shown in Figure 3.8. To account

for differences in the cameras, the image data in the mouth windows are mean-

normalised. The orientation of the mouth will obviously follow the general head

pose. In a general lip tracking algorithm, the angle of rotation around the z axis

(deviation from the horizontal xy plane) φ should be considered when the mouth

window is extracted. An image processing technique such as warping can then be

applied to the mouth window to realign the mouth horizontally. If the speaker’s

head is approximately in upright position (±20◦), then the influence of φ can be
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Figure 3.8: Extracting the mouth region: Large rectangles enclose automatically

selected mouth windows.

neglected and the axes of the mouth window rectangle can be aligned with the

image coordinate axes, as was done in the left picture in Figure 3.8. Lip tracking

is performed on the mouth windows rather than the entire image, which reduces

the amount of processing that is required and limits the error due to a lip tracking

failure. The lip tracking algorithm is too complex to be done on the IP5005 video

card. The mouth windows are therefore uploaded into the PC’s main memory and

processed there, although doing so has a negative impact on the frame rate achieved

by the system, because of the limited bus speed of the video card.

Solving the Point Correspondence Problem

In order to take advantage of having a stereo vision system and thereby being able

to make measurements in 3D, it is necessary to solve the point correspondence

problem. If corresponding points in the two camera views are identified incorrectly,

incorrect 3D coordinates of the point and subsequently erroneous lip parameters

will be computed. It is therefore of utmost importance for accurate results to find

the 2D image coordinates of corresponding points reliably.

Applying the same technique — static template matching — used in the face

tracking system might initially appear as a logical choice. However, static template

matching requires that the object, from which the template images were taken in
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the first place, fulfills the requirement of being a rigid object. Although this is a

reasonable assumption for many parts of the face, the assumption does not hold

for the mouth area during speech production, when rapid movements and changes

in the shape of the lips and surrounding facial skin are common. A way to deal

with this situation is to use adaptable (or dynamic) template matching, in which

the template image is updated regularly. Such an approach was described by Loy

et al. in [Loy 00a]. There, the updated template Ti[k] for the kth video frame was

a weighted average of the initial template Ti[0] and the best match of the previous

template image in frame k − 1

Ti[k] = β Ti[0] + (1 − β) Ti[k − 1], β ∈ [0, 1]. (3.17)

The weighting factor β determined the contribution of the initial template image.

‘Grounding’ the template image was necessary, because fully updated templates

had the tendency to ‘drift’ over the image after some time, due to the quantisation

error and possible mismatches [Loy 00b]. A different approach was used in the work

described in this thesis which does not use templates for the lip tracking and, thus,

avoids the mentioned problems. Instead, it uses image processing techniques based

on a combination of colour and structural information (see next subsection).

Generally, the amount of processing required to find corresponding points in

stereo images can be reduced drastically by taking advantage of epipolar geometry,

as described in Section 3.1.2 and depicted in Figure 3.3. There, it was shown that

the corresponding right camera image point �mr of left camera image point �ml has

to lie on its epipolar line lml
. Hence, image points not lying on the epipolar line can

be discarded in the search. However, the difficulty lies in determining the epipolar

geometry correctly [Luong 93, Luong 96].

Combining Colour and Structure

It was, therefore, decided to take a different approach in this study [Goecke 00a].

The lip tracking algorithm was designed to find the coordinates of the four lip

feature points necessary to define the parameter set of our lip model, i.e. the two

lip corners plus the midpoints of upper and lower lip. The algorithm combines colour
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information from the images with knowledge about the structure of the mouth area.

Colour information is a powerful cue in facial feature detection. However, the YUV

(also known as YIQ) signal from the NTSC cameras alone is of little use, because the

image signal is encoded into an intensity (Y) signal and two colour difference signals

(U, V). The YUV signal can be transformed into a standard computer RGB signal.

However, images in the RGB colour space are affected by changes in illumination,

i.e. the RGB colour space is intensity-sensitive, which can be a real problem for

image processing or object recognition. Using intensity-normalised RGB values

can overcome this problem, but such colour information does not separate lip and

surrounding skin well, as was discussed earlier in this chapter and Section 2.3.4, and

thus does not assist lip feature point extraction. A better choice is the HSV colour

space which separates hue (H) and saturation (S) from intensity (V) [Foley 96].

Colour space transformation takes place when the mouth windows are uploaded

from the IP5005 video card into main memory.

Our original idea of using the hue value to separate the lips and surrounding

skin flesh from the oral cavity did not work, because the hue of the oral cavity is

still very close to the hue (‘red’) of other face parts, although a human observer

hardly perceives it that way. However, there is a clear difference in the saturation

values between skin/lips, teeth, and oral cavity. The dark oral cavity exhibits the

largest saturation values and the teeth the smallest, while the skin values lie between

these two extremes. A combination of intensity (Y) and saturation (S) values is,

therefore, used throughout the algorithm.

The lip tracking algorithm is a three-stage process (Figure 3.9) outlined in the

following paragraphs and described in detail in Sections 3.3.2 – 3.3.6. The first

step determines the general degree of mouth openness. As discussed previously,

the lip tracking algorithm must be able to handle mouth shapes ranging from a

completely closed mouth to a wide open mouth. Using image processing techniques

for lip tracking, as was done here, no single technique would give good results for

all possible mouth shapes. However, by pre-classifying mouth shapes into one of

three categories based on mouth openness, specific techniques individually targeted

at each category can then be applied to give better results. These categories are
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• closed mouth,

• partially open mouth, and

• wide open mouth.

In the second step, the lip corners are found. Here, the a priori knowledge about the

structure of the mouth area becomes useful. For example, if the mouth is closed,

teeth will not be visible, so the shadow line between upper and lower lip is the

outstanding feature. Various definitions of what constitutes the inner lip contour

of a closed mouth are possible. In this study, the shadow line between the lips was

considered to be part of the inner lip contour. Therefore, the algorithm looks for

this line. When the mouth is open, it is very likely that either or both the upper and

lower teeth are visible, so the algorithm looks for them as well as for the oral cavity.

By tailoring the algorithm in this way to fit a particular situation, more accurate

results can be obtained than from a general-purpose, ‘one-size-fits-all’ algorithm.

The first and second steps are applied separately to both the left and right camera

images. Once the 2D image positions of the lip corners in both views are known,

their 3D positions can be calculated. This result is then used in the third and final

step, in which the positions of the lip midpoints are determined.

The face tracking and lip tracking systems together achieved a real-time frame

rate of 5–8Hz, depending on the processing required for finding the desired lip fea-

ture points. Such frame rates are sufficient for tracking the basic mouth shapes

during speech production. However, if the detection of quick changes is needed, for

example for a detailed statistical analysis of lip movements, the tracking needs to be

done at a higher frame rate. Higher frame rates could generally be realised by port-

ing the system from Java to C/C++ or by using a fully digital video system which

offers higher frame rates. Alternatively, offline processing of recorded sequences,

as was done in the work described in this thesis, avoids the limitations set by the

hardware and software, and is then only limited by the properties of the recording

equipment. In this study, the limiting factor was the NTSC frame rate of 30Hz

determined by the analogue cameras used. That means that one video frame was

taken every 33ms, which captured a lot of detail of lip movements, but information
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Figure 3.9: Lip tracking algorithm.

about faster lip motion was lost. It is suggested that new studies following this

current one should use video equipment which offers higher frame rates.
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3.3.2 Algorithm Techniques

Various techniques are used several times in the lip tracking algorithm and are,

therefore, discussed here. Firstly, there is dynamic thresholding. Whenever a thresh-

old operation takes place, the threshold is determined dynamically at that time,

instead of using hard-coded threshold values, to improve robustness. That is, the

starting value of the threshold is chosen to be overly conservative, so that no pixel

value in the area of interest will pass it. The threshold is then iteratively changed

until the value has been found, at which pixel values start passing the threshold.

The algorithm then continues to use this threshold value for the rest of the process-

ing of that frame. In this way, the algorithm adapts itself to changes in illumination

and different skin tones.

Secondly, whenever a particular pixel position is tested, not only the pixel value

of that position is checked, but also of up to n (empirically set to 9) other pixels

in the neighbourhood (but some pixel positions away). Selection is done by pixel

masks like this one 
 1 0 1 0 1 0 1 0 1

1 0 1 0 X 0 1 0 1


 (3.18)

where X indicates the current pixel position, a 1 relates to other checked pixel

positions and a 0 to pixel positions ignored in the test. Voting takes place for each

such pixel X, and only when a certain number of positive votes is reached, does it

indicate that a threshold has been passed and that position is accepted as being

correct. Voting turns weak cues into strong ones. It can be either ‘hard’ or ‘soft’.

The former requires a majority of votes, for example two thirds, and is used for

finding lip contours. The latter only requires a few positive votes. It indicates the

presence of a particular feature. Soft voting is only used for detecting visible teeth.

Thirdly, two modules which are used numerous times in the algorithm, test for

the shadow line between the lips and for the visibility of teeth in the image data.

The shadow line is detected by the typical high saturation and low intensity values.

Teeth can be distinguished from other parts of the face by their characteristic low

saturation and high intensity values. However, since some skin parts can show

similar values, the teeth check must also pass an edge detection test, which looks
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for the horizontal edge between the lip and the teeth. Edge detection is usually

done by convolving the image with a filter [Pratt 78, Russ 95]. In our algorithm, a

3×3 vertical gradient filter is applied

K =




+1 +1 +1

0 0 0

−1 −1 −1


 . (3.19)

Compared to other edge detection filters (e.g. Sobel, Kirsch, Canny, Laplacian

[Pratt 78, Russ 95]), it requires very few computations and therefore allows fast

processing, while the results are sufficient for our purpose.

Finally, integral projection is a technique, in which all the pixel values of one

row or column of pixels are summed. This technique can be extremely effective

in locating facial features, if the rectangular image part, on which it is performed,

is chosen suitably, as was shown in Kanade’s pioneering work [Kanade 73]. In his

work, he used integral projection on binary images, whereas Brunelli and Poggio

later applied this technique to grey-level images [Brunelli 93]. Let I(x, y) denote

the pixel value, e.g. intensity or saturation, at the coordinates (x, y). Horizontal

and vertical integral projection are then respectively defined as

H(y) =
x2∑

x=x1

I(x, y) (3.20)

V (x) =
y2∑

y=y1

I(x, y) (3.21)

where x1, x2, y1, y2 denote the boundary coordinates of the image part under in-

vestigation. Horizontal integral projection is useful for detecting vertical gradients

and vertical integral projection similarly for horizontal gradients.

3.3.3 Step 1: Determine Mouth Openness

To determine the degree of mouth openness, the vertical positions of the lip mid-

points must be determined. For the following calculations, the horizontal position

of the lip midpoints is (temporarily) considered to be at the middle between the

left and right boundaries of the mouth window. This estimate is close enough to
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Figure 3.10: Step 1 - Top: Nostril detection by vertical integral projection in the top

quarter of the mouth window. Horizontal integral projection to find vertical position

of lip midpoints. Bottom: Possible correction of lower and upper lip midpoints.

the true position to start the algorithm for finding the lip corners (Step 2), but the

position is recalculated (Step 3) after the lip corner positions are found.

Horizontal integral projection on the intensity values of the mouth window pixels

is used to find a starting estimate of the vertical positions of the lip midpoints

(Figure 3.10 top). These sometimes rough estimates need to be refined. If the

mouth is closed, either the shadow line between the lips (correct) or the external

lip contour (incorrect) is found. If the mouth is open, either or both the upper and

lower teeth are visible and the horizontal integral projection detects either the edge

between lip flesh and teeth (correct), or between teeth and oral cavity (incorrect),

or in rare cases the outer lip contour (incorrect).

Let us first look at correcting the midpoint of the lower lip. To test if a correction

is necessary, an imaginary vertical line from the lower boundary of the mouth

window to the midpoint of the upper lip at the estimated horizontal position is

followed upwards (Figure 3.10 bottom left). Necessarily, the lower lip midpoint

cannot lie above the upper lip midpoint. While walking along the line, the algorithm

checks for either the shadow line between the lips or for the appearance of teeth. If

either is found and the position is different from the one obtained from the previous
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horizontal integral projection, the position is updated. This vertical position might

be just off the lip contour, so in a final step, the algorithm adjusts the vertical

position of the lower lip midpoint to the lip pixel bordering the oral cavity.

Secondly, the vertical position of the midpoint of the upper lip is corrected, if

necessary. The algorithm first tests for the appearance of teeth above the position of

the upper lip midpoint estimated from the horizontal integral projection. If found,

it means that the edge between oral cavity and teeth was detected and, hence,

the position is moved upwards until no further teeth pixels are detected above the

current position. Subsequently, a second test for teeth, this time below the current

position, is performed. If the edge between teeth and upper lip was found correctly

by either of the steps before, there are teeth pixels below the current position.

However, if the outer lip contour was detected, no teeth pixels are found below.

In that case, the algorithm starts just above the lower lip midpoint and moves

upwards until the edge between teeth and upper lip is found (Figure 3.10 bottom

right). Again, the vertical position of the upper lip midpoint is finally accurately

placed on the lip pixel forming the edge to the oral cavity. If neither of these tests

indicates any necessary changes in the lip midpoint positions, then the coordinates

found in the horizontal integral projection step are retained.

Nostril Detection

The size of the mouth window is chosen to be sufficiently large to contain the

mouth area under all circumstances. This means that the nostrils could sometimes

be included in the mouth window (Figure 3.7). Since intensity values are used in

the horizontal integral projection step, the nostrils’ low intensity values potentially

lead to incorrect results for the position of the lip midpoints. Therefore, a nostril

detection algorithm was also developed. The top quarter of the mouth window

is scanned for the minimum and maximum pixel column using vertical integral

projection on the intensity values. A threshold to determine nostril candidates is

set by

T = Min +
Max − Min

3
. (3.22)
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The horizontal position of nostril candidates is determined by testing the pixel

column sums with this threshold. Values below the threshold are candidates, but

they are only confirmed as horizontal nostril positions, if they extend at least 3

pixels wide horizontally. The lower edge of the nostril is then found using edge

detection and the vertical position closest to the upper lip (‘lowest’ nostril position

in the image) is taken as the new upper boundary of the mouth window used for

determining the mouth openness described before.

3.3.4 Step 2: Find Lip Corners

So far, the vertical positions of the lip midpoints have been established at their

temporary horizontal positions. The 2D distance between the lip midpoints defines

the following steps in the algorithm. If the distance is less than 15 pixels, the mouth

is either fully closed or only partially open. Otherwise, the mouth is considered to

be wide open. The threshold of 15 pixels is an experimentally determined heuristic.

It is equivalent to about 15mm in 3D space for an object at a distance of about

600mm. It is worthwhile to remember that the lip tracking algorithm deals with

parts of camera images of half the original vertical resolution (see Section 3.1.1).

So 15 pixels here correspond to 30 pixels in a full resolution video frame.

Mouth Closed or Partially Open

If the mouth is fully closed or only partially open, a vertical integral projection

would not yield enough information to find the lip corners reliably. Thus, starting

from the current position of the lower lip midpoint, a search along the shadow line

to either side is performed through a cycle of tests (Figure 3.11 top left).

Let us consider the speaker’s right lip corner, noting that the speaker’s left lip

corner is found similarly, except for moving in the opposite direction. Starting

from the midpoint (x, y) of the lower lip, the algorithm moves left in image space.

This line of pixels is marked (1) in Figure 3.11, bottom left. Testing the five pixel

positions (x−1, y), . . . , (x−5, y) enables the algorithm to jump over pixels, where

the shadow line is discontinuous due to image noise. If one of the pixels indicates
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Figure 3.11: Step 2 - Top left: Moving along the shadow line for closed or partially

open mouth. Top right: Vertical integral projection for wide open mouth. Bottom

left: Checking for discontinuities in the shadow line. Bottom right: Testing for

shadow line pixels above current position.

the continuation of the shadow line, the current position is moved to (x−1, y). If

not, the test is repeated first for (x−1, y+1), . . . , (x−5, y+1) (pixel line (2) in Figure

3.11, bottom left) and then for (x−1, y−1), . . . , (x−5, y−1) (pixel line (3) in Figure

3.11, bottom left). For positive tests, the current position is moved to (x−1, y+1)

and (x−1, y−1), respectively. The reason for testing different vertical positions y

is that the inner lip contour, which corresponds to the shadow line, of the lower lip

is not necessarily a straight line but can be curved up or down, depending on the

generic lip shape of the speaker and the mouth shape during speech production.

If there are no more shadow line pixels ahead, the algorithm tests the five pixels

(x, y−1), . . . , (x, y−5) above the current position (x, y) (Figure 3.11, bottom right).

If a shadow line pixel is found, the current position is moved to (x, y−1) and the

test cycle is repeated. Otherwise, the lip corner has been found.

In rare cases, the shadow line is discontinuous for more than five pixels. There-
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fore, the found lip corner positions are checked to be at least 25 pixels away from the

midpoint of the lower lip. Otherwise, the search along the shadow line is restarted

from a point 25 pixels away from the lip midpoint. For an object at a distance of

600mm from the camera, 25 pixels are equivalent to 10–12mm in Euclidean space.

It is important to note that there is no reduction in horizontal resolution in the

images. A distance of at least 10mm to either side of the lip midpoint, or at least

20mm mouth width in total, has been found to be a reasonable lower bound for

any mouth shape experienced during speech production.

Mouth Wide Open

If the mouth is wide open, vertical integral projection on the intensity values of the

image gives reliable estimates of the horizontal positions of the lip corners (Figure

3.11 top right). The vertical positions of the midpoints of upper and lower lip (1),

determined in Step 1, define the vertical range for the integral projection (2). The

largest changes in the resulting values determine the horizontal positions of the lip

corners (3). Once these have been found approximately, a search along the (vertical)

pixel columns through these horizontal positions looks for the pixels with the lowest

intensity value and the highest saturation value which corresponds to the internal

lip contour in the lip corner. The resulting pixel positions from the intensity and

saturation searches are averaged to yield an estimate of the vertical position, which

makes the algorithm more robust against misleading pixel values. Given that the

accuracy of the results from both searches is unknown, averaging offers a way of

most likely reducing any error. Finally, the found positions are refined by using the

search technique along the shadow line described above for the closed or partially

open mouth, but with the current estimated positions as starting points.

3.3.5 Step 3: Find Lip Midpoints

Now that the lip corner coordinates are established, the horizontal position of the

lip midpoints, which has so far simply been the middle between left and right

boundaries of the mouth window, needs to be recalculated. From the 2D image
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coordinates of the lip corners in the left and right stereo images, their 3D coordinates

�l and �r are calculated using the known camera parameters. Based on these 3D

coordinates, the centre point �c between these two points is computed as

�c =
�l + �r

2
. (3.23)

Since the lip corner coordinates could be wrong, a linear combination of the previous

midpoint estimates and the newly computed centre point �c is used to determine the

likely centre point �c ′

�c ′[k] = α �c [k] + (1 − α) �c ′[k − 1] (3.24)

where k is the frame number. The linear factor α is the width confidence measure

described in the next subsection. Information about the head pose from the general

face tracker is used to define a normal vector perpendicular to an imaginary face

plane and pointing away from the face. Then, the likely centre point �c ′ is moved

5mm along this vector (Figure 3.12). An analysis of test video data had shown

that the lip midpoints protrude about 5mm more than the lip corners. The likely

lip midpoint �m ′ is then back projected into image space and the x coordinate of

that point taken as the horizontal position of the lip midpoints in each of the two

images. After this, small adjustments to the vertical positions determined in Step

1 are likely and can be made in the same way, as when finding the exact lip contour

at the end of Step 1. Finally, the 2D coordinates of the lip midpoints in the stereo

image pair are combined to give their respective 3D coordinates.

3.3.6 Confidence Measures

Despite the generally accurate results of the lip tracking algorithm, no such algo-

rithm is likely to be always 100% correct in practice. It is, therefore, important

to define a confidence measure, which estimates the accuracy of the measurements.

A novel confidence measure is proposed based on the difference between the corre-

sponding 2D mouth width and mouth height distances in the left and right stereo

images, respectively. Disagreeing 2D distances in both images are an indication

that the lip tracking process has failed. As it is not known if the algorithm failed in
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Figure 3.12: Step 3 - Finding the horizontal position of the lip midpoints (viewed

from front and above).

only one or in both images, the results can only be marked as unreliable. However,

the chances that the lip tracking algorithm fails in the same way in both images are

small (see Section 3.4 for a validation of the accuracy of the lip tracking algorithm).

Two confidence measures are defined following this method: αw for the mouth

width and αh for the mouth height. They are computed as

αw = 1 − |Wl − Wr|
Wmax

(3.25)

αh = 1 − |Hl − Hr|
Hmax

(3.26)

where Wl, Wr denote the 2D mouth width in the left and right image, respectively,

Hl, Hr denote the 2D mouth height in the stereo image pair, and Wmax, Hmax are

the width and height of the mouth window, respectively. It is α ∈ [0, 1], with

α > 0.9 indicating reliable lip tracking. The value of the confidence measure

decreases linearly as the differences in the 2D distances become larger.

3.4 Validation of the Lip Tracking Algorithm

Visual inspection of the extracted lip feature positions showed a high degree of

accuracy. The algorithm failed only in very few frames, which were well detected

by the confidence measures and rejected. Figure 3.13 shows some correct and in-
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Figure 3.13: Correct and incorrect feature positions. The speaker’s left lip corner

in the lower right image was not found correctly.

correct results. However, visual inspection alone can be deceptive. In order to

quantify the error, a ground-truth would be required, but could not be obtained

for practical reasons. Instead, a software tool was developed by the author of this

thesis to compare automatically extracted lip feature points with the results from a

manual extraction, in which the experimenter selects the feature positions by mouse

click [Goecke 00b, Tran 00]. Although this process would be tedious for long video

sequences and potentially introduces a new source of error — experimenter skill

— it gave a clear indication of the accuracy of the lip tracking algorithm and was

the best validation that could be achieved under the circumstances. Despite the

importance of such validation experiments, the literature on lip tracking algorithms

rarely describes any, so that it is not known, if validation experiments were never

performed or if they were performed but not reported. In my opinion, validation

experiments are essential to confirm the accuracy of any claimed results.

The validation of our lip tracking algorithm was performed for three speakers

from the AVOZES data corpus (see Chapter 4). Three sequences were selected from

the corpus for each speaker. These were the calibration sequences “ba ba ba ...”

(/bA: .../) and “e o e o e o ...” (/i: O: .../), and the first sentence of the continuous

speech examples “Joe took father’s green shoe bench out.” The first sequence

maximises vertical lip movement (opening and closing), while the second sequence

emphasises horizontal lip movement (rounding and stretching). Fifty consecutive

video frames were selected from each sequence. The mouse pointer was clicked by
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the experimenter on the position of each of the four lip feature points on a frame-

by-frame basis. Then, the parameter set (see Section 5.2) of our lip model was

computed from the coordinates of these four points in exactly the same way as in

the automatic case. For each lip feature point and for each parameter, the average

absolute difference (‘error’) d̄ and the standard deviation σ between automatic and

manual feature extraction were computed (Table 3.1).

The comparison showed that the manual and automatic lip tracking procedures

yielded similar results, sufficiently accurate for the purpose of AV speech processing.

The results only differed at about 1–2mm absolute error for mouth width and mouth

height. This appears to be a very accurate result given that totally non-intrusive

face and lip tracking algorithms with no artificial markers or made-up lips were used.

The standard deviation was 1–3mm except for subject 2 in sequence 1 and subject

1 in sequence 2. Their larger standard deviations resulted from outliers where the

algorithm failed to find a feature position close to the ‘true’ position selected by the

user. However, these tracking failures were detected by the confidence measures.

When excluded from the analysis, these two sequences also showed similar results

to the ones from the other sequences.

The difference between manual and automatic lip feature point extraction was

larger for the protrusion parameters. This was due to two problems. Firstly, corre-

sponding points were not always located correctly in the stereo images. Inaccuracies

in the stereo matching result in incorrect depth (z) values, which are obviously of

great importance for measuring protrusion. Secondly, using a point on the internal

lip contour is perhaps not ideal for measuring protrusion because small changes,

for example due to image quantisation, in the vertical position can have a consider-

able impact on the recovered depth value (Figure 3.14 left). Given that protrusion

parameters only exhibit a range of about 10mm, the relative effect is considerable.

Choosing a point on the external lip contour would be more suited, but also faces

the difficulty of exactly identifying the same point in both camera views.

Analysing the feature points separately revealed that the differences in vertical

position were less than one pixel. However, the horizontal difference was 2–3 pixels

on average. Such stereo mismatches lead to less accurate 3D coordinates in the
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Sequence Speaker Mouth Mouth Protrusion Protrusion

Width Height Upper Lip Lower Lip

d̄ ± σ d̄ ± σ d̄ ± σ d̄ ± σ

ba ba ba 1 1.7 ± 2.1 1.9 ± 2.4 7.8 ± 9.5 6.2 ± 7.8

... 2 2.8 ± 10.2 1.9 ± 2.6 7.1 ± 8.4 6.0 ± 7.6

3 0.8 ± 1.0 0.8 ± 1.0 6.7 ± 8.6 4.8 ± 6.2

e o e o e o 1 2.6 ± 4.0 1.4 ± 1.8 3.5 ± 4.5 5.9 ± 7.3

... 2 1.6 ± 2.9 1.1 ± 1.4 6.0 ± 7.6 5.3 ± 7.4

3 1.7 ± 2.5 1.9 ± 2.6 4.2 ± 6.0 4.8 ± 7.0

Joe took... 1 2.3 ± 3.0 1.7 ± 2.3 6.6 ± 8.5 5.8 ± 7.5

2 1.2 ± 1.6 2.2 ± 2.7 4.9 ± 6.5 5.0 ± 6.6

3 1.9 ± 2.8 1.2 ± 1.6 4.4 ± 5.7 3.4 ± 4.5

Table 3.1: Average absolute difference d̄ and standard deviation σ (both in mm)

between automatic and manual feature extraction for three sequences.

stereo reconstruction process, in particular in the z coordinate, which affects the

accuracy of the parameter set. In an effort to find out where the algorithm failed for

those misplaced feature points, the different steps of the algorithm were examined

separately. Two error sources became evident. Firstly, while locating the horizontal

position of the lip corners for the wide open and the fully closed mouth revealed

no problems, the partially open mouth showed differences in the manual and auto-

matic extraction process. This was due to the difficulty of deciding the location of

the lip corners on the inner lip contour, as shown in Figure 3.14 (right). Various

interpretations are possible, but for this study it was defined that the shadow line

between upper and lower lip always forms part of the inner lip contour. Secondly,

the horizontal placement of the lip midpoints was more accurate in the automatic

feature point extraction, where it was computed as the protruded centre point of

the 3D line between the lip corners, than in the manual one. Thus, a corresponding

horizontal position in both images was ensured in the automatic feature point ex-

traction, whereas the experimenter could move the mouse pointer freely. A similarly

guided approach in the manual extraction would improve the results.
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Figure 3.14: Lip tracking problems: Left: Small vertical changes can have a drastic

effect on protrusion parameters. Right: Lip corner position depends on definition

of internal lip contour — position of crosses or of red arrows?

3.5 Chapter Summary

Two essential systems used in this project have been described and discussed in

this chapter. The RSL stereo vision face tracking system allows non-intrusive real-

time face tracking. By using stereo vision in calibrated cameras, the 3D (world)

coordinates of any object point can be recovered. The fact that no artificial markers

are required is important for the analysis of AV relationships, and in general AV

speech processing, because it allows people to act and speak naturally. The face

tracking system combines both hardware and software systems of a 450MHz PC to

achieve real-time processing at a frame rate of 15–20Hz. The details of the systems

have been described, in particular the stereo reconstruction, the camera calibration,

and the face tracking procedure.

The lip tracking system was newly developed in the course of this study. It is

a software system that extends the face tracking system. It is based on combining

colour information with knowledge about the structure of the mouth region to tailor

the applied algorithms to different mouth shapes. No single cue is good enough by

itself, but combining them in a multi-cue system creates a powerful system. To

the best of my knowledge, this is the first lip tracking system that applies stereo

vision in the field of AVSP. Unlike other systems, it does not require artificial
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markers or made-up lips, thus facilitating natural speech. A 3D lip model has been

defined in which the structure of the entrance to the mouth is described by a set of

parameters. These parameters are mouth width, mouth height, protrusion of upper

lip, and protrusion of lower lip. The parameter values can easily be derived from

the 3D coordinates of four lip feature points: the lip corners and the midpoints of

upper and lower lip. The steps of the lip tracking algorithm have been described

in detail. A new confidence measure has been designed to judge the reliability of

the measured parameters. As a control, the accuracy of the lip tracking system has

been validated in a comparative experiment with manual feature point selection.

The mouth width and mouth height parameters were generally found to be very

accurate, while problems in the measurement of the protrusion parameters have

been discussed. It is important to perform such validation experiments to confirm

the accuracy of any results based on a lip tracking system.

The combined face and lip tracking systems achieved a real-time frame rate

of 5–8Hz. Fast and accurate processing is a prerequisite for real-time AV speech

processing. Higher frame rates can be realised by offline processing, which is only

limited by the properties of the recording equipment. The current offline frame

rate of 30Hz was a result of the analogue NTSC cameras. The face and lip track-

ing systems can be applied to both real-time as well as offline processing. Offline

processing was used for the statistical analyses in this study (Chapter 5). For

fast lip movements, an even higher frame rate than 30Hz would be desirable, but

could not be achieved with the current equipment. Recent systems with digital

cameras achieve 60Hz (see for example the faceLab product by Seeing Machines at

http://www.seeingmachines.com). However, the offline performance of the current

system was judged to be sufficient for the statistical analyses of AV relationships.

Comparing the reported results of non-intrusive 2D face and lip tracking meth-

ods (see Sections 2.3.2 - 2.3.4), the results presented here are encouraging to believe

that the distances measured in the face plane by using a stereo lip-tracking system

are more accurate than those gained from 2D systems. Of course, such judgement

can only be subjective at this point in time, as a true comparison can only be made

if the systems are applied to the same input data.



Chapter 4

Audio-Video Speech Data Corpus

of Australian English

To achieve the goal of this project, the investigation of the relationship between

audio and video speech parameters for Australian English, an audio-video speech

data corpus was needed. In this chapter, the new Audio-V ideo OZ stralian English

Speech (AVOZES ) data corpus, used in the experiments described in Chapters 5

and 6, is presented. It was necessary to establish a new corpus because no compre-

hensive corpus of AV speech existed for AuE. Despite a number of small and large

AV speech data corpora having been produced over the last ten years, the field of

AVSP still lacks a ‘benchmark’ data corpus for testing and comparing the various

results published on a common basis (cf. Section 2.3.6). Moreover, it seems that no

agreed framework on the design of a ‘standard’ data corpus for various languages

exists. A new extensible framework is proposed in Section 4.1.

The design of the AVOZES data corpus followed that proposed framework, cov-

ering all visemes and phonemes of AuE (Section 4.2). It is thereby the most com-

prehensive AV speech data corpus of AuE to date. In addition, it is the first AV

speech data corpus to use a stereo vision system. As mentioned previously in Sec-

tion 3.1, a stereo vision system has the advantage over monocular systems that

3D coordinates can be recovered accurately. Thus, 3D distances can be measured,

not just distances in 2D image coordinates, which makes the measurements robust
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against rotations of the face. Other speech corpora do not include a video com-

ponent (ANDOSL [Millar 94, Millar 97]), are either not designed for AuE (DAVID

[Chibelushi 96b]), not comprehensive enough in terms of the number of speakers

or sequences/phonemes (Tulips1 [Movellan 95]), or not publicly available (IBM

[Neti 01]). An overview of AV speech data corpora was given in the literature

review in Chapter 2, Section 2.3.6.

The experimental setup used for the recordings of the AVOZES data corpus is

described in Section 4.3. Details are given about the recording media, the recording

room and the layout of the components, as well as the recording equipment used.

Finally, Section 4.4 describes the recording process and summarises information

about the speakers recorded in the AVOZES data corpus.

4.1 A Framework for the Design of Audio-Video

Speech Corpora

A survey by Chibelushi et al. [Chibelushi 96a] examined existing AV speech data

corpora as well as which features researchers would like to see in such corpora. The

latter was established by a questionnaire-style survey. Although only five question-

naires were received in response, the conclusions that were made by the authors

match the observations made by the author of this thesis. The usual limitations of

existing AV speech corpora are:

• a small number of speakers,

• a small number of phonemes and visemes covered, and

• isolated words such as digits or letters of the alphabet rather than embedded

(carrier phrase) or continuous speech.

Most existing AV speech corpora were clearly designed for a particular research

project and not as a publicly available corpus for the comparison of methods de-

veloped by various research groups around the world. The limited size of many
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corpora is clearly related to the time- and resource-consuming effort required in the

creation of a corpus.

The features that researchers would like to see in a benchmark corpus were:

• a large number of speakers for statistical significance,

• a broad coverage of phonemes and visemes,

• different levels of acoustic noise starting with ‘clean speech’ (no noise),

• whole face images in colour,

• short words and continuous speech with transcription, and

• extensibility.

Chibelushi et al. [Chibelushi 96b] presented a number of ideas on how to design

an AV speech data corpus that covers a variety of experimental themes. Similar

considerations on design issues were made by Öhman [Öhman 98] for a Swedish

language AV speech data corpus. Generally, various factors play a role in the

design of such corpora, and these are briefly discussed in the next section.

4.1.1 Factors in AV Speech Corpus Design

Data Collection Factors

These factors relate to the corpus recording process. One can argue that record-

ings made in laboratories do not mirror exactly the conditions in the real world.

However, in terms of facilitating the interpretation of experimental results, it is

an advantage to be able to control the experimental conditions. These conditions

include the recording equipment, the possible use of markers, the layout of the

recording room (e.g. background), the sitting arrangement, the illumination ar-

rangement, and the level of acoustic noise. Going through all possible combinations

of these conditions in a systematic way would result in an exponential growth of the

corpus and quickly become impractical. It is suggested here to leave all conditions

but one constant at a time, and to study the effects of changing that condition,

rather than mixing the effects of various changing conditions in one recording.
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Speaker Factors

Speaker-related factors can be categorised into language background, speaking style,

and personal characteristics. The first category includes issues like dialects (or ac-

cents) and first versus other languages. Usually, one would study native speakers

first to characterise a particular language, but the identification of differences be-

tween native and foreign speakers is also an interesting research topic. Within

a language, different dialects exist even among native speakers, and these must

be considered. The second category, speaking style, determines the social and /

or emotional conditioning of speaking, for example a conversational style or an

excited style. It should be noted that first-time participants in a data corpus col-

lection often feel nervous about the task ahead or are overly motivated to do the

task particularly well, so that their speaking style changes from the way they would

normally speak. Therefore, the familiarisation of speakers with the environment

and the speech material is important. The third category deals with the ‘natural’

characteristics of a person, such as gender, body physique, characteristics of the

vocal tract, or the amount of visible movement of the articulators.

Generally, a balanced population in a corpus is desirable. Finding a sufficient

number of speakers to cover normal variation in the above categories might not

always be possible, but it is suggested here to at least achieve a gender balance

in groups with the same language background (native speakers, foreign speakers).

As mentioned for the data collection factors, a systematic way of going through all

possible combinations of these factors leads to an exponential growth of the corpus.

It is, therefore, necessary to define the range of speaker-related factors, which are

addressed in a corpus, in advance and to select speakers accordingly.

Speech Material Factors

These factors relate to the material that speakers are requested to speak. Such mate-

rial can be letters of the alphabet, isolated words, and continuously spoken phrases.

Words can be real, existing words (e.g. digits, commands) or nonsense words, de-

signed to investigate a particular phoneme transition (e.g. ABABA). Which material
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is included in a particular corpus depends on the application in mind. It is sug-

gested here that general-purpose corpora contain some examples from all categories.

It should be noted that reading lists of phones, diphones, words etc. often results

in a speaking style different from what it would be, if the words were included in

a phrase. The use of a carrier phrase, in which the speech material unit of interest

is embedded, is therefore suggested, unless the target application in mind requires

otherwise (for example, a spelling task). This problem does not occur (or only to a

much smaller extent) for continuously spoken phrases.

Furthermore, the coverage of phonemes and visemes is another factor. Whenever

feasible, it is suggested to cover all phonemes and visemes of a language at least once

in the chosen context (phones, diphones, words etc.) for completeness. That means

that except for very large corpora, not all possible diphone or triphone transitions

will be covered. By using the same context, the phonemes and visemes can at least

be studied in a controlled environment. Moreover, if the resources do not allow the

inclusion of each phoneme, a careful selection must take place, so as to choose at

least one for each viseme category, as the number of visemes is smaller than the

number of phonemes (see Section 2.1.2).

4.1.2 The Proposed Framework

The ideas presented in Section 4.1.1 are extended here and a new framework for the

design of AV speech data corpora is proposed. A modular approach, where each

module contains certain sequences, allows for extensibility in terms of the various

factors discussed in the previous subsection. For example, a data corpus could start

with a small number of speakers uttering selected phoneme sequences in a noiseless

audio condition. Later, more sequences can be recorded to extend the phonemic

coverage, add more speakers, or repeat sequences in different noise levels. Thus,

a corpus can grow over time, thereby accommodating the amount of resources it

takes to create and store it, while still providing usable data from the beginning. In

this context, ensuring continuity in the facilities and equipment used, as well as in

terms of the speakers appearing in the corpus, is important. If recordings are made
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at different points in time, the comparability of the recorded material with earlier

recordings is an important issue that needs to be addressed.

As a minimum, any AV speech data corpus should contain the following three

modules:

1. sampling recording setup without a speaker,

For each speaker,

2. sampling recording setup with speaker, and

3. recording of phonemes and visemes.

The module “sampling recording setup without a speaker” captures general aspects

of the data collection process, such as visual background, scene illumination, and

acoustic background. For every speaker, there are at least two modules. The

module “sampling recording setup with speaker” shows the speaker in the scene.

This can include sequences useful or necessary for the video processing, such as

shots of the face from various angles. The module “recording of phonemes and

visemes” contains the actual speech material sequences following the guidelines in

the previous section.

Additional modules can be added easily. Some modules, for each speaker, that

were considered prior to the creation of the AVOZES data corpus described in this

thesis, were:

• speaker calibration,

• application sequences,

• different view angles,

• different levels of illumination, and

• different levels of acoustic noise.

The module “speaker calibration” could contain sequences which exhibit particular

acoustic or visible speech patterns (for example, lip rounding). These sequences
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can be used to classify speakers into different classes in the analysis stage. Longer

sequences of continuous speech or command sequences would make up the module

“application sequences”. The other three modules comprise changes in data collec-

tion factors. From a data analysis point of view, repeating the modules “recording

setup with speaker” and “coverage of phonemes and visemes” for each different

condition is desirable. However, it must be noted that this may not be practically

feasible, both in terms of the amount of resources and the duration of session times

required, if a lot of speech material has to be covered. Speakers get tired if recording

sessions become too long, so either the amount of speech material must be reduced,

that is, not to cover all phonemes and visemes, or recordings must be made in differ-

ent sessions, which raises questions of the comparability of the recordings because

a speaker’s mood or health might have changed between sessions. The longer the

time span between sessions, the more pertinent these questions become.

The proposed framework enables the design of AV speech corpora in a systematic

way. The modular structure gives it the flexibility required to be useful for various

research themes and applications, while the minimum requirements help to achieve

consistency across corpora.

4.2 The Design of the AVOZES Data Corpus

This framework was followed in the design of the Audio-V isual OZ stralian English

Speech (AVOZES ) data corpus [Goecke 00b]. No other AV speech data corpus with

stereo camera video has been published thus far.

The AVOZES data corpus has a total of six modules — one general module and

five speaker-specific modules. These six modules are:

1. sampling recording setup without a speaker,

For each speaker,

2. sampling recording setup with speaker and definition of face model,

3. calibration sequences,



110 CHAPTER 4. AV SPEECH DATA CORPUS

4. short words in carrier phrase covering phonemes and visemes,

5. application sequences - digits, and

6. application sequences - continuous speech.

These modules are described in more detail in the following sections.

4.2.1 Module 1 - Sampling Recording Setup without Speaker

This module contains only one sequence in the AVOZES data corpus. It is a 30

second sequence of the recording scene viewed by the two cameras, but without

any speaker present. The sequence can be used to determine the background level

of acoustic noise present in the recording studio, due to air-conditioning as well

as computer and recording equipment. In addition, information about the visual

background can be gained, if it is required for the segmentation of the speaker from

the background in the video stream.1 Since the sequence in this module is speaker-

independent, only one recording was needed. However, if corpus recordings were

made over prolonged time spans (months or years), or in intervals (for example,

extending the corpus at a later stage), the sequence should be repeated once during

each interval to record possible changes to the recording environment.

4.2.2 Module 2 - Sampling Recording Setup with Speaker

A sequence showing certain head movements was needed by the stereo vision face

tracking system to establish the face model of each speaker. The process of building

a face model required a frontal view of the face as well as views on an angle of 45◦

to either side (see Section 3.1.5 for details). Thus, the speaker is first shown in face

frontal position for 5 seconds, then the speaker turned the head 45◦ to the left, kept

it there for 5 seconds, then turned it 45◦ to the right of the frontal position and

held that position for 5 seconds again. Module 2 contains one such sequence for

each speaker in the AVOZES data corpus.

1 Such information was not required in the face and lip tracking systems used in this
study, but might be needed by other algorithms.
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4.2.3 Module 3 - Calibration Sequences

This module comprises two sequences per speaker for the purpose of ‘speaker cali-

bration’, in terms of their visible speech articulation or visual expressiveness. For

(purely visual) lipreading as well as AV automatic speech recognition, the amount

of visible speech articulation determines how much (additional) information can

possibly be gained from the video stream. Expressive visible speech articulation

offers more information than a person who does not move the visible speech ar-

ticulators much (for example, a person who mumbles). Extracting lip parameters,

such as mouth width or mouth height, over time enables an analysis of the visual

expressiveness of a speaker, for example by analysing the maximum values reached

in each cycle of lip movements. Speakers with values in the margin of the overall

distribution can be excluded from the analysis or treated differently, if desired.

The two calibration sequences “ba ba ba ...” and “e o e o e o ...” recorded in the

AVOZES data corpus were each repeated continuously by each speaker for about 10

seconds. Despite the artificial nature of these prompts, the first sequence can give

insight into the amount of vertical lip movement, i.e. opening and closing, while the

second sequence emphasises horizontal lip movement, i.e. rounding and stretching.

4.2.4 Module 4 - Short Words in a Carrier Phrase Covering

Phonemes and Visemes

The sequences in this module form the core part of the AVOZES data corpus for

the statistical analysis of relationships between audio and video speech parameters

(see Chapters 5 and 6). There are 44 phonemes (24 consonantal and 20 vocalic

phonemes) and 11 visemes (7 consonantal and 4 vocalic visemes) in AuE, accord-

ing to Woodward and Barber [Woodward 60], Plant and Macrae [Plant 77], and

Plant [Plant 80]. Following the ANDOSL design [Millar 94], the phonemes can be

categorised into 8 classes (Tables 4.1 and 4.2).2 Similarly for the visemes, follow-

2 IPA refers to the International Phonetic Association and its alphabet. The latest
version was published in 1993 and updated in 1996 [IPA 99].
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ing [Plant 77] and [Plant 80], there are 11 viseme classes (Table 4.3)3. Plant and

Macrae [Plant 77] do not label their vowel and diphthong visemes, but they are

broadly:

1. front non-open vowels and front close-onset diphthongs,

2. open vowels and open-onset diphthongs,

3. back/central non-open vowels and diphthongs containing these vocalic posi-

tions, and

4. back/central open vowels and diphthongs containing these vocalic positions.

In [Plant 80], these visemes were described in terms of their mouth shape as (1)

small aperture and spread lips, (2) large aperture and neutral lips, (3) small aperture

and rounded lips, and (4) large aperture and rounded lips. It was also noted that

the diphthong /aU/ appeared to be visually distinctive in a CVC-context4 (with

C=/b/), while this was not the case in the original study with a CV-context (with

C=/b/). It might, therefore, be considered as an additional viseme.

The phonemes and visemes in the AVOZES data corpus were put in central

position in CVC- or VCV-contexts5 to be free of any phonological or lexical re-

strictions. However, wherever possible, existing English words (that follow these

context restrictions) were favoured over nonsense words in order to simplify the

familiarisation process of the speakers with the speech material. The vowel context

for VCV-words was the wide open /A:/ (“ar-ar”). The voiced bilabial /b/ was used

as the consonant context (“b-b”) for CVC-words. The opening and closing of a

bilabial viseme clearly marks the beginning and end of the vocalic nucleus, and

thus facilitates the visual analysis. Using /b/ instead of /p/ lengthens each word,

giving more data to analyse.

A disadvantage of the /bVb/ context is that a bilabial context causes strong

coarticulation effects in the formants. However, these are quite predictable for /b/

3 The phonemes /z/, /Z/, /h/, and /N/ were not included in the investigation by Plant
and Macrae, but are here classified into corresponding viseme classes in Table 4.3.

4 CVC - consonant-vowel-consonant
5 VCV - vowel-consonant-vowel
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Class Description IPA Symbol Example “as in ...”

Oral stops Bilabial voiceless p poor

Bilabial voiced b bore

Alveolar voiceless t tore

Alveolar voiced d door

Velar voiceless k core

Velar voiced g gore

Fricatives Labio-dental voiceless f fan

Labio-dental voiced v van

Inter-dental voiceless T thin

Inter-dental voiced D than

Alveolar voiceless s sue

Alveolar voiced z zoo

Palatal voiceless S sure

Palatal voiced Z azure

Glottal voiceless h ham

Affricates Alveolar voiceless tS chore

Alveolar voiced dZ judge

Nasals Bilabial closure m mow

Alveolar closure n now

Velar closure N sing

Liquids and Lateral l lull

glides Rhotic r row

Bilabial w wow

Palatal j you

Table 4.1: Consonant phoneme classes in the ANDOSL database.
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Class IPA Symbol Example “as in ...”

Short vowels I hid

U hood

E head

@ the (not “thee”)

6 hod

2 bud

æ had

Long vowels i: heed

u: who’d

@: there

3: heard

O: hawed

A: hard

Diphthongs eI hay

@U hoed

OI hoy

aI hide

aU how

I@ here

U@ tour

Table 4.2: Vowel phoneme classes in the ANDOSL database.

and it is believed that the advantages of a bilabial context for visual segmentation

outweigh the disadvantages from coarticulation.

To overcome the typical articulation patterns associated with reading words

from a list, each CVC- and VCV-word was enclosed by the carrier phrase “You grab

/WORD/ beer.” Having a bilabial opening and closing before and after the word

under investigation again helps with the visual segmentation process, in particular

for the VCV-words. Tables 4.4 and 4.5 show the lists of prompts and pronunciation
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Viseme Description IPA Symbols

Bilabials p b m

Labio-dentals f v

Inter-dentals T D

Labio-velar glides w r

Palatals S tS Z dZ

Alveolar non-fricatives and l n j h

plosives and velar plosives g k

Alveolar fricatives z s d t

and plosives

Front non-open vowels and i: I E

front close-onset diphthongs I@

Open vowels and æ A: 3: 2 @ O:

open-onset diphthongs aI eI

Back/central non-open vowels u: U @:

and diphthongs OI U@

Back/central open vowels 6

and diphthongs @U aU

Table 4.3: Viseme classes in Australian English.

hints, which were presented to the speakers during familiarisation and recording.

Each phrase to be read out aloud by the speakers was shown at the top of the prompt

message on the screen, and was followed by an example of how to pronounce the

phoneme under investigation in that prompt. For an example of such a prompt

message, see Figure 4.2 in Section 4.3.

4.2.5 Module 5 - Application Sequences - Digits

The sequences in this module can be used as examples of applying any results,

gained from an analysis of the phonemes and visemes in the “short words” module,



116 CHAPTER 4. AV SPEECH DATA CORPUS

Class IPA Symbol “You grab ... beer.” Pronunciation “as in ...”

Short vowels I bib ship

U boub should

E beb head

6 bob shop

2 bub cup

æ bab had

Long vowels i: beeb heed

u: boob cool

3: berb herb

O: borb floor

A: barb hard

@: bareb bare

Diphthongs eI babe babe

OI boyb boy

aI bibe hide

aU bowb how

I@ beerb here

@U bobe pope

Table 4.4: Prompts for vowels and diphthongs in the AVOZES data corpus.

to short sequences that are more application-driven. Digit recognition is a common

task in automatic speech recognition, e.g. [Luettin 98, Petajan 84, Potamianos 97],

and similar sequences can be found in a number of AV speech corpora, for example

in DAVID [Chibelushi 96b] and Tulips1 [Movellan 95].

The AVOZES data corpus includes one sequence per digit for each speaker,

spoken in order from 0 to 9. Again, each digit is enclosed by the carrier phrase

“You grab /DIGIT/ beer.” to ensure lip closure before and after the digit for ease

of segmentation of the video stream.
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Class IPA Symbols “You grab ... beer.” Pronunciation “as in ...”

Oral stops p arpar par

b arbar bar

t artar tar

d ardar dark

k arkar car

g argar garb

Fricatives f arfar far

v arvar van

T arthar thin

D arthar than

s arsar sue

z arzar zoo

S arshar sharp

Affricates tS archar chart

dZ arjar jar

Nasals m armar arm

n arnar barn

N arngar sing

Liquids and l arlar large

glides r ara run

w arwar wow

j aryar yard

Table 4.5: Prompts for consonants in the AVOZES data corpus.
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4.2.6 Module 6 - Application Sequences - Continuous

Speech

This second module with application-driven sequences contains examples of contin-

uous speech from each speaker. The three sequences are:

1. “Joe took father’s green shoe bench out.”6

2. “Yesterday morning on my tour, I heard wolves here.”

3. “Thin hair of azure colour is pointless.”

Together with the first sentence, the second and third sentences were designed in

such a way that they contain all phonemes and visemes of AuE. One of the ultimate

goals in automatic speech recognition is the task of continuous speech recognition

in all conditions. The sequences in this module offer an initial way of applying and

testing any results from an analysis of the sequences in module 4 to such a task.

4.3 Experimental Setup

To be able to perform various and repeated experiments on the same material of

a speech data corpus, the sequences must be stored on a medium that allows easy

repeated access, without loss of quality. For small corpora with few speakers and

sequences, storage on a computer hard disk is possible. However, for large corpora

with many speakers and sequences, such storage becomes quickly impossible or very

expensive, despite ever-growing hard disk capacities. Video and audio compression

is a way of overcoming problems with large amounts of data to some extent, but high

compression is often related to loss of detail, which is clearly not desirable. Digital

Video (DV) systems offer a good alternative for high-quality storage (see Appendix

A for more details on the DV standard). DV tapes are inexpensive and common

tape sizes can store up to 63 minutes of video and audio data. This solution was

used in this project.

6 This sentence appeared first in the corpora M2VTS and XM2VTSDB [Messer 99].



4.3. EXPERIMENTAL SETUP 119

Recordings of the AVOZES data corpus were made in August 2000 and August

2001. The recordings took place in the audio laboratory of the Computer Sciences

Laboratory (CSL) at the Australian National University. The same equipment was

used on both occasions. The CSL audio laboratory is a soundproof room in the

interior of the building, well-shielded from noise sources outside the room but with

a small amount of background noise from the room’s air-conditioning.

Figure 4.1 shows the recording setup. The speakers sat on a swivel chair in front

of the stereo cameras, which were positioned with the help of a camera tripod. A

light source was placed directly below the camera rig to illuminate the speaker’s

face. This light source was a normal office desk lamp with a reflective lampshade.

Placing the light source below the cameras ensured a well-lit face, while blinding

was reduced to a minimum. Other light source arrangements were considered, such

as putting one light source on either side of the cameras — sufficiently apart so as

not to blind the speaker (similar to [Petajan 84]) — or a more expensive lighting

system, as used in professional photographic studios. However, these were discarded

in favour of the simplicity of a single light source, which achieved the objective of

removing shadows in the mouth region. In addition, there was a general illumination

of the room from three ceiling lights (normal light bulbs, not fluorescent light).

An office swivel chair was used for two reasons. Firstly, the height of the seat

could be adjusted easily for shorter or taller people, while leaving the camera ar-

rangement etc. unchanged. Secondly, the process of building a face model for each

speaker required sequences, in which the speaker was asked to turn the head 45◦

to the left and to the right of the cameras (see Section 4.2.2). The speakers were

instructed to turn not just their eyes, but the whole head, so that it would point

to corresponding markers on the wall. By sitting on a swivel chair, the speakers

could, in fact, simply turn their whole bodies towards the markers. Keeping the

vertical axis of the chair at a marked position ensured that the face was kept in the

cameras’ viewfields. The distance from the face to the cameras was about 600 ±
50mm, which corresponded to the distance (“depth”) range that the cameras were

calibrated for (see Section 3.1.3).

The speaking prompts appeared on the computer screen above the cameras.
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Figure 4.1: Recording setup in the CSL audio laboratory.

Figure 4.2 shows the stereo cameras in the foreground and the computer screen

in the background from the viewpoint of a speaker. Prompts were advanced per

mouse click by the recording assistant, when a prompt was pronounced correctly.

Otherwise, the speaker was asked to repeat the phrase. The screen’s background

colour was swapped between a dark green and a dark blue whenever the next prompt

appeared, so as to give the speaker an additional visual signal that a new prompt

had appeared on the screen.

A clip-on microphone was attached to the speaker’s clothes on the chest about

20cm below the mouth. The microphone was an omnidirectional Sennheiser MKE

10-3 microphone with a frequency response of 50Hz–20kHz [Sennheiser 81]. The mi-

crophone system was directly connected to the DV recorder, where the microphone’s

output was recorded as mono sound on DV tape with a 48kHz sampling frequency.7

The DV recorder was a JVC HR-DVS1U miniDV/S-VHS video recorder, which also

featured an IEEE-1394 DV in/out connector.

7 In the 48kHz sampling mode, two channels are recorded for stereo audio but in case
of mono audio input, both channels contain the same signal.
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Figure 4.2: Speaker’s view of the recording setup.

The output of the stereo cameras was multiplexed into one video signal, then sent

to the Hitachi IP5005 video card, as described in Section 3.1. However, no face or

lip tracking was performed at this time. The video signal was merely unscrambled,

so that the video sequences on tape showed the output from the left camera in

the top half and the output of the right camera in the bottom half of each video

frame (as shown in Figure 3.5). The video signal was then sent from the video

card to the DV recorder, where it was recorded as an NTSC YUV 4:1:1 signal at

30Hz frame rate (see Appendix A and the list of abbreviations in the preface for

an explanation of these terms). Because of the way that the outputs from the

two cameras were multiplexed, there was a 16.6ms delay between the output from

each camera in any recorded video frame. While virtually undetectable by the

human eye at normal video play rate (30Hz), it is a potential error source for the

3D reconstruction process, which requires the same object point to be identified in

both images (and assumes that the object has the same shape in both the left and

right image). However, no noticeable problems were encountered with this delay

during the video analysis.
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4.4 Recording

In the first set of recordings, made over the period of one week in August 2000, ten

native speakers of AuE and three speakers with a different language background

were recorded. Of the latter, two speakers have an English language background

(United Kingdom, New Zealand), the third speaker speaks German as his first

language, but has spent extended periods of time in the United Kingdom and in

Australia. The second set of recordings (additional speakers) was taken over a

period of two days in August 2001, using exactly the same equipment, setup, and

location on both occasions. The second set contains ten native speakers of AuE

and one speaker with a Chinese dialect as his first language, but who has lived in

Australia for 6 years.

Beside the actual recordings, each speaker was also asked to fill in a form about

personal data, so that any outstanding effects in the recorded material could be

checked against these data. A similar approach was taken in the ANDOSL database

[Millar 94]. It is important to collect such data in addition to the signal data, as

for example professional training in singing or medical conditions of the respiratory

system can have an effect on the pronunciation. Personal data collected contains:

• name, date of birth, and gender,

• level of education and current occupation,

• height and weight,

• native language of speaker, speaker’s mother, and speaker’s father,

• place of origin and occupation of both parents,

• extended periods outside Australia (at least 3 months) — time and place,

• singing, training in singing,

• smoking, medical conditions (e.g. asthma).

The individual information (names omitted, date of birth transformed into age)

about the native speakers of AuE is presented in Appendix B. In addition, the
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distance from the speaker’s mouth to the microphone was also measured. The

range was 150–250mm. The distance from the face of a speaker to the cameras

varied between 550–650mm. Speakers were allowed to move their head freely, but

were asked to keep it roughly in the same position to ensure that it was within

the cameras’ viewfield. The computer screen, from which the prompts were read,

was another 20cm (in horizontal direction) behind the cameras (Figure 4.1). The

computer and DV recorder were housed in an acoustic insulated box to reduce the

amount of acoustic noise produced by the hard disk and cooling fans.

Figure 4.3 shows the faces of the native speakers of AuE. The group is gender

balanced with ten female and ten male speakers. Six speakers wear glasses, three

wear lip make-up, two have beards. At the time of the recordings, these speakers

were between 23 and 56 years old. The speakers were approximately classified into

the three speech varieties of AuE (see Section 2.2) by the recording assistant, which

created groups of 6 speakers for broad AuE, 12 speakers for general AuE, and

only 2 speakers for cultivated AuE. While this distribution approximately reflects

the composition of the Australian population in terms of the accent varieties, it is

important to point out that the individual groups are not gender balanced, and that

their size is small for statistical analyses on an individual group basis. This study,

therefore, concentrated on analysing the corpus as a whole. It is also worthwhile

to remember that the speech varieties are not discrete entities, but rather span a

continuum of accent variation, so that any classification can only be approximate.

Still, the classification can be helpful for experiments and analyses that aim at

identifying similarities and differences between the AuE speech varieties.

The AVOZES data corpus currently contains only frontal face (±10◦) record-

ings, with no separate or simultaneous recordings from a different angle. The faces

were illuminated from the front. Recordings were made for a clean audio condi-

tion. There was no particular background noise other than what has already been

described in Section 4.3. However, artificial (computer-generated) noise could be

added to the audio signal, if that was desired for some experiment. In that way,

the control of the noise is much better, because it can be designed to suit a particu-

lar experimental situation and the AVOZES date corpus could be used for a wider
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Figure 4.3: Face shots of the native speakers of Australian English in AVOZES.

range of tests. It should be noted that adding artificial noise does not take account

of the Lombard effect [Junqua 93]. Recordings were made in a conversational tone.

Each speaker spent about half an hour in the recording studio. They were first

familiarised with the speech material and informed about the recording procedure

about to follow. Actual recordings took about five minutes per speaker. The author

was present as a recording assistant, so that speakers did not have to handle any of

the equipment themselves and could concentrate on the speaking task.

A total of 58 sequences were recorded per speaker (3 face model sequences and 55

speech material sequences). Two phonemes from the lists in Tables 4.1 and 4.2 were

omitted (see prompt lists in Tables 4.4 and 4.5) because they have a low occurrence
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in AuE. These phonemes were /Z/ (as in “azure”) and /U@/ (as in “tour”). It was,

therefore, quite likely that speakers would not pronounce the prompts correctly.

These two phonemes were also rather difficult to achieve in the selected CVC- and

VCV-contexts. Furthermore, the neutral vowel /@/ and the neutral consonant /h/

were not recorded, because it was assumed that they add little to the statistical

analysis of relationships between audio and video speech parameters due to their

neutrality.8 During the recordings it also became evident, that some speakers had

difficulties in producing distinguished sounds for the voiceless and voiced inter-

dental fricatives /T/ and /D/, as well as producing the velar closure nasal /N/. The

analysis of these sequences must therefore be treated with care.

4.5 Chapter Summary

In this chapter, design principles of AV speech data corpora have been discussed.

Most existing AV speech data corpora were found to follow an ad-hoc approach

that suited a particular research theme, but this did not allow them to be used as

‘benchmark’ corpora. A new framework for the design of the currently collected

and future corpora has therefore been proposed in this chapter. The framework’s

modular approach allows for extensibility in terms of data collection factors, speaker

factors, and speech material factors which should all be considered in the design

of an AV speech data corpus. With the modular approach, it is easy to consider

sequences that cover the phonemes and visemes of a language as the minimum

common set of corpora, while project-specific sequences can be added in separate

modules according to the specific requirements.

The few well-designed and comprehensive corpora presently described in the

literature (cf. Section 2.3.6) are not for AuE or not publicly available. Therefore,

a new corpus following the proposed framework was designed and recorded. The

8 In hindsight, it might have been better to also record these four phonemes at the time
for completeness, even if speakers had difficulties producing the correct pronunciation.
However, these sequences can be added in future, due to the modular design of the data
corpus.



126 CHAPTER 4. AV SPEECH DATA CORPUS

design of the AVOZES data corpus covers all phonemes and visemes in AuE, as well

as offering application-driven modules for testing. The AVOZES corpus is also the

first AV speech corpus to take advantage of a stereo camera system for recording

of the video data, which allows accurate 3D measurements of objects in the scene

compared to monocular camera systems limited to 2D measurements.9 AVOZES

currently contains recordings from 20 native speakers of AuE plus four speakers

with a different language background, but who have lived in Australia for several

years at least. Recordings were made on two occasions about 12 months apart with

ten speakers being recorded each time, using the audio laboratory of the Computer

Sciences Laboratory at the Australian National University. The sequences of the

native AuE speakers in the AVOZES data corpus were used in the statistical analysis

of the relationships between audio and video speech parameters described in the

following chapters.

9 Audio and video streams were recorded on DV tape, which offers an easy way of
repeated access while maintaining a consistent high quality.



Chapter 5

Analysis of Data Corpus

This chapter addresses the issues of how suitable parameters can be extracted from

the audio and video modalities of the speech signal and how these parameters can

be analysed in a statistical way. Section 5.1 gives a detailed overview of analysis

techniques for audio speech signals to provide background information for the ex-

traction of audio speech parameters. Methods for the extraction of such parameters

are also discussed. In Section 5.2, methods for the analysis of the video modality of

the speech signal are described. The extraction of geometric parameters describing

the 3D shape of the mouth is based on the automatic lip tracking algorithm of

Chapter 3. Another (non-geometric) parameter evaluates the visibility of teeth in

the mouth opening. The use of dynamic speech parameters is discussed in Section

5.3, because they are often seen as an important part of (visual) speech informa-

tion (cf. Section 2.1.6). Finally, Sections 5.4 and 5.5 describe the methods used in

preprocessing and statistically analysing the audio and video speech parameters.

These methods form the core of the analysis work in this study.

5.1 Audio Analysis

One area that the different approaches to audio ASR, discussed in Section 2.3.1,

have in common is the need for a signal-processing front end, which converts the

speech waveform to some parametric representation, before subsequent analysis and

processing. This conversion also achieves a significant reduction in the information

127
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rate of the raw speech signal, which is sampled at high frequencies (e.g. 48kHz in the

AVOZES data corpus). The vocal tract system, and the articulators in particular,

are under physical constraints, which prevent them from moving too quickly, and

hence the raw signal contains many redundancies. By extracting a set of acoustic

(or spectral) parameters (or features), the information rate can be greatly reduced.

A typical sampling rate for these parameters is 100Hz (or one sample every 10ms).

Over past decades, a lot of research has been carried out involving possible

parametric representations of the audio speech signal. General textbooks on au-

tomatic speech processing offer more details on these representations, than that

can be mentioned here, for example, Rabiner and Juang [Rabiner 93], Rabiner and

Schafer [Rabiner 78], Furui [Furui 00], and Flanagan [Flanagan 72]. Representa-

tions considered include short time energy, zero crossing rates, level crossing rates

and others, but the most common one is the short time spectral envelope from

spectral analysis. The smoothed spectral envelope is the overall spectral feature,

which reflects resonance and antiresonance, as well as radiation characteristics of

the vocal tract. The reasons behind the preference for a spectral representation of

the speech signal over the original acoustic pressure waveform is, firstly, that speech

waves can be reproduced by a sum of sinusoidal waves. Secondly, the critical fea-

tures for human speech perception are mainly included in the spectral information

(frequency and amplitude), with phase information playing a minor role [Furui 00].

Beside the spectral envelope, the spectral fine structure plays a role in determining

the short-time spectrum, as it corresponds to the periodicity of the sound source,

i.e. periodic patterns for voiced sounds and aperiodic patterns for unvoiced sounds.

Spectral Representations

A spectrogram is a common way of graphically presenting spectral information. It

is a three-dimensional representation of the speech intensity in different frequency

bands over time. Figure 5.11 shows both a wideband and a narrowband spectrogram

with the corresponding speech waveform of the sentence “You grab BAB beer.”,

1 The graphs were created by the Entropic Signal Processing System (ESPS), which
was used in the audio analysis of this study to extract audio speech parameters.
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Figure 5.1: Speech waveform (top), wideband spectrogram (centre), and narrow-

band spectrogram (bottom) of the sentence “You grab BAB beer.”, spoken by one

speaker from the AVOZES data corpus. Only shown up to a frequency of 5kHz.

spoken by one of the speakers in the AVOZES data corpus. The spectral intensity

is indicated by the darkness of the plot at a particular frequency. The wideband

spectrogram corresponds to a spectral analysis on 15ms windows of the speech

signal with a broad filter of 125Hz bandwidth. The temporal envelope is resolved,

which can sometimes be seen as vertical ‘lines’ in spectrograms.2 A narrowband

spectrogram corresponds to a spectral analysis on 50ms windows with a narrow filter

of 40Hz bandwidth. As a result, individual harmonics of the fundamental frequency

are resolved and can sometimes be seen as horizontal ‘lines’ in spectrograms.

Also frequently used is the cepstrum representation. The cepstrum, represented

by cepstral coefficients, is defined as the inverse Fourier transform of the short-time

2 Note, the vertical lines in the voiced regions of the speech signal in Figure 5.1 are
artifacts of the signal processing software (ESPS). The signal was lowpass filtered at 4kHz
resulting in the visible cut-off of higher frequencies. Bold horizontal lines correspond to
the formant frequencies.
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logarithmic amplitude spectrum. The advantage of the cepstrum is that it allows

for a separate representation of the spectral envelope and the spectral fine structure.

Low order cepstral coefficients have also been found to be a more reliable feature set

for automatic speech recognition than, for example, LPC coefficients [Rabiner 93].

The remainder of Section 5.1 gives an overview of the methods commonly used

for the analysis of the audio speech signal. First, Section 5.1.1 gives useful back-

ground information by describing two frequently used methods — the filter bank

method and the LPC method — in more detail. The LPC method forms the basis

for the parameter extraction algorithms of the ESPS package that were used in this

study. These parameter extraction methods are described in Sections 5.1.2 (for-

mant extraction) and 5.1.3 (estimation of voice source excitation). Some necessary

preprocessing steps are summarised in Section 5.1.4.

5.1.1 Spectral Analysis Methods

Methods for spectral analysis can be classified into two major classes: paramet-

ric analysis and non-parametric analysis (for example, see Furui [Furui 00] for a

discussion). Short-time autocorrelation, short-time spectrum, cepstrum, bandpass

filter bank, and zero-crossing analysis are examples of non-parametric methods.

Parametric methods are, for example, analysis-by-synthesis and LPC.

Two common spectral analyses are the filter-bank method and LPC, which are

discussed briefly below. The general assumption is taken that the speech signal is

quasi-stationary for short periods of time.

The Filter Bank Method

The filter bank method applies a set (or ‘bank’) of Q bandpass filters to the raw

speech signal [Rabiner 93]. The outcomes from each filter are passed through a non-

linearity to shift the bandpass spectrum to the low-frequency band and a subsequent

lowpass filter is applied to eliminate high-frequency noise. The lowpass-filtered sig-

nals are resampled at a lower rate, followed by a dynamic range (or amplitude)

compression. These final two steps achieve a significant reduction in the data rate.
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The filter bank can be uniform or non-uniform. In the first case, the bandpass

filters are centred at frequency fi with bandwidth bi

fi =
fs

n
i, 1 ≤ i ≤ Q (5.1)

bi ≥ fs

n
(5.2)

where fs is the sampling rate of the speech signal and n is the number of uniformly

spaced filters required to span the frequency range. Equality in the bandwidth

formula corresponds to no frequency overlap between adjacent filters, inequality

means that adjacent filters overlap.

In non-uniform filters, the individual filters are spaced in frequency at differ-

ent distances and with different bandwidths according to some scheme. A com-

mon scheme, instead of a linear frequency scale, is a quasi-logarithmic scale, which

corresponds to human auditory perception [Stevens 37]. Some variations exist in

modelling perceptual aspects (e.g. mel and bark frequency scales3 (for example, see

Davis and Mermelstein [Davis 80]). The set of Q bandpass filters can be defined by

b1 = C (5.3)

bi = α bi−1, 2 ≤ i ≤ Q (5.4)

fi = f1 +
i−1∑
j=1

bj +
bi − b1

2
(5.5)

where C and f1 are the arbitrary bandwidth and centre frequency of the first filter,

and α is the (logarithmic) growth factor [Rabiner 93].

The implementation of the filter bank depends mostly on the design of the in-

dividual filters. Commonly, filters are classified as finite impulse response (FIR)

filters and infinite impulse response (IIR) or recursive filters. FIR filters require

more computation in a straightforward implementation than IIR filters. However,

FIR filters can be implemented using Fast Fourier Transforms (FFTs), which re-

duces the amount of computation. FIR filters have the advantage of a linear phase

3 In mel frequency scale, or similarly in bark frequency scale, the scale is linear below
a certain frequency and logarithmic above that frequency.
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response, while retaining the ability to approximate ideal magnitude characteristics.

Most practical digital filter bank implementations, therefore, use FIR filters in an

FFT realisation. The interested reader is referred to Rabiner and Gold [Rabiner 75],

and Rabiner and Schafer [Rabiner 78], for example, for a detailed discussion of filter

design.

The Linear Predictive Coding Method

The technique of linear prediction of a time series was first introduced in general by

Wiener [Wiener 57], and later successfully applied to speech analysis and synthesis

independently by Itakura and Saito [Itakura 68], and Atal and Schroeder [Atal 68].

A detailed discussion of applying linear predictive coding (LPC) to speech can be

found in Markel and Gray [Markel 76].4

The LPC model is based on the assumption that the speech signal with its

waveform and spectrum can be represented efficiently and precisely using only a

small number of parameters [Furui 00]. In LPC modelling, the vocal tract system

is characterised by an all-pole model (for mathematical details, see Markel and Gray

[Markel 76]). In the LPC model, a sample s(t) of the speech signal, at time t, can

be approximated by a linear combination of the previous p samples

s(t) ≈ a1 s(t − 1) + a2 s(t − 2) + · · · + ap s(t − p) (5.6)

where the coefficients a1, a2, . . . , ap are assumed to be constant over the analysis

time frame. By introducing a prediction error term e(t), this can be rewritten as

s(t) = s̃(t) + e(t) (5.7)

It follows that

e(t) = s(t) − s̃(t) (5.8)

= s(t) −
p∑

k=1

ak s(t − k) . (5.9)

4 Linear prediction analysis can also be extended to perceptual linear predictive (PLP)
analysis to incorporate concepts from the psychophysics of hearing [Hermansky 90].
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The coefficients a1, a2, . . . , ap can then be determined by minimising the mean-

squared prediction error over a short segment of the speech signal. For details on

methods to determine the coefficients, such as the autocorrelation method or the

covariance method, consult the literature, e.g. Rabiner and Schafer [Rabiner 78],

and Rabiner and Juang [Rabiner 93].

LPC models of sufficiently high order provide a good model of the speech signal

and, in particular, a good approximation to the vocal tract spectral envelope of the

quasi-steady state voiced segments. Unvoiced segments are not as well modelled as

voiced segments. LPC models also offer a good separation of sound source and vocal

tract, so that the characteristics of the latter, i.e. the formants, can be determined

reasonably well. As discussed earlier in Section 2.1.4, different speech sounds are

produced by changing the vocal tract shape, which results in a change of the formant

frequencies. LPC models have also the advantage that they are mathematically well-

defined and, hence, simple and straightforward in their implementation. It has also

been shown to be an effective method in ASR applications with similar recognition

results to the filter bank method [White 76].

5.1.2 Formant Extraction

As discussed in Section 2.1.4, the formant frequencies are the resonance frequencies

of the vocal tract. Different configurations (shape, length) of the vocal tract cause

different speech sounds to be produced, resulting in different formant patterns.

Thus, the formants are an important cue in the characterisation of speech sounds.

Their strong relation to the position of the articulators, which change the shape

and length of the vocal tract, make them a very suitable set of acoustic features

for the analysis of the relationships between audio and video speech parameters.

However, the automatic extraction of formant frequencies is not trivial.

Several methods of automatic formant estimation have been developed over the

past decades. Usually, the first three formants are estimated, because they are

considered to be the most useful ones to describe speech sounds [Fant 60]. The

analysis-by-synthesis method [Bell 61, Olive 71] calculates a frequency spectrum
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based on a speech production model, which has the fundamental frequency F0

and the first three formants F1, F2, F3 and their bandwidths as parameters. The

spectrum is compared to the measured spectrum, and the parameters are modified

until the difference between the two spectra is at a minimum.

The peak-picking method estimates the formants by locating the peaks in the

(cepstrally) smoothed short-time logarithmic magnitude spectra at each time step

[Schafer 70]. These peaks correspond essentially to the formants. The difficulties in

the peak-picking method are the detection of spurious peaks and merged formants.

Formant estimation based on the linear prediction analysis was, for example,

used by Markel ([Markel 72a, Markel 73], summary in [Markel 76]). Root-finding

algorithms are employed to determine the zeros of the polynomial resulting from

LPC analysis (e.g. Snell and Milinazzo [Snell 93]). Problematic is that the deter-

mination of formant frequencies is only successful for complex-conjugate poles and

not for real poles [Welling 96]. Nasals and nasalised vowels also cause problems,

because oral cavity formants are highly damped, mostly reduced due to nasal zeros,

and additional nasal cavity formants are introduced [McCandless 74].

Formant estimation based on LPC analysis has been further improved by

continuity constraints [McCandless 74, Seneff 76, Wagner 82], segmental phone-

mic information [Lee 99], pole enhancement [Duncan 86], hidden Markov mod-

els [Acero 99] and vector quantisation [Kopec 86]. Other automatic formant es-

timation methods are based on a digital resonator [Welling 96], linear-prediction

phase spectra (as opposed to amplitude spectra) and group delay functions

[Yegnanarayana 78, Murthy 91, Yegnanarayana 98], peak-picking using generalised

centroids [Crowe 87], and multiple centroid analysis [Wrench 95].

The first three formants F1, F2, and F3 were used as audio speech parameters

in the statistical analyses in this study. Formant estimation was performed by the

ESPS command formant. The formants were found by solving the roots of the

LPC polynomial and imposing frequency continuity constraints [Entropic 93a].
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Group Methods

Waveform processing Parallel processing

Data reduction

Zero-crossing count of the

(possibly filtered) speech signal

Correlation processing Autocorrelation

Modified correlation

Simplified inverse filter tracking

Average magnitude differential function

Spectrum processing Cepstrum

Period histogram

Table 5.1: Classification of methods for F0 estimation [Furui 00]. Details about the

individual methods can be found in [Rabiner 76, Hess 83, Furui 00].

5.1.3 Estimation of Voice Source Excitation

The voice source excitation or fundamental frequency F0 was a further audio speech

parameter in this study.5 F0 is commonly defined as the frequency of the opening

and closing of the glottis. As such, it is well-defined for voiced sounds, but not for

unvoiced sounds.

The problem of reliable automatic F0 estimation is still unsolved. Three main

factors can be identified that make this task such a challenge. Firstly, vocal cord

vibration is only quasi-periodic. The resulting glottal waveform varies in period,

amplitude, and shape, in particular at the beginning and end of voiced segments.

Secondly, separating the effects of the vocal tract from the source signal is not a

trivial task. Thirdly, the dynamic range of F0 is very large, ranging from 33–3100Hz,

with the range of F0 in conversational speech being below about 500Hz [Hess 83].

Various techniques have been proposed over the years. Furui [Furui 00] classifies

the techniques into three major groups: (1) waveform processing, (2) correlation

5 The term ‘pitch’ is often used synonymously in the literature, although pitch refers
to the sensation of the physical property fundamental frequency [Fry 79].
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processing, and (3) spectrum processing. Table 5.1 shows how individual methods

fall into these three groups.6 A comparative study on the performance of these

methods can be found in [Rabiner 76]. The most widely used methods are the

autocorrelation method [Dubnowski 76, Rabiner 77], the simplified inverse filter

tracking (SIFT) method [Markel 72b], and the cepstrum method [Schafer 70].

The ESPS command get f0 was used to extract the F0 parameter [Entropic 93a].

The algorithm falls into the correlation processing category and is based on applying

a normalised cross-correlation function to an LPC analysis residual, plus dynamic

programming as a postprocessing tool to obtain smooth contours [Secrest 83]. In

addition to the F0 value, get f0 also delivers the RMS energy value (see Section

2.1.4), which was used as a further audio speech parameter in the statistical analyses

in this study.

5.1.4 Preprocessing

As discussed in Chapter 4, the AVOZES data corpus was recorded on DV tape. For

the audio speech parameter extraction, the sequences were first processed with the

Apple Final Cut Pro software package. In this process, the audio signal was sepa-

rated from the video signal and stored as an individual WAV-file for each sequence.

These files were then processed with the ESPS software, by the commands men-

tioned in the previous two subsections, for the extraction of formant frequencies,

F0 frequency, and RMS value. Prior to the parameter extraction, the audio signal

was lowpass filtered with a cut-off frequency at 4kHz to filter out unwanted high

frequencies due to the studio’s air-conditioning system, as well as from the internal

cooling fans of the recording equipment. A lowpass filter up to 4kHz is generally

sufficient to cover the first three formant frequencies [Rabiner 93]. The filter was a

linear phase FIR filter based on Kaiser windowing, created by the ESPS command

win filt [Entropic 93b]. The passband ranged from 0 to 4000Hz, with a 20dB

rejection ratio to the stopband (Figure 5.2).

6 Rather than giving individual references to each method, the interested reader is
referred to [Rabiner 76, Hess 83, Furui 00] for reviews of the methods.
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Figure 5.2: The 4kHz lowpass FIR filter used to reduce high frequency noise.

5.2 Video Analysis

In this section, the video speech parameters used in the statistical analyses in Chap-

ter 6 are derived. Section 5.2.1 describes the geometric parameters, which are based

on the lip feature points tracked by the lip tracking algorithm. A numerical param-

eter describing the visibility of teeth in the video frames complements the geometric

parameters (Section 5.2.2).

5.2.1 Geometric Parameters

While a lot of research over the past decades has focused on finding parameters that

describe the audio part of the speech signal, the issue of which parameters describe

the video part of the speech signal best largely remains unclear (cf. Section 2.1.6).

A geometric explicit feature extraction approach was followed in the work described

in this thesis. As described in Chapter 3, a new lip tracking algorithm based on a

stereo vision face tracking system was developed in the course of this study. This
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Figure 5.3: Examples of the four lip feature points being tracked automatically.

algorithm is able to determine the 3D positions of four lip feature points relative to

the origin of the world coordinate system of the stereo camera system. These four

lip feature points are the two lip corners as well as the midpoint of upper and lower

lip located on the inner lip contour (Figure 5.3).

From these four points, geometric parameters which describe the shape of the

mouth can easily be calculated. If the 3D coordinates of the speaker’s left and right

lip corner are denoted with �l and �r, respectively, and the midpoint of upper and

lower lip with �mu and �ml, respectively, then geometric parameters can be defined

by (see also Figure 5.4)

• internal width of the mouth opening MW = w = ‖�l − �r‖

• internal height of the mouth opening MH = h = ‖�mu − �ml‖

• protrusion of upper lip PUL = pu = ‖�l +�r
2

− �mu‖

• protrusion of lower lip PLL = pl = ‖�l +�r
2

− �ml‖

where ‖·‖ denotes the Euclidean norm. The width and height parameter come with

a confidence value based on the confidence measures derived in Section 3.3.6. To

explain the protrusion parameters in more detail, these parameters were calculated

as the distance between the midpoint of the vector from the left to the right lip

corner and the midpoint of upper or lower lip (Figure 5.4 (b)). This is clearly an

approximation, but it was a reasonable choice because the 3D positions were taken

into account. Finding a reference point for the protrusion of the lips is not a trivial

task. It was decided to choose the relative protrusion of the lip midpoints compared

to the contact points of upper and lower lip (or lip corners). As an alternative, a

simplified way of determining the protrusion would be to use the ‘depth’ value (z
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Figure 5.4: The geometric parameters describing the mouth shape as viewed from

front (a), above (b), and in profile (c).

element of 3D point vectors) of the midpoints and the lip corners relative to the

cameras, and to determine their difference, which gives useful values under the

assumption that the speaker’s face is in full frontal view.

5.2.2 Teeth Visibility Parameters

In addition to the geometric parameters, a parameter describing the visibility of

teeth was also extracted, because teeth visibility depends on the mouth shape

(openness and lip position) and, therefore, can be considered as a useful cue for

determining the mouth shape, for example, due to the strong contrast between rel-

atively bright teeth and the lips. The lip tracking system automatically checks for

teeth in the video frames as part of the algorithm. Hence, it would be simple to

derive binary parameters that describe the visibility of upper and lower teeth.

More useful for the statistical analyses in Chapter 6 than binary parameters

was a numeric parameter. Such a numeric parameter was provided in the form of

the novel relative teeth count (RTC). This parameter performs a pixelwise test

for teeth on the rectangular area A spanned by the four lip feature points in each

video frame. However, simply taking the number of teeth pixels counted results in

a flawed parameter, because the number of pixels visible would be affected not only

by the shape of the mouth, but also by the distance of the speaker’s face to the

cameras. To overcome this problem, the relative teeth count RTC was defined as
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the average of the number of teeth pixels in A in the left and right camera image,

divided by the distance d to the cameras (as measured for the left lip corner)

RTC =
cA
l + cA

r

2
/ d . (5.10)

The height confidence measure was also applied to RTC, because the correct de-

termination of the lip midpoints was the major factor in obtaining a correct RTC.

5.3 Dynamic Speech Parameters

The audio and video speech parameters discussed so far are static parameters, that

is, they describe the situation at a particular point in time but not the dynamic

patterns that underlie the change from one situation to the next. As discussed in

Section 2.1.6, some researchers consider dynamic parameters, particularly of the

video modality, at least as important as static parameters. This view was derived

from studying human speech processing. As a consequence, it is important to also

study dynamic speech parameters (the velocity and acceleration patterns) for speech

processing by machines.

This area warrants further investigation. It is recommended to investigate the

relationships of such dynamic audio and video speech parameters in future work, so

that a comparison of the AV relationships for static and dynamic speech parameters

may be performed.

5.4 Audio-Video Analysis — Preprocessing

Before the various statistical analyses could be performed, several preprocessing

steps had to be carried out. The important issue of AV synchronisation is desribed in

Section 5.4.1. Details of the already mentioned smoothing method used to lessen the

effect of measurement errors can be found in Section 5.4.2. Another preprocessing

step was the creation of the same number of samples for all parameters (Section

5.4.3), so as to enable certain statistical analyses of the sequences of the AVOZES

data corpus, which require the same number of samples for all parameters.
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5.4.1 Audio-Video Synchronisation

It is of outstanding importance for the statistical analysis of audio and video speech

parameters that the two signals are in synchronisation. Both signals were recorded

at the same time on DV tape and recordings were made in locked audio mode,

which means that the audio samples are precisely locked to the video frames (see

Appendix A). Thus, synchronisation is inherent in the use of DV equipment.

However, a delay in the order of the duration of one NTSC video frame (about

33ms, see Appendix A for details) occurred for the video signal during the record-

ing stage. While the microphone was directly plugged into the DV recorder, the

cameras’ output signals travelled through the multiplexer and the video card, where

the interlaced fields in the multiplexed video frames were separated again, so that

one camera image is shown in the top half and the other one in the bottom half of

each video frame (cf. Section 3.1.1 and Figure 3.5). The delay between the video

and audio signals must be allowed for in the statistical analyses.

The information given in Appendix A also highlights that during the first second

of every minute of recorded video, only 28 video frames are taken in the NTSC

video format, due to the NTSC frame rate being 29.97Hz and not exactly 30Hz. In

order to consistently have 30 video frames per second for the statistical analyses,

resampling by piecewise linear interpolation was performed on the extracted video

speech parameters when only 28 frames occurred.

5.4.2 Smoothing

Measurements of the audio and video speech parameters contain an error component

(see Section 3.1.4). As a result, the parameter graphs can show incorrect large

variation, although the underlying functions are actually smooth. Techniques for

smoothing the data are therefore commonly applied and they were also applied

here. A second purpose of smoothing is that restrictions to the smoothness can be

applied, for example, to ensure smooth derivatives. This would be of importance for

dynamic speech parameters (see Section 5.3). For example, smoothness up to the

second derivative can be ensured by putting restrictions on the fourth derivative.
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Smoothing is often done with splines using polynomial base functions, most com-

monly cubic polynomials [Eubank 88, de Boor 01]. As the statistical analyses in this

study were performed with the R statistical software system [Ihaka 96], its cubic

spline smoothing functions were used, in particular the functions smooth.spline in

the standard distribution package ‘modreg’ and smooth.basis in Ramsay’s func-

tional data analysis package7 ‘fda’ (see Section 5.5.7).

The basic idea of spline smoothing is to define a function x that fits the observed

data for coordinate X, subject to a penalty placed on the roughness (or lack of

smoothness) of x [Eubank 88]. The penalty term keeps function x from fitting the

data precisely, while ensuring the desired amount of smoothness. A common way of

determining the spline function is by least squares approximation, which also forms

the basis of the smoothing criterion suggested by Ramsay [Ramsay 96]. Ramsay’s

smoothing criterion, which includes an additional penalty term ensuring smooth

second derivatives, was also used in this study. It is defined as

min
∑

i

wi (Xi − x(ti))
2 + λ

∫ (
d4x

dt4

)2

dt (5.11)

where i iterates through the samples, wi are weights, t is the time parameter and λ

is a (non-negative) penalty factor. The first term is the least squares approximation

and without the second term — the penalty term — it would be possible to find

an exact fit to the data (λ = 0). The penalty term measures the smoothness of the

function x and it forces x to give up some fitting power in order to remain smooth.

λ typically takes small values and a value of 0.001 was used in this study.

The weights wi enable the determination of spline functions, which are pulled

more strongly to some measurement values than to others, depending on the ratio of

weights. This can be useful for smoothing the parameters with confidence measures,

such as the video speech parameters mouth width MW and mouth height MH .

Sample points with high confidence values are more closely fitted than those with

low confidence values. For parameters without confidence measures, equal weights

of wi = 1 can be applied, thus fitting all sample points equally well.

7 The package can be downloaded from Ramsay’s homepage at McGill University,
Montreal, Canada, URL = http://www.psych.mcgill.ca/faculty/ramsay/ramsay.html .
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Figure 5.5: An example of a smoothed mouth height parameter curve. Black dots

refer to the measurement values. The red solid line shows the smoothed curve.

Smoothing was applied to all audio and video speech parameters. Weights of

wi = 1 were applied to all audio speech parameters during smoothing, because con-

fidence measures were not available. The confidence measures αw and αh (defined

in Section 3.3.6) were applied in smoothing the video speech parameters MW and

MH , respectively. The confidence measure αh was also used in smoothing the teeth

visibility parameter RTC, because it is a reasonable assumption that teeth visibility

and mouth height are statistically related. The protrusion parameters PUL and

PLL were smoothed with weights of wi = 1.

5.4.3 Establishing the Same Number of Samples

In order to facilitate the statistical analysis, all audio and video speech parameters

were resampled to the same number of sample points. Audio speech parameters were

measured at a rate of 100Hz and video parameters were extracted from the data at
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30Hz. For each sequence8 under investigation, these parameters were resampled to

25 sample points on the time axis, which on average corresponded to about 0.3s of

the speech signal.

Resampling in the R system can easily be done by either linear interpolation of

the sample points using the command approx, or by evaluating the spline functions

using either the predict command of the ‘modreg’ package or the eval.fd com-

mand of the ‘fda’ package (Section 5.5.7). The latter was used for the functional

data analysis, while approx was employed for all other analyses. In either case, the

values of the resampled points on the time scale formed the input and the function

values at these points were returned.

Why was it necessary to resample the measured parameter values? First of all,

even for the same phoneme9, different speakers produce it with different length.

These inter-speaker differences must be accounted for. The statistical analyses

described in the next section require the input data vectors to be of the same length.

Secondly, intra-speaker differences in the length of a phoneme can occur, when a

speaker repeats a word. Since the AVOZES corpus currently does not contain

8 Sequence here means the sample points pertaining to the central phoneme of the CVC-
and VCV-words under investigation, for example, one of the vowels. In this study, the
length of the central phoneme was defined as the time between the start sample point and
the end sample point, both defined by analysing the MH parameter. In the CVC-words
(/bVb/), the start sample point was defined by the lip closure before the central vocalic
phoneme and the end sample point by the lip closure after the central vocalic phoneme.
In the VCV-words (/A:CA:/), the start sample point was marked by the local maximum in
the MH parameter, due to the wide open /A:/, before the central consonantal phoneme
and the end sample point similarly by the local maximum afterwards.

However, coarticulation effects (see Section 2.1.4) occurred and may have altered the
results of the analyses to some extent, as compared to results for single phonemes,
due consonant-to-vowel and vowel-to-consonant transition sample points being included.
Coarticulation is a naturally occurring phenomenon of speech production and it is, there-
fore, important to study AV relationships in syllables, that contain transitions between
vocalic and consonantal phonemes, as well as in isolated phonemes. The results of this
study on two particular contexts are hoped to serve as a reference for future studies.

9 Phoneme here and in the remainder of this thesis, when talking about statistical
analyses, refers to the central phoneme in the CVC- and VCV-words recorded in the
AVOZES data corpus.
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repetitions of any sequence by a speaker, intra-speaker differences did not need to

be considered in the analysis, but are mentioned here for completeness. Thirdly,

different phonemes could also be produced with different lengths. That in itself is

a way of distinguishing phonemes, for example, short and long vowels. However,

if the values of the same parameter for different phonemes were to be compared,

it is more helpful to have the same number of sample points and to remove the

individual temporal information. Since phonemes were studied in CVC- and VCV-

contexts, it is important to note that short central phonemes had potentially more

sampling of context-related information occurring than long phonemes, which may

have affected the results.

5.4.4 Outlier Analysis

Finally, an outlier analysis was performed before the statistical analyses, so that

the number of outliers and their potential influence on the results could be judged

and actions taken to counter the effects, where deemed necessary. Outliers are

commonly defined to be measurement values outside a certain range centred at the

mean value. This range is often defined by multiples of the standard deviation and

was set to 3 standard deviations in the outlier analysis in this study. Three ways

of handling outliers are common practice

1. outliers are deemed to have a minor or negligible influence on the results and

are left unchanged,

2. outliers are substituted by the mean of the measurement values from all other

observations at the same sample point, which are not outliers themselves, and

3. outliers and the entire parameter curve they belong to are completely dis-

carded, i.e. also the values at other sample points, which are perhaps well

within the accepted range, are discarded from the analysis.

The first two ways have the advantage that the sample size is not decreased. The

decision of not changing any outliers can only be made after the number and mag-

nitude of outliers has been established. For the second way, it is often argued that
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introducing a sample that is not actually measured, even if it is given the mean

value, has an effect on the analysis that cannot be judged easily. On the contrary,

the third way has the advantage of not adding any samples that were not measured,

but has the disadvantage of reducing the sample size by discarding outliers.

The results of the outlier analysis, and the discussion on which way of treating

outliers was chosen for this study, can be found in Section 6.2.

5.5 Audio-Video Analysis — Statistical Analyses

In this section, the theoretical background of the statistical analyses performed in

this study and details on their application for investigating the relationships be-

tween audio and video speech parameters are given. Of particular interest were

multivariate analyses because they describe the relationship between two and more

parameters. Sections 5.5.1 – 5.5.6 describe the analyses used here, such as linear

discriminant analysis (LDA), principal component analysis (PCA), pairwise linear

correlation analysis, canonical correlation analysis (CANCOR), and coinertia anal-

ysis (COIA). In Section 5.5.7, functional data analysis (FDA) is introduced, in

which the data are treated as functions. Curve registration and PCA using FDA

are described.

5.5.1 Multivariate Analysis (MVA) — Introduction

The investigation of the statistical relationship between various parameters (or sta-

tistical variables10) is a classic case of MVA (see for example [Mardia 79, Rencher 98]).

MVA deals with data containing observations of p parameters measured on a set of

n objects. In the work described in this thesis, the audio and video speech parame-

ters were measured on the set of phonemes, with each element of that set containing

one sample sequence (= observation) per speaker. Each observation can be written

10 The term parameter is used synonymously for statistical variable here and in the
remainder of this thesis.
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as a vector

Xi,j(ti) =




x1,j(ti)

x2,j(ti)
...

xp,j(ti)




(5.12)

where ti represents the time value of the particular observation, i iterates through

the observations Xi,j and j iterates through the set of n parameters.

Many techniques in MVA are extensions of univariate analysis techniques. In

the following, only the techniques used in this project are described briefly. The

interested reader is referred to statistical textbooks, for example Mardia et al.

[Mardia 79], Rencher [Rencher 98], or Venables and Ripley [Venables 99] for more

details.

5.5.2 MVA — Linear Discriminant Analysis

Discriminant analysis classifies an object into one of n groups based on the infor-

mation from a set of p parameters. In other words, discriminant analysis aims to

determine which parameters discriminate between two or more groups occurring in

the observations. In the present study, the aim of the discriminant analysis was

to explore the data space. Of interest was how LDA separated the phonemes into

classes, which were possibly useful for the subsequent analyses of the relationships

between audio and video speech parameters. The analysis was done by perform-

ing a LDA separately on the sets of vocalic and consonantal phonemes.11 The

vocalic phonemes were further split into groups of short vowels, long vowels, and

diphthongs.

One of the most popular methods in discriminant analysis is Fisher’s LDA

[Mardia 79]. The idea is to find a linear combination of the original parameters

z = a1x1 + a2x2 + · · · + apxp = aTX (5.13)

that exhibits the largest ratio of between-class variance to within-class variance.

11 Just to remind the reader, these phonemes were the central phonemes in the /bVb/-
and /A:CA:/-words.
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z is known as Fisher’s discriminant function or first canonical variate. Once z is

known, an observation X can be allocated to one of the groups by its discriminant

score aT X. LDA is similar to the (multivariate) analysis of variance (ANOVA /

MANOVA) in that it is based on the analysis of means and variances.

LDA was performed with the R command lda of the ‘MASS’ package. The

results can be found in Section 6.3.

5.5.3 MVA — Principal Component Analysis

Generally, PCA seeks to find a few linear combinations of the original p parameters

that explain as much of the total sample variance as possible. These linear combi-

nations are called principal components (PCs). The first PC is defined as the linear

combination with maximal sample variance, the second PC as the orthogonal linear

combination with the second largest variance, and so on. In mathematical terms,

for an observation vector X in a sample, the linear combination

z = a1x1 + a2x2 + · · · + apxp = aT X (5.14)

is sought with sample variance

s2
z = aT S a (5.15)

where S is the sample covariance matrix and a = (a1, a2, . . . , ap)
T . This is equiva-

lent to a rotation of the coordinate system.

The PCs correspond to the p eigenvalues of S, with the first PC corresponding

to the largest eigenvalue, and so on. The corresponding eigenvectors define the

directions of variance and these directions are orthogonal to each other. They can

be used to define a new coordinate system with the PCs as axes. If PCs exist which

explain a large part of the variance, they can be used to reduce the dimensionality

of the set of parameters. In this study, PCA was used first of all to check if the set

of audio and video speech parameters contained redundancies.

Secondly, PCA has also gained influence in statistical shape analysis in re-

cent years. A number of researchers have applied PCA to determine the main

modes of variation of ‘shapes’, for example Cootes et al. [Cootes 95], Golland et
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al. [Golland 99], and Golland [Golland 01]. Such shapes could be the contour lines

of an object in an image but also parameter curves. The latter was used in this

study, that is, PCA was performed in the temporal domain. Doing so required the

application of PCA individually to the set of curves (= one observation per speaker)

of each parameter for each phoneme. For each phoneme-parameter pair, PCA was

thus applied across all speakers. As a result, the parts of the graphs which exhibit

least and most variation were determined. The resulting PCs describe the main

modes of variation and provide a compact representation of the individual parame-

ter curves for the subsequent analyses, as usually a few PCs (say 2–3) are sufficient

to extract most of the variance (say 95%).

PCA was performed by the R command prcomp of the package ‘mva’. The

results can be found in Sections 6.4 (redundancy test) and 6.5 (shape analysis).

5.5.4 MVA — Pairwise Linear Correlation Analysis

One of the most common analyses between two parameters is a pairwise linear cor-

relation analysis. It determines the extent, measured by the correlation coefficient

r, to which values of the two parameters are ‘proportional’ or linearly related to

each other. The coefficient r ranges from −1 to +1, where −1 indicates that the

two parameters vary exactly in opposite direction to each other and +1 means that

they vary accordingly. A coefficient of r = 0 means that the two parameters vary

with complete independence of each other. In practice, these extreme values of the

correlation coefficient are rarely reached, so that it is customary to speak of strong

correlations for |r| ≥ 0.75 and weak correlations for |r| ≈ 0.5.

There are various ways of computing a correlation coefficient r, the most com-

mon one being Pearson’s correlation coefficient

r =

∑
i
(xi − x̄)(yi − ȳ)√∑

i
(xi − x̄)2 ·∑

i
(yi − ȳ)2

(5.16)

where xi and yi are the samples, and x̄ and ȳ are the mean values [Göhler 87].

Pairwise linear correlation was performed using the R command cor. It was first

of all applied within the sets of audio and video speech parameters together with
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PCA, as described in the previous subsection, to check for redundancies in the pa-

rameter sets. The results are presented in Section 6.4. Strong correlations between

two parameters within a set are an indication of redundancy. It is sufficient to

consider only one of the redundant parameters in any further analyses. Secondly,

pairwise linear correlation analysis was also applied between parameter pairs with

one parameter each from the audio and video speech parameters. The results are

shown in Section 6.6.1. A strong correlation would support a hypothesis of a linear

1–1 relationship between (some) audio and video speech parameters.

5.5.5 MVA — Canonical Correlation Analysis

While PCA considers relationships within a set of parameters, CANCOR is a sta-

tistical analysis for the exploration of relationships between two sets of parameters.

Such a statistical analysis is very useful to test the hypothesis that combinations of

parameters correlate better across the two modalities than single parameters. The

observations of the sets of audio (XA) and video (XV) speech parameters formed

the input of the CANCOR, which was performed separately for each phoneme.

CANCOR is a generalisation of multiple correlation analysis for sets of param-

eters with at least two parameters in each set [Hotelling 36, Gittins 85]. It allows

the simultaneous analysis of both parameter sets. In general, all the information

about linear relationships within and between parameter sets is summarised in the

covariance matrix, which is identical to the correlation matrix for normalised (zero

mean, unit variance) parameters [Gittins 85].

The correlation matrix forms the starting point for a CANCOR. Similar to

PCA, a rotation of the coordinate system is performed, but instead of maximising

the variance within a single set of variables as in PCA, the correlation between two

sets of parameters is maximised in CANCOR. As a result, the linear relationships

within each set are disentangled, so that these relationships between the sets become

clear [Gittins 85]. The variables — called canonical variates (CV) — in the new

coordinate system are linear combinations of the parameters in each set

η = aTXA φ = bTXV (5.17)
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and found such that η and φ are maximally correlated [Gittins 85, Mardia 79].

Canonical correlations are computed via the eigenvalues. Let us denote the

number of parameters in the two sets by p and q, respectively. The square root of

the eigenvalues gives the canonical correlation coefficients rk, with k ∈ [1, p + q].

The coefficients describe the linear relationships between the two sets and range

from −1 to +1. It is customary to order the rk’s from highest to lowest and to

report only the absolute values. There may be more than one canonical correlation

relating the two sets and each such correlation represents a different, orthogonal

dimension by which the two sets are related to each other. Typically, only the first

2–3 rk’s are of interest as levels of correlation decrease quickly. The eigenvalues (or

r2
k) can also be interpreted as the proportion of variation in one canonical variate

predicted from its conjugate canonical variate [Gittins 85].

For small samples, where the number of parameters p + q approaches the sam-

ple size N , the value of the highest canonical correlation r1 quickly tends towards

1 (see [Gittins 85] for a detailed explanation). In such circumstances, the results

can suffer from statistical instability due to collinearity. Canonical correlation co-

efficients computed in such cases can be misleading with respect to the extent of

linear relationship between the linear combinations — the canonical variates — in

question.

As the interpretation of canonical weights and correlation coefficients is often dif-

ficult, other methods of interpreting the CANCOR have been developed [Gittins 85].

These are structure correlations, variance extracted by a canonical variate, redun-

dancy, and total redundancy. These were also analysed in the study of AV relation-

ships described in this thesis.

Canonical correlation was calculated in R by using the command cancor of the

‘mva’ package. The results can be found in Section 6.6.2.

5.5.6 MVA — Coinertia Analysis

COIA offers a way to overcome the stability problems exhibited by CANCOR. It is

a relatively new multivariate statistical analysis, introduced for ecological studies
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by Dolédec and Chessel in 1994 [Dolédec 94]. Here, the term ‘inertia’ is used as a

synonym for variability. The method is related to other multivariate analyses such

as canonical correspondence analysis (CCA) [ter Braak 86], redundancy analysis

(RDA) [Rao 64], and the just discussed CANCOR. COIA is a multivariate method

for coupling two (or more) sets of parameters. It gives insight into the relationship

between the two sets by analysing linear combinations of the parameters in each

set. COIA is a generalisation of the inter-battery analysis by Tucker [Tucker 58],

which in turn is the first step of partial least squares methods [Höskuldsson 88].

In many aspects, COIA is very similar to CCA and CANCOR. It also transfers

the data into a new coordinate system and the new variables are linear combinations

of the parameters in each set. However, in COIA, instead of the correlation between

the two sets, the square covariance is maximised, which can be decomposed as

cov(A, V ) = corr(A, V ) ∗
√

var(A) ∗
√

var(V ) . (5.18)

In other words, COIA finds a mathematical compromise between the correlation

(corr(A, V )), the variance in the audio set (var(A)), and the variance in the video

set (var(V )). COIA can also be seen as aiming to find orthogonal vectors — the

coinertia axes — in the two sets which maximise the coinertia value. The number

of axes is equivalent to the rank of the covariance matrix. It is common practice to

order the axes according to the covariance value from highest to lowest.

The advantage of COIA is its numerical stability and the fact that the number of

parameters relative to the sample size does not affect the accuracy and stability of

the results [Dolédec 94]. The results of the method do not suffer in the presence of

collinearity and the consistency between the correlation and the coefficients is very

good, according to Dray et al. [Dray 03], which makes it a particularly well-suited

multivariate analysis in this study of AV relationships.12

The coinertia value (covariance value) is a global measure of the co-structure

in the two sets. If the value is high, the two parameter sets vary in a dependent

12 This was discussed in great detail with Stéphane Dray from the Biométrie et Biologie
évolutive - Equipe ”Écologie Statistique”, Université Claude Bernard Lyon 1, Villeur-
banne Cedex, France.
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fashion, and if the value is low, the sets vary independently. The correlation value

gives a measure of the correlation between the coinertia vectors of both domains.

Furthermore, one can project the variance onto the new vectors (or axes) of each set

and then compare the projected variance of the separate analyses with the variance

from the COIA (see the appendix of [Dolédec 94] for the theory and [Dolédec 97]

for an example). The ratio of the projected variance from the separate analyses to

the variance from the COIA is a measure of the amount of variance of a parameter

set that is explained by each coinertia vector. It is important to compare the sum of

vectors, not vector by vector, because the variance projected onto the second vector

depends on what is projected onto the first vector, and so on. Often it is sufficient

to analyse the first 1–3 vectors, because they typically account for 90–95% of the

variance. In addition, COIA computes the weights (coefficients) of the parameters in

the linear combinations of each set. The weights show which parameters contribute

to the common structure of the two sets and which do not. An overall correlation

value between the two sets is given by the RV coefficient (see Robert and Escoufier

[Robert 76], and Heo and Gabriel [Heo 97] for more details).

COIA has the advantage that it can be coupled easily with other statistical

methods, such as CCA and PCA. That is, these methods are performed on the

data of the two domains separately, and then a COIA follows. In fact, Dray et

al. [Dray 03] show that, seen in this context, COIA is a generalisation of many

multivariate methods. For the analysis reported in this thesis, it means that the

PCs resulting from the PCA performed to find the main modes of variation can be

used as input to COIA.

COIA can be computed with the ADE-4 tool [Thioulouse 97] and is also available

on the R statistical platform with the command coinertia in the ‘ade4’ package,

which was used in the present study. The results are shown in Section 6.6.3.

5.5.7 Functional Data Analysis

FDA, developed by Ramsay et al. [Ramsay 82, Besse 86, Ramsay 96], is an alterna-

tive approach, in which the traditional MVAs are expressed in functional analytic



154 CHAPTER 5. ANALYSIS OF DATA CORPUS

terms. For example, statistical analyses such as analysis of variance and principal

component analysis are also available in FDA. As is the case in MVA, the data con-

tain observations of p parameters measured on a set of n objects (see Section 5.5.1).

In FDA, the data are viewed as p functions, each observed at m argument values.

This view is particularly useful for time series data, such as the data extracted from

the AVOZES data corpus.

FDA has the advantage that it accounts for the underlying continuity of the

human speech production system. Temporal dependencies in the data are shown

[Ramsay 82]. FDA also offers the possibility of studying the variation among deriva-

tives of functions, thereby enabling the exploration of velocity and acceleration pat-

terns in the speech parameters. Doing so requires the smoothing of parameters (see

Section 5.4.2) up to the second derivatives.

Curve Registration

Ramsay et al. [Ramsay 96] argue that differences between curves for a particular

parameter tend to be a combination of end-point variation and shape variation.

End-point variation can be interpreted as a result of the individual speaker dif-

ferences, e.g. the rest positions of the articulators, and coarticulation effects (see

‘Coarticulation’ in Section 2.1.4). As the same coarticulation context (/bVb/) was

used for all CVC-words and the same context (/A:CA:/) for all VCV-words, end-

point variation in the data is considered to be mostly due to speaker characteristics.

On the other hand, shape variation is considered to be mostly due to differences

in the parameters for the different phonemes, i.e. different vocal tract configurations

based on different articulator positions and speaker characteristics. Shape variation

is of more interest in the analysis of AV relationships, because it enables studying

similarities and differences between phonemes.

Studying shape variation is facilitated by curve registration. Curve registration

can be summarised as transforming the arguments — the sample points — of curves,

so as to align various salient features. As Ramsay [Ramsay 03] points out, the

problem has received much attention in various fields and is also known under
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the term time warping. Warping functions hi(t) are determined which define how

the arguments are transformed based on optimising some criterion [Ramsay 01].

Registration can be done by marker (landmark) registration or global registration.

In the first approach, curves are aligned by identifying the timing of salient features,

such as peaks or valleys. Curve registration is then achieved by computing and

applying a warping function based on the marker alignment. Dynamic time warping

[Sakoe 78] is one prominent example. In the second approach, the entire curve is

used. This is achieved by optimising some similarity measure of the curve shapes.

Ramsay [Ramsay 03] proposes to minimise the logarithm of the smallest eigenvalue

of the cross-product matrix of the target curve and the curve to be registered, as it

creates better registration results than, for example, a least-squares measure. See

[Ramsay 01] for more details on both registration approaches.

In the work presented here, a global registration method based on FDA was

used. Global curve registration works well when salient features (maxima, minima)

are present, but can fail when the target curve is flat. Another important issue is

that of chosing a suitable target curve to which all curves are registered. If for each

parameter and for each /bVb/- or /A:CA:/-word one of the curves from the set of

speakers is chosen as target curve, then the question arises, which one to choose for

the best results. Hence, in this work, the (pointwise) mean curve of all speakers

was selected as target curve and all other curves were registered to it.

It would be simple to select the mean curve for each parameter and sequence

as target curve and to register all speakers’ curves to it, but doing so has the

potential problem of creating different warping functions for the same speaker and

the same sequence for different parameters, so that the time point t refers to different

points on the curves for the same syllable. To avoid such problems and to keep the

parameters time-synchronised, the following process13 was performed:

For each syllable

1. The RMS parameter served as registration target. All RMS parame-

13 This process is based on the theory of curve registration using FDA as detailed in
[Ramsay 01].
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ter curves were registered to the RMS mean curve using the R command

registerfd in the ‘fda’ package.

2. The warping function hi,A(t) for the RMS parameter and its functional in-

verse14 h−1
i,A(t) were computed, which returned the warped sampling points for

each speaker’s curves.

3. For each speaker, these warped sample points were applied to the other pa-

rameters in the audio and video parameter sets to perform registration.

Adhering to this process ensured that the same sample points — possibly different

for each sequence — were used for all parameter curves of each sequence in each of

the two modalities. The RMS parameter was chosen as registration target, because

of its non-flat curve shape, which was particularly well-suited for the registration

process. The process was based on the previous assumption, that the audio and

video signals were in synchronisation (see Section 5.4.1 for details). Curve registra-

tion was performed on the smoothed and resampled parameter curves (see Sections

5.4.2 and 5.4.3). Curve registration results are discussed in Section 6.7.1.

It must be noted that a disadvantage of using this registration method based on

FDA is that employing (cubic or higher order) spline curves has the inherent risk

of creating strongly oscillating curves, which do not reflect the original curve shape

well. As a counter measure, smoothing algorithms are usually applied. However,

such smoothing bears the risk of deviating significantly from the original curves.

Therefore, additional smoothing after curve registration was not used in this study.

Curves that oscillated strongly after registration were determined in a manual pro-

cess by visual inspection of the graphs, then removed, and replaced by the curves

that were used as input, in order to keep the number of curves constant.

Principal Component Analysis

PCA can also be defined in functional analytic terms [Besse 86]. Similar to the

statistical shape analysis described in Section 5.5.1, a PCA in the temporal domain

14 Note that −1 is used here to refer to the inverse, not the reciprocal.
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was performed on the registered parameter curves to identify the main modes of

variation. As (successful) curve registration is expected to reduce the amount of

phase variation, the FDA PCs should show the modes of variation due to shape

variation even more clearly. This was tested by comparing the proportion of variance

accounted for by each FDA PC with those previously computed. FDA PCA was

performed by the R command pca.fd of package ‘fda’. The results can be found

in Section 6.7.2.

5.6 Chapter Summary

In summary, this chapter has described the methods used to explore the relation-

ships of audio and video speech parameters based on the data in the AVOZES data

corpus. This has included the extraction of audio and video speech parameters,

necessary preprocessing methods, and the statistical methods for the analysis of

the relationships between audio and video speech parameters.

First, the analysis of the audio signal has been described. A common way

is to perform a spectral analysis. Background information on two common spec-

tral analysis techniques — the filter bank method and the linear predictive coding

method — has been given. In preparation for the analysis of AV relationships in the

next chapter, details on how the voice source excitation frequency F0, the formant

frequencies F1, F2, F3, and the RMS energy value can be determined have been

presented. The parameter extraction was done with the ESPS package on lowpass

filtered audio signals.

Secondly, methods of video analysis have been presented. Based on the auto-

matic lip tracking algorithm described in Chapter 3, geometric parameters such as

width and height of the mouth opening, as well as protrusion of upper and lower lip,

were extracted. In addition, the visibility of teeth was determined and measured in

a numeric fashion.

Issues of AV synchronisation have been discussed, as it is essential for a correct

statistical analysis that the two signal streams are synchronised. The DV recording

equipment ensures, by definition of the DV standard, that the audio and video signal



158 CHAPTER 5. ANALYSIS OF DATA CORPUS

are synchronised when in locked audio mode, which was used during the recordings

of the AVOZES data corpus. Due to the stereo vision system used during recording,

there is a constant delay of the length of one video frame between the audio and

video signal, which was accounted for by a shift on the time axis when resampling

the extracted parameters. In addition, because of the definition of the NTSC video

signal standard, careful resampling was required on the data of the first second of

each minute of video data. Moreover, both audio and video parameter sequences

were resampled to give them the same number of observation points, which is a

prerequisite for many statistical analyses.

The extracted speech parameters were smoothed using cubic splines. Where

possible, weights based on the confidence measures were applied, which pulled the

smoothing spline function more strongly to points of high confidence. Otherwise,

when confidence measures were not available, equal weights were applied. Smooth-

ing and the statistical analyses were performed using functionality provided in the

R statistical software system.

Finally, statistical analysis techniques have been detailed. MVA techniques were

of particular interest, because they describe the relationship between two or more

parameters, and thus were well-suited for analysis of the relationships between audio

and video speech parameters. These analyses included PCA, LDA, pairwise linear

correlation analysis, CANCOR, and COIA. COIA is a recently developed MVA

which offers more statistical stability than other analyses. COIA has not been

used in the area of AVSP before. Secondly, some of the relatively new techniques of

FDA have been presented. FDA expresses traditional MVA techniques in functional

analytic terms and is particularly suitable for the analysis of time series data like the

parameters in the analysis of the AV relationships. It also offers ways of registering

curves, which eliminates other variation sources that could hide the shape variation,

which was the area of focus in this study. The results of the analyses are described

in the next chapter.



Chapter 6

Results and Discussion

In this chapter, the results of the various analyses are presented and discussed. The

aim was the determination of the statistical relationship between the AV speech

parameters selected in the previous chapter. Firstly, the data space is explored

in Sections 6.1 – 6.3. Observations made by visual inspection of the measured

parameters are given in Section 6.1. This section also discusses differences in the

parameter curves between male and female speakers of AuE, as well as between the

three varieties of AuE. The results of the outlier analysis, described in Section 5.4.4,

are discussed in Section 6.2. The treatment of outliers is also described there. The

exploration of the data space is finished by a discussion of the results of applying

an LDA to the data to analyse, how the parameters separate the phonemes.

The remaining sections in this chapter present the results of the statistical anal-

yses for the determination of the AV relationships. In Section 6.4, the relationships

within each parameter set are analysed. This was done by applying a PCA to

the parameter sets for each phoneme, as a test for redundancies in those sets, and

combining the results with the results of a linear pairwise correlation analysis for

determining the redundant parameters, where possible. Then, Section 6.5 presents

the results of applying PCA in the temporal domain, separately for each param-

eter, as a statistical shape analysis technique for determining the main modes of

variation in the parameter curves for each phoneme. This is followed by Section

6.6, which presents and discusses the results of the various analyses of the AV re-

159
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lationships across the two parameter sets. Pairwise correlation analysis, canonical

correlation analysis, and coinertia analysis were performed. The latter two analyses

are multivariate analyses that explore, how linear combinations of the parameters

are statistically related to each other across the two modalities. Finally, an outlook

is given in Section 6.7 on how FDA can aid the analysis with the help of its curve

registration techniques. The results of the curve registration process are discussed,

as well as the results of applying PCA in the temporal domain (as in Section 6.5)

as a way of comparing the influence that curve registration had on the results.

Because of the complexity of the data, numeric results of the analyses can gen-

erally be found in the Appendices C – J, which includes data on the accompanying

CD-ROM. It is also worthwhile to remind the reader that the results presented here

are for the central phonemes in the vocalic (/bVb/) and consonantal (/A:CA:/) con-

texts chosen in the AVOZES data corpus. Since coarticulation is a natural feature

of (continuous) spoken language, it undoubtedly is a factor in the results, as the

investigated sequences contained some samples from the contextual phonemes sur-

rounding the central phoneme. However, it is beyond the scope of this study to

investigate other vowel and consonant contexts. The reader is also reminded that

some speakers in the AVOZES data corpus had problems in producing the velar clo-

sure nasal /N/, as well as distinguished voiceless and voiced inter-dental fricatives

/T D/. The results for these phonemes must therefore be treated with care.

6.1 Presentation of the Data and Some Initial

Remarks

This section describes some observations made by visual inspection of the data

and discusses differences in various groups of speakers. The parameter curves for

all phoneme-parameter pairs are presented in Appendix C. For each parameter

in the sets of audio and video speech parameters, the graphs of the parameters

curves are shown side by side for all phonemes, thus enabling an easy way of visual

comparison. The order of the phonemes follows that in Tables 4.4 and 4.5, that
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is, short vowels, long vowels, diphthongs, and finally consonants. The parameter

curves of the individual speakers are shown in green (female speakers) and black

(male speakers) and the pointwise mean curve is shown in red.

As a general comment before going into detail, the individual parameter curves

agreed very well for some parameters and some phonemes, but there was also a

large degree of variance for some other parameters and some other phonemes. Some

observations, made by visual inspection of the graphs, are discussed in more detail

in the Sections 6.1.1 – 6.1.9. The sections for the formant frequencies also discuss

the similarities and differences of the measurements with the findings of Lindblom

and Sundberg (see Section 2.1.4 and [Lindblom 71]). Section 6.1.10 discusses visible

differences between the parameter curves from female and male speakers. Finally,

a comparison of the parameter curves for the three varieties of AuE (cp. Section

2.2) is presented in Section 6.1.11.

6.1.1 Voice Source Excitation Frequency F0

In the case of the vocalic phonemes, the individual F0 parameter curves were spread

over a frequency range from about 70Hz to 280Hz. Despite that range, the curves

showed a high degree of similarity in terms of their shape. The F0 value typically

increased slightly with the onset of the vocalic phoneme (following the first /b/ in

the bilabial context) and decreased slightly again at the offset (going into the second

/b/ of the bilabial context). In between, i.e. for the length of the vocalic phoneme,

the curves were fairly flat, indicating a largely constant F0 value (Figure 6.1 top).

Since the vowels and diphthongs are voiced sounds, generated by quasi-periodic

pulses of air from the glottis (see ‘The Articulation of Vowels and Consonants in

English’ in Section 2.1.4), relatively stable F0 values were expected.

For the consonantal phonemes, the individual F0 curves were in the frequency

range of about 70Hz to 250Hz with some outliers (higher F0) for some female speak-

ers. Some curves exhibited a minimum during the intervocalic consonant, others

were flat. Differences between voiced and voiceless phonemes were noticed. For

voiced consonantal phonemes, the curves were flatter (e.g. compare /p b/ in Fig-
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Figure 6.1: Examples of F0 curves: /u:/ at the top, /l/ in the centre, and /p/ at

the bottom.
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ure C.1) and some did not show a minimum during the intervocalic consonant at

all (see the liquids and glides /l r w j/, for example Figure 6.1 centre). Voiceless

consonantal phonemes, however, showed a clear minimum during the intervocalic

consonant (Figure 6.1 bottom).

6.1.2 Formant Frequency F1

The F1 values ranged from about 200Hz to 1000Hz. The individual parameter

curves for the vocalic phonemes agreed fairly well for a given phoneme, perhaps

with the exception of /A:/, where the individual curves showed more variation.

Outliers were noted for /U æ/. Typically, the mean curves were either fairly flat,

slowly dropping off as time progressed, in the case of smaller F1 values (up to about

400Hz), or they exhibited a mostly flat peak in the case of F1 values above 400Hz.

In the former category, the phonemes /I U i: u: I@/ were found (Figure 6.2 top).

The latter category consisted of the phonemes /6 2 æ A: eI aI aU @U/ (Figure 6.2

centre). The phonemes /E 3: O: @: OI/ fell in between these two categories.

For the consonantal phonemes, the individual curves diverged more than for the

vocalic phonemes. For example, the individual curves for /k/ seem to have very

little in common (Figure 6.2 bottom). It was noticed that, due to the low RMS

energy values for the unvoiced oral stops /p t k/, the trajectories of the voice source

excitation frequency F0 and the formant frequencies F1, F2, F3 were not well-defined.

A gating based on the RMS energy parameter could mark these points and exclude

them from analysis. The analysis results for these phonemes must be treated with

care, if no gating is performed. Outliers such as the topmost curves for /d g/ also

occured (Figure C.4 in Appendix C). However, many curves seemed to differ mainly

in the horizontal place (timing) and the width of the minimum (if present). The

latter can be attributed to differences in the F1 patterns for different speakers. The

timing differences could be related to the originally different sampling frequencies

of the audio and video speech parameters (100Hz v. 30Hz). If the start and end

points of the selected sample intervals, which depended on the onset and offset

found in the MH parameter sampled at 30Hz, were determined incorrectly by only
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Figure 6.2: Examples of F1 curves: /u:/ at the top, /2/ in the centre, and /k/ at

the bottom.
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one video frame, it is possible that the data showed a horizontal displacement of

about three resampled sample points (see Section 5.4.3 for a description of the

resampling process). This suggests that curve registration, in which the internal

AV synchronisation is maintained, could alievate the situation (see Section 6.7).

Despite this divergence, it can be seen that the curves typically have a minimum

during the intervocalic consonant (Figure 6.2 bottom) with the higher surrounding

F1 values being a product of the vocalic /A:CA:/-context. Looking at the mean

curves, the width of the valley around the minimum clearly depends on the amount

of horizontal displacement in the individual curves, which means that one has to

be careful in drawing conclusions from this. However, from individual parameter

curves it can be seen that for some phonemes (e.g. /m l j/ in Figure C.3) the ‘valley’

is broader than for other phonemes (e.g. /p b/ in Figure C.4), which appeared to

be related to the length of the consonant. Almost all of the mean curve minima

were at an F1 value in the range of 400–600Hz, while individual parameter curves

showed minima as low as 200Hz. Again, the horizontal displacement of individual

curves played a role in this issue, due to averaging out individual minima.

Referring back to Section 2.1.4 on speech production and acoustical conse-

quences of articulatory movements, the results agree well with the findings of Lind-

blom and Sundberg [Lindblom 71]. Frontal tongue position and frontal airflow

constriction (tongue or lips) resulted in a decrease of F1. For example, compare the

F1 curves of /I 2/ (Figure C.3) with the former showing much lower F1 values than

the latter. Similarly, consonants that require more lip movement or a more frontal

lip position than others, showed lower F1 values. The measurements also confirmed

that jaw opening leads to higher F1 values in vowels and diphthongs.

6.1.3 Formant Frequency F2

The F2 frequency values ranged from about 500Hz to almost 3000Hz. The indi-

vidual curve shape for any phoneme agreed very well for vocalic phonemes. Low

outliers occured for /I E æ 3: OI aI @U/. Two kinds of mean curves were found: (1)

curves with a maximum during the interconsonantal vowel and (2) curves with a
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minimum during that time. In the first category, the phonemes /I E i: @:/ were

found (Figure 6.3 top). The second category consisted of the phonemes /U 6 2 O:/

(Figure 6.3 centre). The vowels /æ u: 3: A:/ fell in between these two categories

and showed mostly flat curves. Horizontal displacement between individual curves

did not appear to occur for F2, with the exception of /OI/.

It can clearly be seen in the graphs of Figure C.5 in Appendix C that in the case

of the diphthongs, the vowels on which the diphthongs are based were matched in

the F2 curve. A prime example is the phoneme /OI/. First, the lower F2 values of

/O/ can be seen, followed by the higher F2 values of /I/.

Generally, there was more variance in the individual F2 parameter curves for the

consonantal phonemes. Typically, a maximum during the intervocalic consonant

can be seen (Figure 6.3 bottom). Differences existed between individual curves in

the amplitude and when the maximum occurred (shift on the time scale). It also

appeared that voiceless consonants led to larger divergence among the individual

curves than voiced consonants due to a lack of energy (for example, compare the

curves for /s z/ in Figure C.6 in Appendix C). RMS gating could be used to mark

sample points with little energy and to exclude them from analysis.

The phoneme /w/ presented an exception with the F2 curve having a distinct

minimum rather than a maximum during the intervocalic consonant. In addition,

the F2 parameter curves of the phonemes /l r/ were more or less flat with no clear

maximum or minimum. Flat individual parameter curves were also found for some

speakers at other phonemes (e.g. /m n/), but no consistent trend could be identified.

Again, the observations here agreed with the findings of Lindblom and Sundberg

[Lindblom 71]. A tongue constriction closer to the velum and closer to the front

of the oral cavity led to a significant increase in the values of F2. The effect was

stronger for spread lips. Examples are the F2 curves for the vowels /i: O:/ (Figure

C.5). As Lindblom and Sundberg point out, the effect of tongue position and

shape is primarily on F2. Neutral and back tongue constrictions resulted in lower

F2 frequencies than frontal constrictions. This was also evident in the consonants

where, for example, /S tS/ had higher F2 values than /l r/. Lip rounding as in the

vowel /O:/ and the consonant /w/ resulted in a significant decrease in F2.
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Figure 6.3: Examples of F2 curves: /i:/ at the top, /6/ in the centre, and /S/ at

the bottom.
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6.1.4 Formant Frequency F3

The F3 values lay in a range from about 1500Hz to 3500Hz. For the vocalic

phonemes, the individual F3 parameter curves of the speakers agreed well for a

given phoneme. They were typically fairly flat in shape (Figure 6.4 top). Little dif-

ference in terms of the frequency values was found in the mean curves for different

vocalic phonemes, apart from a slight increase for the high and front vowels /I i:/

(Figure C.7). In this case, the increase was more prominent for the corresponding

long vowels (and the diphthongs /eI I@/), because coarticulation constraints due to

the /bVb/-context would limit the reaching of the articulator targets more for short

vowels than for long vocalic phonemes.

The decrease in F3 at the onset of the interconsonantal vowel (following the first

/b/ in the /bVb/-context) and the increase again at its offset (going into the second

/b/ of the /bVb/-context) appeared to be an artifact of the formant frequency

determination process, which is unstable for sample points with low energy. A

gating based on the RMS energy parameter could mark these points. For voiceless

phonemes and outside of the /bVb/ words, F3 was often found ‘hovering’ around

in the range of 2500–3000Hz without following a definite ‘track’.

For the consonantal phonemes, again more variance was found between individ-

ual F3 parameter curves (Figures C.7 and C.8). While there was good agreement

for some consonants (e.g. /r w/), there were a lot of different curve shapes for other

consonants (e.g. /k m/). For most phonemes, the F3 parameter curves had a max-

imum during the intervocalic consonant (Figure 6.4 centre). This maximum was

the result of an increase in F3 by about 200–500Hz. The bilabial stops /p b/, the

alveolar closure nasal /n/, the lateral liquid /l/, and the bilabial glide /w/ showed

no distinct maximum. Their F3 curves were rather flat in shape. Another striking

exception was the rhotic consonant /r/, which presented a distinct minimum dur-

ing the consonant (Figure 6.4 bottom). There, the decrease in frequency was about

500Hz on average.

Lindblom and Sundberg [Lindblom 71] mentioned a sharp decrease in F3 for

frontal tongue positions and spread lips and a slow rise in F3 values for neutral
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Figure 6.4: Examples of F3 curves: /u:/ at the top, /S/ in the centre, and /r/ at

the bottom.
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and back tongue positions. These changes in F3 were not evident in the data

from the AVOZES data corpus, which could be due to the tendency of generally

speaking with spread lips in (particularly broad and general) AuE. Lindblom and

Sundberg also described a significant decrease in F3 for lip rounding. This was most

prominently visible for the rhotic consonant /r/, but also for the long vowel /u:/

when, for example, compared to the long vowel /i:/.

6.1.5 RMS energy

The individual RMS parameter curves for a given phoneme agreed very well for

both vocalic and consonantal phonemes. In the case of the vocalic phonemes (Figure

C.9), the voicing of the vocalic sound resulted in a quick increase in RMS value

at the onset and a reasonably quick decrease at the offset, although this decrease

was somewhat slower than the increase (Figure 6.5 top). Diphthongs either showed

a small second peak for the second vowel (/aU I@ @U/, Figure 6.5 centre), or they

showed a slow, almost constant rate decrease after the first maximum (/eI OI aI/).

For the consonantal phonemes, a minimum close to 0 in the RMS parameter

curve during the intervocalic consonant was found for oral stops, fricatives, and

affricates (Figure 6.5 bottom). Nasals, liquids, and glides did not present such a

distinct minimum. Their RMS parameter values were relatively constant in a low

energy range during the intervocalic consonant, so that the parameter curves were

flatter in shape (Figure C.10 in Appendix C).

Generally, the RMS parameter curves showed a reasonable amount of horizontal

displacement. A curve registration process, which maintains AV synchronisation,

could reduce the effects this has on any statistics (see Section 6.7).
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Figure 6.5: Examples of RMS curves: /6/ at the top, /I@/ in the centre, and /p/

at the bottom.
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6.1.6 Mouth Width

Examining the individual parameter curves for mouth width, it was noticed that

the curves of the various speakers exhibited a similar shape for a given phoneme,

but were spread over a range from about 30mm to 60mm. This spread can be

explained with the width of the mouth in neutral state being a characteristic that

varies from person to person.1 As a consequence, statistics that analyse the shape

of the curves rather than the absolute values were better suited, which led to a

PCA being applied first to the parameter curves as a statistical shape analysis,

as described in Section 5.5.3. Furthermore, outliers were found for some vocalic

and consonantal phonemes (see Section 6.2 for a discussion). For example, see the

curves for /3: S/.

For the vocalic phonemes, the shape of the curves was generally fairly flat.

However, it can be seen that some speakers decreased the width of the mouth at

the onset of the interconsonantal vowel or diphthong and then increased the width

again in the second half of it. This effect can be seen in /E 2 æ i: A: @: eI aI/ (Figures

6.6 top and C.11). It is, therefore, hypothesised that this effect occurs typically in

front and low central vowels and diphthongs containing these.

In the case of the consonantal phonemes, most of the curves were again fairly flat

(Figure 6.6 centre). Nevertheless, a few exceptions were noticed. For the bilabials

/p b m w/, the labio-dentals /f v/, and the rhotic /r/, a decrease in mouth width was

observed first, followed by an increase again, in the second half of the intervocalic

consonant, i.e. at the transition from the consonant to the vocalic context used

(Figure 6.6 bottom).

1 Such a personal characteristic, of course, also affects the formant patterns. It is
possible that narrow-mouthed people have a different pattern of AV relationships than
wide-mouthed people, because of the effect of a smaller mouth opening on the vocal
tract system, but such differences did not become evident in this study. If such different
patterns existed, they would have consequences on the benefit of including video speech
parameters in ASR systems. Further investigations of this issue are needed in future
work.
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Figure 6.6: Examples of MW curves: /i:/ at the top, /d/ in the centre, and /w/

at the bottom.
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6.1.7 Mouth Height

The individual parameter curves for mouth height agreed fairly well between speak-

ers for the vocalic phonemes (Figure C.13). Some outliers were present due to

tracking failures (see ‘Outlier Analysis’ in Section 6.2). The largest MH values

were found for the vowels /æ i: A: @:/ and diphthongs /eI aI aU/ with more than

10mm height of the mouth opening on average at the maximum (Figure 6.7 top).

MH values were, thus, larger for front vowels than for back vowels (and diphthongs

containing these). The comparitively strong maximum for /i:/ is perhaps surpris-

ing. Generally, the parameter curves rose slowly from the total lip closure forced

by the bilabial context towards the maximum value, which was reached after about

two-thirds of the vowel length. After that, the curves fell quickly towards the second

lip closure of the bilabial context /bVb/.

For the consonantal phonemes, the individual parameter curves of the speakers

agreed well in their shape, but a vertical displacement could be seen, which was

related to how far the mouth was opened for the vocalic context /A:CA:/ (Figure

C.14). Again, the shape of the curves was more important for the statistical analysis

than the absolute parameter values, as the common characteristics of the individual

curves were the area of focus for the analysis of the AV relationships. In the /A:CA:/-

context, the consonants led to a decrease in mouth height. The strength of the

decrease depended on the consonant. It was strongest for the bilabials /p b m w/

and the labio-dentals /f v/, and smallest for the velar stops /k g/ and the lateral

liquid /l/ (Figure 6.7 centre and right).

6.1.8 Protrusion of Upper and Lower Lip

The protrusion parameters PUL and PLL are discussed together here, because of

the high degree of correlation found (see Figure 6.8 top and centre for an example

and Section 6.4.1 for numeric results). Such similarity was not suprising. Purely

from observing a person’s lips while speaking, one would expect both lips to move

back and forth in a similar fashion and simultaneously. The measurements on the

AVOZES data corpus confirmed this expectation.
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Figure 6.7: Examples of MH curves: /A:/ at the top, /p/ in the centre, and /g/ at

the bottom.
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Figure 6.8: Examples of protrusion curves: The top and centre graphs show the

similarity between PUL and PLL parameters on the example of /E/. PUL curves

of /m/ at the bottom.
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Examining the individual curves of the protrusion parameters, a large amount

of variance between curves was noticed (Figures C.15 – C.18). This resulted in

mean curves being mostly flat as the differences in curve shapes occurred at all

sample points and often cancelled each other out. A clear trend was not visible.

Outliers were found which resulted from tracking failures (see Figure 6.7 bottom

for an example and Section 6.2 for an analysis of outliers). Any results on the

protrusion parameters in the statistical analyses must, therefore, be treated with

care.

6.1.9 Relative Teeth Count

The individual parameter curves of the relative teeth count for a given phoneme

showed a large degree of similarity for both vocalic and consonantal phonemes

(Figures C.19 and C.20). The shape of the curves were similar, but the curves

differed in the amplitude. This seemed strongly related to personal characteristics

of each speaker, that is, how much the lips covered the teeth in a neutral lip position.

In the case of the vocalic phonemes, the RTC parameter was zero during the

bilabial closures in the /bVb/-context (Figure 6.9 top). During the vocalic phoneme,

it reached a maximum after about two-thirds of the length. The maximum was

stronger for front and low central vowels and diphthongs containing these (/I æ i: A:

@: eI aI aU I@/). Thus, the RTC parameter, or a similar teeth visibility parameter,

could be used to distinguish front and low central vowels from back and high central

vowels (and diphthongs containing these).

For the consonantal phonemes, two classes of curves were found. First, there

were curves with a distinct minimum during the intervocalic consonant (Figure 6.9

centre). This class was formed by the bilabials /p b m w/ and to a lesser extent by

the labio-dental fricatives /f v/ and the rhotic /r/. Secondly, all other phonemes had

curves which were more or less flat in shape (Figure 6.9 bottom). This second class

exhibited a large degree of vertical displacement between the curves of individual

speakers, which was due to personal differences in the visibility of teeth in neutral

lip position.
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Figure 6.9: Examples of RTC curves: /@:/ at the top, /w/ in the centre, and /g/

at the bottom.
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6.1.10 Gender Issues

In this section, visible differences in parameter values between the groups of male

and female speakers in the AVOZES data corpus are discussed. Such differences

were mostly found in the audio speech parameters. Differences occurred in the

F0 parameter, where female speakers generally showed higher F0 values than male

speakers. This was consistent with expectations based on different vocal tract

geometries (see Section 2.1.4). Male speakers hardly reached F0 values beyond

150Hz, while female speakers reached up to 250Hz. There was some overlap in the

F0 frequency range between the two groups for frequencies between 100–150Hz.

Similar observations were made for the formant frequencies F1, F2, and F3,

although there was more overlap in the frequency range of men and women for

these than was the case for F0. Again, these observations were in agreement with

expectations based on the (usually) longer vocal tracts of men, which results in a

lowering of all formant frequencies (see Section 2.1.4). For both F1 and F2, the

overlap was largest for back and central-back vowels /U 6 u: O:/. For all other

vocalic phonemes, female speakers had slightly higher F1 and F2 values than male

speakers. In the case of the consonantal phonemes and F1, female and male speakers

shared roughly the same frequency range with the exception of the bilabial stops

/p b/, where the F1 values were higher for women than for men. In the case of

the consonants and F2, the tendency was that female speakers had higher F2 values

than male speakers, except for the velar stops /k g/, the labio-dental fricatives /f

v/, the inter-dental fricatives /T D/, the voiceless alveolar fricative /s/, the alveolar

affricates /tS dZ/, and the velar closure nasal /N/, where there was more overlap in

the frequency range between the two groups of speakers.

The observation for F3 was that female speakers tended to have higher F3 values

than male speakers by about 500Hz on average in the AVOZES data corpus. This

was the case for all vocalic phonemes, but could also be seen in the consonants /p

b t d g v z n l r w j/. However, it should be noted that there was generally some

overlap in the frequency range between the two groups of speakers for F3.

No noticeable differences between the groups of female and male speakers was
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found for the RMS, MH , PUL, PLL, and RTC parameters. For the MW param-

eter, the tendency was towards female speakers having smaller parameter values

than the male speakers. A plausible explanation is that, on average in this sample,

men’s mouths were wider than those of women in a neutral lip position, and that

this prevailed during speech production as well.

6.1.11 A Comparison of Varieties of Australian English

Another interesting aspect is the comparison of the varieties of AuE. In Section

2.2, the differences have been presented, as they are described in the literature

(e.g. [Harrington 97]). The main finding was that differences mainly exist in the

diphthongs and to a lesser extent in the vowels. Effects due to variety differences

were mostly found in F1 and F2. Video speech parameters were not investigated

in those studies. In general, the varieties span a continuum of accent variation

rather than being defined by distinct boundaries. Furthermore, a speaker may

very well pronounce some phonemes in a way characteristic of one variety, while

pronouncing other phonemes in a manner typical of one of the other varieties, so

that any grouping of speakers by varieties will always be a difficult task and an

auxiliary means at best.

The differences reported by Harrington et al. [Harrington 97] cannot be con-

firmed unambiguously by the data of the AVOZES corpus.2 No significant dif-

ferences were apparent between the parameter curves for speakers from different

varieties. At a first glance it might appear, as if the speakers of broad AuE exhib-

ited lower F0, F1, F2, and F3 values on average for some phonemes — for example,

/aI/ — but it is important to recall the composition of the variety groups in the

AVOZES data corpus (Appendix B). Although the corpus is gender balanced on an

overall level, the groups are not. The group of broad AuE speakers consisted largely

of male speakers, while on the other hand the group of cultivated AuE speakers was

made up by female speakers only. Therefore, it cannot be verified exactly, if the

2 The interested reader can find the graphical representations of the parameter curves
in the PDF file curvesVarieties.pdf on the accompanying CD-ROM.
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lower formant frequency values were a result of the accent variation in broad AuE

or simply due to differences between female and male speakers, as discussed before.

Finally, splitting the sample group into three groups according to the variety of

AuE mostly spoken by the speaker, created groups of 6 speakers for broad AuE, 12

speakers for general AuE, and only 2 for cultivated AuE. While this reflected the

typical composition of the Australian population in terms of the accent varieties

well, any statistical analyses applied to the groups, in particular the smaller ones,

faced stability issues in the results. This calls for further investigation in the future

with a larger sample size. In this study, the focus was on analysing the group of

speakers as a whole, rather than individual groups.

6.2 Outlier Analysis

In this section, the results of the outlier analysis, described in Section 5.4.4, are

discussed. Outliers were defined as sample points with parameter values outside a

range of three standard deviations from the pointwise mean. Tables C.1 and C.2

in Appendix C summarise the results by showing for each phoneme and parameter

the total percentage of outliers and the number of speakers with outliers.

Overall, it can be judged that outliers were not occurring at a high rate and that

their influence on the results of the statistical analyses was small. The highest total

percentage of outliers for any phoneme-parameter pair was 5%. The average outlier

occurrence rate was 0.8%. The parameters F0, F3, and MW had the fewest outliers

overall, while MH , PUL, and PLL had the most. Outliers typically occurred for

only some sample points of only one or two speakers in each phoneme-parameter

pair. These patterns were not consistent, that is, outliers occurred for different

speakers across the phoneme-parameter pairs, not always for the same speakers.

Generally, the outliers for the audio speech parameters were so small in number,

that no further treatment (see Section 5.4.4) was deemed necessary, as their influ-

ence on the results would have been minor. More outliers were found for the video

speech parameters, except for the MW parameter, which had a very low outlier

occurrence rate, so that it is worthwhile to investigate the reasons more closely.
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Figure 6.10: Examples of outliers: At the top, parameter MH for phoneme /@:/

and parameter RTC in the centre for phoneme /g/ are examples for outliers likely

to be related to personal characteristic. At the bottom, an example of a tracking

failure for parameter PUL and phoneme /2/ can be seen.
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Generally, the magnitude of the outliers appeared to be larger for the video

speech parameters than for the audio speech parameters. Two reasons can be

given. Firstly, some of the outliers once again appeared to be related to personal

characteristics and the way of speaking. For example, compare the different curves

in Figure 6.10 top and centre. The curves show a very similar behaviour, but are

shifted on the vertical axis and differ in amplitude. Apart from the LDA (Sections

5.5.2 and 6.3), where the resampled parameter values were used, the differences

between the curves were handled by first performing a statistical shape analysis

(Sections 5.5.3 and 6.5) and then only using the desired components, which left the

sample size unchanged and hence supported the stability of some of the analyses.

In the LDA, outliers and their corresponding curves were completely removed to

improve the accuracy of the classification.

Secondly, some outliers must be attributed to lip tracking failures. As has been

discussed in Section 3.4, lip tracking failures can occur, although at a low rate, due

to incorrectly located lip feature points. In particular, the protrusion parameters

PUL and PLL suffered from incorrectly located lip midpoints. The main reasons

were the difficulty of determining corresponding points on the internal lip contour

and the fact that small changes in the determined position in the 2D camera images

could lead to large changes in the reconstructed 3D coordinates (see also Figure

3.14 left). For example, in the graphs for the phoneme /2/ in Figure 6.10 bottom,

the curve of one male speaker (black curve) can be seen to suddenly rise sharply

after sample point 15. A change of more than 35mm in lip protrusion within a

few milliseconds did not happen in reality, in particular given that lip protrusion

usually changed within a range of 10mm around the 5mm mark.3

The tracking failures happened for different speakers and different phonemes.

Where there were only few outliers, the curve smoothing (Section 5.4.2) process

‘eliminated’ them well by giving them low weights based on the low confidence

measures. The confidence measures generally detected short tracking failures well.

However, when a larger number of tracking failures occurred, the smoothing process

3 Note, the protrusion of lip midpoints was measured with reference to the lip corners.
See Sections 3.3 and 5.2 for details.
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did not eliminate the outliers, because the number of well-tracked sample points

was too small. Based on the rare occurrence of such drastic outliers, they were

judged to only have a minor effect on the results and were left unchanged for all

analyses except LDA, where the outliers and corresponding curves were removed

completely for improved accuracy.

6.3 Linear Discriminant Analysis

After the detailed overview of the observations made on the measured data in

the previous sections, this section describes the statistical analyses performed to

further explore the data space, before the results of the statistical analyses for the

investigation of the AV relationships are reported and discussed in Sections 6.4 –

6.7. An overview of differences between parameter curves for different phonemes,

both in shape and length, is given in Section 6.3.1. Then, details on the LDA and

reclassification of phonemes after cross-validation are presented in Section 6.3.2.

Finally, the results are discussed in Section 6.3.3.

6.3.1 Introductory Comments

Simply from visually comparing the parameter curves for the RMS energy param-

eter (Figures C.9 and C.10 in Appendix C), much higher values can be observed

for vocalic phonemes than for consonantal ones. Given the /bVb/- and /A:CA:/-

contexts used in the AVOZES data corpus, the RMS parameter curves for the

vowels and diphthongs showed clearly one or two maxima, while the curves exhib-

ited a minimum or a flat shape for the consonants. Thus, the RMS value is a way

of distinguishing vocalic phonemes from consonantal phonemes.

Another way of differentiating some groups of phonemes is to compare their

length (before resampling the measurements to 25 sample points). Tables 6.1 and

6.2 show the mean length and the length’s standard deviation of each phoneme.

As a reminder (see Section 5.4.3), the length of the vocalic phonemes in this study

was defined by the bilabial context, that is, the time that passed from the first
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Short Vowels I U E 6 2 æ

Mean 230 267 268 267 268 291

s.d. 53 53 40 37 48 49

Long Vowels i: u: 3: O: A: @:

Mean 307 300 328 340 357 353

s.d. 53 58 61 57 58 58

Diphthongs eI OI aI aU I@ @U

Mean 343 357 373 370 350 355

s.d. 41 60 67 53 60 91

Table 6.1: Average length of vocalic phonemes: Shown are the mean value and the

standard deviation for each phoneme (in milliseconds).

bilabial closure to the second one, as observed in the MH parameter. The length

of a consonant was not as easy to define as for a vowel or diphthong. For example,

is an oral stop simply defined by a particular point in time or can it be assigned a

length value? In this study, the length of the intervocalic consonants was based on

the /A:CA:/-context, that is, the time that passed from the maximum observed in

the MH parameter before the consonant to the maximum after the consonant.

As can be seen from Table 6.1, the length of short vowels was clearly shorter than

that of long vowels and diphthongs. The high, front4 vowel /I/ was the shortest

with an average length of 230ms. The short vowels /U E 6 2/ were on average

almost 40ms longer than /I/, while /æ/ was the longest of the short vowels with

about 290ms on average. For the long vowels, it was noticed that the high vowels /i:

u:/ (≈300–310ms) had shorter durations than the lower vowels /3: O: A: @:/ (≈330–

360ms). Comparing short and long vowels with the same tongue position, they

could clearly be distinguished by their length. The average difference in duration

was 33–89ms. The duration of the long vowels /O: A: @:/ was similar to that of the

diphthongs, so that they could not be simply distinguished by their length. The

diphthong /eI/ showed the shortest length on average, while /aI aU/ showed the

longest. It can be hypothesised that the length of a diphthong is greater, the longer

4 With respect to tongue position. See vowel quadrilateral in Figure 2.1.
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Consonants p b t d k g f v T D s

Mean 347 365 382 333 387 362 375 375 358 360 391

s.d. 42 104 66 100 72 97 76 87 84 92 84

Consonants z S tS dZ m n N l r w j

Mean 353 388 378 375 337 355 370 315 313 342 368

s.d. 91 89 104 79 67 109 84 59 80 79 79

Table 6.2: Average length of consonantal phonemes: Shown are the mean value and

the standard deviation for each phoneme (in milliseconds).

the way for the articulators, in particular the tongue, from their position in the

first vowel target to their position in the second vowel target is. For example, the

tongue has to travel a longer distance from a low position to a high position for

/aI aU/ than for /eI/, where both vowel targets require a mid to high, front tongue

position.

The length of consonantal phonemes, shown in Table 6.2, was similar to that

of long vowels and diphthongs (≈310–390ms), possibly due to using the long vowel

context /A:CA:/ and the inclusion of some of the vocalic sample points surrounding

the consonantal sample points. However, the larger standard deviations point to

larger differences between the speakers. The liquid /l/ and the rhotic glide /r/

exhibited the shortest lengths on average and the fricatives /s S/ the longest lengths.

Consonants, or groups thereof, could not be differentiated based on the lengths.

Finally, it was also investigated, whether any difference between female and

male speakers could be found with respect to the length. For the short vowels, no

significant difference was apparent. The average lengths differed only in the order

of 10ms or less. For the long vowels, male speakers tended to exhibit a longer

vowel length than female speakers by 10–40ms on average. A similar picture was

found for the diphthongs, where male speakers exhibited a longer vowel length

than female speakers by 20–80ms. In contrast, female and male speakers produced

the consonantal phonemes with a similar length. The differences were usually in

the order of 10ms or less. The largest differences were found for /f z N/, where

the pronunciation by the male speakers was about 30ms longer on average than
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by the female speakers. The length differences clearly highlighted the need for

establishing the same number of samples for all individual parameter curves to be

able to compare them in the chosen statistical analyses, as has been discussed in

Sections 5.4.3 and 6.2, and was done for the analyses in Sections 6.4 – 6.7.

In summary, the RMS parameter and the phoneme lengths provided some mea-

sures to separate some of the phonemes into classes which could be useful in the

subsequent time-normalised analyses. Sections 6.3.2 and 6.3.3 explore the parame-

ter space further by describing the LDA performed and its results.

6.3.2 Analysis

The theoretical background of the LDA has been described in Section 5.5.2.5 First

of all, the sample points used for the LDA needed to be determined. Not all

the sample points of a parameter curve related to a phoneme could be used, due

to the computational complexity involved. It was therefore decided to use the

following method. For the vowels, first, the sample points with maximum RMS and

maximum MH values, respectively, were determined. The audio speech parameter

values used in the LDA were those corresponding to the maximum RMS sample

point of the mean curve and, similarly, the video speech parameter values used

were those corresponding to the maximum MH sample point of the mean curve.

The reasoning behind this method was the assumption that the two sample points

with the highest energy value and the largest vertical mouth opening, respectively,

were the most defining points in the parameter curves. For the consonants, the

sample points used in the LDA were determined in a similar manner, except that

the minimum RMS and MH sample points were sought. As diphthongs could not

be characterised in the same way as vowels, because of their two vowel targets,

the positions were manually set based on a visual analysis of the RMS and MH

parameter curves. The chosen sample points are shown in Tables H.1 – H.3 in

Appendix H. As can be seen from the tables, the sample positions for the audio

5 The LDA were performed using the R statistical software package as well as the SPSS
statistical software because of the additional reclassification functionality provided there.
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and video parameters could differ. No temporal correspondence was enforced.

One central issue in the LDA is the handling of outliers, which differ from the

group mean value by more than a certain amount (see Sections 5.4.4 and 6.2). This

amount was set to 3 standard deviations in this analysis. Of the various ways of

handling outliers described in Section 5.4.4, option (3) was chosen, that is, outliers

and corresponding curves were removed completely for improved accuracy.

All calculations were performed with normalised values. The normalisation was

done by subtracting the mean from the sample values and then dividing the result

by the standard deviation. Next, a stepwise LDA was performed where at each step

the parameter, that maximised the Mahalanobis distance between the two closest

phonemes, was selected for the discriminant function. Similarly, when the discrim-

inant function contained at least three parameters, a parameter could be removed

again and replaced by another parameter, if that maximised the discriminant score.

The maximally allowed significance for adding a parameter was pin ≤ 0.05 and the

minimally required significance for the removal of a parameter was pout ≤ 0.10. The

calculations were stopped, when the maximum discriminant score was found or the

selection of another parameter led to an increase in the discriminant score that was

smaller than the pre-set threshold. For n parameters, up to n−1 discriminant func-

tions were formed to separate the phonemes from one another. Fewer discriminant

functions sufficed at times, depending on how the phonemes were situated in the

parameter space.

In this way, the parameters chosen for this study could be analysed in terms

of their relative functionality in contributing to the distinctiveness of phonemes.

Parameters selected first for LDA’s discriminant functions contributed more to this

distinctiveness.

6.3.3 Results and Discussion

The results of the LDA are shown in Appendix H. An LDA was performed sepa-

rately for the vowels (Table H.4), the diphthongs (Table H.10), and the consonants

(Table H.12). The vowels were also further split into groups of short vowels (Table
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H.6) and long vowels (Table H.8). The summary on the left-hand side of the tables

provides the following information (described in more detail in the next paragraphs):

the parameters selected for the discriminant functions, the χ2 value, its significance

value p, and the overall accuracy of the reclassification of all phonemes in one group

(vowels, diphthongs, consonants) after cross-validation. The parameters are shown

in the order that they were selected for the discriminant functions, i.e. the first pa-

rameter listed was the one that helped most to separate the phonemes and the other

parameters are given in order of their decreasing contribution in discriminating the

subsets of phonemes.

The χ2 value is a measure of how well the parameters selected by LDA for its

discriminant functions can discriminate the phonemes (or subsets thereof). The

null hypothesis is that the measured parameter values of the phonemes do not

allow the phonemes to be discriminated. Hence, a large χ2 value and a small

significance value p signify that at least one phoneme can be separated well from

the others, which was the case in all LDAs performed in this study. However, such

results do not mean that all phonemes can be separated well from each other by

the computed discriminant functions. A complete separation through step by step

elimination (and recomputation of the discriminant functions) may, however, be

possible [Mardia 79].

More informative are the overall accuracy of the reclassification of all phonemes

after cross-validation, as well as the sensitivity and predictivity values for each

phoneme. The accuracy of the discriminant functions was tested by reclassification

after cross-validation for each group of phonemes following the leave-one-out method

[Lachenbruch 68]. Cross-validation is a simulated prediction. One individual6 at

a time was removed from the set, the discriminant functions were recomputed,

and then the discriminant score was computed for the left out individual. Each

individual was thus classified (reclassification) by the discriminant functions derived

6 This terminology is borrowed from the life sciences, where discriminant analysis is
often performed on groups of ‘individuals’. In this study, individual generally refers to the
parameter curves for each speaker consisting of the sample values. In the LDA described
in this section, individual means the chosen sample points (Section 6.3.2).
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from all other individuals. Cross-validation was only performed for the individuals

in the analysis, i.e. the individuals corresponding to outliers were not considered

in the cross-validation. The results are shown on the right-hand side of the above

mentioned tables. The sensitivity value describes the percentage of individuals for

each phoneme that were correctly classified. Predictivity refers to the percentage

of individuals classified as belonging to a phoneme that were really belonging to it.

The confusion matrices for the various groups of phonemes are presented in Table

H.5 for all vowels, Table H.7 for the short vowels, Table H.9 for the long vowels,

Table H.11 for the diphthongs, and Table H.13 for the consonants.

Vocalic Phonemes

The overall accuracy of the reclassification was only 56.7%, if short and long vowels

were considered together, but this improved to 73.3% and 80.2%, respectively, if

they were considered separately. As can be seen in the confusion matrix in Table

H.5, a large number of misclassifications occurred between pairs of short and long

vowels that corresponded to the same articulatory position. This source of error was

removed when separating short and long vowels (Tables H.7 and H.9), for example,

by their length, as discussed in Section 6.3.1. In the analysis of all vowels, the

non-open short vowels /I U E/ and the non-open long vowel /@:/ stood out with

low correct classification counts. These three short vowels not only showed a high

confusion with their longer counterparts, but also with other vowels and among each

other. This was also demonstrated by the confusion matrix for the short vowels only

(Table H.7). /@:/ could not be distinguished well from /E/ and /i:/. Open vowels

were distinguished better than non-open vowels. It can be hypothesised that long

vowels were more correctly classified than short vowels, because the influence of

coarticulation was smaller. There was more time to reach the vowel target in long

vowels than in short vowels, which influenced the audio and video speech parameters

and, thus, may have resulted in lower correct classification scores for short vowels.

The highest overall accuracy was achieved for the diphthongs with 94.7%. Here,

misclassifications were rare and sensitivity and predictivity values were often 100%.
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This suggests that the classification based on two sample points — one for each

vowel target — worked well. /aI/ exhibited the most misclassifications with two of

its individuals being classified as /OI/ and one as /@U/, possibly due to less internal

movements of the articulators, which led to the confusion.

For the vowels, the formant frequencies F1, F2, and F3 were the parameters first

selected for the discriminant functions and they were, therefore, the most important

parameters in the LDA (Table 6.3). They were followed by the F0 parameter and

the video speech parameters MH and MW . In the analysis of all vowels, MH was

first added to the functions, but later removed again, as a combination of other

parameters led to a higher discriminant score. In this case, the RTC parameter

was added. For the diphthongs, the picture was similar. Here, all parameters

but the MW and RMS parameters were used (Table 6.3). However, of the two

sample points — one for each vowel target — selected for the diphthongs in this

LDA, the video speech parameters seemed to be added mostly with their second

sample point. Only the lip protrusion parameter PUL was also added with its first

(diphthong) sample point. However, as one of the last parameters to be added, it

added relatively little to the discriminant function. In summary, vocalic phonemes

were first of all discriminated by the audio speech parameters, except for the RMS

parameter, which did not seem to play a significant role here. The video speech

parameters played a minor role for the discrimination of vowels. Of them, the MH

parameter was the most informative one.

Consonantal Phonemes

The overall accuracy for discriminating consonantal phonemes was low at 44.4%.

Here, the bilabials /p b m/, the voiceless velar stop /k/, and the liquids and glides

/l r w j/ were discriminated best. They were well separated from other consonants

by the computed discriminant functions. At the other extreme, the voiced alveolar

stop /d/, the voiced inter-dental fricative /D/, the alveolar affricates /tS dZ/, and

the alveolar and velar nasals /n N/ showed very low sensitivity and predictivity

scores. In particular, the alveolar phonemes had many individuals misclassified as
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Phoneme class Parameters in discriminant functions

All vowels F1, F3, F2, RTC, MW , F0

Short vowels F2, F1, F3, F0, MH

Long vowels F3, F1, F2, F0, MH , MW

Diphthongs F 1
2 , F 2

1 , F 2
0 , F 2

2 , F 1
1 , MH2, RTC2, PUL2, F 1

3 , F 1
0 , PUL1, F 2

3

All consonants MH , F2, RMS, RTC, F1, PUL, MW , F3

Table 6.3: Summary of parameters selected by LDA for its discriminating func-

tions. Parameters are listed in the order they were selected. The superscript in the

parameters for the diphthongs refers to the vowel target position in the diphthong.

other alveolar phonemes, which was possibly due to the comparatively little visible

speech articulation in these phonemes. Similarly, /D/ can be produced not only in

an inter-dental manner but also in an alveolar way, so that a confusion with alveolar

phonemes was not surprising. This suggests that the parameters selected by LDA

were not well-suited to discriminate the alveolar phonemes.

For the consonantal phonemes, the MH parameter was the first and thus most

important parameter in the discriminant functions (Table 6.3). It was followed by

F2, RMS, F1, PUL, MW , and F3 (in the order they were added to the discrim-

inant functions). Thus, unlike for the vocalic phonemes, the video speech param-

eters played a significant role in the discrimination of the consonantal phonemes.

I believe, such differences have not been reported in the AVSP literature before.

Comparisons with AV speech data from other languages are required to determine,

if the differences are a particular AuE phenomenon. It could point to the so-called

‘lip laziness’ of AuE speakers, which may be stronger for vocalic phonemes than for

consonantal phonemes. Given the strong role of the MH parameter in the discrim-

inant functions, it did not surprise that the bilabial consonants were distinguished

well from the other consonants.
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Discussion

Generally, it can be observed in both the sensitivity and predictivity values as well

as the confusion matrices that, based on the computed discriminant functions, some

phonemes were discriminated well against the others, while other phonemes had a

high confusion count. There are two possible explanations for the poor results for

some phonemes. Firstly, the (static) parameters used in the analysis may not dis-

tinguish well between some phonemes or may require a step by step elimination to

separate the phonemes. In addition, the discriminative power of dynamic speech

parameters based on the parameters used here should be investigated. Secondly,

the LDAs were based on one sample value per speaker per phoneme only (see Sec-

tion 6.3.2) except for the diphthongs, where there were two sample values, one for

each vowel target. Interestingly, the classification results were best for the diph-

thongs. This leads to the hypothesis that more sample points could also improve

the discrimination of phonemes in the groups of vowels and consonants through a

contour analysis. A test of this hypothesis is suggested for future work. Applying

curve registration before the LDA is also suggested to improve the alignment of

individual parameter curves (see Section 5.5.7). Furthermore, speaker normalisa-

tion by vocal tract normalisation (Cohen et al. [Cohen 95]) or formant frequency

warping (Lee and Rose [Lee 98]) could improve the performance of the LDA by

normalising the audio speech parameters. However, the issue remains how speakers

can be normalised in the video modality. To the best of my knowledge, no studies

on speaker normalisation on video speech parameters have been published so far.

6.4 Within-Set Correlation

After the exploration of the data space for the audio and video speech parameters,

this section starts the presentation and discussion of the results of the statistical

analyses to determine the AV relationships. As described in Section 5.5.3, PCA can

be used to check for redundancies in the parameter sets because of its dimensionality

reduction property. For each phoneme, a PCA was applied separately to the sets of
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audio and video speech parameters, each containing five parameters (cp. Sections

5.1, 5.2, and 6.1). With the help of the PCA and a linear correlation analysis (see

Section 5.5.4), redundant parameters were searched for in each set, which could be

eliminated from the further analysis. Results are summarised in the remainder of

this section, while individual results can be found in Appendix D.

6.4.1 Video Parameter Set

The case was very clear-cut for the video parameters. For all phonemes, the first

four PCs explained at least 96% of the variance (Tables D.1 and D.2). For more

than half of the phonemes, the first four PCs already explained 99% of the variance

in the data. This was particularly the case for the vocalic phonemes, but also

occurred for many consonantal phonemes. In other words, the parameters contained

a considerable amount of redundancy.

Identifying a redundant parameter (or redundant parameters in general) is gen-

erally not a simple straightforward task, because the PCA transforms the coordinate

system of the data into a new one according to the orthogonal PCs. A PC can be

the new representation of only one parameter in the old space, but it can also be the

new representation of a combination of parameters, in which case the identification

of the redundant information is difficult.

However, in the case of the video parameter set, it was hypothesised that the

redundant information was most likely to be found in the two lip protrusion pa-

rameters. Upper and lower lip are typically moved simultaneously and in a similar

fashion, so that a high correlation between the two parameters was expected. This

view was confirmed by the results of a pairwise linear correlation analysis (Tables

D.3 and D.4). For vocalic phonemes, the correlation coefficient r of the parameters

PUL and PLL ranged from 0.91 to 0.99. The correlation coefficient r was slightly

smaller for consonantal phonemes, ranging from 0.79 to 0.95, but still confirmed a

strong correlation. The hypothesis was further supported by leaving one of the pro-

trusion parameters out, for example the lower lip protrusion parameter PLL, and

then repeating the PCA. The results showed very little difference to the previous
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ones. The cumulative proportion of the variance explained by the first three PCs

changed by less than 0.05, with the first PC showing a change in the proportion

of variance of <0.1, and second and third PCs showing even smaller changes. The

video speech parameter set, therefore, can be reduced to four parameters for the

remaining analyses by eliminating one of the redundant lip protrusion parameters.

Without loss of generality, the PLL parameter was eliminated in this study.

No other strong correlation (r ≥ 0.75) between any other parameters was found.

Weaker correlations were found for some other pairs of parameters. These corre-

lations were more apparent in the consonantal phonemes than in the vocalic ones,

but in either case occurred only for some but not all phonemes. In particular, the

correlation between MH and RTC, as well as between MW and MH stood out.

The former was found with correlation values between 0.43 and 0.55 in the

bilabial stops /p b/, the labio-dentals /f v/, the voiced alveolar /d/, and the bilabial

glide /w/. Also, even weaker, it was found in the rhotic /r/, the bilabial closure /m/,

the velar closure /N/, and the voiceless inter-dental fricative /T/. All these phonemes

have in common that the lips close completely or almost completely, so that it was

expected to see the RTC parameter decrease as the MH parameter decreases and

vice versa. The data supported this expectation. Overall, the correlation was clearly

lower for vocalic phonemes than for consonantal ones. On a relative comparison, the

correlation values for low vowels (cp. Figure 2.1 in Section 2.1.3), and diphthtongs

containing these vocalic positions, appeared to be higher than those for high vowels

and diphthongs.

The latter parameter pair, MW and MH , was found with a stronger correlation

(0.42 ≤ r ≤ 0.60) for the bilabial glide /w/, the short vowel /æ/, the long vowels

/A: i:/, and the diphthong /aU/. A weaker correlation (0.31 ≤ r ≤ 0.40) was

experienced for the bilabial stops /p b/, the long vowel /3:/, and the diphthongs

/eI I@/. This correlation was also found with negative correlation values in some

phonemes. The slightly stronger correlation (−0.43 ≤ r ≤−0.48) was demonstrated

in the bilabial closure nasal /n/, the voiceless alveolar stop /t/, and the voiced

alveolar fricative /z/. Indications of weaker correlations (−0.30 ≤ r ≤ −0.33) were

seen in the voiceless velar stop /k/, the velar closure nasal /N/, and the voiceless



196 CHAPTER 6. RESULTS AND DISCUSSION

alveolar fricative /s/.

What all these phonemes have in common is their place of articulation, which is

front or front-central. The bilabial glide /w/ is the prime example for the positive

correlation values. Both MW and MH decrease and increase simlutaneously in the

process of rounding the lips to articulate this phoneme. The negative correlations

on the other hand were found for phonemes, that do not require a fully closed

mouth, but rather have the lips apart at a small vertical distance and also result in

an increase in mouth width. Again, these results matched the expectations.

6.4.2 Audio Parameter Set

The situation was not as clear-cut for the set of audio speech parameters, as it

was for the video speech parameters. Examining the results of the PCA with five

parameters (Tables D.5 and D.6), it can be seen that the first four PCs cover 90–

97% of the variance, which suggests that some parameters were correlated and that

there was thus redundancy in the data. However, as is shown in Tables D.7 and D.8,

no single pair of parameters stood out as in the case of the video speech parameters.

This suggests that it was rather a case of more than one parameter being correlated

with one or more than one other parameter. In that case, it was only after the

PCA, with the orthogonal PCs forming a new coordinate system, that four ‘new’

parameters were able to express an average of 94% of the variance. Hence, it was not

possible to eliminate one particular parameter. All five parameters were included

in the further analyses.

However, a few general points can be made from the results of the correlation

analysis. Table 6.4 summarises these by showing the phonemes for each pair of

parameters in the set of audio speech parameters, where the absolute value of the

correlation coefficient r ≥ 0.5. No phonemes had correlation values r ≥ 0.5 for

the parameter pairs F0 - F1, F0 - F2, and F0 - F3. This is in line with a study

by Kosiel [Kosiel 73] on Polish vowels, which also found no correlation between the

voice source excitation frequency F0 and the formant frequencies F1 - F4. In the

present study, the highest correlation values (for almost all phonemes) were found
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Parameter Pair +/− Vowel & Diphthong Consonant

F0 - RMS pos. u: v m r w j

F1 - F2 pos. w

neg. d z S dZ j

F1 - F3 pos. r

neg. j

F1 - RMS pos. I U 6 2 æ @: O: A: 3: eI OI aI aU @U b d g v D z dZ

F2 - F3 pos. I i: @: eI I@ t f s S tS dZ j

F2 - RMS pos. E i: @:

neg. U O: t k g f T D s z S tS dZ

F3 - RMS neg. s S tS dZ

Table 6.4: Phonemes where the values of pairwise parameter correlation within the

audio set fulfilled |r| ≥ 0.5. Empty fields mean there were no phonemes with |r| ≥
0.5 for that parameter pair.

between F1 and RMS or between F2 and RMS. The values reached up to r =

0.78. Exceptions were

• the long mid-high to high, central to back vowel /u:/ (r = 0.58) and the

bilabial closure nasal /m/ (r = 0.56) where F0 - RMS was strongest,

• the bilabial glide /w/ (r = 0.80) and palatal glide /j/ (r = −0.85) where F1

- F2 was strongest (Note: highest correlation of all phonemes),

• the rhotic /r/ (r = 0.68) where F1 - F3 was strongest,

• the vowels /E/ (r = 0.60) and /O:/ (r = −0.75), the voiceless alveolar and

velar stops /t/ (r = −0.65) and /k/ (r = −0.63), and the voiceless fricatives

/f/ (r = −0.61), /T/ (r = −0.51), /s/ (r = −0.68), and /S/ (r = −0.73) where

F2 - RMS was strongest, and

• the high front vowels and diphthongs /i:/ (r = 0.62), /eI/ (r = 0.62), /I@/ (r

= 0.71), the palatal voiceless fricative /S/ (r = 0.73), and the affricates /tS/
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(r = 0.75) and /dZ/ (r = 0.68) where F2 - F3 was strongest.

In general, strong correlations of formant frequencies with the RMS parameter were

expected based on considering the source-filter model, the shape of the excitation

spectrum, the lip openness, and the placement of the vowels in the F1 - F2 plane.

The data confirmed these expectations.

While correlations between F0 and RMS as well as F1 and RMS were posi-

tive for all phonemes, correlations between F2 and RMS were negative for some

phonemes. For the vocalic phonemes, these were /U 6 O: OI aI/. Medium strong

positive correlations (r ≥ 0.5) were found for the front and central, mid-high to

high vowels and diphthongs /E i: @: I@/. For the consonantal phonemes, medium

strong negative correlations with r ≤ −0.5 occurred for the alveolar and velar stops

/t k g/, the fricatives /f T D s z S/, and the affricates /tS dZ/. It must also be kept in

mind that the /bVb/ and /A:CA:/ contexts used in this study were both voiced con-

texts, which influenced the central phoneme to some extent due to coarticulation.

Nevertheless, the fact remains that correlation was stronger for voiced phonemes

than for unvoiced phonemes.

For the consonantal phonemes, it was also noticed that the correlation between

F1 and RMS was always stronger for the voiced phoneme in a pair of voiceless and

voiced phonemes like /p b/, for example. For the vocalic phonemes, no relationship

between tongue position and correlation value was evident for this pair of parame-

ters. However, correlation between F1 and RMS was generally fairly strong for the

vocalic phonemes (r ≥ 0.5), which are voiced phonemes, so that it can be reasoned

that voicing generally leads to a strong correlation between F1 and RMS.

Also, correlations between F2 and F3 were medium strong to strong (r ≥ 0.40)

for some phonemes. These were the front and central vowels and diphthongs /I æ i:

@: eI I@/, as well as consonants produced by a constriction of the airflow towards the

front of the oral cavity (typically without completely blocking the airflow as in the

bilabials), such as the alveolar stops /t d/, the fricatives /f T D s z S/, the alveolar

affricates /tS dZ/7, and the palatal glide /j/.

7 /S tS dZ/ had the highest correlation overall between F1 and F2 with 0.68 ≤ r ≤ 0.75.
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Finally, a medium strong negative correlation (r ≤ −0.5) between F3 and RMS

was found for the fricatives /s S/ and affricates /tS dZ/. It was noticed that when

F3 - RMS were correlated strongly, so were F2 - RMS, but this relationship did

not hold in the opposite direction (e.g. see the velar stops /k g/).

6.4.3 Summary Within-Set Correlation

The results of a PCA and linear pairwise correlation analysis separately on each

parameter set revealed that redundancy was present in each parameter set. For the

video speech parameter set, the redundancy could be identified in the lip protrusion

parameters PUL and PLL, which were very strongly correlated. It was therefore

decided, to eliminate one lip protrusion parameter from the subsequent analyses.

Some other correlation trends were found between parameters MH and RTC as well

as between MW and MH , but these correlations were more phoneme-specific. For

the audio speech parameters, the PCA results also indicated redundancy between

the parameters, but the linear pairwise correlation analysis revealed no parameter

pair that was strongly correlated across all phonemes, as for the video speech pa-

rameters. Some phoneme-specific strong correlations were found, mostly between

F1 and RMS, and between F2 and RMS. The results suggest that the redundancy

in the audio speech parameters was spread over the parameters. Hence, no parame-

ter was eliminated from the subsequent analyses. It shall be pointed out again, that

the samples of the central phonemes in the /bVb/- and /A:CA:/-contexts contained

some sample points with sample values influenced by the context phonemes due

to coarticulation. Therefore, it is possible that some of the correlation found (and

similarly, some of the correlation not found) in the results of the pairwise corre-

lation analysis was precluded by the use of the contexts. However, by using the

same vocalic and consonantal contexts for all vocalic and all consonantal phonemes,

respectively, the results are comparable between phonemes. It is suggested for fu-

ture work, to investigate the correlation for other contexts, such as /i:Ci:/, /u:Cu:/,

/O:CO:/ etc. Together with the current results on these phonemes, it can then be

analysed how much influence the context has on the results.
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PC F0 F1 F2 F3 RMS MW MH PUL RTC

1 0.83 0.50 0.64 0.67 0.42 0.83 0.66 0.54 0.65

2 0.11 0.21 0.15 0.14 0.23 0.12 0.18 0.22 0.22

3 0.04 0.12 0.09 0.08 0.14 0.03 0.10 0.12 0.09

1 0.86 0.44 0.54 0.60 0.42 0.85 0.65 0.50 0.80

2 0.07 0.26 0.21 0.19 0.23 0.10 0.20 0.24 0.13

3 0.04 0.14 0.12 0.10 0.16 0.03 0.11 0.12 0.05

Table 6.5: Average proportion of variance (rounded to 2 decimal places) explained

by the top three PCs for each parameter. Top: Vocalic phonemes. Bottom: Con-

sonantal phonemes.

6.5 Shape Analysis of Parameter Curves

In the previous section, the results of applying PCA to each set of parameters for

each phoneme to check for redundancies in the sets have been discussed. However,

as described in Section 5.5.3, PCA has also gained importance as a statistical shape

analysis technique in recent years. For this, a PCA was applied to each parameter

separately for each phoneme. In other words, PCA was performed on the temporal

domain. The main modes of variation in the shape of the parameter curves were

determined and thus the relationship between sample points and PCs was revealed.

In addition, it allowed for a compact representation of the individual parameter

curves in the further analyses.

The numeric results for each phoneme can be found in the tables E.1 – E.40 in

Appendix E, which show the cumulative proportion of the variance explained by the

first six PCs. This is followed by a visualisation — in the form of star charts — of the

amount of variation explained by the first and second PCs (Figures E.1 – E.4). The

visualisation helps to find similarities and differences between the phonemes (see

below). The shape of a star chart offers a quick way of identifying parameters with

unusual proportions of variance. A summary of the average individual proportion

of variance expressed by the top three PCs is provided in Table 6.5.
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Phoneme I U E 6 2 æ i: u: 3: O: A: @: eI OI aI aU I@ @U

F0 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 3

F1 4 3 5 5 4 4 4 4 4 4 4 4 5 4 5 4 5 4

F2 3 3 3 5 4 3 4 3 2 4 3 4 4 4 4 4 3 3

F3 4 3 3 4 4 4 4 3 3 4 2 4 4 5 3 3 4 4

RMS 3 4 4 5 4 4 4 4 4 5 5 5 5 5 5 5 5 4

MW 1 1 2 1 2 2 2 1 2 2 3 2 2 2 2 2 2 1

MH 1 1 2 2 2 3 3 2 2 1 3 3 4 3 3 4 3 3

PUL 3 3 3 2 3 4 4 2 5 2 4 4 4 4 5 5 4 3

RTC 2 1 2 3 2 3 3 2 3 2 3 3 4 3 3 3 3 3

Table 6.6: Number of principal components needed to explain ≥ 90% of the tem-

poral variance: Vocalic phonemes.

The results shown in Table 6.5 are similar for both vocalic and consonantal

phonemes. For the F0 and MW parameters, the first PC already explained on

average about 85% of the variance. The second PC for these parameters covered

about 10% of the variance. The influence of the third and further PCs was very

small. A second group of parameters was formed by those, where the first PC

explained on average between 60–80% of the variance. These parameters were F2

and F3 of the audio speech parameter set, and MH and RTC of the video speech

parameter set. Here, the second PC expressed about 15–20% of the variance and the

third PC about 5–10%. Finally, only about 40–55% of the variance was explained

on average by the first PC for the parameters F1, RMS, and PUL8. The second

PC covered about 20–25% of the variance and the third PC about 10–15%.

However, it must be noted that the results differed considerably for certain

phonemes, which would perhaps not be expected from the average results. Tables

6.6 and 6.7 and Figures E.1 – E.4 show the results in more detail. The number of

PCs required for each parameter and each phoneme to express ≥90% of the variance

8 Note that a strong correlation between protrusion of upper and lower lip was shown
in the previous section. One protrusion parameter can be substituted by the other.
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Phoneme p b t d k g f v T D s

F0 3 1 3 1 2 2 2 1 2 2 2

F1 4 4 4 4 5 4 5 5 5 5 4

F2 4 4 4 3 4 3 5 5 5 4 5

F3 3 2 4 3 4 3 5 4 3 4 4

RMS 4 5 5 4 5 5 5 5 4 5 5

MW 2 2 2 1 1 2 2 2 1 1 3

MH 3 3 3 3 2 2 3 3 3 3 3

PUL 4 4 4 4 4 4 1 3 4 3 4

RTC 3 3 2 1 1 1 3 3 3 2 2

Phoneme z S tS dZ m n N l r w j

F0 1 4 3 2 1 1 1 1 1 1 2

F1 4 5 5 4 3 4 4 4 3 4 3

F2 3 4 5 4 3 3 4 2 3 3 3

F3 4 4 4 4 2 2 4 2 3 4 3

RMS 5 5 5 5 3 3 4 4 3 4 4

MW 1 2 2 2 1 2 1 1 2 2 1

MH 3 3 3 2 3 3 2 3 3 3 3

PUL 5 4 4 5 4 3 3 3 4 3 4

RTC 3 2 1 2 3 1 1 1 2 2 1

Table 6.7: Number of principal components needed to explain ≥ 90% of the tem-

poral variance: Consonantal phonemes.

are presented. As can be seen in the tables, only two PCs were typically needed

for the F0 and MW parameters, for many phonemes even just one. Examining the

star charts, the exceptions in F0 occurred for the phonemes /@U p t S tS/ and in

F1 for /A: p S n/. Significantly more PCs were needed for the formant frequency

F1 with an average of four PCs to reach 90% variance. The much smaller (more

centrally located) F1 results can also clearly be seen in the star charts, with the

exception of /I i:/. The MH parameter was also fairly consistent in the number of
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PCs required for 90% variance across all phonemes. Here, three PCs were needed

on average. The star charts also show the exceptions with a smaller first PC but a

second PC larger than that for other phonemes. These exceptions were the vowels

/a: @:/, the diphthongs /eI OI aI aU @U/, and the consonants /f v m w/. For all

other parameters, the number of PCs required ranged from 1 to 5 with no obvious

systematic pattern.

Modes of Shape Variation

An interesting aspect was now to analyse what variation in the shape of the pa-

rameter curves the PCs stood for. This was done by computing the pointwise mean

parameter curve, as well as the pointwise standard deviation (based on the distri-

bution of the individual parameter curves from the 20 speakers) for each phoneme-

parameter pair. Then, for each phoneme-parameter pair and each PC, the mean

curve and two curves with ±10 standard deviations were drawn in a graph. Figure

6.11 shows a typical example for the first three PCs.9 There were three main modes

of variation

• a vertical shift,

• a mode related to the slope of the curves, and

• a mode describing the horizontal range or a horizontal shift.

In a striking way, the first PC was in 88% of all phoneme-parameter pairs related

to a vertical shift of the parameter curve (Figure 6.11 left). In other words, the

strongest variation for the individual curves of the speakers was in these cases not

related to differences in the curve shape (e.g. the slope of a curve) but to a mere shift

(or offset), which appeared to be a personal characteristic of each speaker. This

shift occurred for all sample points and was almost invariant in size. In contrast,

the second and third PC expressed variation in the curve shape. These PCs were

9 This kind of visualisation leads to a very large number of graphs which could not
possibly be included in this thesis. However, the interested reader can find them on the
accompanying CD-ROM in the directory ‘PCExplanation’.
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Figure 6.11: Typical modes of variation by the top three PCs on the example of

the phoneme /E/ and the MW parameter. Shown are the mean curve (black) and

curves showing the effect of the PC at ±10 standard deviations (red and blue).

related to the slope of the curve and the horizontal range or shift. For some sample

points, these PCs had no effect, while their effect was considerable at other sample

points (Figure 6.11 centre and right). Both modes of variation occurred in either or

both the second and third PC, i.e. in some cases, the slope was found in the second

PC and the horizontal range in the third PC. In other cases, it was the opposite

way, or the second and third PCs expressed a mix of the two modes of variation.

In the other 12% of the phoneme-parameter pairs, the first PC did not express

a vertical shift. Rather, it expressed one of the other modes of shape variation,

such as variation in the slope or in the horizontal range. The vertical shift still

existed, but was of a lesser degree. It occurred as only the second or third PC. The

parameters, where this behaviour was most common, were the RMS parameter (25

out of 40 phonemes) and the PUL parameter (12 phonemes). Table 6.8 presents

a list of the affected phonemes. It can be seen that the F0 and MW parameters

had no exception to the vertical shift being the strongest PC. Referring back to the

observations in Section 6.1, this was no surprise, because the individual parameter

curves exhibited a similar curve shape but at a different vertical place. The F0

and MW parameters were also the ones with the highest proportion of variance

explained in the first PC (Table 6.5).

Consequences

Finding these three main modes of shape variation had consequences for the further

analyses in terms of what data was used as input. The focus of interest in this study
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Parameter Phonemes

F0 none

F1 v z w j

F2 T N

F3 s

RMS I U E 6 2 O: @: aI I@ p b t d k g f v T D s z S tS dZ w

MW none

MH m

PUL 6 2 3: A: eI i: p t v z N w

RTC 2 O:

Table 6.8: List of phonemes for each parameter, where the vertical shift was not

represented by the first PC (but by the second or third PC).

was on the common characteristics of the individual parameter curves for a certain

phoneme, i.e. what are the similarities for all speakers. For example, having two

curves of similar shape, but with a vertical shift between them, the focus is on

the similar shape, not the vertical shift which is related to a particular speaker.

Consequently, the PC, which expressed the vertical shift, was not used as input for

the further analyses. Instead, the analyses concentrated on the two PCs that were

related to the slope of the curve and the horizontal range or shift. Other PCs were

too small in their proportion of variance to have a considerable influence on the

results and were thus neglected.

With the vertical shift being such an important factor in the variation of many

parameter curves, curve registration (see Section 5.5.7) is again a process worth

considering. Curve registration would minimise the influence of a vertical shift be-

tween curves on the modes of variation found in a PCA by minimising differences

between curves on the y-axis. It can be considered as a form of speaker normalisa-

tion.10 However, curve registration is a complex task in its own right and the time

and effort required to perform it on a large scale is beyond the scope of the work

10 Another option would be a zero mean normalisation of the parameter curves.
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presented here. For the further analyses, the PC related to the vertical shift was

eliminated and the analyses performed with the other two main modes of variation.

Nevertheless, some experiments with a curve registration process were performed

and the results of these experiments are described in Section 6.7.

6.6 Between-Set (Audio-Video) Correlation

After examining the within-set correlation for the sets of audio and video speech

parameters in Section 6.4, the focus is now on the between-set or AV relationship,

which is the central theme of this thesis. The theoretical background of the sta-

tistical analyses has been given in Sections 5.5.4 – 5.5.6. First, the results of a

pairwise linear correlation analysis across the two sets are analysed in Section 6.6.1.

This is followed by the presentation and discussion of the results of the canonical

correlation analysis in Section 6.6.2. Issues with collinearity and statistical stabil-

ity in that analysis led to the application of the coinertia analysis, which produces

stable results. These results are presented and discussed in Section 6.6.3. Finally,

a summary of the results of the between-set relationship is given in Section 6.6.4.

As before, it is important to keep in mind that all results reported here came

from the analysis of the central phonemes in the /bVb/- and /A:CA:/-contexts.

The terms ‘vocalic phonemes’ and ‘consonantal phonemes’, respectively, refer to

the central phonemes in these CVC- and VCV-words. Because of the analysis of

phonemes in such contexts, the effect of coarticulation on the results must be kept

in mind.

6.6.1 Pairwise Correlation

Similar to the pairwise correlation analysis within each parameter set (discussed in

Section 6.4), pairwise correlations across the two sets were performed. The numeric

results can be found in Tables F.1 – F.5 in Appendix F. For this analysis, the

smoothed and resampled parameter values were used (cp. Section 5.4).

Generally, the pairwise correlations between audio and video speech parameters
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were small in value. No parameter pair showed a very strong correlation (|r| ≥
0.75) across all phonemes for the speakers recorded in the AVOZES data corpus.

Thus, the data did not support a hypothesis of a direct 1–1 relationship between

any of the speech parameters in the two sets. However, this does not mean that

the parameters were unrelated, as the possibility existed of a combination of audio

speech parameters correlating well with a combination of video speech parameters,

or a non-linear relationship between parameters, that was not uncovered by the

statistical analyses presented here. Combinations of parameters were investigated

using CANCOR and COIA (see below Sections 6.6.2 and 6.6.3). Also, it should

be noted that some weak and medium strong pairwise correlations and correlation

trends were found in the results, which are described in the next paragraphs.

For the vocalic phonemes, the following parameter pairs and phonemes were

found with |r| ≥ 0.40:

• F1 - MW : /eI/ (r = −0.41),

• F2 - MH : /2/ (r = −0.48), /eI/ (r = 0.46), /OI/ (r = 0.51),

• F2 - RTC: /2/ (r = 0.43), /eI/ (r = 0.41), and

• F3 - RTC: /eI/ (r = −0.51).

No particular pattern was evident. Furthermore, it was noticed that the correla-

tion values for the parameter pair F0 - MW were always negative and for RMS -

MH always positive, although |r| = 0.38 at most. The former trend was related to

the observation, that the F0 frequency rose slightly at the onset of vowel or diph-

thong and then decreased again at the end, while the mouth width often decreased

slightly at the onset and then rose again slowly. Negative correlation values were

thus expected. In the case of the second trend, both RMS and MH rose from

small values to a maximum during the vocalic phoneme and then returned to small

values again due to the bilabial context. Positive correlation values were therefore

expected. Both trends were related to the uniform bilabial context /bVb/ used in

the AVOZES corpus.
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For the consonantal phonemes, the parameter pairs and phonemes with |r| ≥
0.40 were:

• F0 - MW : /b/ (r = −0.40), /t/ (r = −0.45), /T/ (r = −0.41), /m/ (r =

−0.46), /r/ (r = −0.51),

• F0 - RTC: /t/ (r = 0.40), /d/ (r = 0.42), /g/ (r = 0.42), /tS/ (r = 0.47),

/N/ (r = 0.48),

• RMS - MH : /p/ (r = 0.54), and

• RMS - RTC: /p/ (r = 0.51).

The reader is reminded that the problem of a reliable automatic F0 estimation for

all phonemes is not yet solved (see Section 5.1.3). While the voice source excitation

frequency is well-defined for voiced phonemes, it is not for unvoiced phonemes. In

addition to coarticulation effects, the algorithm used in the ESPS command get f0

includes some smoothing, which has the potential of bridging over short unvoiced

segments such as, for example, the intervocalic /t/. The results for the unvoiced

phonemes must, therefore, be treated with some care.

In addition, similar to the case of the vocalic phonemes, a trend of weak to

medium strong negative correlation for all phonemes (exception /S/) for the param-

eter pair of F0 and MW (maximum |r| = 0.51) and a trend of a weak to medium

strong positive correlation for many phonemes for the parameter pair of RMS and

MH (maximum |r| = 0.54) were noticed. Again, it is important to keep in mind

that the results were specific for the /A:CA:/-context. In the first parameter pair,

examining again the parameter curves in Appendix C, both parameters F0 and MW

had mostly flat curves, so that a weak correlation was found. The F0 values showed

more variation during the intervocalic consonant for the voiceless consonants, than

for the voiced consonants. As a result, the correlation values for the parameter pair

of F0 and MW were smaller for the voiceless consonants, with the exception of the

alveolar voiceless stop /t/ and voiceless inter-dental fricative /T/. For the second

correlation trend, pairwise correlation values were higher for phonemes, where the

RMS values as well as the MH values first decreased towards a minimum and
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then increased again during the intervocalic consonant. No correlation existed for

phonemes like /l n/, where RMS and MH parameter curves showed more variation

and less common behaviour. Very low correlation values were also found for the

bilabial closure /m/ and the bilabial glide /w/. Here, the MH parameter went to a

minimum during lip closure but the RMS parameter did not show such a minimum.

In summary, pairwise correlations between parameters of the audio and video

sets were generally weak. No strong correlation was found for any pair across all

or a large number of phonemes. However, some trends of weak to medium strong

correlation were found for many phonemes for the pairs of F0 and MW as well as

RMS and MH . It seems that these parameters were related in some way, but this

way was not a linear pairwise relationship. Hence, the results of statistical analyses

that explore the relationship between combinations of parameters were analysed

and are described in the following subsections.

6.6.2 Canonical Correlation Analysis

CANCOR is a statistical analysis for the exploration of relationships of linear com-

binations of variables (see Section 5.5.5). Since a linear (pairwise) relationship of

audio and video speech parameters was not found for the data in the AVOZES

corpus and the parameters measured, the investigation was continued with a check

for relationships between combinations of parameters. In summary, CANCOR per-

forms a rotation of the coordinate system, such that the correlation between the

linear combinations is maximised. Most of the covariance and the highest correla-

tion values between parameter sets are found in the first few canonical variates, so

that it often suffices to analyse the first 1–3 canonical variates. Successive pairs of

canonical variates are uncorrelated.

For small samples, where the number of parameters approaches the sample size,

CANCOR can suffer from statistical instability, as has been described in Section

5.5.5. In this study, the sample size was N = 20, the audio set had p = 5 parameters,

and the video set q = 4 parameters. Ideally, both the PCs — identified in Section

6.5 — related to the slope of the parameter curves and the horizontal range or
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shift, respectively, would have formed the input for CANCOR. However, taking 18

parameters ((p + q = 9) ∗ 2) into a CANCOR of sample size N = 20 was almost

surely leading to r1 → 1 and thus the results would have been of little value due

to collinearity. As a consequence, only the PC related to the slope of the curve

was taken into account, considering it the more important one compared to the

horizontal range PC. The PCs were normalised to zero mean and unit variance as

a prerequisite for CANCOR.

Canonical Weights and Correlation Coefficients

The results of the CANCOR can be found in Section F.2 in Appendix F. Tables F.6

– F.8 show for each phoneme the computed canonical weights for each parameter

and the canonical correlation coefficient r1 of the highest canonical correlation. The

canonical weights are coefficients, which when applied to the measured parameters,

result in the canonical variates, i.e. the variables in the new coordinate system.

In principle, the magnitude and sign of canonical weights can be used to indicate

the importance and effect of the parameters. Scaling effects were removed by the

applied normalisation. As Gittins [Gittins 85] points out, canonical weights relate

to the unique part of variables, rather than the common parts. In other words, the

weights indicate the variables contribute something distinct to the canonical variate.

However, this distinct ‘something’ is nevertheless related to the linear combination

of the other parameter set. It should also be noted that the sign of the canonical

weights is of little consequence, as a reversal of all the signs does not affect the

analysis. It is the pattern of the signs that is of interest. For easier comparison, it

was arbitrarily chosen to set a positive sign for F0 and to change the signs of all

other weights accordingly, where necessary.

Some words of caution, a substantive interpretation of the pattern of weights is

generally difficult [Gittins 85]. In the same book, Gittins further remarks that the

weights depend on the selection of parameters for the analysis and on the sample-

specific variation. According to Gittins, canonical weights are known for their

instability and for small changes in the parameters to have great effects. Factors
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contributing to this instability are insufficient sample size, measurement errors,

and collinearity of the variables. Nevertheless, an analysis of the canonical weights

can give some valuable insight into the relationships between the parameters that

constitute the linear combinations.

For the vocalic phonemes, the first canonical correlation coefficient r1 was highest

for /@:/ with a value of 0.87 and smallest for /I/ (r1 = 0.59), /@U/ (r1 = 0.60), and

/6/ (r1 = 0.61). The latter three phonemes were also the only ones for which r1 <

0.75. The average first canonical correlation coefficient was r̄1 = 0.77. This points

towards a strong correlation between the first canonical variates, which supports the

hypothesis that combinations of parameters from each modality are highly related,

not single parameters.

Most canonical weights for the interconsonantal vocalic phonemes were small

in magnitude — of the order of 0.10 and less — with few exceptions. The largest

weights were found for the MW weight of vowel /U/ at 0.22 and for the MH weight

of the diphthong /@U/ at 0.21. Most canonical weights, however, were very similar

in magnitude and a sign pattern was not evident. No parameter(s) could be singled

out, which contributed notably more than others to the relationship for all vocalic

phonemes or for any obvious subset of them. Again, it was the linear combination

of the unique parts of the parameters that correlated well across the two sets. Based

on the CANCOR of the data in the AVOZES data corpus, it can be said that all

nine parameters had something to contribute in relating the audio to the video

speech parameters and vice versa.

For the consonantal phonemes, the highest r1 was found for /t/ with a value

of 0.87 and the lowest r1 for /r/ at 0.57. Other consonantal phonemes for which

r1 < 0.75 were /b g f v S tS dZ/. The average first canonical correlation coefficient

was r̄1 = 0.75, which was very similar to the value of 0.77 for the vocalic phonemes.

As in the case of the vocalic phonemes, a generally strong correlation between the

first canonical variates was found. It can therefore be hypothesised, that linear

combinations of the parameters in the two sets were similarly well related for all

phonemes.

The canonical weights for the intervocalic consonantal phonemes were also mostly
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small in magnitude — of the order of 0.10 and less — with some exceptions. The

largest weight was found for the PUL parameter of fricative /f/ at −0.48. Other

canonical weights, that were larger than the vast majority of weights, were the F0

weight for the fricative /v/ (0.39) and the nasal /n/ (0.31), the MH weight for

the fricative /f/ (0.22) and the glide /j/ (0.24), and the RTC weight for the oral

stop /k/ (0.20), the fricatives /z/ (−0.26), and the liquid /l/ (−0.23). Most other

canonical weights were very similar in magnitude. Overall, no parameter could be

shown to distinctively contribute more (or less) to the canonical correlation than

other parameters. Similar to the vocalic phonemes, it was the combination of all

the parameters in one set that resulted in a high correlation with a combination

of all the parameters in the other set, not single parameters. With respect to the

signs of the weights, it appeared that F0 on the one hand and F1 and F2 on the

other hand often had opposite signs, but a systematic pattern for all consonantal

phonemes — or for certain groups of them — was not evident.

Condition Number

The tendency of r1 towards unity, when the sample size is similar to the number

of parameters, has already been commented on. In this study, an analysis with

9 parameters and a sample size of N = 20 was performed. If the measurement

error variances are known or can be estimated reliably, canonical correlations and

variates can be corrected for attenuation due to measurement error [Gittins 85].

Unfortunately, the errors are unknown for the AVOZES data and cannot be reliably

estimated, as the ‘ground-truth’ is unknown. Collinearity in the parameters often

leads to ill-determined canonical weights. The condition number κ(X), where X is a

data matrix of full rank, however, is a sensitive indicator of collinearity [Gittins 85].

It is defined as the ratio of the largest to the smallest singular value of X:

κ(X) = dmax / dmin. (6.1)

For ease of interpretation, the reciprocal condition number 1/κ(X) is often analysed

and it was also used in this work (Tables F.6 – F.8). A value close to 0 signifies

collinearity and hence instability, while a value tending to 1 strongly supports the
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accuracy of a statistical analysis. It is not clearly documented in the literature,

what reciprocal condition number can be considered as a clear sign of collinearity.

In this study, it was judged that values below 0.20 pointed to some element of

collinearity in the data, while 1/κ(X) < 0.05 was a strong sign for collinearity.

The reciprocal condition numbers for the data matrices used in the CANCOR

are also shown in Tables F.6 – F.8. For the AVOZES data matrices, the reciprocal

condition numbers lay mostly between 0.20 and 0.50. No number was below 0.05,

but some numbers below 0.20 were found. For the audio matrices, this occurred for

the phonemes /eI m n v w j z/. For the video matrices, the phonemes /d k/ were

found with condition numbers below 0.20. Hence, there is support, that the data

matrices used in the CANCOR, were mostly free of collinearity between the vectors

making up the matrices. In some cases, the condition numbers pointed to some

collinearity, which could have affected the CANCOR. It is possible to eliminate

collinearity by an orthogonal transformation (e.g. a PCA on the data matrix and

then using the resulting PCs), but this has the disadvantage that the meaning and

relationships of the resulting variables are not clear and, thus, an interpretation of

the results is difficult. No such transformation was performed in this study.

Because of the difficult interpretation of canonical weights and correlation coeffi-

cients, other methods of interpreting the CANCOR have been developed [Gittins 85].

These are structure correlations, variance extracted by a canonical variate, redun-

dancy, and total redundancy, which are described and analysed on the next pages.

Structure Correlations

One method of interpreting canonical variates is to analyse the correlation between

the vectors forming the data matrix — the parameters — and the canonical vari-

ates. These correlations are also known as structure correlations. Compared to

canonical weights, they have the advantage of smaller standard errors and greater

stability, in particular for small and medium sized samples, such as in this study,

or in measurements, where parameters of either or both sets are intercorrelated

[Gittins 85].
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The absolute value and the sign of structure correlations yields information

about which parameters contribute most to a particular canonical variate and the

direction of their effect. Intraset structure correlations examine the correlation be-

tween the parameters and the canonical variates of the same domain, while interset

structure correlations analyse the correlation across the domains.

Intraset Structure Correlations. These structure correlations express the con-

tribution of the parameters of a set to the canonical variates of that set. The results

of the intraset structure correlation are shown in Tables F.9 – F.22 in Section F.2.2

in Appendix F. There were two sets of intraset correlations corresponding to the

two parameter sets. Shown in the tables are the square values of the correlation

coefficients, which give the proportion of variance of a parameter, which was ex-

plained by a canonical variate of the same set. Columns add up to 1.00 (or 100%

if taken as percentage values). It can be noticed that while for some phonemes a

parameter was largely explained by a single canonical variate, and hence strongly

correlated to it, for other phonemes, parameters were explained by more than one

canonical variate. As an example, the proportions of variance explained by the five

audio canonical variates for parameter F0 in vowels /I/ and /U/ can be compared

(Table F.9). For /I/, CV 4 explained most of the variance. For /U/, CVs 4 and 5

explained about equal amounts of variance.

Similarly, a canonical variate may explain the largest parts of variance of more

than one parameter, while other canonical variates do not explain large proportions

of variance of any parameter. As an example, CV 1 and 2 for the audio parameters

and the phoneme /v/ can be compared in Table F.13.

Furthermore, it was observed that the canonical variate of the strongest canoni-

cal correlation, CV 1, was related most strongly to different parameters for different

phonemes. Similar differences existed for the other canonical variates. If these pat-

terns can be shown to be stable, this would offer a way to distinguish phonemes by

computing the interset structure correlations. To do so, a larger sample size than

the current 20 speakers in the AVOZES data corpus is required. As has already

been pointed out, CANCOR can lead to unstable results for small sample sizes
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compared to the size of the parameter sets.

Interset Structure Correlations. Of more interest in the analysis of relation-

ships between audio and video speech parameters than the intraset correlations were

the interset structure correlations. They characterise the relationships between the

parameters of one set and the canonical variates of the other set. The results of the

interset correlation can be found in Tables F.23 – F.36 in Section F.2.3 in Appendix

F. There were two sets of interset correlations: audio speech parameters with video

canonical variates and video speech parameters with audio canonical variates.11

Rather than the correlation coefficients, the square of the coefficients is presented

in the tables, because it specifies the proportion of variance of a parameter, which

was predictable by a canonical variate of the second parameter set.

First of all, it was observed that the proportions of variance of a parameter

explained by a canonical variate of the other set were generally low, i.e. under 10%

of the variance of that parameter. However, for all phonemes, at least one interset

structure correlation with a higher proportion of variation explained was found and

hence a higher correlation between the parameter and the canonical variate. The

maximum for the audio parameter - video canonical variate correlation was reached

for the oral stop /k/ between parameter RMS and CV 1 at 58%. Similarly, for the

video parameter - audio canonical variate correlations, the maximum was reached

for the long vowel /i:/ between parameter MW and CV 1 at 70%. It was noticed

that the highest proportion of variance for any parameter was almost always found

in the first two canonical variates for any given phoneme, which is not automatically

the case in interset structure correlations. This further supports the hypothesis, that

linear combinations of parameters are well-correlated across the two modalities and

that the parameters, identified as contributing strongly to the canonical variates,

are the ones which account most for the variance in the other domain.

An in-depth analysis of these strong correlations was performed using the fol-

lowing procedure. First, it was identified which parameter and canonical variate

11 To be precise, the interset correlations between the selected PC of the speech param-
eters of one set and the canonical variates of the other parameter set were analysed.
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showed a correlation with r ≥ 0.30 in the interset structure correlations. Secondly, it

was checked in the intraset structure correlations, which parameters, from the same

set as the canonical variates, were most accounted for by those canonical variates.

As a result, the parameters in the two sets, which were related through the linear

combinations, were identified. Overall, the correlations corresponded to different

parameter - canonical variate pairs for different phonemes. Correlations were found

for all possible parameter - canonical variate pairs, but certain pairs occurred more

often for some phonemes than for others. In the case of audio speech parameters

and video canonical variates, the strong correlations most often corresponded to

1. F1 - PUL,

2. F2 - MW and F3 - PUL,

3. F0 - RTC, F2 - RTC, RMS - MW , and RMS - RTC,

4. F1 - MW , F1 - MH , F2 - MH , and F2 - PUL.

In the case of the video parameters and audio canonical variates, the following pairs

were found most often corresponding to the strong correlations

1. MW - RMS, MH - RMS, PUL - F1, RTC - F2, and RTC - RMS,

2. MW - F2 and RTC - F1,

3. MW - F1, MH - F0, and RTC - F0,

4. MH - F1, MH - F3, PUL - F3, and PUL - RMS.

In summary, the interset structure correlations based on a CANCOR of the PCs

related to the slope of the parameter curves — usually the second PC (see Section

6.5) — showed that there was little explanatory power between the canonical vari-

ates of one set and the parameters of the other set for most phonemes. However,

strong correlations existed between some parameters and canonical variates, and

thus between parameters of the two sets, for some phonemes. For these phonemes,

linear combinations of parameters from either parameter set can be used to predict
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the data from the other modality. These results showed that the AV relationships

were phoneme-specific. A larger sample size than the 20 speakers currently recorded

in the AVOZES data corpus would be required (a) to give the CANCOR more sta-

tistical stability and (b) to include other PCs from the PCA such as the horizontal

range or shift PCs, so that an improved analysis can be performed.

The next two subsections discuss further information, that can be derived from

the CANCOR, further interpreting the results of the CANCOR, in particular for

those phonemes, where structure correlations did not yield much information.

Variance Extracted by a Canonical Variate

The variance extracted by a canonical variate is useful for determining which canon-

ical variate has a stronger influence than others for certain measurements (the pa-

rameter values measured for the phonemes in this study). It is defined as the

proportion of the total variance of a measurement domain — the audio and the

video modality in this study — which is accounted for by a canonical variate of

that domain [Gittins 85]. It represents the amount of variance common to both the

measurement domain and the particular canonical variate. The variance extracted

is calculated as the sum of squared intraset structure correlations divided by the

number of parameters. Thus, there were two sets of variances extracted: one for

the audio set and one for the video set. The sum of variances extracted always

equals 1.

The variances extracted by canonical variates of the same domain are shown

in Tables F.37 and F.38 in Section F.2.4 in Appendix F. The proportions of total

variance extracted by a canonical variate ranged from 0.06 to 0.44 for the audio

domain and from 0.09 to 0.49 for the video domain (over all phonemes). For most

phonemes, however, the difference between the highest and lowest variance ex-

tracted was smaller, with the majority of values lying in the vicinity of the average

value. This showed that no particular canonical variate accounted for a larger pro-

portion of the total variance for all phonemes than the others. Nevertheless, some

canonical variates had a stronger influence for a particular phoneme than others.
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Based on the results of the analysis of the data in the AVOZES data corpus, there

appeared to be no systematic pattern in which of the canonical variates accounted

for a larger proportion of the total variance in its domain for a particular phoneme

or subset of phonemes. The internal structure, defining which canonical variate

accounted for more of the total variance than another canonical variate, was clearly

phoneme-specific. Further experiments with a larger sample size are necessary to

check, if the structures found in this study can be generalised for all speakers of

AuE. It is possible, that such dependencies are also speaker or group specific, in

which case finer grained analyses, than the one performed here, are required. If all

these fail, a statistical learning process based on an analysis of a large number of

speakers may provide some solution.

Redundancy and Total Redundancy

The interset analog of the variance extracted is called redundancy (or explained

variance). It is of particular interest in the analysis of AV relationship because

redundancy is the proportion of the total variance of a measurement domain pre-

dictable from a canonical variate of the other domain [Gittins 85]. It is calculated

as the mean of the sum of squared interset structure correlations. Again, there were

two sets of results: one for the total variance of the audio set predictable from the

video canonical variates and one for the total variance of the video set predictable

from the audio canonical variates. As redundancy is defined across two domains,

the sum of redundancies equals 1 only if one domain can be predicted completely

by the measurements in the other domain.

The results can be found in Tables F.39 and F.40 in Section F.2.5 in Appendix

F. For almost every phoneme, the first two canonical variates of either domain ac-

counted for the largest amount of variance of the other domain that was predictable

from the canonical variates. The individual proportions of variance for these canon-

ical variates ranged from about 0.05 to 0.30. For the other two canonical variates,

the variance explained across the domains was generally below 0.05. A measure of

how well the two domains or parameter sets were predictable from one another, is
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given by the total redundancy value referred to below.

Inspecting the first two canonical variates of each domain more closely, revealed

which parameters they corresponded to. This was done again by analysing the

intraset structure correlations. There were considerable differences between the

phonemes. Such differences were expected because of the different behaviour of

the parameters for different phonemes. Over all phonemes, the correspondence

of parameters to canonical variates averaged out, with the exception of the F3

parameter, which showed a lesser degree of correspondence to the first two canonical

variates than the other audio parameters. The other audio parameters were on equal

footing in their occurrence. The first two video canonical variates corresponded

most often to the MW parameter and the PUL parameter, followed by the MH

parameter and last the RTC parameter.

Due to the large differences between phonemes, it is not possible to make a gen-

eralised statement about which parameter combinations of one domain accounted

for a large proportion of the variance in the other domain. For example, for the

short vowel /I/, the 17% of total audio domain variance, that were predictable from

the first two video canonical variates, came from the RTC parameter and the MW

parameter, and the 11% of total video domain variance predictable from the first

two audio canonical variates stemmed from the F1, F2, and RMS parameters. In

contrast, for the long vowel /i:/, the 42% of total audio domain variance in the first

two video canonical variates came from the MW parameter and the PUL param-

eter, while the 31% of total video domain variance predictable from the first two

audio canonical variates stemmed from the F1, F2, F3, and RMS parameters. In

summary, the correspondences were very phoneme-specific. The individual results

can be found in the above mentioned tables. It remains to be tested in future work,

if these correspondences hold for a larger sample of speakers of AuE.

Total redundancy is a measure of the variance in one parameter set accounted

for by the parameters in the other set [Gittins 85]. It is defined as the sum of the

redundancy values and, hence, there were again two sets of results. Where canon-

ical correlation coefficients expressed the relationship between linear combinations

of parameters in each set, total redundancy is a direct expression of the interrelat-
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edness of the measurement domains themselves. In other words, total redundany

is a measure of how much information in the audio speech parameters can be ex-

pressed by information in the video speech parameter set and vice versa. It is a

global measure of parametric interaction between the two modalities.

The results are also shown in Tables F.39 and F.40. Overall, the two total

redundancy values for each phoneme were generally of similar magnitude, with the

exception of the alveolar voiced affricate /dZ/. The total redundancy of the two

parameter sets given the video canonical variates ranged from 0.14 to 0.47 for the

vocalic phonemes, and from 0.07 to 0.39 for the consonantal phonemes. Similarly,

the total redundancy given the audio canonical variates ranged from 0.11 to 0.39

for the vocalic phonemes, and from 0.10 to 0.31 for the consonantal phonemes.

In conclusion, based on the CANCOR on the PCs related to the slope of the pa-

rameter curves, it was found that on average about a fifth to a third of the variance

in the audio speech parameters was predictable from the video speech parameters

and vice versa. This amount is expected to be higher, if more PCs could be included

in the analysis, which requires a larger sample size than is currently available in

the AVOZES data corpus. Nevertheless, the analysis of variances extracted and ex-

plained by a canonical variate showed, that some of the variance in either parameter

set can be predicted from the other parameter set, as was expected from the theory

of speech production (cp. Section 2.1.4). However, it is also clear from vocal tract

theory, that not all of the variance in the audio domain can be predicted from video

speech parameters, because not all changes in vocal tract geometry result in visible

changes on the lips or on the face in general. Similarly, not all of the variance in the

video domain can be expressed by the audio speech parameters, because there are

multiple articulations (at least for some phonemes) which produce perceptionally

the same acoustic result.

Comparing these results with results on the perceptual benefits of AV speech

over audio-only speech in a study on French phonemes by Benôıt et al. (cp. Section

2.1.6 and [Benôıt 96]), the results from both studies agreed well in that lip infor-

mation alone is able to restore about one third of the information from the audio

modality. Such similar results for two different languages and different stimuli could
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point to a more general relationship between visible speech information carried by

the lips and acoustic speech information.

Summary Canonical Correlation Analysis

The CANCOR as a statistical analysis to relate linear combinations of parameters

has been explored. Earlier analyses of the data in the AVOZES corpus had shown,

that the parameters of the audio modality and the video modality were not related

in a 1–1 relationship, but that some form of relationship existed between the pa-

rameters and was also expected from vocal tract theory. The resulting canonical

correlation coefficients showed, that there was a significant amount of correlation

between linear combinations of parameters of each domain (roughly 60–85% cor-

relation). It has been discussed that the interpretation of canonical weights in a

CANCOR is not a straightforward task and that these weights suffer from statistical

instability in small to medium sample sizes (20 speakers in this study) compared

to the number of parameters (9 in the presented analysis) due to collinearity. As

a result, only one kind of PC could be included in the CANCOR. It was decided

to use the PC related to the slope of the parameter curves, because it was the PC

corresponding to the largest amount of the variation in the parameter curves, after

the influence of a vertical shift in the parameter curves (PC 1) had been removed

as a means of speaker normalisation. Using the condition number of a matrix as a

tool to test for collinearity, some amount of collinearity was found in the data, but,

with the exception of a few phonemes, it appeared to be at an acceptable level.

Since the interpretation of canonical correlation coefficients and canonical

weights is generally difficult, other ways of interpreting the results of the CANCOR

were used, such as structure correlations, variance extracted by a canonical variate,

redundancy, and total redundancy. All these analyses pointed to phoneme-specific

relationships between the audio speech parameters and the video speech parameters

(or the chosen PCs thereof). A general, fixed relationship between combinations of

some of the parameters was not evident. Rather, the combinations of parameters,

that showed a high correlation across the two modalities, varied from phoneme to
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phoneme. It would be necessary to investigate a larger sample to answer the ques-

tion whether the relationships found in the analysis are stable. There was also no

evidence for the exclusion of any parameter from the two sets, because all parame-

ters appeared in linear combinations with strong correlations across the modalities

for one phoneme or another. On average, about a fifth to a third of the variance in

either modality was predictable from the parameters of the other modality.

The CANCOR has been helpful in supporting the hypothesis that the rela-

tionship between modalities lies in the combination of parameters, not in single

parameter relationships. The problems with statistical instability that a CANCOR

can suffer from have also been discussed. Therefore, other statistical analyses that

explore the relationship between sets of parameters were investigated. One such

analysis is the coinertia analysis, whose results are discussed next.

6.6.3 Coinertia Analysis

The relatively new multivariate statistical analysis of COIA has been described in

detail in Section 5.5.6. It had so far not been used in the area of speech processing.

COIA is a multivariate method for coupling two (or more) sets of parameters. It

gives insight into the relationship between the two sets by analysing linear combi-

nations of the parameters in each set like CANCOR. COIA has the advantage of

numerical stability and independence from the sample size (see Section 5.5.6).

One of the shortcomings of CANCOR was that only one of the three main modes

of variation, described in Section 6.5, could be used as input due to the sample size

and CANCOR’s instability problems. In contrast, COIA allowed the inclusion of

all the PCs related to the two main modes of variation of interest — the slope of

the parameter curves and the horizontal shift or range — in the analysis. The main

mode of variation related a vertical shift of the parameter curves was left out as

before, because it appeared to be related personal characteristics, not the common

characteristics in the parameter curves. As a result, the audio parameter12 set

12 The term ‘parameter’ refers here to the PCs related to the slope of the parameter
curves and the horizontal range or shift. In turn, these PCs are linked to the original
parameter sets (see Section 6.5).
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contained 10 parameters and the video parameter set 8 parameters for the COIA.

Results of Coinertia Analysis

The results are shown in the tables G.1 – G.7 in Appendix G. The tables G.1

and G.2 present the coinertia scores, which are covariance (or coinertia) value, the

correlation value, the ratio of projected variance from the separate analysis of each

parameter set to the variance from the coinertia analysis for both audio and video

parameter set, and the RV coefficient as a measure of overall ‘relatedness’ of the two

domains based on the selected parameters. The first three of these values existed for

every coinertia axis (or vector). However, only the values for the first coinertia axis

are shown, which was the axis onto which the largest amount of overall variance was

projected and which was therefore the most important one. The tables G.3 – G.7

show the parameter weights, which were the coefficients of the input parameters in

the linear combinations formed in the analysis, for each phoneme.

Covariance. The covariance value is a global measure of the co-structure in the

input parameter sets. If the value is high, the sets are related strongly and vary in a

dependent fashion. If the value is low, they vary independently. The covariance val-

ues ranged from 3.19 to 8.37 with a mean of 5.73 for the vocalic phonemes, and from

3.29 to 10.38 with a mean of 5.99 for the consonantal phonemes. In other words,

although the covariance values were slightly higher for the consonantal phonemes,

there were no significant differences in the covariance values between vocalic and

consonantal phonemes. However, the covariance values differed considerably be-

tween individual phonemes. They were smallest for the high, central-to-back vowels

/U u:/, the alveolar closure nasal /n/, and the lateral liquid /l/. It appeared that

the covariance value was larger for phonemes, which typically exhibit a larger de-

gree of visible speech articulation, although the bilabials /b m/ showed only average

covariance values. As a rule of thumb, the higher both ratios of projected variance

from separate analysis to variance from coinertia analysis were, which means the

higher the amount of variance in a parameter set obtained by the coinertia axes

was, the higher was the covariance value. This follows from equation 5.18.
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Correlation. The correlation values ranged from 0.54 to 0.83 with a mean of

0.69 for the vocalic phonemes, and from 0.50 to 0.82 with a mean of 0.68 for

the consonantal phonemes. They showed that the first (and dominant) coinertia

vectors were strongly correlated across the domains. Differences in the strength

of the correlation existed for individual phonemes. For example, the correlation

value was high (≥ 0.75) for the short front vowel /E/, the front-to-central long

vowels /i: 3:/, the long back vowel /O:/, the diphthong /aU/, the oral stops /p

d k g/, and the fricatives /v T D S/. All these phonemes have a comparitively

strong visible speech articulation in common, be it lip rounding, lip spreading, lip

closure, or teeth visibility. The correlation value was smaller (< 0.60) for the mid-

low vowels /2 æ/, the bilabial voiced oral stop /b/, the alveolar voiceless fricative

/tS/, the velar closure nasal /N/, the liquid /l/, and the rhotic glide /r/. These

phonemes showed less visible speech articulation, with the exception of the bilabial

/b/, whose low correlation value cannot readily be explained. In summary, the

correlation between the linear combinations of input parameters, that maximised

the covariance between the input parameter sets, was stronger for phonemes with

more visible speech articulation. This result resonates with the expectations.

Ratio of Projected Variance. For the vocalic phonemes, the amount of variance

explained by the first coinertia vector ranged from 0.38 to 0.96 with a mean of 0.75

for the audio parameter set, and from 0.43 to 0.97 with a mean of 0.74 for the video

parameter set. In other words, the first coinertia vector accounted for about 75%

of the variance in either set. Similarly, for the consonantal phonemes, the amount

of variance obtained by the first coinertia vector ranged from 0.32 to 0.97 with an

average of 0.77 for the audio parameter set, and from 0.52 to 0.98 with a mean

of 0.76 for the video parameter set. Again, the first coinertia vector accounted for

about 75% of the variance in either parameter set.

RV Coefficient. The RV coefficient is an overall measure of how well the two

domains are related given the parameters in the two sets. It is in that sense similar to

the total redundancy measure in CANCOR. It takes all coinertia axes into account.
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For the vocalic phonemes, the RV coefficients ranged from 0.14 to 0.50 with a mean

of 0.27 (see Table G.1 for individual results). For the consonantal phonemes, the

RV coefficients ranged from 0.12 to 0.44 with an average of 0.26 (see Table G.2 for

individual results). These results were broadly equivalent to earlier results using

the total redundancy measure in CANCOR, where about a fifth to a third of the

variance in either domain was predictable from the other domain.

Parameter Weights. Analysing the (normalised) parameter weights was useful

for identifying the input parameters, which contributed most to the linear combi-

nation. In particular, it was possible to analyse the influence of the two chosen PCs

— forming the input parameters of the COIA — on the linear combinations and

thereby the importance of the original parameters in the AV relationships. This

novel technique for speech processing therefore allowed a much more detailed analy-

sis of the relationships than CANCOR. The weights are the coefficients of the linear

combinations of the parameters in each set, that maximise the covariance between

the parameter sets under the constraint of orthogonality. For each phoneme, the

coefficients for the two chosen PCs of each parameter are presented and marked

with an ‘S’ for the PC related to the slope of the parameter curve and an ‘H’ for

the PC related to the horizontal shift or range (Tables G.3 – G.7). Larger coeffi-

cients mean that these parameters contributed more to the linear combination than

coefficients close to 0.

It was found that all parameters contributed strongly to the linear combination

for one phoneme or another, but some parameters contributed strongly notably

more times than others. Again, these results resonated with earlier results from

CANCOR. The pattern of parameters contributing to linear combinations related

across the domains was phoneme-specific (see Tables G.3 – G.7 for individual re-

sults). Table 6.9 summarises the results by showing for each input parameter a

list of phonemes, where that parameter contributed strongly to the linear combi-

nations. A relationship between the patterns of parameters contributing strongly

to one of these linear combinations and articulatory positions was not readily ap-

parent. For example, even for short and long vowels produced with the tongue in a
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Parameter PC Vocalic Phonemes Consonantal Phonemes

F0 S u: t j

H – –

F1 S I U E 2 æ 3: A: @U b t v D s N l r w j

H æ u: @U d dZ m j

F2 S I 6 i: 3: O: aU p D s m n w

H OI aU f S tS dZ N

F3 S 6 3: OI T r

H i: OI N

RMS S U E 6 i: O: A: @: eI aI I@ p b t d k g f v T D s z tS dZ n l w

H I U E 2 @: I@ @U d D dZ

MW S 2 u: 3: O: OI p b T S

H – –

MH S U 2 æ i: A: aU I@ @U b t d k g f v D s z tS dZ m n l w

H eI @U v s l j

PUL S U E 6 2 i: u: O: @: OI p t d D N r j

H U A: g s z r w j

RTC S I U E 2 æ 3: O: A: OI aI aU I@ b t k f v D s dZ w

H @U T

Table 6.9: Phonemes for each parameter, where the parameter weights were ≥ 0.40.

similar position (e.g. /I/ and /i:/), differing coefficients were observed. Of course,

the effects of coarticulation were stronger on a short vowel than on a long vowel in

the /bVb/-context used in the AVOZES corpus. More experiments with a different

sample are needed to test, if the individual results for each phoneme found here can

be generalised for all speakers of AuE or certain groups thereof.

For the vocalic phonemes, the most often appearing strong parameters in the

linear combinations of the first and most important coinertia vector were the slope

PC of RMS, RTC, MH , PUL, and F1, and the horizontal range PC of RMS (in

that order). A similar picture was found for the consonantal phonemes. Here, the
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slope PC of MH , RMS, F1, and RTC were the parameters most often found to

contribute strongly. Overall, these four parameter were also the ones contributing

strongly most often to the linear combinations corresponding to the first coinertia

vector. The mean absolute weight values in Table G.7 reveal that the weights

associated with the slope PC of RTC, RMS, PUL, MH , F1, and F2 (in that order),

and the horizontal range PC of RMS were strongest for the vocalic phonemes.

Similarly, for the consonantal phonemes, the weights associated with the slope

PC of MH , RMS, F1, RTC, PUL, and F2 were found to be strongest. Both

ways of analysing the contribution of parameters showed that the horizontal range

or shift PC was, on a general level, not as important as the slope PC. On an

individual phoneme level, however, it was of importance for some phonemes (for

example, see the coefficients of /tS dZ/ for F1 and F2 in Table G.6). It should

also be pointed out that coarticulation could have had an effect on these findings,

because the /bVb/- and /A:CA:/-words, respectively, each cover the same phonemic

space apart from the central phoneme. The measured parameter values at the start

and end of the intervocalic or interconsonantal phonemes, as defined in Section

5.4.3, would show some mix of vocalic and consonantal information and this mix

could have influenced the results to some extent. However, coarticulation is a

naturally occurring part of spoken language and it is, therefore, important to study

AV relationships in such environments. It is suggested for future work to repeat

the analyses performed in this study for other vocalic-consonantal and consonantal-

vocalic phoneme transitions and to compare the results to find out, it the results

reported here are specific to the chosen contexts.

Summary Coinertia Analysis

In summary, COIA enabled a more detailed analysis of the AV relationships than

CANCOR. Where results of the two analyses are methodologically comparable, the

COIA results resonated largely with the results from CANCOR. COIA’s advantage

is its increased stability over CANCOR, as reported by others (see Dolédec and

Chessel [Dolédec 94] and Dray et al. [Dray 03]), particularly for analyses where
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the sample size and the number of parameters are similar. Linear combinations of

the parameters in each set, that maximised the covariance between the parameter

sets, were strongly related across the domains. The composition of these linear

combinations was phoneme-specific with no generalisation based on, for example,

similar articulatory positions being apparent. As has been discussed before for the

CANCOR results, an analysis with a different and possibly extended sample would

be required to test the stability of the results found here. The PC related to the

slope of the parameter curves contributed more to these linear combinations than

the horizontal range or shift PC for most phonemes, which was expected based on

a comparison of the average proportion of variance explained by the PCs (Table

6.5). On average about 75% of the variance in each parameter set was obtained by

the first coinertia vector, which was judged to be sufficiently high to concentrate

on that vector. In the coinertia coordinate system, the first coinertia vectors from

either set were correlated with an average of 66% across all phonemes. The results

of the RV coefficients showed that about a fifth to a third of the variance in one

domain was predictable from the other domain.

6.6.4 Summary Between-Set (Audio-Video) Analysis

Summarising Section 6.6, the results of various analyses for characterising the

between-set or AV relationships of the parameters in the audio and video speech

parameter sets have been presented and discussed. Pairwise correlations were per-

formed first which confirmed expectations. No strong correlations were found for

any AV parameter pair for any phonemes. Some weak correlations were noticed,

mostly for the parameter pairs of F0 and MW , and F2 and MH . As a result, mul-

tivariate statistical methods that explore the relationship of linear combinations of

parameters were investigated.

First, canonical correlation analysis was applied. The canonical correlation co-

efficients suggested that linear combinations of the input parameters — in this

instance, the PC of each parameter related to the main mode of variation ‘slope of

the parameter curves’ — from either modality explained about 75% of the variance
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in linear combinations of the other modality. This supports the hypothesis that

indeed combinations of parameters are related across the two domains, not individ-

ual parameters. Investigating which parameters were more important than others

in the linear combinations has proven to be difficult, because CANCOR results

can suffer from numerical instability and in the presence of collinearity, and hence

varying canonical weights — the coefficients of the parameters in the linear combi-

nations — when the number of input parameters approaches the sample size. As a

consequence, only the PC related to the slope of the parameter curve was selected

as input into the analysis, when preferably both the PC related to the slope of the

parameter curves as well as the PC related to the horizontal range or shift would

have formed the input. With the help of the condition number, it was established

that the input data used did not show strong signs of collinearity, but some level

of it was present for some phonemes. This means that the results of the CANCOR

for these phonemes have to be treated with care.

Due to the difficulties in interpreting canonical weights, other ways of interpret-

ing the results of CANCOR have been used. This has involved structure correla-

tions, which are the correlations between the input data and the canonical variates

resulting from the analysis. Both intraset and interset structure correlations showed

that correlations between input parameters and canonical variates, and thereby be-

tween parameters across the domains, were phoneme-specific. Further experiments

with a larger sample size are necessary to test, if the relationships found can be gen-

eralised for speakers of AuE. It is possible, that such dependencies are also speaker

or group specific, in which case analyses targeting these groups are required. Al-

ternatively, a statistical learning process based on an analysis of a large number of

speakers may also provide a solution. The phoneme-specific behaviour was further

supported by the results of the variance extracted by a canonical variate, the re-

dundancy, and the total redundancy. The correspondence of canonical variates to

parameters with a higher than average correlation value differed from phoneme to

phoneme. All parameters played a strong role for one phoneme or another. The au-

dio speech parameters F0, F1, F2, and RMS were most often contributing strongly

to the canonical variates associated with the audio parameter set. For the video
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parameter set, the parameters MW , MH , and PUL were most often contributing

strongly to the canonical variates. The total redundancy values showed that about

a fifth to a third of the variance in one modality was predictable from the other

modality using the selected parameters.

Secondly, a coinertia analysis was applied to the data, because of its numerical

stability even for small sample sizes. Here, both the slope PC and the horizontal

range PC of each parameter could be included in the analysis. The results confirmed

the CANCOR findings. The composition of strongly related linear combinations

across the modalities was phoneme-specific. The first coinertia vectors were shown

to correlate well across the domains and obtained about 75% of the variance in

the parameters. The RV coefficients supported the view, that about a fifth to

a third of the variance in the either modality could be predicted from the other

modality with the selected parameters. Through the coinertia weights it was found,

that the PC related to the slope of the parameter curves played a more important

role in the linear combinations than the PC related to the horizontal range or

shift. The weights showed again, that the composition of the linear combinations

was phoneme-specific and that the other parameters occurred with strong weights

as well for some phonemes. The most important parameters were F1, F2, and

RMS of the audio speech parameter set, and MH , RTC, and PUL of the video

speech parameter set. Based on these findings, it has been hypothesised that these

parameters were the ones, that were most related — through linear combinations

— across the two modalities.

6.7 Curve Registration

It has already been mentioned that some of the parameter curves were not aligned

well, despite the synchronisation through the bilabial closure. This means that

salient curve features like maxima and minima could be misaligned by a few sample

points. This may have caused problems in the statistical analyses, as sample points

were compared that did not represent comparable features of the curves. As has

been discussed in Section 5.5.7, two different kinds of variation can be distinguished:



6.7. CURVE REGISTRATION 231

end-point variation and shape variation, of which the latter was of more interest in

the analysis of AV relationships.

In this study, a global registration method based on FDA was used (see Section

5.5.7 for details). Curve registration was performed on the smoothed and resampled

parameter curves (see Sections 5.4.2 and 5.4.3). The RMS parameter curves were

first registered, separately for each phoneme, with the pointwise mean curve — with

outliers removed — serving as registration target. By choosing the mean curve over

any speaker’s curve as registration target, issues like which speaker to choose or

what to do in the case of chosen parameter curves not being well-suited for the

registration process, are avoided. A manual selection of a curve as registration

target each time based on some criterion of goodness would have been possible in

principle, but appeared to be less appropriate than a fixed choice like the mean

curve, which also had the advantage of being done in an automated process. Each

phoneme’s RMS warping function was then also applied to the other parameters

in the audio and video speech parameter sets. The results of this registration

process are summarised and discussed in Section 6.7.1. Section 6.7.2 then presents

the results of a PCA applied to the registered parameter curves in the temporal

domain, similar to the statistical shape analysis described in Sections 5.5.3 and 6.5.

The resulting main modes of variation are compared to the results of the shape

analysis without curve registration.

6.7.1 Discussion Results of Curve Registration

The results are shown in Appendix I. They can be compared to the original param-

eter curves in Appendix C. Visual comparison of the unregistered and registered

parameter curves showed that, overall, the registration process was successful. Ex-

amining the RMS parameter curves first, it can be seen that the curves were better

aligned than before, i.e. the horizontal shifts were smaller after registration (the syl-

lable containing /b/ is a prominent example). The parameter curves for the other

parameters also appeared to be better aligned to each other, as extrema shared

the same timing. Generally, curves with salient features such as maxima and min-
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ima were registered better than flat curves, due to the nature of the registration

algorithm. Without a dominant feature, curves were not registered well.

Despite the overall goodness of the registration process, some parameter curves

for some phonemes were not registered well. For example, the F1 curves for /f/

diverged largely, which also had an effect on the mean curve. Here, the registration

process did not resolve the divergence in the unregistered curves. Technically, it

would be possible to register some of these curves better by using their own mean

curve as target curve for the registration process, rather than using the warping

information from the registration process of the RMS parameter. However, that

would lead to a loss of comparable timing information and was, therefore, not

appropriate in this investigation.

It was noticed that some curves suffered from oscillation, due to spline curves

being used as part of the FDA. Curves that oscillated by more than an order of

magnitude from the mean curve were removed manually and replaced with their

unregistered counterparts, so as not to decrease the sample size. The remaining

oscillations were considered to only have a neglible influence on the results of the

statistical shape analysis, which are described in the next subsection.

6.7.2 PCA on Registered Curves

Similar to the shape analysis in Section 6.5, a PCA in the temporal domain was

performed on the registered parameter curves. The results were used to test, if the

curve registration lead to an improved analysis. The amount of phase variation was

expected to be reduced for well-registered curves. In particular, this means that

the proportion of variance in the curve shape analysis related to the third main

mode (see Section 6.5), describing the horizontal range or shift of the curves, was

expected to be smaller than for unregistered curves. In contrast, the proportion

of variance for the other two main modes of variation — related to a vertical shift

(amplitude difference) and to the slope of the curves — was expected to remain

about the same or even increase. For badly registered curves, including curves

where oscillation occurred, and for curves that were already well-aligned before the
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PC F0 F1 F2 F3 RMS MW MH PUL RTC

1 0.88 0.53 0.68 0.73 0.67 0.84 0.90 0.64 0.87

2 0.08 0.21 0.16 0.11 0.14 0.12 0.07 0.19 0.09

3 0.03 0.12 0.08 0.07 0.07 0.03 0.02 0.09 0.03

1 0.87 0.50 0.58 0.65 0.54 0.86 0.85 0.59 0.86

2 0.07 0.23 0.21 0.16 0.21 0.09 0.08 0.19 0.09

3 0.04 0.13 0.10 0.09 0.10 0.03 0.03 0.10 0.03

Table 6.10: Average proportion of variance (rounded to 2 decimal places) explained

by the top three PCs for each parameter. Top: Vocalic phonemes. Bottom: Con-

sonantal phonemes.

registration process, only small changes were expected.

The numeric results for each syllable can be found in the tables in Appendix J,

which show the cumulative proportion of variance explained by the first six PCs.

These results can be compared to the results of the PCA on the unregistered curves

(Appendix E). For the vast majority of syllables and parameters, the proportion of

variance expressed by the first PC increased as a result of the registration process.

The amount of variance explained by the second and third PCs remained at about

the same level or was reduced slightly. These findings are also shown in the results

in Table 6.10, which presents the average individual proportion of variance in the

first three PCs. The largest change compared to the results for the unregistered

curves (Table 6.5 in Section 6.5) was found in the parameters RMS, MH , and

RTC. Here, the average proportion of variance in the first PC increased the most.

Tables 6.11 and 6.12 show the number of PCs required to express at least 90%

of the variance. As was the case with the unregistered curves, results differed

considerably for different phonemes. However, comparing the results with Tables

6.6 and 6.7, it can be seen that the amount of 90% was reached by fewer PCs than

in the case of unregistered curves. Parameters F0, MW , MH , and RTC required

only one or two PCs for almost all phonemes. More PCs were typically needed for

all other parameters to explain 90% of the variance.
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Phoneme I U E 6 2 æ i: u: 3: O: A: @: eI OI aI aU I@ @U

F0 2 2 2 2 1 2 2 1 2 1 1 1 2 2 2 2 1 3

F1 3 3 5 5 4 4 5 4 4 5 4 4 4 5 4 4 4 4

F2 3 2 2 4 4 3 3 2 2 4 3 3 3 4 4 4 3 3

F3 4 4 2 4 3 3 4 3 2 3 2 3 4 4 3 3 3 3

RMS 2 2 3 4 5 3 3 3 3 4 5 5 4 5 5 4 4 5

MW 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1

MH 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 2 2

PUL 3 3 3 1 2 3 4 2 4 2 4 3 4 4 4 5 3 3

RTC 2 1 2 1 1 1 2 1 2 1 2 2 2 2 2 2 1 2

Table 6.11: Number of principal components needed to explain ≥ 90% of the tem-

poral variance in the registered parameter curves: Vocalic phonemes.

It was again possible to explore the mode of variation, that each PC stood for,

by computing the pointwise mean parameter curve as well as the pointwise standard

deviation (based on the distribution of the individual parameter curves from the

20 speakers) for each phoneme-parameter pair. Then, for each phoneme-parameter

pair and each PC, the mean curve and two curves with ±x standard deviations were

drawn in a graph, where x was an appropriate scaling factor for the parameter.13

The main modes of variation found for the registered curves were basically the

same as for the unregistered curves. Even more often than before, the first PC

was related to a vertical shift between the parameter curves. Due to the minimised

phase variation, a larger amount of the remaining variation was now a result of such

amplitude differences, which was the goal of the registration process. It confirmed

the previous finding, that the first PC was not of much relevance in the description

of similarities of curve shapes, as its vertical shift appeared to be more a personal

13 Again, the number of graphs created by this kind of visualisation is too large to
be included in this thesis. However, the interested reader can find the figures on the
accompanying CD-ROM in the directory ‘PCExplanationRegistered’.
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Phoneme p b t d k g f v T D s

F0 3 1 3 1 2 1 2 1 2 2 2

F1 4 4 4 3 5 4 4 5 4 5 4

F2 4 4 4 3 4 3 5 4 4 4 5

F3 2 2 4 3 5 3 4 3 3 3 4

RMS 3 5 5 4 5 4 4 5 5 5 4

MW 2 2 2 1 1 2 2 2 1 2 3

MH 1 2 2 2 2 1 2 2 1 2 2

PUL 3 3 4 4 5 5 1 3 4 2 4

RTC 2 1 2 1 1 1 2 2 2 1 2

Phoneme z S tS dZ m n N l r w j

F0 1 4 3 2 1 1 1 1 1 1 2

F1 4 5 4 4 3 4 4 4 4 3 4

F2 2 3 5 4 3 2 4 2 3 3 3

F3 3 4 5 4 3 2 4 2 4 3 3

RMS 5 6 6 5 3 3 4 3 4 4 3

MW 1 1 2 2 1 2 1 1 2 2 1

MH 2 2 2 2 2 3 2 2 2 3 3

PUL 5 3 4 4 4 2 1 3 4 2 4

RTC 2 2 1 2 2 1 1 1 2 2 1

Table 6.12: Number of principal components needed to explain ≥ 90% of the tem-

poral variance in the registered parameter curves: Consonantal phonemes.

characteristic of each speaker.14

In contrast, the second and third PC expressed variation in the curve shape.

Again, these PCs were related to the slope of the curves and the horizontal range.

The horizontal shift, which had been overlaid on top of the horizontal range, was

minimised in the registration process and had therefore no noticeable influence

14 This PC could, however, be of interest in a speaker identification / verification task.
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anymore. The horizontal range was related to the timing of changes in the shape

of a parameter curve. Both modes of variation occurred in the second or third PC,

depending on the variation found in a particular phoneme-parameter pair.

These results confirmed the previous findings about the main modes of variation

occurring in the parameter curves. It can be deduced that the results of the statis-

tical analyses draw an accurate picture of the phoneme-specific relations between

audio and video parameters in the investigated /bVb/- and /A:CA:/-syllables. In

summary, curve registration was an adequate method to minimise the influence of

phase variation on the results. It should generally be applied, where it is necessary

or desired to statistically compare curves with different timing characteristics and

where phase variation can be regarded as measurement noise.

6.8 Chapter Summary

The information contained in the recordings of the /bVb/- and /A:CA:/-syllables

in the AVOZES data corpus has been comprehensively analysed in this chapter.

The data space was first explored thoroughly by visual inspection and a linear

discriminant analysis, before various statistical methods were applied to the data to

determine the relationships between the various audio and video speech parameters.

Pairwise correlation analyses between any two parameters was applied to both the

audio and the video parameter set separately, as well as across the two modalities,

to look for 1–1 relationships between parameters. The only consistent correlation

found for all syllables was between the protrusion parameters for upper and lower

lip. Due to the high redundancy between these two parameters, it was sufficient

to only analyse one of the two protrusion parameters. The protrusion of the upper

lip mid-point was chosen here. The PCA applied to the audio speech parameter

set also showed the presence of redundancies, but no single pair of parameters was

correlating strongly, so that all parameters were included in the further analyses.

Next, a shape analysis of the parameter curves was performed by applying PCA

in the temporal domain to each parameter separately for each syllable. This way,

the main modes of variation were identified. These were related to a vertical shirt
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between the curves, to the slope of the curves, and to the horizontal range or shift.

While the first main mode of variation appeared to be related to some personal

characteristics of each speaker and thus represented differences between the speak-

ers, the latter two described variations to the shape of the curve and were, therefore,

more suitable for expressing similarities in the parameter curves of different speak-

ers. The further analyses focussed on these two modes of variation, as the focus

of this study was on analysing the common characteristics in the parameter curves

from different speakers and to compare them for the various phonemes.

Canonical correlation analysis was performed to explore the relationships of

linear combinations of parameters, given that no linear relationship between sin-

gle audio and video speech parameters had been found. The CANCOR results

showed a significant amount of correlation between linear combinations of parame-

ters of each domain (roughly 60–85% correlation), which supported the hypothesis

of combinations of audio and video speech parameters being related across modal-

ities. Unfortunately, CANCOR results can suffer from statistical instability in the

calculated canonical weights, when the sample size (20 speakers in this study) is

relatively small compared to the number of parameters (9 if only one PC is used, 18

for two PCs) due to collinearity in the data. To manage the stability problem, only

the PC related to the slope of the curves could be included in the analysis. Various

ways of interpreting the CANCOR results were explored, which all supported the

hypothesis that relationships between the audio and video speech parameters are

phoneme-specific.

The problems of statistical instability for a small sample size were overcome by

the application of a multivariate method called coinertia analysis. It also analyses

the relationship between linear combinations of parameters in different sets, but

maximises the covariance rather than the correlation. This ensures that the number

of parameters relative to the sample size does not affect the accuracy and stability

of the results. COIA’s results resonated with the results from CANCOR. That

is, linear combinations of the parameters in each set were related strongly across

the domains. The composition of these linear combinations was phoneme-specific.

These results were in agreement with the expectations, but did not reveal any
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subsets of the phonemic space. Of the two modes of variation considered in the

analysis, the one related to the slope of a curve contributed more to the linear

combinations than the one related to the horizontal range or shift. The COIA and

CANCOR results showed that on average about a fifth to a third of the variance in

one domain was predictable from the other domain, for the audio and video speech

parameters used in this study. A clear negative result of the analyses was that no

subsets of the phonemic space were found, in which common AV relationships could

be assumed for all speakers. It was hoped at the beginning of this study that such

subsets could be identified. The statistically small number of speakers precluded

the analysis of potentially similar subsets.

Finally, curve registration was examined as a tool for improving the accuracy

of the analysis. Using functional data analysis, a global registration algorithm was

applied to the curves to reduce the amount of phase variation between curves, so

that the common shape characteristics became clearer. In order to ensure syn-

chronisation between the parameters, registration was first performed on the RMS

parameter and the warping functions found there served as reference for the other

parameters in each parameter set. Registration was generally successful, although

a risk of oscillating curves due to the use of spline curves in FDA was present. The

results of a PCA performed on the registered curves confirmed the previous find-

ings on the main modes of shape variation. It can, therefore, be deduced that the

results of the various statistical analyses accurately described the phoneme-specific

relationships of audio and video speech parameters.



Chapter 7

Conclusions

7.1 Summary

The aim of this study has been to investigate the relationship between audio and

video speech parameters on the example of AuE to enhance the scientific under-

standing of the interplay of the auditory and the visual side of the speech signal.

Previous studies had shown that adding visual speech information can improve the

recognition process. However, the interaction of the two modalities remains an

ongoing area of research.

The outcomes of this project include both new methodology from an engineering

point of view, as well as an in-depth analysis of AV relationships in AuE. Before the

statistical analyses could be performed, several prerequisites needed to be created,

which in themselves formed an important part of this multi-disciplinary study. They

may also serve as a resource for future investigations. First of all, a way to measure

video speech parameters was required. Based on a stereo vision face tracking system,

a non-intrusive, real-time lip tracking algorithm was developed, which does not

require any artificial markers or made-up lips. By using stereo vision in a calibrated

camera system, the 3D coordinates of object points could be recovered. Combined

with the lack of artificial markers on the face or head, this technology facilitated

speakers to act normally and move freely within the limits set by the camera system,

thus simplifying the familiarisation process for speakers and facilitating natural

239
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speech. The lip tracking algorithm is based on the analysis of colour information,

as well as the use of a priori knowledge about the structure of the mouth area. It

tracks the lip corners and lip midpoints in an iterative multi-stage process. To the

best of my knowledge, this is the first lip tracking algorithm using stereo vision for

AVSP.

Furthermore, an AV speech data corpus for AuE was needed. A comprehensive

analysis of the corpora described in the literature revealed, that most AV speech

corpora were developed with a particular application in mind. They were often

found to have only a limited coverage of the phonemes of a language and, therefore,

were not well-suited for the purpose of this study. The few well-designed and

comprehensive corpora were not for AuE and often not publicly available, so that

the design and implementation of a new AV speech corpus for AuE became an

essential prerequisite for any subsequent analyses of the AV relationships.

Both for the design of the AV speech corpus for AuE, as well as to provide

a resource for the design of future AV speech corpora, a modular framework was

proposed. It consists of essential and non-essential modules. AV speech sequences,

which cover the phonemes and visemes of a language, form the minimum common

set for corpora following this framework, while other modules can contain project

specific sequences. If a common essential module was used, AV speech corpora could

be made comparable, so that the benchmarking of algorithms becomes easier than

it is at the moment. The modular approach of the proposed framework ensures the

extensibility of corpora. Following this framework, the Audio-Visual Australian

English Speech (AVOZES) data corpus was designed and implemented to cover

the phonemes and visemes of AuE. To the best of my knowledge, it is the first

AV speech data corpus that used a stereo camera system for the recording of the

video data. Such stereo vision recordings enable 3D measurements of facial feature

points independent of the head pose, whereas the 2D measurements of conventional

monocular camera systems are pose-dependent.

Of the various parts of the AVOZES corpus, the sequences covering the

phonemes and visemes of AuE uttered by 20 native speakers were used for the

statistical analyses of the relationships between audio and video speech parame-
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ters. Voice source excitation frequency F0, formant frequencies F1, F2, and F3, as

well as RMS energy were chosen as audio speech parameters, because of their more

direct relation to the articulators and the vocal tract compared to other parameters

like, for example, LP coefficients. Mouth width MW , mouth height MH , protru-

sion of upper lip midpoint PUL, protrusion of lower lip midpoint PLL, and the

novel measure of teeth visibility ‘relative teeth count’ RTC formed the set of video

speech parameters. Since these parameters were directly related to the visible artic-

ulators, a relationship between the chosen audio and video speech parameters was

expected based on articulatory theory. Of course, the visible speech articulators

form only one part of the articulatory system and, thus, not all the information

contained in the audio speech parameters was going to be matched by information

in the video speech parameters. In addition, different articulator positions can re-

sult in perceptually similar acoustic information, so that it was expected that not

all the information in one modality would be related to the information in the other

modality.

An extensive exploration of the data space was performed before the statistical

analyses of the AV relationships. This included observations made by visual inspec-

tion of the parameter curves, an outlier analysis, and a linear discriminant analysis

(LDA). Outliers — defined in this study as being sample values with a difference of

more than three standard deviations from the mean value — were not occurring at a

high rate. The average outlier rate was 0.8%, with the highest rate for any phoneme-

parameter pair being 5%. Outliers occurred for different phoneme-parameter pairs

and different speakers. Most outliers were eliminated by the cubic spline smoothing

performed in the preprocessing step. Any remaining outliers were judged having

a negligible influence. LDA was performed as another data exploration tool. It

helped gaining a better understanding of the placement of the parameter values

in the parameter space for the various phonemes. The results showed that some

phonemes were discriminated well against others, while other phonemes had a high

confusion count. A separation by stepwise elimination could provide a solution for

separating those latter phonemes. The phoneme groups resulting from LDA were

later considered in the multivariate analyses (MVA), when looking for subsets of
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phonemes with similar AV relationships across all speakers. As expected, the for-

mant frequencies F1, F2, and F3 were the parameters best separating the vocalic

phonemes. For the consonantal phonemes, the video speech parameter played a

stronger role, in particular the MH parameter. Such specific analytical differences

have not been reported in the literature for AuE (or, to the best of my knowledge,

for any other language). Comparisons with AV speech data from other languages

are needed to determine, if such detail is specific to AuE.

Given the different articulatory positions for the production of different

phonemes, the hypothesis was that there exist phoneme-specific relationships be-

tween the parameters. In other words, different phonemes were expected to result

in different statistical relationships of the parameters, with the expectation that

similar articulatory positions would result in similar statistical relationships. To

test this hypothesis for AuE, several statistical analyses, which in a broader sense

were related to ‘correlation’, were performed on the data. The utterances took the

form of /bVb/- and /A:CA:/-words with the phoneme under investigation being in

the central position. Any language in general, and AuE in this particular instance,

offer far more combinations of phonemes than could be tested in such an analysis, so

the reader is reminded that the results have been presented for these particular con-

texts. These vocalic and consonantal contexts were chosen, because they facilitated

the visual segmentation of the data in the data extraction phase. Coarticulation

was, of course, also present in the chosen contexts. It is an inherent phenomenon of

speech production, which occurs when the articulators move from one phoneme’s

target position to the next phoneme’s target position, before the first target posi-

tion has been fully reached. Coarticulation was expected to be strong particularly

for the /bVb/-context, but it was judged that the advantages of a simplified and

more accurate visual segmentation of the video data outweighed the disadvantages

due to strong coarticulation.

Various statistical analyses were performed on the time-synchronised data for

each utterance. Of all the sample points of an utterance, the ones belonging to

the central phoneme in the /bVb/- and /A:CA:/-syllables were selected for the

analyses, so that data for each phoneme was available (with some samples affected
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by coarticulation). The simultaneous recording of both the audio and video streams

on DV tape ensured time synchronisation.1 The following analyses were performed

on the extracted data of each sequence:

• correlation analyses between single parameters both within each modality as

well as across modalities,

• principal component analyses (PCA) separately on all parameters in each

modality as a check for redundancies,

• PCAs separately on each parameter as a statistical shape analysis technique,

• canonical correlation analyses for the exploration of relationships of linear

combinations of parameters across modalities, and

• coinertia analyses, which also explore the relationships of linear combinations

of parameters across the two modalities.

The results of this study are summarised and discussed in the next section.

7.2 Results and Discussion

The key results of this multi-disciplinary study are

• a stereo vision, real-time lip tracking algorithm that does not require any

artificial markers on the face,

• a proposed framework for the design of AV speech data corpora,

• an AV speech data corpus for AuE with stereo-vision video data,

• an extensive analysis of the relationships between audio and video speech

parameters in AuE, including the first time application of coinertia analysis

in speech processing.

The outcomes, thus, include both new engineering methods and new experimental

results in the area of AVSP.

1 As pointed out in Section 5.4.1, some adjustment was necessary, due to a constant
delay between the two signals as a result of the stereo camera system used.
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7.2.1 Stereo Vision Lip Tracking

The lip tracking algorithm developed in the course of this study (Chapter 3) has

shown that accurate real-time lip tracking can be achieved using normal PC hard-

ware and software. It was also shown that the use of artificial markers or made-up

lips is not required for accurate lip tracking. It is believed that such a non-intrusive

system has clear advantages over intrusive systems (optical markers, LEDs, IREDs

etc., cp. for example, Yehia et al. [Yehia 97, Yehia 98]), because the familiarisation

process for the speakers is much easier and it is, therefore, more likely that the

recordings, and the results based on them, reflect the conditions in normal spoken

language. Stereo vision has the advantage that 3D coordinates of face points can

be recovered, so that measurements of distances reflect the real distances and not

only 2D image distances. In addition, the measurements are independent of the

head pose towards the camera (within obvious limits), because they are in 3D.

7.2.2 A Framework for AV Speech Data Corpora

In the course of this project, it was found that many existing AV speech corpora

do not allow for an easy comparison of the results, because the design process was

strongly application-driven. As thus, an incomplete coverage of the phonemes and

visemes of a language were not uncommon. A new framework for future AV speech

data corpora has been proposed here (see Section 4.1), which aims at improving this

situation. A modular approach allows for extensibility. It is proposed that corpora

following this framework contain as a minimum a so-called module (a selection of

sequences) covering the phonemic and visemic space of the particular language,

thereby enabling the comparison of any results derived from the analysis of such a

common module in different corpora. Other required modules are a sampling of the

recording setup, both with and without speakers. Further modules can be added,

which can contain specific sequences desired for a particular application.
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7.2.3 The AVOZES Data Corpus for Australian English

The proposed design was followed in the creation of the AVOZES data corpus (see

Section 4.2). It was necessary to create a new corpus, because no AV speech data

corpus for AuE was available. AVOZES is the first AV speech data corpus that used

stereo vision equipment to record the video data, thus allowing for more accurate

measurements of video speech parameters. AVOZES contains utterances from 20

native speakers of AuE and 4 non-native speakers. In this study, the utterances

from the native speakers were analysed. The sequences include a coverage of the

phonemes and visemes of AuE, as well as some examples of continuous speech

and application-driven sequences. It is planned to make the AVOZES data corpus

available to the research community.

In the utterances covering the phonemic space of AuE, the same VCV- and

CVC-contexts were used for all consonantal and vocalic phonemes, respectively.

All results are, therefore, not only phoneme-specific, but actually ‘phoneme-in-

context’-specific. The natural occurrence of coarticulation has affected the results.

It is, therefore, suggested for future work to investigate the AV relationships for

other contexts. The modular setup of AVOZES allows for such an extension of the

data corpus.

7.2.4 Analysis of AV Relationships

The experimental and analytical focus of this study was on the exploration of the

relationships between audio and video speech parameters in AuE (see Chapters 5

and 6). No such extensive exploration had been done before for AuE. The individual

statistical analyses have already been mentioned in the summary at the beginning

of this chapter. Some results and their implications are discussed here.

Pairwise Correlation and Principal Component Analyses

PCAs and linear pairwise correlation analyses were applied to the whole set of

parameters in each modality to check for redundancies, using the dimensionality

reduction property of PCA. For the set of video speech parameters, a redundancy
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in the original parameter set was found in the two lip protrusion parameters. Lips

are typically moved simultaneously and in a similar fashion, so that the results did

not surprise. The two lip protrusion parameters were strongly correlated (r = 0.91 –

0.99 for /bVb/-words and r = 0.79 – 0.95 for /A:CA:/-words) for all phonemes. The

video speech parameter set was therefore reduced to four parameters by eliminating

the lower lip protrusion parameter from further analyses. Weaker correlations (r ≤
0.55) were found for some other parameter pairs for some, but not all phonemes.

These weaker correlations occurred most often for the parameter pairs of MH −
RTC and MW − MH . The former parameter pair was found for consonantal

phonemes involving considerable lip movement, while the latter was prominent for

phonemes with a front or front-central place of articulation.

For the set of audio speech parameters, the PCA results also suggested a con-

siderable amount of redundancy in the parameter set. However, the pairwise linear

correlation analysis did not show any parameter pair to stand out as being very

strongly correlated. This suggested that most of the redundancy lay in a combina-

tion of parameters, which meant that no audio speech parameter could be excluded

from further analysis. Nevertheless, some correlations with |r| ≥ 0.5 were found, in

particular for F1 - RMS, F2 - RMS, and F2 - F3, showing that these parameters

contained some redundant information. RMS is related to mouth openness and

thus the vertical position of the jaw, and thereby also related to F1 and F2 (cp.

Section 2.1.4). The relationships between formant frequencies have been studied by

Badin et al. [Badin 90]) and similar results were found. The lack of strong correla-

tions between the voice source excitation frequency F0 and the formant frequencies

F1, F2, and F3 is in agreement with other studies (e.g. [Kosiel 73] on Polish vowels).

No redundancy was therefore expected between these parameters.

Similar to the correlation analysis within each modality’s parameter set, a pair-

wise linear correlation analysis was performed across the two modalities. Generally,

the pairwise correlations were small in value. Some trends of weak to medium

strong correlations (|r| = 0.3 – 0.5) were found for many phonemes for the parame-

ter pairs F0 −MW and RMS −MH . Overall however, the results did not support

a hypothesis of a direct linear relationship between any of the speech parameters
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across the two sets. Instead, the hypothesis, that combinations of parameters were

related across the modalities, was favoured. Such a hypthesis is consistent with

expectations based on articulatory theory (see, for example, Fant [Fant 60]), where

a direct mapping between any single acoustic parameter and any single parameter

describing an articulatory position can be considered as unlikely. Rather, the rela-

tionship between these parameters, inherent in the speech production process, was

expected to be found in combinations of parameters.

Statistical Shape Analysis

To gain a better understanding of the parameter behaviour during the production of

the central phoneme in the /bVb/- and /A:CA:/-syllables, a statistical shape anal-

ysis was performed by applying a PCA separately to each parameter (see Section

6.5). The resulting principal components described the main modes of variation

and provided a compact representation of the individual parameter curves for the

subsequent analyses.

The first three PCs explained about 85–98% of the variance, so that any higher

PCs were considered to have a negligible impact on the curve shape. The first

PC was overwhelmingly often related to a vertical shift of the parameter curves.

Thus, the largest amount of variation (40–80%) in the curves was not related to

the shape of the curves at all, but to a mere shift, which can be attributed to a

speaker’s personal characteristics. While the extent of the vertical shift might be

of interest in a speaker verification task, it was of no interest in the analyses of

multi-parameter statistical relationships. The PC related to the vertical shift was,

therefore, omitted from these analyses. The second and third PC expressed the

modes of variation in the slope of the curves as well as the horizontal range or shift

of the curves, respectively. These two PCs described the common characteristics of

the parameter curves, which was the object of interest. Therefore, they formed the

input for the canonical correlation (CANCOR) and coinertia (COIA) analyses.

Excluding such a large amount in variation from the analyses raises, of course,

the issue of how the experiments could be improved, so as to avoid such a step. One
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way would be to normalise the data to zero mean, thereby, for example, reducing

differences between male and female speakers in the formant frequencies or in the

MW parameter. Another way would be to investigate dynamic parameters based

on derivatives of the parameters used in this study, which would also reduce the

effects of a vertical shift between parameter curves.

Multivariate Analyses between Parameter Sets

In the first statistical analysis for the exploration of relationships of linear combi-

nations of parameters, CANCOR (see Section 6.6.2), methodological issues with its

numerical stability in the presence of collinearity meant that only one PC could be

taken into account in the analysis and it was decided to take the PC related to the

slope of the curves because of its greater importance to the curve shape. Ideally,

both previously identified curve shape PCs — curve slope and horizontal range /

shift — would have formed the input for CANCOR.

On average, the first canonical correlation coefficient was about 0.75, which

supported the hypothesis, that combinations of parameters were related across the

modalities. Overall, no single parameter or parameters were found to contribute

notably more (or less) to the canonical correlation than the other parameters. Vari-

ous measures for the interpretation of the CANCOR results were analysed and they

all pointed to phoneme-specific relationships between the audio and video speech

parameters. That is, the combinations of parameters, which showed a high corre-

lation, varied from phoneme to phoneme. A relationship between the patterns of

parameter combinations and articulatory positions was not readily apparent for any

obvious subset of phonemes, based on similar articulator positions or the results of

the LDA (see Section 6.3). Further experiments with a different or larger sample

size are necessary to check, if the parameter combinations found for each phoneme

are stable and can be generalised for all speakers, or groups of speakers, of AuE, as

well as for different phoneme contexts. On average, about 20–35% of the variance

in either modality was predictable from the other modality.

To overcome the stability problems of the CANCOR analysis, COIA was applied
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to the data and analysed (see Section 6.6.3). COIA is another multivariate statis-

tical analysis describing the relationship between sets of parameters. It was first

used for ecological studies and to the best of my knowledge, it has not been used in

speech processing (or more generally signal processing) before. COIA’s advantage

is its numerical stability and its property that the number of parameters relative

to the sample size does not affect the accuracy of the results. Thus, both the PC

related to the slope of the parameter curves and the PC related to the horizontal

range or shift could be used as input of the COIA.

The COIA results agreed with the previous CANCOR results. They confirmed

that about 20–35% of the variance in either modality was predictable from the

other modality. The coinertia vectors — the resulting linear combinations of input

parameters — correlated well across the modalities, with the first coinertia vector

having an average correlation coefficient of about 0.50–0.80 and explaining about

75% of the variance in the parameters. Again, the composition of the linear com-

binations was found to be phoneme-specific (see Table 6.9 for a summary), which

matched the expectations. All parameters contributed strongly to the linear combi-

nation for one phoneme or another, although some parameters contributed strongly

considerably more times than others. No patterns between the phonemes and the

parameters, which contributed strongly to the linear combinations, were found for

any obvious subset of the phoneme space. Analysing the coinertia weights, it was

found that the PC related to the slope of the curves played a more important role

in the linear combinations than the PC related to the horizontal range or shift. F1,

F2, and RMS of the audio speech parameters and MH , RTC, and PUL of the

video speech parameters were identified as the most important parameters. Viewed

on an overall level, it was hypothesised that these were the parameters which were

most related — through linear combinations — across the two modalities. Again,

an analysis with a larger or different sample is needed to test, if the phoneme’s

individual relationships are stable for a larger number of speakers and different

phoneme contexts, and if they thus can be generalised for all speakers, or certain

groups of speakers, of AuE. If such a test fails, a statistical learning process based

on an analysis of a large number of speakers may provide some solution.
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Comparison with Other Studies

In summary, some aspects of AuE matched the expectations based on articulatory

theory. Similar AV relationships, compared to those reported in the literature for

other languages, were shown for AuE (cp. Section 2.4). For the investigated audio

and video speech parameters, statistical relationships were found for combinations

of parameters, rather than for single parameters. About a fifth to a third of the

variance in either modality could be recovered from the other modality using these

parameter combinations. This finding is of importance to practical applications,

like AV ASR, as it gives an upper bound of how much information can be gained

from the additional visual speech information. It agrees with a study by Benôıt

et al. [Benôıt 96], which showed that about 30% of audio information lost in noisy

audio conditions can be regained from the lips alone.

Studies by Yehia et al. [Yehia 97, Yehia 98] on two speakers of American English

and Japanese, respectively, had found that about 70% of the variance in their

acoustic and facial geometric parameters — different from the ones in this study

— could be accounted for by the other modality (see Section 2.4). Three possible

explanations can be given for this higher amount of variance. Firstly, the use of

infrared LEDs for the measurement of the video speech parameters resulted in

an artificially higher accuracy, which led to improved estimation results. While the

accuracy of the LED-Optotrak system is higher than that of the purely vision-based,

marker-free lip tracking system used in this study, in my opinion, the difference is

not large enough to be the only or dominating force in the noted differences in the

amount of variance accounted for. However, the larger number of measured facial

feature points and the higher sampling frequency can well be expected to increase

the amount of facial movement captured compared to the lip-based feature points

in this study. Secondly, the parameters chosen in the study by Yehia et al. may

have captured other information, that was not available in the lip-based parameters

used here. In particular, Yehia et al. mention the strong influence of a feature point

on the cheeks below the eyes. It seemed to capture valuable information about

skin movement as part of the speech articulation. Obviously, such information was
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not available in our study. Thirdly, AuE may differ from American English and

Japanese in the strength of AV relationships. If this was indeed the case, it would

correlate with the colloquial notion that (some) speakers of AuE move their lips to

a lesser extent than speakers of other varieties of English or of other languages.

Similar results to those by Yehia et al. were reported by Jiang et al. [Jiang 02],

who studied the correlation between facial movements, tongue movements, and

speech acoustics in American English. Jiang et al. used audio speech parameters

similar to those measured by Yehia et al., but the video speech parameters were

relative distances between optically tracked facial feature points, as in the present

study, although feature points on the entire lower face were used. On average across

the four speakers, about 69% of the information in the video speech parameters was

accounted for by the audio speech parameters and 47% of the acoustic information

could be recovered from the video speech parameters. Both figures are higher than

the ones in the present study, which can be attributed to the higher number of

video speech parameters, including non-lip feature points, the use of marker-based

optical tracking, and differences in the audio speech parameters.

A study by Barker and Berthommier [Barker 99] on AV relationships in French

reported that audio speech parameters accounted for about 75% of the variance

in the video speech parameters. In contrast, video speech parameters accounted

only for about 55% of the variance in the audio speech parameters. Barker and

Berthommier attributed this to the video speech parameters being only based on

the lips and the jaw, not on the entire lower face as by Yehia et al. It is, therefore,

plausible that the relatively small video speech parameter set in the present study

only accounted for about 20–35% of the variance in other modality.

The Nature of the AV Relationships

The AV relationships found in this study of AuE support the view that the linear

combinations of parameters, which are strongly correlated across the two modali-

ties, are phoneme-specific, i.e. their composition differs from phoneme to phoneme

and possibly also for a given phoneme in different contexts (‘phoneme-in-context’-
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specific). Given the different articulatory positions in the production of speech

sounds, such phoneme-specificity was expected. Attempts at identifying patterns

between phonemes with a similar vocal tract configuration and the structure of the

linear combinations were not successful for any obvious subset of phonemes.

Implications for Automatic Speech Recognition

If the phoneme-specific AV relationships identified in the analyses in this study

can be shown to be consistent for a larger number of speakers, or certain groups

of speakers of AuE (for example, groups based on the three AuE varieties), then

these relationships can be utilised in an AV ASR system. Such a system would

analyse the audio and video speech parameters and identify phoneme candidates

by their AV relationships. AV ASR systems have the advantage over audio-only

ASR systems that they can recover part of the speech information from the video

modality, when there is noise on the measurements of the audio modality.

Adequacy of the Data Corpus

Despite the data from 20 speakers in the AVOZES data corpus being more than

what is available in many other AV speech corpora, many statistical analyses require

even more data, before they reach stability, which is needed to build a good model of

the AV relationships. However, the AVOZES data corpus was sufficient to explore

the trends and the general behaviour of audio and video speech parameters for AuE.

It would be particularly interesting to sample more speakers from the three AuE

varieties, so that the statistical analyses can be applied to the varieties separately

and the resulting AV relationships compared for the different varieties. On a second

dimension, it is suggested to extend the AVOZES data corpus to include sequences

covering other parts of the phonetic space using different phonemic contexts.

The Speaker Dimension

Differences between female and male speakers were not noticeable by visual inspec-

tion for the video speech parameters, but some differences were found in the audio
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speech parameters F0, F1, F2, and F3. These were attributed to the (usually) longer

vocal tracts of men. It can be hypothesised that such differences in the parame-

ters would also affect the results of the analyses to some extent. However, it was

judged that groups of 10 speakers each would be too small for the multivariate

statistical analyses (CANCOR, COIA) used in this study, in particular having in

mind that the groups of male and female speakers could be further subdivided into

gender-based groups of speakers of the three varieties of AuE. More speakers and

more samples through repetition of utterances and inclusion of different phonemic

contexts would be required for an investigation of the AV relationships for such

groups of speakers, which is suggested to be undertaken in future work. Such work

would further the understanding, whether the phoneme-specific AV relationships

are speaker-independent, or also contain an extrinsic speaker-specific component.

7.3 Future Work

In this final section, an overview of opportunities for future work based on the

results of this study is given.

Using Better Prediction in Lip Tracking

The lip tracking algorithm could be further improved to reduce the number of

tracking failures and, thus, to improve the accuracy. In the current algorithm, a

feature point position was determined from the tracking result in the current frame

and the previously found position in the last video frame. These two positions

were combined using the confidence measure as a weight to scale the contribution

from these two frames. If the confidence measure for the position estimation in

the current frame was high, the position of a feature point was more based on

this frame, and vice versa. This algorithm could be improved by using more of

the previous frames to determine the feature point position in the current frame.

Such an algorithm could use predictive filtering, e.g. Kalman filtering, to predict

the position in the current frame based on the previous frames and to combine

the prediction with the current measurement to achieve more stable feature point



254 CHAPTER 7. CONCLUSIONS

tracking, which reduces the occurrence of outliers and thus their impact on the

analyses. In the present study, the impact of outliers was reduced by applying

a post-hoc spline smoothing algorithm with certain smoothness constraints, but

avoiding outliers due to tracking failure altogether would be a better way.

Using a More Complex Lip Model

A second way to improve the lip tracking algorithm would be the use of a more

complex lip model. The currently used model was based on only four lip feature

points, namely the lip corners as well as the mid-point of upper and lower lip. More

complex models (e.g. using active shape models or active appearance models) have

been used by others and are described in the literature (see Section ‘Deformable

2D Models’ in 2.3.1). However, with the increased complexity of such models, the

computational requirements also increase, so that real-time lip tracking is often

not (yet) possible. One aim of this study was to show that real-time, natural lip

tracking can be achieved and useful parameters for the AV analysis be extracted.

With future advances in computational power, the deployment of more complex lip

models will become feasible in real-time applications. Currently, a trade-off between

accuracy and computational complexity is still required.

Tracking More Facial Feature Points

A way to increase the information contained in the video speech parameters would

be to track more facial feature points. This study concentrated on lip feature points

because they carry the majority of visible speech information (see Section 2.1.6).

Benôıt et al. [Benôıt 96] showed that displaying the lips alone restored about one

third of the missing information, when the audio signal was noise degraded, but that

displaying the whole face improved the intelligibility even further. Hence, tracking

facial feature points on other parts of the lower face can be expected to capture more

information about the movements of the visible speech articulators (cp. Yehia et al.

[Yehia 98], Jiang et al. [Jiang 02]). The problem with currently available methods

is that they require the use of artificial markers (coloured dots, LEDs, etc.) because
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natural salient features cannot be expected to occur on every part of the face. The

use of artificial markers also raises the question of the applicability in real-world

scenarios and the naturalness of the resulting speech. At a minimum, such markers

require some amount of familiarisation for the speaker.

Using Other Audio and Video Speech Parameters

The analysis of other audio and video speech parameters than the ones chosen

here is suggested. For the video speech parameters, it was decided to use explicit,

geometric parameters because of their relatedness to speech articulators. Other ex-

plicit and implicit parameters should be investigated. Similarly, other audio speech

parameters are possible as well (extracted versus measured parameters, e.g. LP

coefficients, line spectrum pairs, etc. instead of formant frequencies). The speech

parameters in this study were chosen for their relatedness to the vocal tract geom-

etry and hence the articulators, so as to facilitate the interpretation of the results.

This choice helped to identify and illustrate AV relationships in the less complex sta-

tistical analyses but was not required in the more complex analyses of relationships

between linear combinations. Besides analysing other parameters, the investigation

of dynamic speech parameters like the first and second derivatives derived from the

current sets of parameters is suggested. Some studies comparing static and dynamic

parameters suggested (see Section 2.1.6) that the dynamic behaviour of parameters

is equally or even more important than the static parameters, so by examining the

velocity and acceleration patterns, more insight can be gained.

Investigating Non-Linear AV Relationships

This present study and previous studies have focussed on linear relationships be-

tween audio and video speech parameters. While the analyses were able to explain

some of the AV relationships and account for some of the common information in

both modalities, non-linear relationships should also be investigated. With the ad-

vances in computational power, non-linear statistical analyses become feasible in

practical terms. Barker and Berthommier [Barker 99] studied linear and non-linear
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models for AV relationships in French. They demonstrated that non-linear models

were able to represent the AV relationships better than linear models, although

the linear models provided a good first approximation. It would be interesting to

compare the results when such non-linear models are applied to AuE data, such

as the AVOZES corpus. Would the AV relationships be similar for French and

AuE? Are there common AV relationships across languages? Or is there a strong

language-specific component in the AV relationships?

Analysing Other Sequences

Finally, the additional sequences in the AVOZES data corpus would offer further

material to be analysed. In particular, the continuous speech sequences could be

used to apply and test found AV relationships for the different phonemes in an envi-

ronment closer to real-world scenarios than the /bVb/- and /A:CA:/-words. These

sequences also offer a way to test differences in coarticulation, because they contain

the same phonemes as in the other sequences but in different phonemic contexts. It

has also been mentioned before in this thesis, that the recording of new sequences is

suggested, in which (part of) the phonetic space is investigated via other phonemic

contexts. For example, one could investigate the bilabial stop /p/ in (all) different

short and long vowel VCV-contexts, such as /i:Ci:/, /u:Cu:/, /O:CO:/, etc. In that

way, it would be possible to find out, what the AV relationships specific to /p/

are and how the relationships are affected by the coarticulation due to the con-

text. Furthermore, for the study of AV relationships in AuE, more data from more

speakers would be needed to increase the stability of the results in some analyses

and to test if the results found here can be generalised to all speakers, or certain

groups of speakers, of AuE. More data would also be necessary to perform detailed

analyses like CANCOR and COIA for the different AuE varieties (broad, general,

and cultivated AuE). The production of such comprehensive AV speech corpora is

a time-consuming process but undoubtedly important for thorough investigations

and of benefit to the AV speech community as a whole.
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Digital Video Format

A short overview of the Digital Video (DV) format is given here for the interested

reader. Detailed information can be found in the international standards document

IEC 61834 [IEC 01].1 The original DV format (or Digital Video Cassette (DVC))

standards document is the so-called “Blue Book” [Blue Book 94]. The DV format

should not be confused with standards for DVD (Digital Video Disc or Digital

Versatile Disc) or DVB (Digital Video Broadcasting), which are different.

DV is an international standard for a consumer digital video format created

by a consortium of ten companies. The companies originally involved in creating

the standard were Matsushita Electric Industrial Corp (Panasonic), Sony Corp,

Victor Corporation of Japan (JVC), Philips Electronics N.V., Sanyo Electric Co.

Ltd., Hitachi Ltd., Sharp Corporation, Thompson Multimedia, Mitsubishi Electric

Corporation, and Toshiba Corporation. Since then others have joined; there are

now over 60 companies in the DV consortium.

The sampled video is compressed using a Discrete Cosine Transform (DCT), the

same sort of compression used in motion-JPEG and MPEG. However, DV’s DCT

allows for more local optimisation (of quantising tables) within the video frame than

do JPEG compressors, thus allowing for higher quality at the nominal 5:1 compres-

sion factor than a JPEG frame would show. DV uses intraframe compression; each

1 The information presented here is largely taken from the websites www.dvformat.com
and www.adamwilt.com .
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compressed frame depends entirely on itself, and not on any data from preceding

or following frames. However, it also uses adaptive interfield compression. If the

compressor detects little difference between the two interlaced fields — the odd and

even fields — of a frame, it will compress them together, freeing up some of the ‘bit

budget’ to allow for higher overall quality. In theory, this means that static areas

of images will be more accurately represented than areas with a lot of motion. In

practice, this can sometimes be observed as a slight degree of ‘blockiness’ in the

immediate vicinity of moving objects.

There are different colour sampling models for digital video depending on the

original input (NTSC, PAL, etc.). The colour sampling used in the work presented

in this thesis was NTSC YUV 4:1:1. The first number refers to the sampling rate

of the luminance (Y), the other two numbers refer to that of the colour difference

signals (U and V) relative to the first one. In a 4:1:1 system, the colour differ-

ence signals are sampled every fourth luminance sample. Other common sampling

structures are 4:2:2 (D-1, D-5, etc.) and 4:2:0 (PAL).

In NTSC DV format, the resolution is 720×480 pixels. DV sampling is mostly

said to be at exactly 30Hz frame rate (or 60Hz field rate)2 but it is actually at a

frame rate of 29.97Hz. To keep in synchronisation with the NTSC TV frame rate

of exactly 30 frames per second, the video sequence of one second per minute —

usually the first — DV contains only 28 frames! It is important to take this into

account when analysing DV data, for example by interpolating the 28 frames to 30

frames.

Audio sampling in the DV standard is PCM (Pulse Code Modulation) at 48kHz

with 16bit (2 channels), at 32kHz with 12bit (4 channels), or at 44.1kHz with 16bit

(2 channels, same as audio CD (CD-DA) sampling). PCM is a way to digitise ana-

logue signals by sampling the signal at constant time intervals (e.g. [Gibson 93]).

The amplitude at each sampling point is rounded off to the nearest of several spe-

cific, predetermined levels in a process called quantisation. The error between the

exact sample value and the assigned level is called quantisation error. The number

2 Note, NTSC is an interlaced video standard.
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of levels is defined by the number of bits assigned to represent each sample value,

e.g. 16bit gives 216 = 65, 536 levels. The 48kHz and 32kHz sampling rates of the DV

standard can be used in locked mode, the 44.1kHz sampling rate only in unlocked

mode. In locked mode, the audio sample clock is precisely locked to the video sam-

ple clock such that there is exactly the same number of audio samples recorded per

video frame (or multiples of one video frame). To ensure synchronisation between

the audio and video signals, locked mode is generally preferable.

Finally, the DV format is very well suited for transfer via an IEEE-1394

‘FireWire’ link to other equipment. For example, a computer with an IEEE-1394

compliant I/O-card can be linked to a DV recorder, so that there is a fully digital

transfer of the data stored on DV tape to the computer for processing, analy-

sis etc., thereby eliminating potential quality losses due to digital-to-analogue and

analogue-to-digital conversion.
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Appendix B

Speaker Data

This appendix contains background information on the speakers in the AVOZES

data corpus. The tables on the following pages summarise some background infor-

mation on the speakers in the AVOZES data corpus. The speakers were asked to

fill in a questionnaire at the time of recording and the answers are presented here.

The kind of information collected is detailed below (Table B.1). All speakers are

considered to be native speakers of Australian English.

261
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Speaker Identifier, f1–f10 for female speakers, m1–m10 for male

speakers

AuE variety Variety of AuE: broad, general, or cultivated

Age At the time of recording (in years)

Height In cm

Weight In kg

Level of education Secondary, Tertiary, etc

Time abroad Significant time spent abroad by the speaker (where, how

long for, and at what age)

Singing / Training Does the speaker sing? Has the speaker received training?

Smoking Is or was the speaker a smoker?

Medical conditions Related to respiratory system or otherwise

potentially affecting the speech production

Country of origin Of the speaker’s parents

Native language Of the speaker’s parents

Occupation Of the speaker’s parents

Table B.1: Description of column headers in the tables on the following pages.
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Appendix C

Parameter Curves

This appendix shows the parameter curves after smoothing and resampling to 25

points each on the time line as an aid to the discussion in Section 6.1. Shown in

black are the individual parameter curves of the 10 male speakers, while the green

curves denote the individual parameter curves of the 10 female speakers. The red

curve shows the mean (pointwise average) of all individual parameter curves. The

way the plots are ordered is first by parameter, then by phoneme. The order of

the parameters is audio speech parameters first (voice source excitation frequency

F0, formant frequencies F1, F2, and F3, root mean squared energy RMS), then

the video speech parameters (mouth width MW , mouth height MH , protrusion of

upper lip PUL, protrusion of lower lip PLL, relative teeth count RTC). There are

two pages of graphs per parameter. The first page exhibits the vocalic phonemes

as well as the consonantal phonemes /p b t/, while the other consonants are shown

on the second page. The scale on the axes is always the same for all plots be-

longing to one particular parameter in order to facilitate the visual comparison of

the curves. Drastic outliers in the individual parameter curves were the result of

tracking failures.

Due to the very large number of graphs, the pages of this appendix can be found

on the accompanying CD-ROM in the file appendixC.pdf.
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Appendix D

Results Redundancy Analysis

This appendix contains the tables (D.1 – D.8) with the results of the redundancy

(or within-set correlation) analysis for all phonemes, as described in Sections 5.5.3

and 5.5.4, and discussed in Section 6.4. First, the results for the set of video

speech parameter (mouth width MW , mouth height MH , protrusion of upper lip

PUL, protrusion of lower lip PLL, and relative teeth count RTC) are presented in

Section D.1. The PCA on the set of video speech parameters showed that the first

four principal components accounted for at least 96% of the variance. There was

clearly a strong correlation between the two lip protrusion parameters, so that it

was sufficient to include only one of the two in the further analyses.

In Section D.2, the results for the set of audio speech parameters (voice source

excitation frequency F0, formant frequencies F1, F2, and F3, root mean squared

energy RMS) are given. The PCA suggested that four of the five parameters were

also sufficient to explain about 94% on average of the variance but the case was not

as straightforward as for the video parameter set in terms of which parameter that

was. Medium to strong correlations were found but for varying pairs of parameters,

so that a generalisation appears impossible. The results suggest that it was rather a

case of more than one parameter being correlated with one or more than one other.

In that case, it was only after the PCA, with the orthogonal principal components

forming a new coordinate system, that four ‘new’ parameters were able to express

an average of 94% of the variance. Hence, all five parameters were included in the
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further analyses.

Due to the large number of tables, the pages of this appendix can be found on

the accompanying CD-ROM in the file appendixD.pdf.



Appendix E

Results PCA

This appendix contains the tables (E.1 – E.40) with the results of the PCA in the

temporal domain for all central phonemes in the /bVb/- and /A:CA:/-words in the

AVOZES data corpus, as described in Section 5.5.3 and discussed in Section 6.5.

In the tables below, phonemes are identified by their IPA symbol as well as the

prompts used in the carrier phrases spoken by the speakers (compare Tables 4.4

and 4.5). The tables show the cumulative proportion of the variance explained by

the first six principal components. The top half of the tables show the audio speech

parameters (voice source excitation frequency F0, formant frequencies F1, F2, and

F3, root mean squared energy RMS), while the bottom half displays the video

speech parameters (mouth width MW , mouth height MH , protrusion of upper lip

PUL, protrusion of lower lip PLL, relative teeth count RTC). First, the results

for the vocalic phonemes are presented in Section E.1, then for the consonantal

phonemes in Section E.2.

After the numeric results in the tables, a visualisation of the proportion of

variance expressed by the first and second principal components of each parameter

for each phoneme is given in the form of ‘star charts’ in the Figures E.1 – E.4.

The first figure contains the star charts for the vocalic phonemes plus those of

the consonantal phonemes /p b/. The second figure displays the star charts of

the remaining consonantal phonemes. Phonemes are again identified by both their

corresponding IPA symbol and the prompts used in the AVOZES data corpus.
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Due to the large number of tables and figures, the pages of this appendix can

be found on the accompanying CD-ROM in the file appendixE.pdf.



Appendix F

Results Correlation Analysis

In this appendix, the numeric results of the correlation analysis are presented. First,

the results of the between-set correlation analysis, described in Section 5.5.4 and

discussed in Section 6.6.1, are shown in Section F.1. A linear correlation analysis

similar to the within-set analysis presented in Appendix D was performed. The

correlation values of all pairs of audio and video speech parameters for each phoneme

are given in the Tables F.1 – F.5. Tables F.1 and F2 show the results for the vocalic

phonemes in the /bVb/-words, followed by the results for the consonantal phonemes

in the /A:CA:/-words in Tables F.3 – F.5.

Secondly, Section F.2 contains the numeric results of the canonical correlation

analysis of the audio and video speech parameter sets, as described in Section 5.5.5

and discussed in Section 6.6.2. Section F.2.1 presents for each central phoneme in

the /bVb/- and /A:CA:/-words and each parameter the computed canonical weights,

the canonical correlation value r1 of the highest canonical correlation, and the re-

ciprocal condition number 1/κ. The intraset structure correlations are shown in

Section F.2.2, followed by the interset structure correlations in Section F.2.3. The

variance extracted by a canonical variate is summarised in the tables in Section

F.2.4. Finally, Section F.2.5 contains the redundancy and total redundancy values.

The input parameters for the analyses were the five audio speech parameters

(voice source excitation frequency F0, formant frequencies F1, F2, and F3, root mean

squared energy RMS) and the four video speech parameters (mouth width MW ,
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mouth height MH , protrusion of upper lip PUL, relative teeth count RTC).

Due to the large number of tables, the pages of this appendix can be found on

the accompanying CD-ROM in the file appendixF.pdf.



Appendix G

Results Coinertia Analysis

In this appendix, the results of the coinertia analysis (COIA) are presented (see

Section 6.6.3 for a discussion). COIA is a multivariate statistical method similar to

methods such as canonical correspondence analysis or canonical correlation analysis.

However, instead of maximising the correlation, it maximises the covariance between

two parameter sets (see Section 5.5.6 for details). Unlike other methods, COIA

results do not suffer from instability and in the presence of collinearity, even if

the number of parameters approaches the sample size. Thus, it was possible to

incorporate both the principal component related to the slope of the parameter

curves as well as the principal component related to the horizontal range or shift in

the COIA analysis.

First, Section G.1 presents the ‘coinertia scores’. These are the covariance (or

coinertia) value, the correlation value, the ratios of the projected variance from

separate analysis of each parameter set to the variance from the coinertia analysis for

both audio and video parameter set, and the RV coefficient as a measure of overall

‘relatedness’ of the two domains given the selected parameters. The first three

of these four scores are measures that exist for every coinertia vectors. However,

shown are only the values for the first coinertia vector, which explains the largest

amount of variance and is therefore the most important one.

Secondly, Section G.2 presents the parameter weights resulting from COIA.

These weights are the coefficients of the parameters in the linear combinations of
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the sets that are related. Parameters with larger weights have a stronger influence

than others.

Again, the audio speech parameters and the principal components related to

them are denoted by F0 for the voice source excitation frequency, F1, F2, and F3

for the first three formant frequencies, and RMS for the root mean squared energy.

The video speech parameters and the principal components related to them are

denoted by MW for the mouth width, MH for the mouth height, PUL for the

protrusion of the upper lip, and RTC for the relative teeth count.

Due to the large number of tables, the pages of this appendix can be found on

the accompanying CD-ROM in the file appendixG.pdf.



Appendix H

Results Linear Discriminant

Analysis

This appendix presents the results of the linear discriminant analysis (LDA), as

described in Section 5.5.2 and discussed in Section 6.3. Discriminant analysis clas-

sifies objects into groups based on information from a set of parameters. LDA finds

a linear combination of selected original parameters that exhibits the largest ratio

of between-class variance to within-class variance.

The sample points used in the LDA are given in Tables H.1 – H.3. Section 6.3.2

describes the selection process. LDAs were performed separately for the (short

and long) vowels (Tables H.4, H.6, H.8), the diphthongs (Table H.10), and the

consonants (Table H.12). As is the case for all analyses mentioned in this study,

these phonemes refer to the central phonemes in the /bVb/- and /A:CA:/-words.

The summary on the left-hand side of the tables details the parameters selected for

the discriminant functions, the χ2 value, the significance value p, and the overall

accuracy of the reclassification of all phonemes in one group (vowels, diphthongs,

consonants) after cross-validation. The parameters are shown in the order that they

were selected for the discriminant functions, i.e. the parameter listed first was the

one that helped most to separate the phonemes and the other parameters are given

in order of their decreasing contribution.

The accuracy of the discriminant functions was tested by reclassification after
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cross-validation for each group of phonemes following the leave-one-out method

[Lachenbruch 68]. The results are shown on the right-hand side of the above men-

tioned tables. Sensitivity describes the percentage of individuals for each phoneme

that were correctly classified. Predictivity refers to the percentage of individuals

classified as belonging to a phoneme that were really belonging to it. Table H.5 for

all vowels, Table H.7 for the short vowels, Table H.9 for the long vowels, Table H.11

for the diphthongs, and Table H.13 for the consonants present the confusion matri-

ces after reclassification by cross-validation. The rows refer to the actual phonemes,

the columns to the classification results. Cross-validation was only performed for

the individuals in the analysis, i.e. the individuals corresponding to outliers were

not considered in the cross-validation, which led to some of the rows in the confusion

matrices not adding up to a total of 20.

Due to the large number of tables, the pages of this appendix can be found on

the accompanying CD-ROM in the file appendixH.pdf.



Appendix I

Registered Parameter Curves

The following pages show the parameter curves after curve registration, as described

in Section 5.5.7 and discussed in Section 6.7. Shown in black are the individual pa-

rameter curves of the 10 male speakers, while the green curves denote the individual

parameter curves of the 10 female speakers. The red curve shows the mean (point-

wise average) of all individual parameter curves. The way the plots are ordered is

the same as for the unregistered parameter curves in Appendix C, that is, first by

parameter, then by phoneme. The order of the parameters is audio speech parame-

ters first (voice source excitation frequency F0, formant frequencies F1, F2, and F3,

root mean squared energy RMS), then the video speech parameters (mouth width

MW , mouth height MH , protrusion of upper lip PUL, relative teeth count RTC).

There are two pages of graphs per parameter. The first page exhibits the vocalic

phonemes as well as the consonantal phonemes /p b t/, while the graphs for the

remaining consonantal phonemes are shown on the second page.

The scale on the axes is always the same for all plots belonging to one partic-

ular parameter in order to facilitate the visual comparison of the curves. Drastic

outliers in the individual parameter curves were the result of tracking failures in

the measurement of the original data or due to oscillating curves as a result of the

registration process.

Due to the very large number of graphs, the pages of this appendix can be found

on the accompanying CD-ROM in the file appendixI.pdf.
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Appendix J

Results of PCA on Registered

Parameter Curves

This appendix contains the tables (J.1 – J.40) with the results of the PCA, as

described in Section 5.5.7 and discussed in Section 6.7.2, applied to the registered

parameter curves in the temporal domain for all /bVb/- and /A:CA:/-words in

the AVOZES data corpus. That is, a registration process (see Section 5.5.7 for

details and Section 6.7 and Appendix I for results) was applied to the smoothed and

resampled parameter curves before a PCA was performed. Parameters investigated

were the voice source excitation frequency F0, the formant frequencies F1, F2, and

F3, RMS energy, mouth width MW , mouth height MH , protrusion of upper lip

PUL, and relative teeth count RTC. In the tables below, syllables are identified

by the central phoneme (IPA symbol) in the /bVb/- and /A:CA:/-words as well as

by the prompts used in the carrier phrases spoken by the speakers (compare Tables

4.4 and 4.5). The tables show the cumulative proportion of the variance explained

by the first six principal components. First, the results for the vocalic phonemes

are presented, then for the consonantal phonemes.

Due to the large number of tables, the pages of this appendix can be found on

the accompanying CD-ROM in the file appendixJ.pdf.
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