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Abstract
After decades of research, automatic speech processing has
become more and more viable in recent years. Audio-video
speech recognition has been shown to improve the recognition
rate in noise-degraded environments. However, which audio
and video speech parameters to choose for an optimal system
and how they are related is still an open research issue. Here we
present a number of statistical analyses that aim at increasing
our understanding of such audio-video relationships. In par-
ticular, we look at the canonical correlation analysis and the
coinertia analysis which investigate the relationship of linear
combinations of parameters. The analyses are performed on
Australian English as an example.

1. Introduction
Human-Computer Interaction (HCI) is a fast growing field these
days. More and more computer systems are used in every aspect
of our life. An important aspect of such technology is the way
in which people interact with it. Traditional means of HCI are
often cumbersome or simply impractical in many new applica-
tion areas. Research in recent years has more and more focussed
on ways of “tracking” the user, understanding what the person
does or says, and then reacting appropriately. Although auto-
matic speech recognition (ASR) systems have improved signif-
icantly in recent years, they still have some limitations with re-
spect to the environment in which they can be used. Current
commercially available ASR systems employ statistical mod-
els of spoken language and enable continuous speech recogni-
tion in reasonably good acoustic conditions. However, they can
fail unpredictably in noisy conditions. One way of overcoming
some of the limitations of audio-only ASR systems is to use the
additional visual information of the act of speaking similar to
what humans do when facing adverse acoustic conditions (e.g.
[1, 2, 3, 4]).

Various research groups around the world have shown that
the incorporation of visual speech information in an ASR sys-
tem can significantly improve the recognition rate, in particu-
lar in noisy conditions (e.g. [5, 6]). However, how the audio
and video speech parameters are related to one another and how
these relationships can be exploited best, still remains an open
research issue. Yehia et al [7] looked at the relationship be-
tween acoustic parameters, the shape of the vocal tract, and the
position of facial feature points around the mouth and lower
face from a speech production and animation perspective. A
strong correlation (80-91%) was found between the latter two.
They also found that a large part (72-85%) of the variance ob-
served in acoustic parameters can be determined from vocal-

tract and facial data together. And even the facial data alone
performed well in accounting for the acoustic parameter vari-
ance. The drawbacks of their study are the small number of
speakers looked at (only 2) and the use of intrusive measure-
ment techniques (transducers inside the oral cavity).

Our goal in the work presented here is to apply statisti-
cal analyses to increase our understanding of the relationship
between audio and video speech parameters. We deliberately
chose explicit geometric video speech parameters, such as the
height of the mouth opening, over implicit ones (region of in-
terest) because they facilitate the interpretation of the results.
As an example, we use data for Australian English (AuE) from
our AVOZES data corpus (Section 2). Section 3 describes the
recording setup and the content of the AVOZES data corpus in
more detail. The statistical analyses are detailed in Sections 4
and 5. Section 6 presents the results of the coinertia analysis.
Finally, the results are discussed in Section 7, before we finish
with the conclusions (Section 8).

2. AVOZES Data Corpus
We use the data recorded in our Audio-Video Australian En-
glish Speech (AVOZES) data corpus [8]. The recordings were
made with a stereo camera system to achieve more accurate 3D
measurements on the face. To exploit this fact, we developed
a novel, non-intrusive 3D lip tracking algorithm [9]. It does
not require any artificial markers on the face, thus allowing a
more natural behaviour of the speaker and greater practical ap-
plication. Through the use of a face tracking system, the speak-
ers were allowed to move their head freely within the cameras’
field of view, again facilitating a more natural way of speak-
ing in. The speakers sit in front of a stereo camera pair with
an omnidirectional microphone attached 20-25cm below their
mouth (Fig. 1). The face is well illuminated by a light source
just below the cameras so that no shadows appear on the face.
Recordings were made to digital video (DV) tape because of its
ability to playback the recordings many times without a loss of
quality. The recordings were made at 30Hz video frame rate
and 16bit 48kHz mono audio rate in a controlled acoustic en-
vironment (almost no external noise, some air conditioning and
computer noise in the background).

The AVOZES data corpus comprises 20 native speakers of
AuE (10 female and 10 male speakers). It covers all phonemes
and visemes in AuE except for the neutral vowel / � / because of
its great audio variability and the neutral consonant / � / which
adds little to the analysis. In addition, the voiced fricative / � /
and the diphthong / ��� / were also omitted because they have a
low occurence in AuE. The core part of the corpus consists of 40
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Figure 1: Setup for AVOZES data corpus recordings.

sequences per speaker containing consonant-vowel-consonant-
(CVC-) or vowel-consonant-vowel- (VCV-) nonsense words
with the phoneme of interest in the central position. The vowel
context is the wide open / ��� / (“ar-ar”). The voiced bi-labial /

�
/

is used as the consonant context (“b-b”). These words are put in
a carrier phrase (“You grab WORD beer.”) to overcome articu-
lation patterns associated with reading words from a list. Visual
segmentation is facilitated through the use of bi-labial closings
before and after the CVC- or VCV-word. We are aware that a
bi-labial context causes strong coarticulation effects in the for-
mants. However, these are quite predictable for /

�
/ and we be-

lieve that the advantages of a bi-labial context for visual seg-
mentation outweigh the disadvantages from coarticulation.

3. Parameter Extraction and Preprocessing
From the recorded data, we extract 5 audio speech parameters
and 5 video speech parameters (Table 1) which are measured
at different sampling rates (100Hz for the audio parameters and
30Hz for the video parameters). The former are extracted with
the help of the esps software package. The latter parameters
are determined by applying our face tracking and lip tracking
algorithms. Feature points on the inner lip contour, such as the
lip corners, are automatically determined in both camera im-
ages for each frame and the 3D coordinates calculated. From
these, real 3D distances can be measured, rather than measuring
parameters based on 2D image coordinates. Thus, head move-
ments by a speaker do not lead to measurement errors.

Audio Voice source excitation F0
Parameters Formant frequencies F1, F2, F3

RMS energy
Video Mouth width (MW)

Parameters Mouth Height (MH)
Protrusion upper lip (PUL)
Protrusion lower lip (PLL)
Relative teeth count (RTC)

Table 1: The audio and video speech parameters (variables).

The audio speech parameters are standard acoustic, energy,
and frequency parameters. The video speech parameters are ex-

plicit geometric features. The mouth width is defined as the
3D distance from lip corner to lip corner. Similarly, the mouth
height is defined as the 3D distance from the midpoint of the
upper lip to the midpoint of the lower lip. The lip protrusion
parameters are not easy to determine without using additional
fixed markers in order to measure the relative distance. We want
to avoid such additional markers by defining the protrusion pa-
rameters as the respective distances from the midpoint of the
line from lip corner to lip corner to each lip midpoint. In addi-
tion to these metric measures, we introduce the “relative teeth
count” as a measure of the visibility of teeth which we consider
to be a potentially useful measure. It is defined as the average
of the number of teeth pixels � in � in the left and right camera
image divided by the distance � to the cameras (as measured for
the left lip corner):

�	��
� ������������ � � (1)

where � is the rectangular area spanned by the four lip feature
points already determined.

The measurements of the audio and video speech param-
eters contain an error component. As a result, the parame-
ter curves can show incorrect large variation although the un-
derlying function is actually smooth. Therefore, cubic spline
smoothing is performed on the parameter curves (parameters
over time). The relationship between audio and video speech
parameters is determined at a phoneme level. The sample points
corresponding to each phoneme of interest are determined as
follows. For the vowels and diphthongs, the positions of the
bi-labial closures before and after the phoneme of interest are
found on the time line by looking at the mouth height parame-
ter curve. Sample points between them are taken as belonging
to the vowel or diphthong. For the consonants, first the bi-labial
closures of the surrounding words are identified in the mouth
height parameter curve. Then the maxima of the mouth height
parameter curve corresponding to the wide open / ��� / context are
found. Any sample points on the time line between these max-
ima are taken as belonging to the consonant.

To facilitate the statistical analysis of each sequence
(phoneme of interest), all audio and video speech parameters
are resampled to 25 observation points on the time line. A lin-
ear resampling is chosen to retain the original parameter curve
shapes, whereas dynamic time warping changes the shape. By
resampling, inter-speaker differences with respect to the length
of a phoneme are taken care of.

4. From Correlations to Canonical
Correlations

4.1. Within-Set Relationships

Firstly, correlations between pairs of parameters within each
parameter set are computed to evaluate if any parameters are
redundant. In combination with principal component analysis
(PCA), redundant parameters in each set are identified and re-
moved from further analysis. A PCA is applied separately to the
sets of audio and video speech parameters for each phoneme.

In the case of the video speech parameters, the PCA results
show that the first four principal components (PCs) already ex-
plain 96-99% of the variance, so that the fifth PC is somewhat
redundant. Using the correlation analyis, we can identify that
the two lip protrusion parameters are highly correlated which
can be expected. Upper and lower lip are typically moved si-
multaneously and in a similar fashion. The correlation coeffi-



cient for the two protrusion parameters shows values between
0.79 and 0.99, with particularly high values for vowels and
diphthongs. It is therefore sufficient to continue the analysis
with only one protrusion parameter and we choose the upper lip
protrusion parameter. No other strong correlation between any
parameters is found in the video speech parameter set.

For the audio speech parameters, the PCA results also sug-
gest that some parameters are correlated and that there is thus
redundancy in the data. The first four PCs cover 90-97% of the
variance. However, no single pair of parameters stands out in
the correlation analysis. This suggests that it is rather a case of
a combination of parameters being correlated than two single
parameters. It is only after the PCA, with the orthogonal PCs
forming a new coordinate system, that four ‘new’ parameters
are able to express an average of 94% of the variance. Hence,
we cannot simply take one particular parameter away but must
include all five parameters in the further analyses.

Secondly, before other statistical analyses are applied, the
amount of data is reduced by again using PCA but this time as
a statistical shape analysis technique. For this, a PCA is applied
to each parameter separately for each phoneme, that is, a PCA
is performed on the temporal domain. This allows us to find the
main modes of variation in the shape of the parameter curves
and thus the relationship between points on the time scale and
the PCs. In addition, it enables the use of a compact representa-
tion of the individual parameter curves in our further analyses.

Table 2 shows the average proportion of variance explained
by the top three PCs for each parameter. Any further PCs can be
neglected as the amount of variance they cover is small. To anal-
yse what variation in the shape of the parameter curves the PCs
stand for, we plot the mean parameter graph for each phoneme
and each parameter and add the graphs of the PCs with � 10
standard deviations. Figure 2 shows a typical example for the
first three PCs.

Vowels / Diphthongs Consonants
PC1 PC2 PC3 PC1 PC2 PC3

F0 0.83 0.11 0.04 0.86 0.07 0.04
F1 0.50 0.21 0.12 0.44 0.26 0.14
F2 0.64 0.15 0.09 0.54 0.21 0.12
F3 0.67 0.14 0.08 0.60 0.19 0.10

RMS 0.42 0.23 0.14 0.42 0.23 0.16
MW 0.83 0.12 0.03 0.85 0.10 0.03
MH 0.66 0.18 0.10 0.65 0.20 0.11
PUL 0.54 0.22 0.12 0.50 0.24 0.12
RTC 0.65 0.22 0.09 0.80 0.13 0.05

Table 2: Average proportion of variance explained by the top
three PCs for each parameter.

The PCs relate to three main modes of variation:
� a vertical shift,
� a mode related to the slope of the curve, and
� a mode describing the horizontal range or shift.

For the vast majority of parameter-phoneme pairs, the first PC
is related to a vertical shift of the parameter curve (Figure 2
left). In other words, the strongest variation for the individual
curves of the speakers is in these cases not related to differences
in the curve shape but to a mere shift which appears to be a
personal characteristic of each speaker. This shift occurs for all
sample points on the time scale and is almost invariant in size.

In contrast, the second and third PC (Figure 2 centre and right)
express variation in the curve shape. These PCs are related to
the slope of the curve and the horizontal range or shift.

We are interested in the common behaviour of parameters
over time for a certain phoneme, i.e. what are the similarities for
all speakers. For example, having two curves of similar shape
but with a vertical shift between them, we are interested in the
shape, not the shift separating the curves. Consequently, the
PC that expresses the vertical shift is not used as input for the
analyses, as a way of normalising the data. We focus on the
two shape PCs that are related to the slope of the curve and the
horizontal range or shift instead.

4.2. Between-Set Relationships

First, a pairwise linear correlation analysis is performed across
the parameter sets. That is, the correlations between one pa-
rameter from each set is looked at. No strong correlations
are found, nor are the weaker correlations consistent for all
phonemes or some subgroups of them. The correlations ap-
pear to be phoneme-specific. The largest correlation values
( � �������
	 � ) are found for F0 and mouth width for phoneme
/� /, for F2 and mouth height for phonemes / �������� /, for F3 and
RTC for phoneme / ��� /, for RMS and mouth height for phoneme
/� /, and for RMS and RTC also for phoneme /� /. Thus, the data
does not support a hypothesis of a direct 1-1 relationship be-
tween any of the speech parameters in the two sets. However,
a combination of parameters from either set may correlate well,
or the parameters could be related in a non-linear manner that
is not uncovered by linear statistical methods. Hence, we next
look at statistical analyses that explore the relationship between
combinations of parameters.

Canonical correlation analysis (CANCOR) is a statistical
analysis for the exploration of relationships of linear combi-
nations of variables. CANCOR is a generalisation of multiple
correlation analysis for sets of parameters with at least two pa-
rameters in each set [10]. Similarly to PCA, a rotation of the
coordinate system is performed but rather than maximising the
variance within a single set of variables as in PCA, the correla-
tion between two sets of parameters is maximised in CANCOR.
As a result, the relationships within each set are disentangled,
so that the relationships between the sets become clear. The
variables in the new coordinate system are linear combinations
of the parameters in each set and are called canonical variates
(CV). They are orthogonal to each other and successive pairs of
CVs are uncorrelated. Most of the covariance between parame-
ter sets is explained by the first few CVs.

The correlation between the linear combinations is given by
the canonical correlation coefficients �����������! �"�$# where %
is an index number between 1 and the sum of the number of
parameters in the sets. �'& refers to the highest canonical corre-
lation coefficient. Typically, only the first 2-3 ��� ’s are of interest
as levels of correlation drop quickly.

For small samples where the number of parameters ap-
proaches the sample size, �'& quickly tends towards 1. Canonical
correlation coefficients computed in such cases can be mislead-
ing with respect to the extent of linear relationship between the
linear combinations in question. In our case, the sample size is( � � � , the audio set has 5 parameters, and the video set 4
parameters. Ideally, we would like to take the two shape PCs
identified earlier as input. However, taking 18 parameters into
a CANCOR analysis of sample size

( � � � will almost surely
lead to �)&+*,� and thus the results would be of little value due
to collinearity. In consequence, we only take the PC related to
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Figure 2: Typical modes of variation by the top three PCs on the example of the phoneme / � / and the mouth height parameter. Shown
are mean curve (solid line) and curves showing the effect of the PC at � 10 standard deviations (dashed lines).

the slope of the curve as input, considering it the more impor-
tant one of the two PCs. The PCs are normalised to zero mean
and unit variance.

Table 3 shows for each phoneme the canonical correlation
coefficient �'& . The canonical weights - the coefficients of the
linear combinations (CVs) - are not shown here because they
are small in magnitude ( � � 	 � ) with few exceptions. Overall,
no parameter can be shown to distinctively contribute more (or
less) to the canonical correlation. It is the combinations of all
parameters which are highly correlated, not single parameters.

Short Vowels � � � �  �
�)& 0.59 0.80 0.85 0.61 0.76 0.76

Long Vowels � � � � � : � : � : � :

�)& 0.85 0.76 0.83 0.80 0.81 0.87

Diphthongs e � ��� a � a � � � ���
� & 0.79 0.81 0.79 0.81 0.76 0.60

Consonants � � � � 	 

�)& 0.84 0.68 0.87 0.83 0.83 0.64

Consonants � �  � � �
� & 0.71 0.66 0.78 0.81 0.77 0.78

Consonants � t� d � � � �
�)& 0.70 0.69 0.65 0.75 0.82 0.77

Consonants � � � �
�)& 0.78 0.57 0.82 0.76

Table 3: Canonical correlation values �'& .

As Gittins [10] points out, a substantive interpretation of the pat-
tern of canonical weights is difficult anyway. They are known
for their instability. Small changes in the parameters have great
effects. Factors contributing to this instability are insufficient
sample size, measurement errors, and collinearity. Therefore,
we look at another statistical method called coinertia analysis
which does not suffer the same problems.

5. Coinertia Analysis
Coinertia analysis (COIA) is a relatively new multivariate sta-
tistical analysis for coupling two (or more) sets of parameters
by looking at linear combinations of these. It was introduced
for ecological studies by Dolédec and Chessel [11]. As it ap-
pears to be relatively unknown in the HCI community, we will
first give some background information. In COIA, the term ‘in-
ertia’ is used as a synonym for variance. The method is related

to other multivariate analyses such as canonical correspondence
analysis, redundancy analysis, and canonical correlation analy-
sis [10]. COIA is a generalisation of the inter-battery analysis
by Tucker [12] which in turn is the first step of partial least
squares methods [13].

In many aspects, COIA is very similar to CANCOR. It also
rotates the data to a new coordinate system and the new vari-
ables are linear combinations of the parameters in each param-
eter set. However, this time, it is not the correlation between
the two sets that is maximised but the coinertia (or covariance)
which can be decomposed as

������� �  ��! � ��� ���"� �  #�! %$'& �)( �"� �* +$,& �)( �"�-�% 	 (2)

COIA finds a compromise between the correlation ( ��� � �
� �  .�% ) and the variance in either set ( �)(
�"� �* , �)( �/�-�% ). It
aims to find orthogonal vectors - the coinertia axes - in the two
sets which maximise the coinertia value. The number of axes is
equivalent to the rank of the covariance matrix.

The advantage of COIA is its numerical stability. The num-
ber of parameters relative to the sample size does not affect the
accuracy and stability of the results [11]. The method does not
suffer from collinearity and the consistency between the corre-
lation and the coefficients is very good [14]. Thus, COIA is a
very well-suited multivariate method in our case. 1

The coinertia value is a global measure of the co-structure
in the two sets. If the value is high, the two parameter sets vary
accordingly (or inversely). If it is low, the sets vary indepen-
dently. The correlation value gives a measure of the correlation
between the coinertia vectors of both domains. Furthermore,
one can project the variance onto the new vectors of each set
and then compare the projected variance of the separate analy-
ses with the variance from the COIA (see the appendix of [11]
for the theory). The ratio of the projected variance from the
separate analyses to the variance from the COIA is a measure
of the amount of variance of a parameter set that is taken by the
coinertia vectors. It is important to compare the sum of axes,
not axis by axis, because the variance projected onto the second
axis depends on what is projected onto the first axis, and so on.
Often it is sufficient to look at the first 2-3 axes because they
already account for 90-95% of the variance. In addition, COIA
computes the weights (coefficients) of the individual parame-
ters in the linear combinations of each set, so that it becomes
obvious which parameters contribute to the common structure
of the two sets and which do not. As has already been pointed
out, these weights are much more stable than the weights in a
CANCOR analysis. Finally, a measure of overall ‘relatedness’
of the two domains based on the selected parameters is given by
the RV coefficient [16].

1COIA can be computed with the ADE-4 tool [15] and is also avail-
able on the R statistical platform in the ‘ade4’ package.



Scores � � � �  �
cov 4.37 3.27 7.37 8.37 8.03 5.32
corr 0.66 0.64 0.75 0.68 0.54 0.59

Ratio Audio 0.69 0.68 0.88 0.65 0.80 0.64
Ratio Video 0.91 0.43 0.74 0.97 0.77 0.90

RV 0.23 0.14 0.37 0.23 0.17 0.25

Scores � � � � � : � : � : � :

cov 7.34 3.19 4.85 6.00 7.98 4.78
corr 0.83 0.68 0.82 0.75 0.67 0.63

Ratio Audio 0.91 0.84 0.75 0.95 0.95 0.72
Ratio Video 0.95 0.58 0.84 0.67 0.90 0.49

RV 0.50 0.26 0.33 0.34 0.32 0.17

Scores e � ��� a � a � � � � �
cov 4.98 5.06 6.14 4.67 5.86 5.56
corr 0.65 0.67 0.65 0.79 0.74 0.70

Ratio Audio 0.74 0.79 0.96 0.51 0.69 0.38
Ratio Video 0.58 0.77 0.70 0.83 0.61 0.76

RV 0.22 0.33 0.24 0.31 0.26 0.18

Table 4: Coinertia scores for vowels and diphthongs.

One of COIA’s biggest advantages is that it can be coupled
with other statistical methods, such as correspondence analysis
and PCA. That is, these methods are performed on the data of
the two domains separately and then a COIA follows. In fact,
Dray et al [14] show that seen in this context, COIA is a gener-
alisation of many multivariate methods. In our analysis it means
that we can use both shape PCs as input for a COIA and are not
restricted as in the case of CANCOR. As a result, the audio pa-
rameter set contains 10 parameters and the video parameter set
8 parameters made up by the two shape PCs for each parameter.

6. Results Coinertia Analysis
Tables 4 and 5 show the coinertia value, the ratio of each pro-
jected variance from the separate analysis of each parameter set
to the variance from the coinertia analysis for both audio and
video parameter set, and the RV coefficient. The first three of
these values exist for every coinertia axis. However, only the
values for the first coinertia axis are shown which by definition
is the axis onto which the largest amount of overall variance is
projected and which is therefore the most important one.

The coinertia values range from 3.19 to 8.37 with a mean
of 5.73 for the vowels and diphthongs, and from 3.29 to 10.38
with a mean of 5.99 for the consonants. Although the coinertia
values are slightly higher for the consonants, there are no signif-
icant differences between them and the vowels and diphthongs.
However, the coinertia values differ quite significantly between
individual phonemes. As a rule of thumb, the higher both ratios
of projected variance from separate analysis to variance from
coinertia analysis are, which means the higher the amount of
variance in a parameter set obtained by the coinertia axes is, the
higher is the coinertia value. This follows from equation 2.

The correlation values range from 0.54 to 0.83 with a mean
of 0.69 for the vowels and diphthongs, and from 0.50 to 0.82
with a mean of 0.68 for the consonants. It shows that the first
coinertia vectors from each domain correlate well. Differences
in the strength of the correlation exist for individual phonemes.
For example, the correlation value is high for the vowels / � � � ���
� � / and the consonants / � � 	 
 �+ � � /, while it is considerably
lower for the vowels /  � / and the consonants /

� � � � �!� /.

Scores � � � � 	 

cov 9.90 5.32 10.38 4.78 5.11 5.40
corr 0.82 0.52 0.74 0.75 0.75 0.79

Ratio Audio 0.74 0.75 0.97 0.64 0.71 0.87
Ratio Video 0.95 0.94 0.90 0.76 0.70 0.69

RV 0.34 0.22 0.44 0.25 0.33 0.34

Scores � �  � � �
cov 7.16 8.42 6.17 6.53 6.12 6.22
corr 0.65 0.81 0.77 0.75 0.66 0.66

Ratio Audio 0.92 0.95 0.90 0.81 0.95 0.81
Ratio Video 0.98 0.53 0.72 0.92 0.82 0.76

RV 0.28 0.29 0.39 0.33 0.30 0.30

Scores � t� d � � � �
cov 5.73 4.66 3.59 5.46 3.86 5.74
corr 0.77 0.55 0.60 0.68 0.68 0.56

Ratio Audio 0.49 0.91 0.32 0.71 0.65 0.64
Ratio Video 0.89 0.62 0.71 0.70 0.60 0.79

RV 0.25 0.18 0.12 0.22 0.17 0.18

Scores � � � �
cov 3.29 4.27 8.21 5.54
corr 0.50 0.56 0.67 0.61

Ratio Audio 0.87 0.79 0.81 0.67
Ratio Video 0.69 0.52 0.71 0.81

RV 0.17 0.14 0.24 0.20

Table 5: Coinertia scores for consonants.

For the vowels and diphthongs, the amount of variance
taken by the first coinertia axis ranges from 0.38 to 0.96 with
a mean of 0.75 for the audio parameter set, and from 0.43 to
0.97 with a mean of 0.74 for the video parameter set. Similarly,
for the consonants, the amount of variance obtained by the first
coinertia axis ranges from 0.32 to 0.97 with an average of 0.77
for the audio parameter set, and from 0.52 to 0.98 with a mean
of 0.76 for the video parameter set. In other words, the first
coinertia axis accounts for about 75% of the variance in either
parameter set which confirms that (1) COIA is a suitable way to
represent the data and (2) it is efficient to only look at the first
axis in the analysis of the data in the AVOZES corpus.

Unlike the correlation value which belongs to a particular
pair of coinertia axes, the RV coefficient takes all axes into ac-
count. For the vowels and diphthongs, it ranges from 0.14 to
0.50 with a mean of 0.27. For the consonants, the RV coeffi-
cients range from 0.12 to 0.44 with an average of 0.26. Roughly
speaking, about a fifth to a third of the variance in either domain
is predictable from the other domain.

Summarising the results of the computed parameter
weights, we observe that all parameters contribute strongly to
the linear combination for one phoneme or another, although
some parameters contribute strongly significantly more times
than others. For the vowels and diphthongs, the most often ap-
pearing strong parameters in the linear combinations of the first
coinertia axis are the slope PC of RMS, relative teeth count,
mouth height, upper lip protrusion, and F1, and the horizontal
range PC of RMS (in that order). We find a similar picture for
the consonants. Here, the slope PC of mouth height, RMS, F1,
and relative teeth count are the parameters most often found to
contribute strongly. The results show that the horizontal range
or shift PC is, on a general level, not as important as the slope
PC. However, on an individual level, it can be of importance.



Again, these results confirm earlier results from the CANCOR
analysis that the way how parameters contribute to related linear
combinations across the domains is phoneme-specific.

7. Discussion
In summary, for the data in the AVOZES data corpus, we have
not found a strong correlation between single parameters of the
audio parameter set and the video parameter set. Both CAN-
COR and COIA point to strong correlations of linear combi-
nations of the parameters. COIA confirms largely the results
from the CANCOR analysis but the analysis is much more sta-
tistically stable. Linear combinations of the parameters in each
set are related well across the domains but the composition of
those linear combinations is phoneme-specific. The PC related
to the slope of a parameter curve contributes more to the lin-
ear combinations than the horizontal range or shift PC for most
phonemes which does not surprise if we compare it with the
average proportion of variance explained by the PCs (Table 2).
The parameters most often contributing strongly to the linear
combinations are F1, RMS, MH, and RTC. On average about
75% of the variance in each parameter set is obtained by the
first coinertia vector which is sufficiently high to concentrate on
that vector. In the coinertia coordinate system, the first coinertia
vector from either set is correlated with an average of 66%.

The results of the RV coefficients show that about a fifth
to a third of the variance in one domain is predictable from the
other domain. Given that not all acoustic variation has visible
consequences, this result is plausible. The amount of variance
predictable from the other domain is lower than the figures re-
ported by Yehia et al [7] which could be due to two reasons.
Firstly, our video speech parameters concentrate on the lip area
while the other study used a larger part of the lower face. Thus,
potentially more information was available to capture the visi-
ble consequences of acoustic changes in a better way. Secondly,
our study is performed on AuE. Native speakers of AuE (some
but not all) are reknowned for a certain “lip laziness” and our
results could support this notion to some extent. Also, AuE ex-
ists in three varieties - broad, general, and cultivated - which are
combined in our study. The varieties are known to differ acous-
tically, mostly in the diphthongs, but they could also differ in
the visual consequences of speaking. In either case, this calls
for further investigation with a larger sample size and also with
speakers from other dialects of English than AuE.

8. Conclusions
We applied various statistical methods to improve our under-
standing of the relationship between audio and video speech
parameters. For the selected parameters and the data for Aus-
tralian English, we found that 1-1 relationships did not exist be-
tween parameters of the two domains but linear combinations
of parameters correlated well across the domains. We found
that COIA is a more useful method than CANCOR to inves-
tigate the relationship of two sets of parameters in the case of
small sample sizes compared to the number of parameters be-
cause it gives more stable results. The parameters most often
contributing strongly to the linear combinations are F1, RMS,
mouth height, and relative teeth count. Our results call for fur-
ther studies with a larger sample size to investigate similarities
and differences between the three varieties of AuE. In addition,
curve registration as another preprocessing technique should be
looked at, so that the common structure of parameter curves
from different speakers can be captured in an even better way.
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