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Joint Channel, Phase Noise, and Carrier Frequency
Offset Estimation in Cooperative OFDM Systems

Omar H. Salim, Ali A. Nasir, Wei Xiang and Rodney A. Kennedy

Abstract—Cooperative communication systems employ coopera-
tion among nodes in a wireless network to increase data throughput
and robustness to signal fading. However, such advantages are only
possible if there exist perfect synchronization among all nodes.
Impairments like channel multipath, time varying phase noise (PHN)
and carrier frequency offset (CFO) result in the loss of synchro-
nization and diversity performance of cooperative communication
systems. Joint estimation of these multiple impairments is necessary
in order to correctly decode the received signal in cooperative
systems. In this paper, we propose an iterative pilot-aided algorithm
based on expectation conditional maximization (ECM) for joint
estimation of multipath channels, Wiener PHNs, and CFOs in
amplify-and-forward (AF) based cooperative orthogonal frequency
division multiplexing (OFDM) system. Numerical results show that
the proposed estimator achieves mean square error performance
close to the derived hybrid Cramer-Rao lower bound (HCRB) for
different PHN variances.

I. INTRODUCTION

Cooperative communication has attracted considerable research
interest due to its potential to reduce the size and power constraints
caused by an increased number of antennas in multiple-input-
multiple-output (MIMO)-mobile devices. Relay based cooperative
communication schemes using single-antenna transceivers provide
spatial diversity by forming virtual MIMO systems [1], [2]. Such
diversity gains are however only possible if perfect synchroniza-
tion, e.g., perfect estimation of channel, phase noises (PHNs), and
carrier frequency offsets (CFOs) exists among all communication
nodes [3].

In orthogonal frequency division multiplexing (OFDM) sys-
tems, which are employed to increase the transmission bandwidth
efficiency and mitigate the effect of the frequency-selective fading
in each link of the cooperative systems, CFOs and PHNs result in
a common phase error (CPE) and inter-carrier interference (ICI)
at the destination [4]. In addition, the estimation of the channel
impulse response (CIR) for each link becomes challenging in the
presence of CFOs and PHNs [3]. On the other hand, the accurate
estimation of these multiple impairments, i.e., CIR, CFOs, and
time-varying PHNs, is required for coherent detection of OFDM
signals at the destination.

Most of the existing work in the literature focuses on estimating
either CFOs while assuming perfect estimation of PHNs [5]–[7]
or target the estimation PHN parameters while assuming perfect
CFOs estimation [8]. More importantly, [5]–[8] do not provide the
hybrid Cramér-Rao lower bound (HCRB) for joint estimation of
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multiple impairments in cooperative OFDM systems, which would
provide essential information about the absolute performance of
the estimation scheme.

A. Contributions
In this paper, we consider simple amplify-and-forward (AF)

relaying protocol, where during the first time slot, source node
broadcasts the information to the relay and destination node,
while during the second time slot, the relay node amplifies and
forwards the source information to the destination node. In order
to guarantee the advantages of cooperative diversity, there is a
need to estimate the CIR, time varying PHNs, and CFOs for the
received signal at the destination node during both time slots. The
overall contributions of this paper can be summarized as follows:

• This is a first paper to address the joint estimation of channel,
PHN, and CFO in cooperative OFDM systems. We pro-
pose iterative pilot-aided algorithm based on the expectation
conditional maximization (ECM) for AF cooperative OFDM
networks in the presence of unknown channel gains, PHNs
and CFOs. In the E-step, we propose extended Kalman filter
(EKF) estimator that is shown to accurately track the time
varying PHN over the transmission frame. In the M-step, we
drive a closed form estimator to estimate the CFO and CIR
parameters. It has been found through simulations that the
proposed ECM based estimator only require few iterations to
track the multiple impairments over the transmission frame.

• Simulations are carried out to investigate the performance of
the proposed estimator. These simulation results demonstrate
that the proposed estimators performance is close to the
derived HCRB at moderate-to-high values of signal-to-noise
ratios (SNRs).

B. Notation
Superscripts (·)∗, (·)H , and (·)T denote the conjugate, the

conjugate transpose, and the transpose operators, respectively.
Bold face small letters, e.g., x, are used for vectors, bold face
capital alphabets, e.g., X, are used for matrices, and [X]x,y
represents the entry in row x and column y of X. IX , 0X×X , and
1X×X denote the X × X identity, all zero, and all 1 matrices,
respectively. The matlab notation X(n1:n2,m1:m2) is used to
extract a submatrix within X from row n1 to row n2 and from
column m1 to column m2. | · | is the absolute value operator, |x|
denotes the element-wise absolute value of a vector x, and diag(x)
is used to denote a diagonal matrix, where the diagonal elements
are given by vector x. Ex,y[·] denotes the expectation over x and y,
and ℜ{·} and ℑ{·} are the real and imaginary parts of a complex
quantity, respectively. The imaginary unit is j =

√
−1, and ⊗

and ⋆ denote the circular convolution and normal convolution
operators, respectively. Finally, CN ∼ (µ,σ2) and N ∼ (µ,σ2)
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denote the complex and real Gaussian distributions with mean µ
and variance σ2.

C. Organization

The rest of this paper is organized as follows: Section II
describes the system model, the scenario under consideration,
and the assumptions in this work. In Section III, the proposed
estimator is derived while in Section IV, simulation results that
investigate the performance of the proposed estimator are pre-
sented. Section V concludes the paper.

II. SIGNAL MODEL

In this paper, the TDMA-based AF relay protocol is considered,
i.e., the source node broadcasts the signal to the relay and the
destination in the first hop (i.e., first transmission time slot).
In the second hop, the relay amplifies the received signal and
forwards it to the destination while the source is silent (see Fig.1).
Since there is no collision between the received signals during
the two consecutive hops at the destination, this transmission
protocol maintains orthogonality at the expense of loss in spectral
efficiency.
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Fig. 1: System block diagram

The time-invariant composite CIR between any pair of nodes
a and b is modeled as ha,b(τ) =

∑L−1
l=0 ha,b[l]δ(τ − lTs),

where ha,b[l] is the channel gain for the lth tap, and δ(x)
is the unit impulse function. L is the channel order, and
Ts = 1/B, where B represents the total bandwidth. The
channel order L is the same for any pair of nodes. For
brevity, we define ha,b ! [ha,b(0), ha,b(1), . . . , ha,b(L − 1)]T .
The frequency-domain channel coefficient matrix is Ha,b =
diag{Ha,b[0], Ha,b[1], . . . , Ha,b[N − 1]}, where Ha,b[n] =∑L−1

d=0 ha,b(d)e−(j2πnd/N) is the channel frequency response on
the nth subcarrier and N is the number of subcarriers. The channel
gains ha,b(l) are modeled as complex Gaussian zero-mean random
variables.

The input data bits are first mapped to the complex symbols
drawn from a signal constellation such as phase-shift keying
(PSK) or quadrature amplitude modulation (QAM). Next, the
source node S transmits the modulated training symbol vector
dS = [dS [0], dS [1], . . . , dS [N − 1]]T .

A. First Time Slot

The received samples at the destination D and the relay R in
time domain are given by

yD,1(n) = ej(θS,D(n)+2πnϵS,D/N)(hS,D(n)⊗ x(n)) + wD,1(n)
(1)

yR,1(n) =
√
gS,Re

j(θS,R1 (n)+2πnϵS,R/N)(hS,R(n)⊗ x(n))

+ wR(n) (2)

where

• x(n) = 1√
N

N−1∑
k=0

dS(k)ej2πkn/N for n = 0, 1, . . . , N − 1, is

complex baseband OFDM signal and k denotes the subcarrier
index,

• {hS,D(l)}L−1
l=0 and {hS,R(l)}L−1

l=0 are the channel impulse
response from S → D and S → R, respectively,

• gS,R=(dS,D/dS,R)γ is the large-scale fading gain, where
we assume that the distance between the source and the
relay is smaller than the distance between the source and
the destination (see Fig.1). dS,D and dS,R are the physical
distances from S → D and S → R, respectively, γ is the
large-scale fading exponent,

• θS,D(n) = θS(n) + θD(n) and θS,R1(n) = θS(n) +
θR1(n) are the PHN processes between S and D and S
and R, respectively, during the first time slot, θk(n) for
k ∈ {S,R,D}, is generated using a Wiener process, i.e.,
θ(n) = θ(n − 1) + δ(n), ∀ n, where δ(n) ∼ N (0,σ2

δ ) is
the PHN innovation and σ2

δ is the variance of the innovation
process [9],

• ϵS,R and ϵR,D denote the normalized CFOs between the S
and R and R and D nodes, respectively,

• wD,1(n) and wR(n) are the additive white Gaussian noise
(AWGN) samples with {wD,1(n), wR(n)} ∼ N (0,σ2

w).
Using (1) and (2) the received signals at D and R,

yD,1 = [yD,1(0), yD,1(1), . . . , yD,1(N − 1)]T and yR,1 =
[yR,1(0), yR,1(1), . . . , yR,1(N − 1)]T , respectively, in vectorial
form are given by

yD,1 = ES,DPS,DFHDSFLhS,D + wD,1 (3)

yR,1 =
√
gSRES,RPS,R1FHDSFLhS,R + wR (4)

where
• PS,D ! diag([ejθS,D(0), ejθS,D(1), . . . , ejθS,D(N−1)]T ) and

PS,R1 ! diag([ejθS,R1 (0), ejθS,R1 (1), . . . , ejθS,R1 (N−1)]T )
are N × N PHN matrices from S → D and S → R,
respectively,

• ES,D and ES,R are N × N CFO matrices from
S → D, and from S → R, respectively, i.e., Ea,b !
diag([e(j2πϵab/N)×0, e(j2πϵab/N), . . . , e(j2πϵab/N)×(N−1)]T ),
a, b ∈ {S,R,D},

• F is an N × N DFT matrix, i.e., [F]l,m !
(1/
√
N)e−j(2πml/N) for m, l = 0, 1, · · · , N − 1,

• DS ! diag(dS [n]),
• FL is an N × L DFT matrix, i.e., FL ! F(1 : N, 1 : L),
• wD,1 = [wD,1(0), wD,1(1), . . . , wD,1(N − 1)]T and wR =

[wR(0), wR(1), . . . , wR(N − 1)]T are AWGN vectors.
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B. Second Time Slot
In this time slot, the relay simply amplifies and forwards the

received signal to the destination. By adopting the low phase
noise variance assumption, as explained in [8], the approximated
received singal at D is given by

yD,2=

√

gR,D
E[|dS |2]
E[|yR,1|2]

ER,DPR2,DFHHR,DFyR,1 + wD,2

=

√
gR,DgS,RξD

gS,RξDσ2
h + σ2

w

ER,DES,RPR2,DPS,R1FHHS,RHR,DdS

+

√
gR,DξD

gS,RξDσ2
h + σ2

w

ER,DPR2,DFHHR,DFwR + wD,2 (5)

Equation (5) can further be simplified as

yD,2=

√
gR,DgS,RξD

gS,RξDσ2
h + σ2

w

ES,R,DPS,R,DFHDSF(2L−1)hS,R,D

+

√
gR,DξD

gS,RξDσ2
h + σ2

w

ER,DPR2,DFHHR,DFwR + wD,2 (6)

where
• σ2

h=E[|hS,R|2] is the variance of CIR vector,
• gR,D=(dS,D/dR,D)γ , dR,D is the distance from R→ D,
• wD,2 is the AWGN vector at the destination,
• ES,R,D=ER,DES,R is the effective CFO matrix during the

first and the second hops from S → R→ D,
• PS,R,D ! diag([ejθS,R,D(0), . . . , ejθS,R,D(N−1)]T ),

θS,R,D=θS + θR,1 + θR,2 + θD is the effective PHN matrix
during the first and the second hops from S → R→ D,

• gR,D=(dS,D/dR,D)γ , dR,D is the distance from R→ D,
• F(2L−1) is an N × (2L − 1) DFT matrix, i.e., F(2L−1) !

F(1 : N, 1 : (2L− 1)), L is the channel length,
• hS,R,D ! hS,R ⋆ hR,D is a 2L− 1× 1 vector,
• hR,D is CIR between the relay and destination,
• HR,D ! diag (FLhR,D), and HS,D ! diag (FLhS,D).

The received signal vector at D, yD,2 in (6), is
a circularly symmetric complex Gaussian random
variable, i.e., yD,2 ∼ CN (µyD,2

,ΣyD,2
), with mean

µyD,2
= q1ES,R,DPS,R,DFHDSF(2L−1)hS,R,D and covariance

matrix ΣyD,2
= (q22σ2

wσ
2
h + σ2

w)IN , where q1 !
√

gR,DgS,RξD
gS,RξDσ2

h+σ2
w

and q2 !
√

gR,DξD
gS,RξDσ2

h+σ2
w

(µyD,2
and ΣyD,2

are derived in
Appendix A).

C. Problem Formulation
In order to gain the advantages of cooperative diversity,

the destination receiver needs to decode the received sig-
nals, yD,1 in (3), and yD,2 in (6), during first and sec-
ond time slots, respectively. This in turn requires the esti-
mation of θS,D ! [θS,D(0), . . . , θS,D(N − 1)]T , hS,D !
[hS,D(0), . . . , hS,D(L − 1)]T and ϵS,D during first time slot and
the estimation of θS,R,D ! [θS,R,D(0), . . . , θS,R,D(N − 1)]T ,
hS,R,D ! [hS,R,D(0), . . . , hS,R,D(L − 1)]T and ϵS,R,D during
second time slot. For brevity, the following section derives an al-
gorithm for joint estimation of θS,R,D, hS,R,D, and ϵS,R,D, during
the second time slot only. The estimation of the respective impair-
ments during the first time slot can be easily obtained by following
the same approach. Let us define λ ! [θT

S,R,D hT
S,R,D ϵS,R,D]T

III. PROPOSED ECM BASED ESTIMATOR

The ECM algorithm at the destination receiver iterates between
the expectation step (E-step) and the maximization step (M-step).
In E-step, EKF is proposed to update the PHN vector at (i+1)th
iteration, θ[i+1]

S,R,D, using the CIR and CFO estimates, ĥ[i]
S,R,D and

ϵ̂[i]S,R,D, respectively, obtained from the previous (ith) iteration,
while in M-step, closed-form estimators are derived to update the
CIR and CFO estimates, ĥ[i+1]

S,R,D and ϵ̂[i+1]
S,R,D, respectively. The

proposed ECM algorithm at the ith iteration is given as follows.
For the given problem, let us define s !

q1FHDSF(2L−1)hS,R,D = [s(0), . . . , s(N − 1)]T is N × 1
vector and re-write yD,2 in (6) as follows

u = ES,R,DPS,R,Ds+ v; (7)

where the overall noise vector v ! [v(0), . . . , v(N − 1)]T =
q2ER,DPR2,DFHHR,DFwR + wD,2 is distributed as v ∼
CN (0, σ̃2

wIN ) and σ̃2
w ! q22σ2

wσ
2
h + σ2

w. Following [10], the
complete data is defined as z ! [uT θT

S,R,D]T and the negative
log likelihood function of the complete data, log p(z; ϵS,R,D), is
given by

log p(z; ϵS,R,D) = C1 +
1

σ̃2
w

N−1∑

n=0

∥ u(n)− ej2πϵS,R,Dn/N

× ejθS,R,D(n)s(n) ∥2 + log p(θS,R,D(0))

+
N−1∑

n=0

log p(θS,R,D(n)|θS,R,D(n− 1)), (8)

where C1 is a constant. The detailed E-step and M-step for
estimating the CIR, PHN, and CFO are as follows:

E-step: In this step, the received signal u(n) is first multiplied
by e−j2πϵ̂[i]S,R,Dn/N . Next, the signal x(n) ! e−j2πnϵ[i]S,R,D/Nu(n)
is used to estimate the PHN vector, where ϵ̂[i]S,R,D is the latest CFO
estimate obtained from the previous iteration. First, we propose
to use EKF during E-step to estimate the PHN samples θS,R,D.
The signal x(n) can be written as

x(n) = e−j2πnϵ[i]S,R,D/Nu(n)

= ej2πn∆ϵ̂S,R,D/NejθS,R,D(n)s[i](n) + ṽ(n), (9)

where s[i](n) is nth symbol of the vector s[i] !
q1FHDSF(2L−1)h

[i]
S,R,D, ∆ϵ̂S,R,D ! ϵS,R,D − ϵ̂[i]S,R,D, and

ṽ(n) ! v(n)e−j2πnϵ̂[i]S,R,D/N . The state and observation equations
at time n are given by

θS,R,D(n) = θS,R,D(n− 1) + δS,R,D(n), (10)

u(n) = z(n) + ṽ(n) = ejθS,R,D(n)s(n) + ṽ(n). (11)

Since the observation equation in (11) is a non-linear function
of the unknown state vector θS,R,D, the EKF is used instead of
simple Kalman filtering. The EKF uses Taylor series expansion
to linearize the non-linear observation equation in (11) about the
current estimates [11]. Thus, the Jacobian of z(n) is evaluated by
computing the first order partial derivative of z(n) with respect
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to θS,R,D(n) as

ż(n) =
∂z(θS,R,D(n))

∂θS,R,D(n)

∣∣∣∣
θS,R,D(n)=θ̂S,R,D(n|n−1)

(12)

= jz(θ̂S,R,D(n|n− 1)) (13)

= jejθ̂
[i]
S,R,D(n|n−1)ŝ(n),

where ż denotes the Jacobian of z evaluated at θS,R,D(n). The first
and second moments of the state vector at the (i+ 1)th iteration
denoted by θ̂[i+1]

S,R,D(n|n− 1) and M [i+1](n|n− 1), respectively,
are given by

θ̂[i+1]
S,R,D(n|n− 1) = θ̂[i+1]

S,R,D(n− 1|n− 1), (14)

M [i+1](n|n− 1) = M [i+1](n− 1|n− 1) + σ2
δS,R,D

, (15)

Given the observation u(n), the Kalman gain K(n), posteriori
state estimate θ̂[i+1]

S,R,D(n|n), and the filtering error covariance,
M [i+1](n|n) are given by

K(n) = M [i+1](n|n− 1)ż∗(θS,R,D(n|n− 1))

×
(
ż(θS,R,D(n|n− 1))×M [i+1](n− 1|n− 1)

× ż∗(θS,R,D(n|n− 1)) + σ̃2
w

)−1
. (16)

θ̂[i+1]
S,R,D(n|n) = θ̂[i+1]

S,R,D(n|n− 1)

+ ℜ
{
Kn

(
u(n)− ejθ̂

[i+1]
S,R,D(n|n−1)ŝ[i](n)

)}
(17)

M [i+1](n|n) = ℜ
{
M [i+1](n|n− 1)−K(n)ż(θS,R,D(n|n− 1))

×M [i+1](n|n− 1)
}
, (18)

where ŝ[i](n) is nth symbol of the vector ŝ[i] !
q1FHDSF(2L−1)ĥ

[i]

S,R,D. Before starting the EKF recursion
(12)-(18), θ̂[1]S,R,D(1|0) and M [1](1|0) are initialized by
θ̂[1]S,R,D(1|0) = 0 and M [1](1|0) = σ2

δS,R,D
.

M-step: In this step, the CIR and CFO from S → R → D
are estimated by minimizing the log likelihood function in (8).
In order to further reduce the complexity associated with the M-
step, the minimization in (8) is done with respect to one of the
estimation parameter while keeping the other parameter at its most
recently updated value [12]. We first minimize the log likelihood
function in (8) with respect to ϵS,R,D to update the CFO estimate
for (i + 1)th iteration, ϵ̂[i+1]

S,R,D, while channel is kept constant at
its ith iteration value, ĥ[i]

S,R,D and updated PHN vector, θ̂[i+1]
S,R,D, is

obtained from the E-step. Thus, the CFO estimate update, ϵ̂[i+1]
S,R,D,

is given by

ϵ̂[i+1]
S,R,D = arg min

ϵS,R,D

N−1∑

n=0

∥ u(n)− ej2πϵS,R,Dn/NejθS,R,D(n)

s(n) ∥2
∣∣
θS,R,D(n)=θ̂[i+1]

S,R,D(n),hS,R,D=ĥ[i]
S,R,D

(19)

After simplifying (19), we have

ϵ̂[i+1]
S,R,D = arg max

ϵS,R,D

N−1∑

n=0

ℜ{(u(n))∗Ŝ[i](n)ej2πϵS,R,Dn/N} (20)

where Ŝ[i](n) = ejθ̂
[i+1]
S,R,D(n)ŝ[i](n). In order to handle the non-

linearity of (20), we can approximate the term ej2πϵS,R,Dn/N

using Taylor series expansion around the pervious CFO estimate,
ϵ̂[i]S,R,D, up to the second order term as

ej2πϵS,R,Dn/N = ej2πϵ̂
[i]
S,R,Dn/N + (ϵS,R,D − ϵ̂[i]S,R,D)

(
j
2π

N
n

)

× ej2πϵ̂
[i]
S,R,Dn/N +

1

2
(ϵS,R,D − ϵ̂[i]S,R,D)2

(
j
2π

N
n

)2

× ej2πϵ̂
[i]
S,R,Dn/N (21)

Substituting (21) into (20), ϵ̂[i+1]
S,R,D is given by

ϵ̂[i+1]
S,R,D = arg max

ϵS,R,D

{N−1∑

n=0

ℜ
{
(u(n))∗Ŝ[i+1](n)ej2πϵ̂

[i]
S,R,Dn/N

+ (ϵS,R,D − ϵ̂[i]S,R,D)
N−1∑

n=0

ℜ
{
(u(n))∗Ŝ[i+1](n)

(
j
2π

N
n

)

ej2πϵ̂
[i]
S,R,Dn/N}

+
1

2
(ϵS,R,D − ϵ̂[i]S,R,D)2

N−1∑

n=0

ℜ
{
(u(n))∗Ŝ[i+1](n)

(
j
2π

N
n

)2

ej2πϵ̂
[i]
S,R,Dn/N}}

(22)

Taking the derivative of (22) with respect to ϵS,R,D and equating
the result to zero, the estimate of ϵS,R,D at the (i+1)th iteration
is given by:

ϵ̂[i+1]
S,R,D = ϵ̂[i]S,R,D

+
N

2π

∑N−1
n=0 nℑ

{
(u(n))∗Ŝ[i+1](n)ej2πϵ̂

[i]
S,R,Dn/N}

∑N−1
n=0 n2ℜ

{
(u(n))∗Ŝ[i+1](n)ej2πϵ̂

[i]
S,R,Dn/N} , (23)

Next, by setting θS,R,D and ϵS,R,D to their latest updated
values, the updated value of ĥS,R,D at the (i + 1)th iteration,
ĥ[i+1]
S,R,D, is calculated. Based on the vectorial form of received

signal in (7), the negative log likelihood function, in (8), can be
written as

log p(z; ϵS,R,D) = C1+ ∥ u−ES,R,DPS,R,DΓhS,R,D ∥2

+ log p(θS,R,D), (24)

where Γ ! q1FHDSF(2L−1). Taking the derivative of (24) with
respect to hS,R,D and equating the result to zero, the estimate of
hS,R,D at the (i+ 1)th iteration is given by:

ĥ[i+1]
S,R,D = (ΓHΓ)−1ΓHP̂H

S,R,DÊH
S,R,Du, (25)

where ÊS,R,D ! diag([e(j2πϵ̂
[i+1]
S,R,D/N)×0, e(j2πϵ̂

[i+1]
S,R,D/N), . . . ,

e(j2πϵ̂
[i+1]
S,R,D/N)×(N−1)]T ), and ϵ̂[i+1]

S,R,D is obtained from (23),

P̂S,R,D ! diag([ejθ̂
[i+1]
S,R,D(0), ejθ̂

[i+1]
S,R,D(1), . . . , ejθ̂

[i+1]
S,R,D(N−1)]T ),

and θ̂[i+1]
S,R,D ! [θ̂[i+1]

S,R,D(0), θ̂[i+1]
S,R,D(1), . . . , θ̂[i+1]

S,R,D(N − 1)]T is
obtained from (17).

Using (17), (23) and (25), the proposed algorithm iteratively
updates the PHN and CFO and CIR parameters in E-step and M-
step of the algorithm, respectively, and stops when the difference
between likelihood functions of two iterations is smaller than a
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threshold ζ, i.e.,
∣∣∣∣∣

N−1∑

n=0

∥∥∥u(n)− ej2πϵ̂
[i+1]
S,R,Dn/Nejθ̂

[i+1]
S,R,D(n)s[i+1](n)

∥∥∥
2

−
N−1∑

n=0

∥∥∥u(n)− ej2πϵ̂
[i]
S,R,Dn/Nejθ̂

[i]
S,R,D (n)s[i](n)

∥∥∥
2
∣∣∣∣∣ ≤ ζ.

(26)

The appropriate initialization of CFO and CIR, i.e., ϵ̂[0]S,R,D

and ĥ[0]
S,R,D, respectively, can help the proposed estimator to

estimate the CIR, CFO, and PHN parameters in a few iter-
ations. The initial CFO estimate is obtained by applying a
linear search for the value of ϵS,R,D that minimizes the cost
function,

∑N−1
n=0 ∥ u(n) − ej2πϵ̂S,R,Dn/N ŝ(n) ∥2, where ŝ(n)

is nth symbol of the vector ŝ ! q1FHDSF(2L−1)ĥS,R,D,
ĥS,R,D ! (ΓHΓ)−1ΓHÊH

S,R,Du and linear search is made with
a coarse step size of 10−2. Next, using the initial CFO estimate
ϵ̂[0]S,R,D, initial channel estimate, ĥ[0]

S,R,D, is obtained by apply-
ing the equation, ĥ[0]

S,R,D ! (ΓHΓ)−1ΓH(Ê[0]
S,R,D)Hu, where

Ê[0]
S,R,D = ÊS,R,D|

ϵ̂S,R,D=ϵ̂[0]S,R,D
. The simulation results show that

the proposed estimator always converges to true estimates, e.g.,
at SNR = 20 dB and with threshold ζ = 10−3, on average, the
estimator converges after 2 iterations only.

IV. HYBRID CRAMÉR-RAO BOUND

In this section, the HCRB for joint estimation of λ =
[θT

S,R,D hT
S,R,D ϵS,R,D]T is presented. Note that the vector of

parameters of interest, λ, comprises both random and determinis-
tic parameters, e.g., PHN, θS,R,D, is random while CIR, hS,R,D,
and CFO, ϵS,R,D, are deterministic parameters. Thus, HCRB
instead of standard CRB is needed to be derived. The accuracy
of estimating λ is lower bounded by the HCRB (Ω) as [13]

Eu,θS,R,D|hS,R,D,ϵS,R,D

[
(λ̂(u)− λ)(λ̂(u)− λ)T

]
≽ Ω. (27)

Let us define Ω = B−1 and B is an (N + (2L− 1)+ 1)× (N +
(2L − 1) + 1) hybrid information matrix (HIM), which is given
in the following theorem.
Theorem: The HIM for joint estimation of CIR, PHN and CFO
is given by

B =

⎡

⎣
B11 B12 b13

B21 B22 b23

b31 b32 b33

⎤

⎦ , (28)

where
• B11 = ΞD11 +ΞP11 is an N ×N HIM for the estimation of

θS,R,D ,
• ΞD11 = diag(hH

S,R,DFH
2L−1D

H
S F)Σ−1diag(FHDSF2L−1

hS,R,D), Σ ! σ̃2
wIN , and ΞP11 is defined as in [14, eq.(19)].

• B22 = FH
2L−1D

H
S Σ−1DSF2L−1 is an (2L− 1)× (2L− 1)

HIM for the estimation of hS,R,D,
• b33 = hH

S,R,DFH
2L−1D

H
S FΣ−1MFHDSF2L−1hS,R,D is a

scalar representing the hybrid information for the estimation
of ϵS,R,D,

• B12 = BT
21 = −j

σ̃2
w

diag(hH
S,R,DFH

2L−1D
H
S F)FHDSF2L−1,

• b13 = bT
31 = 1

σ̃2
w

diag(hH
S,R,DFH

2L−1D
H
S F
√
M)FHDSF2L−1

hS,R,D,
• b23 = bT

32 = jFH
2L−1D

H
S FΣ−1

√
MFHDSF2L−1hS,R,D,

• M ! diag
([

(2π 0
N )2, (2π 1

N )2, . . . , (2πN−1
N )2

]T).
Finally, the HCRB, Ω, is given by the inverse of HIM, i.e., Ω =
B−1. The detailed derivation is omitted due to space limitation.
However, the derivation can be pursued by using the similar steps
given in [15], where we derived the HCRB for joint estimation
of PHN and CFO.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the proposed estimator
is examined against the derived HCRB. A multipath Rayleigh
fading channel with a delay of L = 4 taps and an exponentially
decaying power delay profile is assumed between each pair of
nodes. A training symbol size of N = 64 subcarriers is used,
where each subcarrier is modulated using quadrature phase-shift
keying (QPSK) scheme. The Wiener PHN is generated with
different PHN variances, e.g. σ2

δ = [10−3, 10−4]rad2, where
σ2
δS

= σ2
δD

= σ2
δR,1

= σ2
δR,2

= σ2
δ . Note that, σ2

δ = 10−3 rad2,
corresponds to a very high phase noise variance [16]. Since carrier
frequency offsets from source to relays, ϵS,R, are carried over to
the destination, ϵS,R and ϵR,D have the range (-0.25,0.25) in order
to limit the total frequency offset from source to destination, ϵS,D
to the range (-0.5, 0.5). Similar to the parameter setting adopted in
[8], the large-scale channel fading parametrization is set as γ=2,
dS,D=1, dS,R=0.5, dR,D=0.72, gS,R=4 and gR,D=1.9.

Fig. 2: MSE of channel estimation for the proposed estimator
compared to HCRB for phase noise variance σ2

δ = [10−3, 10−4]
rad2.

Figs. 2, 3 and 4 plot the HCRB and mean-square error
(MSE) for estimating the CIR, PHN, and CFO, respectively,
using the proposed algorithm. The results lead to the following
observations: 1) The HCRB and the proposed estimators MSE are
dependent on the variance of the PHN process and are lower for a
lower PHN variance; 2) Figs. 2, 3 and 4 show that CIR, CFO and
PHN estimation performances suffer from an error floor, which is
directly related to the variance of the PHN process. This follows
from the fact that at low SNR the performance of the system
is dominated by AWGN, while at high SNR the performance of
the proposed estimator is limited by PHN and the resulting ICI.
3) The estimation performance and HCRB for the direct link,
S → D, are better than those of the single hop link (relay link),
i.e., S → R → D. This due to the noise at the relays which is
amplified and forwarded to the destination. 4) It is shown that the
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Fig. 3: MSE of phase noise estimation for the proposed estimator
compared to HCRB for phase noise variance σ2

δ = [10−3, 10−4]
rad2.

Fig. 4: MSE of frequency offset estimation for the proposed
estimator compared to HCRB for phase noise variance σ2

δ =
[10−3, 10−4] rad2.

MSEs of the proposed estimator for both direct and relay links
are close to their HCRLBs at mid-to-high SNRs; 5) In Fig. 3, the
MSE of the proposed estimator is lower than the HCRB at lower
SNR. This is due to the fact that the HCRB cannot be derived in
closed-form while taking into account the range of CFO values,
i.e., (-0.25. 0.25), while the estimator takes the advantage of this
known prior estimation range. Thus, the HCRB is higher than the
MSE of the proposed estimator at lower SNR.

VI. CONCLUSION

This is a first paper to address the joint estimation of channel,
PHN, and CFO in cooperative OFDM systems. In this paper, a
new iterative estimator, that jointly estimates the unknown channel
gains, PHNs, and CFOs, for AF relaying cooperative OFDM
systems has been proposed. The proposed estimator is found to be
computationally efficient since it estimate the desired parameters
in few iterations. Simulation results show that the performance of
the proposed estimator is close to the derived HCRB at moderate-
to-high SNRs.

APPENDIX A
DERIVATION OF THE MEAN AND COVARIANCE MATRIX IN (6)

Given E{wR} = 0N×1 and E{wD,2} = 0N×1, the mean of the
received signal in (6), µyD,2

, is calculated as

µyD,2
= E

{
q1ES,R,DPS,R,DFHDSF(2L−1)hS,R,D

+q2ER,DPR2,DFHHR,DFwR + wD,2

}

= q1ES,R,DPS,R,DFHDSF(2L−1)hS,R,D. (A.1)

The covariance matrix, ΣyD,2
, as

ΣyD,2
= E

{
(yD,2 − µyD,2

)(yD,2 − µyD,2
)H}

= q2
2ER,DPR2,DFHHR,DF E{wRwH

R } FHHH
R,DFPH

R2,D

EH
R,D + E{wD,2wH

D,2}
= q2

2σ
2
wER,DPR2,DFHHR,DHH

R,DFPH
R2,DEH

R,D + σ2
wIN

= (q22σ
2
wσ

2
h + σ2

w)IN , (A.2)

where E{HR,DHH
R,D} = σ2

hIN , FHF = IN , PR2,DPH
R2,D = IN

and ER2,DEH
R2,D = IN .
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