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Abstract
Over the past two decades, many algorithms have been pro-
posed to detect and track a human face and its facial features. Of
particular interest to the Automatic Speech Recognition (ASR)
community are algorithms that can track the shape of the lips,
as such visual speech input can then be used in an auditory-
visual (AV) ASR system to improve the recognition accuracy
of traditional audio-only ASR systems, particularly in the pres-
ence of acoustic noise. Despite the large number of face and
lip tracking algorithms that have been proposed over the years,
there is a lack of a comparative study that evaluates such algo-
rithms in the context of AV ASR performance. In this paper,
the performance of various 2D and 3D lip tracking algorithms
is compared from a point of view of AV ASR. In particular, the
focus of this study is on algorithms that use explicit lip models.
A number of variants of the recently popular Active Appearance
Models (AAMs) are compared with a 3D lip tracking algorithm
that uses stereo vision. All performance evaluations are made
using the AVOZES data corpus.
Index Terms: Lip tracking, auditory-visual automatic speech
recognition, active appearance model

1. Introduction
Human perception of the world is inherently multi-sensory be-
cause the information provided is multimodal. The perception
of spoken language is no exception. Beside the auditory infor-
mation, there is visual speech information as well, provided by
the facial movements as a result of moving the articulators dur-
ing speech production. Visual speech information contributes
to speech perception in all kinds of audio conditions, but its
effect is perhaps most readily noticed in noisy acoustic condi-
tions. Various research groups around the world have found
that auditory-visual automatic speech recognition (AV ASR)
systems result in an improved recognition rate compared to
audio-only systems, in particular in noisy audio conditions (for
overviews, see [1, 2, 3], for example).

One of the central topics in visual and AV ASR is the pro-
cess of detecting and tracking the lips and of extracting lip fea-
tures and measures that capture both the static and dynamic
characteristics of the lips moving during speech production.
While it has been shown that also other parts of the lower face
half contribute relevant visual information (cp. [1]), the lips
carry the majority of this information and are the focus here.
This paper provides an overview of various 2D and 3D meth-
ods for accurately detecting and tracking the lips and for auto-
matically extracting lip contours and features which can then
be used in visual and AV ASR. This study concentrates on
the approaches that model the lips explicitly, rather than ap-
proaches that model them implicitly through image pixel values
(e.g. [4, 5]). In particular, this comparative study focusses on

Figure 1: An example of an AAM fitted to a face.

various (2D) variants of the Active Appearance Model (AAM)
approach, that has been very popular in recent years, as well as
a highly accurate 3D lip tracking method that relies on a stereo
vision approach [6]. While there are many more approaches
in the literature, comparing all of them is beyond the scope of
this study. It is hoped that the selected popular algorithms give
the reader a useful comparison at hand from which he or she
can make an informed decision about the best method to use for
their specific situation. Experimental results of such uses are
given on the example of AV ASR performance on a subset of
the AVOZES data corpus.

The remainder of this paper is organised as follows. Section
2 gives a brief overview of related work in the face detection,
face tracking and lip tracking area. Next, Section 3 provides an
overview of common and state-of-the-art variants of the AAM
approach. In Section 4, the 3D stereo vision lip tracking al-
gorithm is briefly described. Section 5 outlines the AVOZES
data corpus that is used for the experiments in this study. Then,
Section 6 details the experimental setup for the AV ASR perfor-
mance comparison. The results are presented and discussed in
Section 7. Finally, the conclusions are provided in Section 8.

2. Related Work
Fundamental to AV ASR are the abilities to, first of all, automat-
ically find the face in an image and to track it over a sequence
of video frames, and secondly, to extract useful parameters that
describe the visible speech-related movements of the articula-
tors. A common method for finding the face and then the lips in
an image is based on skin colour detection [7, 8, 9, 10], where
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a model of the skin colour distribution in an appropriate colour
space is built, often using colour histograms. The skin colour
distribution of each individual is a multivariate normal distri-
bution, with the parameters of the distribution accounting for
differences among people and lighting conditions.

More recently, face detection by a cascade of weak clas-
sifiers have become very popular [11]. The detector is learnt
from a large number of training examples and while this offline
training step is computationally expensive and slow, the actual
detection of objects, e.g. faces, at different scales is very fast
(real-time capable) due to the concept of integral images. The
Haar wavelet-like features themselves are limited but their per-
formance can be drastically improved through a boosting pro-
cess, e.g. AdaBoost. Further improvements and variants have
been proposed since the original work, exploring different clas-
sifiers and boosting methods, but to list them here is beyond the
scope of this paper.

Once the face has been detected and the overall head po-
sition is tracked, the issue of how to accurately find the lips
and extract the lip contours and features arises. Early systems,
e.g. [10, 12] used image-based methods such as integral pro-
jection and thresholding. However, such simple methods suffer
from a lack of robustness to variations in pose and illumination.
[13, 14] use artificially coloured lips to enhance the contrast
and to facilitate the above mentioned image-based methods for
feature extraction. Although that is a valid way of simplify-
ing the feature extraction problem, wearing blue lipstick is a
considerable step away from a natural, non-intrusive system for
practical applications of visual and AV ASR systems. Artifi-
cial facial markers, for example infrared LEDs tracked by an
infrared camera system (OPTOTRAK, Qualisys), offer another
way of extracting feature points with high accuracy, but again
it is an intrusive system which requires familiarisation for the
speaker and is not a solution for real-world applications of AV
ASR technology.

In the last 20 years, deformable models in 2D and 3D have
gained significant popularity and can be seen as the current state
of the art. Active shape models (ASM) [15] imply constraints
on the shape of active contour models. ASMs were used by
[16] to track the internal and external lip contour for AV ASR.
An ASM can only deform in ways characteristic to the class of
objects it represents. These characteristics are learned from a
set of training images and stored in a point distribution model.
In order to make the ASM even more robust, [17] developed
the Active Appearance Model (AAM). AAMs model non-rigid
shape and texture of a visual object using a low dimensional rep-
resentation obtained from applying principle component analy-
sis (PCA) to a set of labelled data. The power of the AAM stems
from two fronts. Firstly, its compact representation as a linear
combination of a small number of modes of shape and texture
variation enables optimisation over a small number of parame-
ters. Secondly, the use of a fixed linear parameter update model,
in the original formulation, allows for an efficient calculation of
parameter updates. [18] employed an AAM for AV ASR. 3D
extensions of AAMs exists, known as 3D Morphable Models
[19], but suffer from the large computational complexity.

Finally, fully model-based approaches have been used for
lip tracking. [20] developed a system in which a 3D lip model
is fitted to image data for lip tracking, speech recognition and
visual speech animation purposes. The lip model consists of a
3D polynomial surface model controlled by three articulatory-
oriented parameters learned on the speaker. A similar system
based on the backprojection of a 3D model into 2D image space
and adjusting the model parameters until the model fits the

mouth shape in the image was developed by [21]. The model is
built on physical and statistical information about permissible
mouth shapes from training image sequences.

3. Active Appearance Models
In the past decade, model based approaches have become very
popular because of the many benefits of having a model that
can replicate the deformations of a non-rigid object, such as a
face. In the original work of [17], the AAM is built by applying
PCA on the set of labelled data to model the intrinsic variation
in shape and texture of the object. A parameterised model is
formed that is capable of representing large variation in shape
and texture by small set of parameters.

For constructing an AAM, the annotated training images
are aligned into a common co-ordinate frame by Procrustes
analysis. The modes of shape and texture variation are btained
by applying PCA to the set of aligned images. Due to the cor-
relation between the shape and texture variations, a PCA is ap-
plied to a concatenated vector of shape and texture to generate
a combined, compact representation. The model can then be
represented in terms of the appearance parameter.

The AAM Fitting process is equivalent to finding the model
parameters that best fit the model to the image. It is performed
by iteratively updating the model parameters via the update
function. A number of AAM fitting algorithms have been pro-
posed. The algorithms typically deal with the problem of fitting
as a minimisation/maximisation of some measure between the
model’s texture and the warped image region.

In the following, we briefly characterise the AAM fitting
algorithms investigated in this study. For an excellent in-depth
review of these and other AAM methods, the interested reader
is referred to [22].

3.1. Fixed Jacobian Method (FJ)

In the original AAM approach [17], also known as the fixed
Jacobian method, the problem of fitting is treated as a minimi-
sation of least squares error between the model’s texture and
the warped image region, where it is assumed that the Jacobian
of the error is fixed for all settings of the model parameters.
This enables a linear update model to be precomputed through
a pseudo-inverse of the fixed Jacobian. Since the assumption of
fixed Jacobian holds only loosely, the method requires the use
of an adjustable step size, where at each iteration the predicted
parameter updates are halved until a reduction in the appearance
difference between the model and the cropped image is attained.
This results in a rapid and reasonably efficient fitting to take
place. However, if the object exhibits large variation in shape
and texture, FJ struggles to perform because of the assumption
of fixed linear update model which can be too restrictive.

3.2. Project-out Inverse Compositional Method (POIC)

This method is currently the fastest AAM fitting algorithm
and belongs to the class of fitting methods using the inverse-
compositional model, i.e. the role of image and model in the
error function are reversed [23]. In POIC, the fitness function,
that measures the difference between the model’s appearance
and the cropped image region, is grouped into two components:
one which lies within the subspace of appearance deformations
and another which is orthogonal to it. This procedure requires
optimisation over the shape parameters only, assuming the opti-
mal choice (in a maximum likelihood sense) of the appearance
parameters is chosen at each iteration. Since the minimisation
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of the fitness function depends only on the subspace orthogonal
to the texture variation, a fixed linear update model can be ana-
lytically computed over the shape parameters only. This better
justifies the assumption of linear update model as compared the
original formulation (FJ) and is also extremely fast. However,
this approach only works well for person-dependent models.

3.3. Simultaneous Inverse Compositional Method (SIC)

This method is another adaptation of inverse compositional im-
age alignment for AAM fitting that addresses the problem of the
significant shape and texture variability by finding the optimal
shape and texture parameters simultaneously [24]. Although
the derivative of the warping function can be precomputed, the
linear update model has to be recomputed at each iteration as
it depends on the current appearance parameters, making this
method comparatively slow. However, rather then recomputing
the linear update model at very iteration using the current esti-
mate of appearance parameters, it is evaluated using the mean
appearance parameters, allowing the update model to be pre-
computed. Reusing the current appearance parameters is bene-
ficial only if the current estimates are expected to be close to the
actual parameters, for example, in continuous tracking, where
the parameters from current frame may be closer to the param-
eters for the next frame.

3.4. Robust Inverse Compositional Method (RIC)

In [25], the idea of inverse compositional method for AAM fit-
ting is extended further to use an M-estimator (robust penaliser)
instead of the least squares fitting criterion and hence, results in
an iteratively reweighted least squares fitting scheme. However,
this method requires the normalisation of the mean subtracted
error image with respect to the direction of appearance variabil-
ity [24] which results in a high computational complexity. For
this purpose, the error image is first projected onto the subspace
of appearance variability. This projected error image is used for
generating the model’s appearance that is later subtracted from
the error image to get the measure of the fitness function.

3.5. Iterative Error Bound Minimisation Methods (IEBM)

AAM fitting has the peculiarity that the warped image texture
for a given parameter setting extracts only a subset of the infor-
mation required to completely describe the optimal parameter
setting. Consequently, it is difficult to build an update model
which can accurately predict updates to parameters which de-
pend on the missing information. In [26], a novel linear update
scheme for AAM fitting was proposed that uses the optimality
property of Support Vector Regression (SVR), i.e. each sample
is adjusted to achieve its respective parameter setting where the
error is minimised, giving priority to those samples that produce
maximum error. IEBM focusses on building the update model
by utilising the information from various combinations of pa-
rameter settings. Since this update model is learnt offline, the
method is extremely efficient, achieves superior fitting results
and has been shown to exhibit good generalisability.

4. 3D Lip Tracking via Stereo Vision
The lip tracking algorithm described in [6] is a three-step pro-
cess. The first and second steps are applied separately to both
the left and right camera images. Once the 2D image positions
of the lip corners in both views are known, their 3D positions
can be calculated. This is called solving the point correspon-

dence problem and incorrectly identified correspondences lead
to incorrect 3D coordinates. As the mouth shape is changing
rapidly during speech, static methods such as template match-
ing do not work well. Therefore, a combination of colour infor-
mation and structural knowledge is used.

The first step determines the general degree of mouth open-
ness. The lip tracking algorithm must be able to handle mouth
shapes during speech ranging from a completely closed mouth
to a wide open mouth. No single image processing technique
would give good results for all possible mouth shapes. By pre-
classifying mouth shapes into one of three categories based on
mouth openness (closed, partially open, wide open), specific
techniques individually targeted at each category can be applied
to give better results.

In the second step, the lip corners are found. Here, the a
priori knowledge about the structure of the mouth area becomes
useful. For example, if the mouth is closed, teeth will not be
visible, so the shadow line between upper and lower lip is the
outstanding feature. Various definitions of what constitutes the
inner lip contour of a closed mouth are possible. In [6], the
shadow line between the lips was considered to be part of the
inner lip contour. Therefore, the algorithm looks for this line.
When the mouth is open, it is very likely that either or both
the upper and lower teeth are visible, so the algorithm looks for
them as well as for the oral cavity. By tailoring the algorithm
in this way to fit a particular situation, more accurate results
can be obtained than from a general-purpose, ‘one-size-fits-all’
algorithm. The result is then used in the third and final step, in
which the positions of the lip midpoints are determined.

5. AVOZES
The AVOZES (Audio-Video OZstralian English Speech) data
corpus is used in the experiments [27]. The data corpus is novel
in that a calibrated stereo camera system was used for the video
recordings, which allows for the testing of 3D lip tracking ap-
proaches. The video output from the two cameras is compressed
into one video frame by halving the vertical resolution (see Fig-
ure 2). The double frame has a resolution of 512 × 480 pixels
(= 512× 240 per camera) and the frame rate is 30Hz.

Figure 2: An example of a frame of stereo video from AVOZES.

The design of AVOZES follows a modular framework in
accordance with the design methodology proposed in [28]. Ac-
cording to the framework, any AV speech data corpus must con-
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(a) FJ (b) POIC (c) SIC

(d) RIC (e) IEBM

Figure 3: Example (frame 53, /Babe/ sequence, subject m2) fitting results for the five AAM methods investigated in this study.

tain at least three mandatory modules, covering the recording
setup without and with speakers, as well as the actual speech
material sequences which should contain the phonemes and
visemes of a language. Additional optional modules cover spe-
cific issues, e.g. different levels of illumination, different head
poses, or different levels of acoustic noise. Of the six AVOZES
modules available, this study makes use of :

• the scene with speaker, head turning;

• ‘calibration sequences’ exhibiting horizontal and vertical
lip movements during speech production; and

• CVC- and VCV-words in a carrier phrase covering the
phonemes and visemes of AuE.

Each utterance was recorded once using a clip-on micro-
phone. Recordings were made in clean audio conditions. The
subjects were free to move their head in a natural way while
speaking, as long as they kept it within the viewable area of the
cameras. No markers needed to be used on the faces.

AVOZES contains recordings of 20 native speakers of AuE
(10 female + 10 male speakers). 6 speakers wear glasses, 3 wear
lip make-up, 2 have beards. At the time of the recordings, the
age of the speakers varied between 23 and 56 years.

6. Experimental Setup
Ideally, the accuracy of any lip tracking algorithm should be
directly quantified by comparing the tracking results with a set
of ground truth data and thus computing error statistics, such as
the average error in landmark location. However, it turns out
that such ground truth is virtually non-existent for any of the
commonly used face or AV speech data corpora, which is not
surprising given how tedious and time consuming the process
of manually annotating faces is. Approaches to automatically
generate ground truth (e.g. [29]) are still in their infancy and
have not yet matured to a level where one could reasonably trust
the results without checking the annotations.

As a consequence, the performance of lip tracking algo-
rithms therefore needs to be measured indirectly through some
other criterion. In this study, the performance of an AV ASR
system is used as this criterion. To this end, the word error rates
(WER) of the AV ASR system, where the input of the visual
speech data stems from the various lip tracking algorithms, are
compared (see Section 7 for results), while all other parameters
are left unchanged.

The experiments were performed on a subset of AVOZES,
consisting of the 10 male speakers and the CVC-word utter-
ances, i.e. the words containing the 18 vocalic phonemes of
AuE. Using HTK, a 3-state left-right HMM with no skips is
built for each monophone. On the audio side, 13 MFCC pa-
rameters and their Δ and ΔΔ parameters were used as input.
White noise was added to the audio parameters to achieve a
SNR of 0db, which represents a significant amount of acoustic
noise. As is known from the literature, the advantage of AV
ASR systems over audio-only systems is most emphasised in
noisy acoustic conditions, where the additional visual speech
information helps the system to perform better. Both training
and testing were performed at the 0db SNR setting.

On the video side, two different sets of video parameters
were extracted. For the AAMs, the landmark locations of the
lower face half were used, which mark the position of the lips
(inner and outer contour) and the chin line. The locations were
normalised with respects to the 2D position of nose tip. For the
3D lip tracking method, the mouth width and height (inner lip
contour), protrusion of upper lip, protrusion of lower lip, and
relative teeth count were used as video parameters [6]. In both
case, the Δ and ΔΔ variables were also included.

From the monophone HMMs, context-dependent triphone
HMMs were built by simply cloning the monophone HMMs
and re-estimating them using triphone transcriptions. An early
(feature) fusion approach was taken here, i.e. the values of the
video feature vectors were added to the audio feature vectors.
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For learning the AAMs, 50 images from the head turning
and calibration sequences were manually annotated for each
subject before building the models. Each of the AAM algo-
rithms investigated here was then trained with these annotated
images to produce a person-dependent model. At each of the
steps, 95% of the variation was kept. For the 3D lip track-
ing method, a manual face model building step needed to be
completed first, in which a number of facial landmarks were
selected from three video frames of the head turning sequence.
For the tracking phase, the AAMs were manually initialised to
be roughly within ±10 pixels from the correct solution.

While person-dependent models were used for the lip track-
ing, the audio input data for the HMM building phase was taken
from all speakers, due to the insufficient amount of training data
for individual speakers. As this study is concerned with evalu-
ating the performance of lip tracking algorithms, this approach
poses no problem. In all experiments, only the visual speech in-
put was changed, while all other variables were left unchanged.

7. Results and Discussion
Table 1 presents the results for the experiments described in the
previous section. Shown are the WERs for each of the 10 male
speakers and for each of the lip tracking algorithms. In the first
results column, the WERs for the audio-only ASR system are
also shown for comparison.

As can be seen from the table, the audio-only ASR system
does not perform well in the 0db SNR scenario. Up to half of the
words are not recognised correctly. Given the strong acoustic
noise, the results are not surprising.

All of the AV ASR results show the significant improve-
ment that can be gained by incorporating visual speech informa-
tion. Among the AAM algorithms, the Fixed Jacobian method
performed worst. This is due to the assumption of a fixed linear
update model which is too restrictive for the fitting process to
work correctly when the initialisation of the model is not close
enough to the solution. Figure 3 shows an example of fitting
results for the AAM methods. Note the subtle problems the FJ
method has in finding the inner lip contour correctly.

All three inverse-compositional methods performed similar
in terms of WERs. One of the reasons for this is the experimen-
tal setup with person-specific AAMs, such that the advantages
of the Simultaneous and Robust Inverse-Compositional meth-
ods in terms of generalisability for person-independent models
do not come into play. On a side note, the Project-Out Inverse-
Compositional method is still the fastest AAM fitting method to
date (real-time capable).

The Iterative Error Bound Minimisation method performs
best among the AAM methods and is also overall the best per-
forming method in this study. This method has been shown to
have better convergence properties than other AAM methods
[26], while retaining high computational efficiency due to the
pre-computed update model. In particular, the IEBM method
can handle a larger amount of initialisation error better than the
other methods.

The 3D lip tracking algorithm based on stereo vision per-
forms better than the Fixed Jacobian method, but generally not
as well as the other AAM methods. One of the reasons is that
in the case of the AAM methods, information from the entire
lower face was used, whereas only information about the lip
movements was used in the AV ASR system for the 3D lip track-
ing method. It is known from the literature that other parts of
the face, such as the jaw, also carry useful visual speech infor-
mation. However, for sequences that contained a large amount

of head movement by the speaker, the 3D method outperformed
all of the 2D (AAM) methods as its strength in handling head
rotations out of the image plane came into play.

8. Conclusions
In this paper, a comparative study of the performance of various
2D and 3D lip tracking algorithms was performed. In particu-
lar, a number of variants of the recently popular AAM approach
(2D) were compared with a 3D lip tracking algorithm based on
stereo vision. As a way of comparing the performance, visual
speech features were extracted and formed the input into an AV
ASR system, the performance of which was assessed by WER.
Experiments were performed on the male subject CVC-word
subset of AVOZES and the results showed that the more so-
phisticated AAM methods (e.g. IEBM) outperformed all other
methods (including the simpler AAM methods, e.g. FJ) for
the sequences where the speaker’s face was frontal or mostly
frontal with respect to the camera. However, the 3D lip tracking
method performed better for sequences, which contain a lot of
head rotation away from the camera plane which is not surpris-
ing given the nature of this algorithm.

Given the fact that the AAM methods can work well for
single camera input and thus require far less equipment than
the 3D lip tracking algorithm used here, future work will fo-
cus on further improving the recent AAM methods in terms of
accuracy while retaining their efficiency during tracking. Fur-
thermore, the question of generalisability of AAMs is still an
open research issue.
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