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Abstract— In this paper, we present a system capable of de-
tecting and tracking on-road objects in the scene, in particular
vehicles. Such a system is a useful part of a driver assistance
system. This system employs two different techniques in the
detection phase to increase the robustness. A large part of
this paper is devoted to reducing the computational amount
required of the overall algorithm by quickly excluding pixels
above the horizon and on the road surface. The number of pixels
that require further, computationally expensive processing is
reduced by up to 65% in the sequences used in the experimental
evaluation. Objects are detected in the remaining image areas
by an improved boosting approach of weak classifiers based
on the well-known AdaBoost and RealBoost approaches. The
tracking is then done by a combination of periodically running
the detection algorithm, while using adaptable templates at
other times which allow for changes in shape and appearance
as the car and the other vehicles travel along the road.

I. INTRODUCTION

Driver assistance systems have been the focus of much
research in recent years and the results of that research can
increasingly be found in current production cars. The aim
of such systems is to improve the safety for the driver,
passengers, and other road traffic participants (e.g. drivers of
other vehicles, pedestrians, cyclists). Various forms of driver
assistance systems exist; the work presented in this paper is
concerned with the visual detection and tracking of vehicles
- and generally speaking, other on-road objects - around the
driver’s car. The detection and tracking of such objects is
a pre-requisite for the detection of potential collisions and,
thus, for warning the driver of these.

The detection of on-road objects, i.e. the separation of
foreground objects is a non-trivial problem. Both the driver’s
car as well as the on-road objects may be moving, often at
different speeds, the scene background is constantly chang-
ing, the visual appearance of the road might be changing, and
the environmental conditions (illumination due to weather
and time of day) might be changing. We believe that only
a multiple cue system can deliver the robustness required
for practical applications in such conditions. Single cues
are prone to give erroneous results in one condition or
another. Integrating multiple, complementary cues can over-
come these problems and lead to improved robustness. Our
approach to the detection of on-road objects therefore uses
a colour background model of the visual appearance of the
road surface and the entropy of image patches as individual
cues. Other cues such as optical flow and 2D wavelet analysis
are also possible and are currently investigated.

Once potential on-road objects have been detected, adapt-
able (or dynamic) template matching is used for object
tracking. A static template matching approach would quickly
fail as the shape and appearance of the on-road objects
changes as the driver’s car and the objects move and hence
the pose changes. Similarly, changes in the environmental
conditions can lead to changes in the visual appearance of
the objects. In adaptable template matching, the templates
are updated at every time step, so that the tracking always
works with the most recent object shape and appearance.

The remainder of this paper is organised as follows.
Section II gives an overview of related work in the area
of on-road object detection and tracking. Next, Section III
shows a way of estimating the location of the horizon in the
video frame, because only points below the horizon line need
to be further processed, thus reducing the computational cost.
Section IV presents our method for the detection of on-road
objects and Section V details the method for tracking such
objects. Results and the discussion can be found in Section
VI. Finally, the conclusions are drawn in Section VII.

II. RELATED WORK

The task of separating foreground, on-road objects from
the road and scene background is similar to the task of
background modelling in many computer vision applications.
Many background modelling algorithms have been proposed
in the literature; only some can be mentioned here. Pfinder
[1] utilised 2D statistical models of the object (e.g. a
person) and modelled the background as a texture surface
with each background pixel being modelled by a Gaussian.
These foreground and background models are updated at
each time step. Stauffer and Grimson [2] presented a real-
time background subtraction algorithm that uses a Gaussian
mixture model to model a changing background and to
adapt to chaning visual conditions. Ridder et al. [3] employ
Kalman filtering for estimating an adaptive background, so
that their method can tolerate illumination changes. Ohta [4]
presented another statistical approach to model a changing
background. The model represents the relation between the
pixel values, the reflection index of an object point, and the
illumination intensity of an object point. Elgammal et al.
[5] proposed a method using a kernel estimator function to
obtain a non-parametric model of the probability distribution
of each pixel’s intensity value. The model is said to adapt
quickly to changes in the scene caused by objects with small
motion (e.g. tree branches). Monnet et al. [6] followed a



dynamic texture approach with an online, auto-regressive
model to model dynamic scenes. Kahl et al. [7] proposed
an adaptive background model based on a linear PCA model
in combination with local spatial transformations.

A number of vanishing line estimation methods have been
proposed in the past. These can be broadly classified into
voting approaches using the Hough Transform and statistical
approaches. Nakatani et al. [8] proposed a method based on
counting points on a sinusoidal curve in the Hough plane.
McLean and Koyyuri [9] proposed a method of vanishing
point detection by line clustering based on fan-shaped error.

A popular method in object detection is the AdaBoost
approach proposed by Viola and Jones [10] which uses a
cascade of weak classifiers, Haar-like features, to learn a
detector from a large number of training examples. The
approach provides a fast way of detecting objects at any
scale due to using the concept of integral images. The Haar-
like features themselves are limited but their performance
can be drastically improved through a boosting process.
The choice of a single threshold in the original AdaBoost
boosting method is sub-optimal, as shown by [11], since
AdaBoost does not consider all training examples equally. In
[12], performance was improved by using real-valued weak
classifiers, thus, creating a RealBoost algorithm. Rasoldazeh
et al. [11] generalised these methods to a multiple thresh-
olded classifier, defined by a maximum a posteriori rule,
which turns out to be a specific implementation of the higher
level concept of response binning. We use this approach for
the object detection phase in the work presented here.

A common method in object tracking is template match-
ing, in which a part of the original image is moved across the
current image while computing some similarity measure. The
position with the highest similarity measure is then deemed
to be the position of the original image patch in the current
image. Similarity measures include, for example, the sum
of absolute differences, the sum of squared differences, or
the normalised cross correlation. If neither of the tracked
object’s shape, visual appearance, and pose change, static
template matching is in an appropriate tracking method.
However, such an approach quickly fails when the object’s
shape, appearance, or pose change. One way to overcome
these problems is to use adaptable (or dynamic) templates.
Here, the templates are updated regularly, so that the tracking
always works with the current object shape, appearance, and
pose. Such an approach was described by Loy et al. in [13].
There, the updated template Ti(k) for the kth video frame
was a weighted average of the initial template Ti(0) and the
best match of the previous template image in frame k − 1

Ti(k) = β Ti(0) + (1− β)Ti(k − 1), β ∈ [0, 1]. (1)

The weighting factor β determined the contribution of
the initial template image. According to Loy et al. [14],
‘grounding’ the template image is necessary, because fully
updated templates have the tendency to ‘drift’ over the
image after some time, due to the quantisation error and
possible mismatches. In the work presented here, we avoid

Fig. 1. Left: Geometry of the photogrammetry process using parallel
planes. Right: Geometry of the pencil used to estimate the height of an
on-road object and the vanishing line parameters.

the ‘drifting’ problem by re-initialising the template once per
second through the response binning detection process.

III. ESTIMATING THE HORIZON

Before turning our attention to the problem of detecting
on-road objects, let us first estimate the horizon in the
perspective camera projection. We can do so by estimating
the location of the vanishing line which will serve as horizon
in further processing. Only image pixels below the horizon
line are processed which can save a significant amount of
computation, depending on the scene geometry as seen by
the camera. Automatically estimating the horizon is a safer
option than using a heuristic value for the horizon because
the apparent location of the horizon can change quickly when
the vehicle drives over a bumpy surface, e.g. a speed bump.

It is a safe assumption that any on-road object is located
on the ground plane. In the left-hand panel of Figure 1, p3 =
[x3, y3, 1]T and p4 = [x4, y4, 1]T correspond to the bottom
and top of an on-road object, respectively, p1 = [x1, y1, 1]T

and p2 = [x2, y2, 1]T are reference points, pv = [xv, yv, 1]T

is the vanishing point on the horizon, i.e. the vanishing line
`v = mvx + bvy, and pv⊥ = [xv⊥, yv⊥, 1]T is the point at
infinity on the line perpendicular to the ground plane. The
point p6 = [x6, y6, 1]T is at the intersection of the line going
through p1 and p2 with the vanishing line `v .

Initially, we assume that the two reference points are
known in the scene and that these points are on a line
perpendicular to the ground plane. As we see later, only p1

is needed and we take this point to be the camera position
on the ground plane. We also assume that the y-axis of the
camera is parallel to the lines going through the reference
points and the ground plane and the top of the vehicle. These
assumptions allow us to simplify the computations that will
follow. Since the camera coordinate system is such that the
x-coordinates of the reference points and the camera are the
same, we can reduce the number of degrees of freedom by
setting x1 = x6 and x3 = x4. It is worth stressing that, since
our aims of computation are the slope and intersect of the
vanishing line, this choice of camera coordinate system is



arbitrary and can be modelled using a rotation, which is an
affine transformation on the image plane.

Here, we make use of perspective geometry and, more
specifically, of Desargues theorem [16]. Recall that Desar-
gues theorem states that, in a perspective space, if three
straight lines joining the vertices of two triangles all meet in
a point, i.e. the vanishing point, then the three intersections
of pairs of corresponding sides lie on a straight line. As a
result, points which are perspective from a point are also
perspective from a line and, therefore, the cross ratio α
between them should remain constant. The cross ratio α for
the configuration in Figure 1 is given by

α =
| pv⊥ − p6 || p1 − p5 |

β | pv⊥ − p5 || p1 − p6 |
(2)

where β =| p1 − p2 | is the distance between the two
reference points p1 and p2. But, since the point pv⊥ is a
point at infinity, it can be shown that |pv⊥−p6|

|pv⊥−p5| = 1 and,
hence, Equation 2 becomes

α =
| p1 − p5 |

β | p1 − p6 |
(3)

From Figure 1, it is clear that the lines `1 and `2, together
with the vanishing line `v form a pencil whose intersect is
at the vanishing point pv . In the right-hand panel of Figure
1, we show the geometry of the pencil. Assuming p1 and p3

are known, i.e. their image locations have been determined
(e.g. road lines, curbs), we can express the points p5, p6 and
pv in homogeneous coordinates as follows

pv = [xv, yv, 1]T =
[

bv − b1

m1 −mv
,m1

bv − b1

m1 −mv
+ b1, 1

]T

p6 = [x6, y6, 1]T = [x1,mvx1 + bv, 1]T

p5 = [x5, y5, 1]T = [x1,m2x1 + b2, 1]T (4)

where the intersect and slope for lines `1 and `2 are given
by

m1 =
y1 − y3

x3 − x1
; b1 = y3 −m1x3

m2 =
y4 − yv

xv − x4
; b2 = y4 −m2x4 (5)

From the equations above, it is clear that the cross ratio
α only depends on the slope mv and intersect bv of the
vanishing line `v . To exploit this to our advantage, we
substitute the equations above into Equation 3 and write

α =
| a1 |

| a2bv + mva3 + γ |
(6)

where a1 = p3 × p1 + p1 × p4 + p4 × p3, a2 = x1 − x3,
a3 = x4(x1 − x3) and γ = y1(x3 − x4) + y3(x1 + x4).

We can remove the absolute value by working with the
square of α. Further, by using the shorthands ϕ = 1

α and
â1 = 1

a1
, we can rearrange the equation above as (ϕâ1)2 =

(a2bv +mva3 + γ)2, which is a quadratic whose parameters
can be recovered using Bayesian theory by employing a
least-squares estimator.

To do this, we make use of the normal linear model, which
can be expressed, in compact form, as y = Xθ + ε, where
ε is a vector of random errors, θ is the vector of parameters
that govern the model, X is a matrix of known coefficients
and y is the vector of independent terms γ2 for each of the
n frames of the video sequence under study.

Thus, we can view the independent terms γ2 as samples
and assume that the random errors are uncorrelated, have
zero mean, common variance σ2 and that the conditional
distribution of y, given θ, σ2, is governed by a multivariate
normal distribution. As a result, the likelihood becomes

L(y | θ, σ2) =
(

1
2πσ2

)− 1
n

exp
{
− (y −Xθ)T (y −Xθ)

2σ2

}
(7)

Note that, if the matrix (y − (X)θ)T (y − (X)θ) is
not singular, we can complete the square in the exponent
of Equation 7 as follows (y − Xθ)T (y − Xθ) = (θ −
θ̂)T XT X(θ − θ̂) + S, where S = (y − Xθ̂)T (y − Xθ̂) is
the residual for the estimator and θ̂ = (XT X)−1XT y is the
maximum likelihood for the vector of estimated parameters
θ̂. Thus, θ̂ is the vector of estimated α2, slope mv and
intersect bv that we aim to recover.

IV. ON-ROAD OBJECT DETECTION

It is worthwhile to note that the work presented in this
paper is not concerned with the classification of detected
on-road objects into classes like cars, pedestrians, cyclists,
and so on.

As a first step, we attempt to quickly eliminate image
pixels that correspond to the road surface because the
performance can be improved if such pixels are excluded
from further processing. The important issue here is that
this approach is only useful, if such pixels can be found
faster than the computation would take, if they were not
included. As outlined earlier, we believe that only a multiple
cue system can deliver the robustness required for practical
applications, as single cues tend to fail in one condition
or another. In our system, we currently use two cues: a
colour background model for the road and the entropy of
image patches which can both be computed in real-time. The
multi-cue framework is extendible and other cues could be
included. In the following, we will present these individual
cues in more detail, before turning our attention to the issue
of how to integrate the results of the individual cues.

A. Using a Colour Road Background Model

First, a statistical model of the colour of the road surface
is built from a training set of images. It would be possible
to build a model from known road surface pixel locations,
but we have found that it suffices to build a Gaussian
model for each pixel by accumulating the colour information
over the entire training set, under the assumption that the
video sequence was not recorded in heavy traffic, i.e. we
assume that a reasonable amount of road surface is visible.
A training set as small as 100 images gave good results in
our experimental evaluation. Colour information is gathered
by first transforming the image colour space to HSI colour



Fig. 2. Road detection in three example frames. Left: Using a colour road background model. Right: Using the entropy of image patches.

space [17], where the effects of intensity are separated from
hue and saturation. Our road surface model is based on the
information in the latter two.

Once such a model is available, the current input frame
is first converted to HSI colour space. Then, the following
inequalities are applied to decide whether a pixel belongs to
the road surface

Road =

 1 if |H(x, y)− H̄| ≤ 3σH

AND |S(x, y)− S̄| ≤ 3σS

0 else
(8)

where H and S are the current hue and saturation values,
H̄ and S̄ are the mean of hue and saturation, and σH

and σS are the standard deviation of hue and saturation.
If hue and saturation are within three standard deviations
from the current mean, the pixel (x, y) is deemed to be
on the road surface. After all pixels have been processed,
the Gaussian models for hue and saturation are updated
so that the algorithm is able to adapt to changes in road
surface colour. At any one time, we keep a maximum of
1000 samples for each model, in order to have a good, yet
computationally not expensive model.

In addition, it is possible to build better masks of road
surface areas by taking advantage of the spatial relationships
between road surface pixels. In other words, if a pixel has
been classified as belonging to the road surface class, then
the likelihood is quite high that its neighbouring pixels are
also members of that class. We can take advantage of this
property by applying a symmetric 2D Gaussian filters to the

binary mask image

f(x, y) = exp

(
−1

2
(x2 + y2)

s2

)
(9)

where s represents the scale which can be used to change
the size of the ‘footprint’ of the Gaussian. A cascade of
2D Gaussian filters allows to find connected regions and to
remove noisy and falsely detected pixels. We use a cascade
of three Gaussian filters with decreasing s, i.e. increasing
footprint. Each filter is moved across all pixels in the region
of interest and the convolution is computed. The first filter
removes spurious, noisy pixels that are classified as road
surface but are not connected to or close to any other road
surface pixels. The second filter, with a footprint larger than
the first Gaussian filter, then attempts to connect any remain-
ing road surface pixels so as to create connected regions.
Finally, the third Gaussian filter, again with a larger footprint
than the previous filter, performs a similar operation to the
first filter and removes mostly pixels along the rim of any
road surface area found. Doing so pixels that were wrongly
added to the road surface area by the second Gaussian filter.
In an approximation, the cascade of Gaussian filters can also
be implemented as morphological operations, which can be
done in real-time.

B. Using Entropy

As another cue in our system, we employ the entropy
measure (in the information theory sense). Specifically, we



use the Shannon entropy [18]

H(Ik) = −
n∑

i=1

p(i) log2p(i) (10)

and apply it to rectangular patches Ik[x − w...x + w, y −
w...y + w] of the kth video frame Ik where w denotes half
the window size in each dimension. The p(i) then become
the entries of the co-occurrence matrix. The pixel positions
(x, y) of the image patches are chosen in such a way that
all pixels are converted once and only once, i.e. the updates
are x = x + 2w and y = y + 2w, respectively (obviously
assuming that we move to the start of a line or row once the
end of the previous line or row of image patches has been
reached). The entropy H(Ik) is computed for each image
patch.

If H(Ik) > dthresh, then the image patch is taken as
containing (a substantial amount of) foreground objects.
Otherwise, the image patch is considered as belonging to the
background scene. A suitable value for dthresh can be learnt
from labelled training images. It should be noted that this
approach does not give as detailed information as the road
background model described in Section IV-A but is faster
to compute. Smaller patch sizes would enable more detailed
results but would also give rise to more falsely classified
patches. Since we are using all cues in a joint fashion, we
found empirically that w = 10 provides a good compromise
between level of detail and computational speed.

C. Multiple Cue Integration

A central issue in any multiple cue or multiple sensor
system is the issue of integrating the results from the
individual cues. In the work presented here, we follow a
voting approach in which each of the individual cues votes
for a pixel to belong to the road surface or not. Our system
requires both cues to be in favour of a pixel belonging to
the road surface, before that pixel is marked as such. Figure
3 shows results for three example video frames.

With the methods described here, the number of pixels to
be processed further with more computationally expensive
methods is reduced by up to 65% on average. The reduction
in overall computation is not quite as big as that because the
background model and entropy methods themselves have a
certain computational cost but this cost is much lower than,
for example, performing a boosted classification trained to
detect vehicles on the entire image.

D. Response Binning for Object Detection

As described in Section II, the approach we use for the
actual detection of vehicles in the remaining image areas
is that of Response Binning [11], which is an extension of
the AdaBoost and RealBoost approaches introduced by Viola
and Jones [10], [12].

To date, our work has focussed on detecting other cars
in the scene, which have a reasonable amount of similarity
in their appearance. Separate classifiers would need to be
learnt for other vehicles, e.g. trucks. We do so by training a
classifier from 2037 hand-labelled training examples of cars

Fig. 3. Road detection (red areas) and horizon estimation (white line) in
three example frames using multiple cues.

(positive set) and 5000 training examples not containing cars
(negative set). Once the classifier had been learnt, it was
applied to the remaining image parts to detect cars. Figure
4 shows an example result of the detection phase.

V. ON-ROAD OBJECT TRACKING

Once candidate objects have been found, the adaptable
template matching method described in Section II is used
to track candidates over a sequence of video frames. While
tracking, rather than just relying on the adaptable template
matching approach, the position of vehicle candidates is also
cross-checked with suggested candidate locations from the
Response Binning method. However, doing both at all times
would be computationally too expensive and so we only
perform the cross-check once per second, while in the mean
time we use the adaptable template matching approach to
quickly track the vehicle candidates within a small window
around the previous location. In the experiments, a search
window of ±20 pixels in x-direction and ±10 in y-direction
was used, based on the image resolution and the fact that
larger apparent movements occurred in the horizontal direc-
tion. Figure 4 shows an example result of the detection and
tracking.

VI. RESULTS AND DISCUSSION

Experiments have been performed with an image sequence
of over 2500 images taken by a camera system mounted
in a car while driving through an urban environment. The
resolution of the images is 640×240, the frame rate 60Hz.



Fig. 4. Example of vehicle detection and tracking.

As can be seen from Figure 4, clearly visible vehicles
are detected and tracked well. However, partially occluded
vehicles are not always detected correctly with the current
template approach. Improving this will be one aspect of
future work. The current unoptimised implementation of our
approach can achieve a frame rate of up to 10Hz, depending
on the size of the remaining image area to be processed
after the pre-processing as well as on the number of vehicle
candidates to be tracked.

VII. CONCLUSIONS

We have presented a single-camera system for detecting
and tracking on-road objects, in particular other vehicles
around the driver’s car. Much of the work to date has
been on finding ways to reduce the computational amount
required of the overall algorithm by quickly excluding pixels
above the horizon and on the road surface. A novel horizon
estimation method has been proposed to this end. Our system
employs currently two different cues to separate on-road
objects from the road background, but further cues could be
added. A voting mechanism is used to integrate the results
of the individual cues to deliver a combined result. On-road
objects are tracked using adaptable templates which allow for
changes to the shape and appearance of objects over time.
Promising results for some test video sequences have been
shown.

In future work, we will investigate further cues to the de-
tection system to further improve the results. Such cues will
include optical flow and 2D wavelet analysis. Furthermore,
we plan to use 2D active appearance models [19] or 3D
morphable models to improve the vehicle tracking process
to be more robust to illumination changes. These methods
build statistical models of the appearance of objects which is
expected to help with the difference in shape and texture of
vehicles. We will also work on improving the detection and
tracking of partially occluded vehicles which is a common
occurrence in on-road object tracking.
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