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a b s t r a c t

Due to processing constraints, automatic image-based registration of medical images has
been largely used as a pre-operative tool. We propose a novel method named sort and count
for efficient parallelization of mutual information (MI) computation designed for massively
multi-processing architectures. Combined with a parallel transformation implementation
and an improved optimization algorithm, our method achieves real-time (less than 1 s) rigid
registration of 3D medical images using a commodity graphics processing unit (GPU). This
represents a more than 50-fold improvement over a standard implementation on a CPU.
Real-time registration opens new possibilities for development of improved and interactive
intraoperative tools that can be used for enhanced visualization and navigation during an
intervention.

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Registration is a fundamental problem, frequently encoun-
tered in image processing applications. Virtually all large
systems which evaluate images require the registration of images,
or a closely related operation, as an intermediate step [1]. In med-
ical imaging, images of differing modalities often need to be
aligned as a preprocessing step for many planning, navigation,
data-fusion and visualization applications. Fully automatic
image-based registration of images has been extensively
researched in the medical imaging domain [2]. Image-based
registration of medical images is computationally expensive
and as such has been largely confined to pre-operative appli-
cations. Development of efficient registration methods can
lead to new opportunities for intraoperative applications and
will allow for the adaptation of existing tools and new and
improved visualization and navigation tools during an inter-
vention.
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The emergence of massively multi-processing graphic
units with general purpose programing capabilities, in recent
years, has brought numerous opportunities and new chal-
lenges. On the one hand, super-computing (in the order of 1
TFLOPS) is now cheap and comes in a desktop size with power
requirements not much greater than an office computer, on
the other hand, existing applications have to be redeveloped
for a massively multi-processing architecture and many tools
including basic algorithms have to be re-engineered.

Image-based registration typically consists of several iter-
ations of some optimization algorithm with the aim to
minimize a suitable cost function subject to an optional
smoothness criteria

Topt = argmin
T

− S(F; M(T)) + L(T), (1)

where S is the similarity function to be maximized,1L is the
smoothness term, T is a transformation operator, and F and

1 In line with the optimization literature, our notation shows
minimizing the equivalent cost function, −S.
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Fig. 1 – A general registration solver and its main components where F, M, and M(T) are fixed, moving and transformed
moving images, respectively.

M(T) are the fixed and transformed moving images, respectively.
Each iteration of the optimization involves transformation
of the moving image and computation of the cost function
against the fixed image. The major components of a general
registration solver are depicted in Fig. 1.

• Preprocessor: an optional preprocessing step, such as de-
noising or image gradient calculation may be performed
on original fixed and moving images (F0 and M0) to prepare
them for registration. For example, [3] uses image gradients
for registration.

• Optimizer: the optimizer searches the parameter space for
the best match between the images by examining transfor-
mations of the moving image and comparing the results
with the fixed image. Since an exhaustive search of the
parameter space is often not possible, an optimization
algorithm such as Powell, simplex, gradient descent, quasi-
Newton or Levenberg–Marquardt [4] is used.

• Transformer: the transformer maps the points of the moving
image to new locations in the transformed image. Depend-
ing on the registration problem, the transformation can be
rigid, similarity, affine, perspective, projective, or non-rigid.

• Similarity measure: a method of measuring the similarity of
images is required for automatic registration; ideally the
similarity measure attains its maximum, where the images
are perfectly aligned and decreases as the images move far-
ther away. Several cost functions and similarity measures
have been studied in the literature such as sum of squared
differences (SSD), sum of absolute differences (SAD), nor-
malized cross correlation (NCC), correlation ratio (CR) [5],
and mutual information (MI) [6,7].
MI-based registration, in particular, has received much
attention in the literature [2] and has become the cost func-
tion of choice for registration of multi-modal images.

On a CPU, registration method’s execution time is typically
dominated by the transformation function. GPUs, however, are
specifically designed to perform geometric transformations.
Transformations for individual elements are independent
and can be efficiently parallelized. Geometric transformations
(regardless of their type) require some sort of interpolation
that involves adjacent voxels in a cubic region of memory.
Standard computer architectures are designed to optimize
sequential memory access through their caching mechanism.

This does not fully benefit 3D interpolations over a cubic
mesh. Modern GPUs, on the other hand, support a 3D tex-
ture addressing mode that takes the geometric locality into
account for caching purposes. This greatly improves the effi-
ciently of transformations on the GPUs.

Parallel implementation of mono-modality cost functions
and similarity measures such as SSD and NCC is straight-
forward and the entire registration process can be efficiently
parallelized. In this paper, we will focus on the more challeng-
ing task of multi-modality image registration. For multi-modal
registration, efficient computation of a similarity measure
such as MI on the GPU is nontrivial. This is due to a need
to estimate joint probability density of the fixed and moving
images. This typically entails, computing a joint histogram of
image intensities, a seemingly simple task which is surpris-
ingly far from trivial on a GPU [8,9]. We emphasize the need
for implementation of the similarity measure on the GPU for
best performance. This allows the entire registration iteration
to be performed on the GPU and avoids costly data transfers
between the GPU and the CPU memory.

1.1. Related work

Histogram computation on the GPU has been investigated in
[10] using a shader program and in [11] using a scattering
approach in the vertex shader. A projection-based registration
algorithm on the GPU for single-modality rigid registration
is presented in [12]. MI-based non-rigid registration on the
GPU using OpenGL has been investigated in [13], where his-
togram computation was also performed on the GPU. These
methods use an earlier programing paradigm for the GPUs
where the program had to be mapped to graphics processing
pipeline and one had to think in terms of vertex and frag-
ment shaders. They also involve clever tricks to get around
the limitations of the hardware. Graphics-based programing
of the GPUs offers limited capabilities for non-graphic applica-
tions, is tied to graphics pipeline, has substantial programing
overhead, and has been superseded by modern programing
languages for the GPUs such as CUDA and OpenCL. The perfor-
mance improvements over CPU-based implementations are
modest (e.g. authors in [13,12] report only five and three times
performance improvement, respectively).

In [8], we presented two fast histogram computation
methods on the GPU using CUDA. In [9], we proposed an
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approximate histogram computation method to speedup MI
computation and the registration on the GPU using CUDA. The
increased performance comes at the cost of reduced accuracy
due to approximating the joint histograms. A 2D implemen-
tation of Viola’s [14] approximation of MI and its derivatives is
given by [15]. Viola’s method is based on stochastic sampling
of image intensities and Parzen windowing. Smaller sample
sizes reduce the accuracy of the estimates [14]. Increasing the
sample size improves the shape of cost function and the esti-
mate of MI and its derivatives. However, the cost of method
is quadratic in the number of samples. This can become pro-
hibitive if a large number of samples is required to achieve a
desired level of accuracy.

A CUDA implementation of Demons deformable registra-
tion algorithm with a single-modality similarity measure is
described in [16]. Compared to multi-modality similarity mea-
sures, implementation of single-modality similarity measures
is straightforward on parallel architectures. The input data can
be processed independently (with the exception of the final
reduction step) and is suitable for the single instruction multi-
ple data (SIMD) architecture of massively multi-processors.

1.2. Contributions

One can argue that GPU-based algorithms are hardware-
specific and inevitably bound to be superseded by future
generations of hardware. The argument was certainly stronger
for previous generations of GPUs with limited general purpose
programing capabilities. This is less of an issue for modern
GPUs where the programing environment is C/C-like and there
is an upgrade path to future generations of hardware. Never-
theless, there is more value in devising algorithms designed
for massively parallel architectures with no dependence on
the specifics of the hardware. This is the approach taken by
this paper.

In this paper, we present a novel algorithm for efficient
computation of MI for massively parallel architectures. The
method is based on direct computation of joint histograms
of image intensives and does not involve approximating the
histograms or estimating MI by stochastic sampling. We intro-
duce the concept of sort and count for efficient computation
of histograms with large number of bins on massively multi-
processing architectures. The proposed method allows us to
compute histograms in a completely collision-free manner
and removes the need for costly atomic operations or data-
synchronization that would otherwise be needed to compute a
histogram. We present extensive experiments on real 3D med-
ical data using the Vanderbilt database [17] to demonstrate
the performance and accuracy of the proposed method and
its fitness for registration applications. We demonstrate real-
time registration of Vanderbilt images (in less than 1 s), for
the first time. While, we have implemented an affine regis-
tration method, the misalignment in the Vanderbilt database
is known to be rigid and the experiments in Section 4 use a
subset of affine transformation parameters for registration.

The main methods and concepts presented in this paper
are general and hardware-independent and can be applied to
an arbitrary platform. However, we have developed and tested
the methods on NVIDIA hardware using the Compute Unified
Device Architecture (CUDA) v2.0. There are certain implemen-

tation details that are specific to this platform. In Section 2.3,
we take the time to briefly explain CUDA’s terminology, archi-
tecture and limitations that are most relevant to our specific
application. A reader who is familiar with CUDA may skip
Section 2.3 without loss of continuity.

2. Concepts

2.1. Entropy

Entropy of a random variable is a measure of the average or
expected information content of an event, whose distribution
is determined by the marginal probability of the random vari-
able. One such measure was introduced by Shannon in 1948
[18], and is defined as

H(X) =
∑

x ∈ X

p(x) log
1

p(x)
, (2)

where p(.) is the probability mass function (pmf) of the random
variable X. Shannon entropy measures the degree of uncer-
tainty of a random variable by scoring less likely outcomes
higher than the more likely ones. This is consistent with the
notion that knowledge of an outcome that can be easily pre-
dicted is considered less valuable.

2.2. Mutual information

Mutual information of two random variables is the amount of
information that each carries about the other and is defined
as

I(X; Y) = H(X) − H(X|Y)
= H(X) + H(Y) − H(X, Y),

(3)

I(X; Y) =
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)p(y)
, (4)

where H(X|Y) is the information content of random variable X
if Y is known, H(X, Y) is the joint entropy of the two random
variables and is a measure of combined information of the two
random variables. I(X; Y) can be thought of as the reduction in
uncertainty of random variable X as a result of knowing Y.
The uncertainty is maximally reduced, when there is a one-
to-one mapping between the two random variables and is not
reduced at all if the two random variables are independent
and do not provide any information about one another.

A variation is given by the normalized mutual information
(NMI) defined as

Ĩ(X; Y) = H(X) + H(Y)
H(X, Y)

(5)

which is also commonly used as an image registration metric
and has been shown to be more robust than MI in the presence
of non-overlapping regions in the images [19]. We note that MI
and NMI are equivalent in terms of computational complexity.

A common method for computing the MI/NMI of two
images is to estimate the joint pmf from the histogram of the
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joint intensities of corresponding positions in the two images.
The most straightforward method to compute the joint his-
togram is to transform the moving image and interpolate
image intensities in the transformed image from the origi-
nal using linear interpolation or similar methods and then
compute the joint histogram of intensities from corresponding
pairs of points in the fixed and moving images. MI computed
in the manner, does not smoothly vary with the registra-
tion parameters and may not be suitable for gradient-descent
based optimization methods. Other histogram computation
methods such as Parzen windowing [20] and partial volume
(PV) histogram [21,22] exist that result in MI functions that
smoothly vary with the change in registration parameters.
These methods also provide closed-form solutions for MI
derivatives which allows the use of gradient-based optimiza-
tion methods.

2.3. An overview of CUDA

We provide a brief overview of the terminology, main fea-
tures, and limitations of CUDA. More information can be found
in [23]. A reader who is familiar with CUDA may skip this
section.

CUDA can be used to offload data-parallel and compute-
intensive tasks to the GPU. The computation is distributed in
a grid of thread blocks. All blocks contain the same number of
threads that execute a program on the device 2, known as the
kernel. Each block is identified by a two-dimensional block ID
and each thread within a block can be identified by an up to
three-dimensional ID for easy indexing of the data being pro-
cessed. The block and grid dimensions, which are collectively
known as the execution configuration, can be set at run-time and
are typically based on the size and dimensions of the data to
be processed.

It is useful to think of a grid as a logical representation of the
GPU itself, a block as a logical representation of a multi-core
processor of the GPU and a thread as a logical representation of
a processor core in a multi-processor. Blocks are time-sliced
onto multi-processors. Each block is always executed by the
same multi-processor. Threads within a block are grouped into
warps. At any one time a multi-processor executes a single
warp. All threads of a warp execute the same instruction but
operate on different data.

While the threads within a block can co-operate through a
cached but small shared memory (16 KB), a major limitation is
the lack of a similar mechanism for safe co-operation between
the blocks. This makes implementation of certain programs
such as a histogram difficult and rather inefficient.

The device’s DRAM, the global memory, is un-cached. Access
to global memory has a high latency (in the order of 400–600
clock cycles), which makes reading from and writing to the
global memory particularly expensive. However, the latency
can be hidden by carefully designing the kernel and the exe-
cution configuration. One typically needs a high density of
arithmetic instructions per memory access and an execution
configuration that allows for hundreds of blocks and several

2 We use the terms device and the GPU, and host and the CPU
interchangeably.

hundred threads per block. This allows the GPU to perform
arithmetic operations while certain threads are waiting for the
global memory to be accessed.

The throughput of global memory access is also depen-
dent on the access pattern. When certain requirements are
met by threads in a warp, access to global memory by mul-
tiple threads can be combined into a single transaction for
contiguous memory locations. This is known as memory coa-
lescing. Non-coalesced memory access can severely affect the
performance of an application and should be avoided were
possible. Coalescing global memory access is perhaps the sin-
gle most important consideration in optimizing CUDA code
[24]. It may even be worthwhile to reorganize data prior to
execution of a kernel in order to ensure coalesced access. The
exact requirements for memory coalescing differs for differ-
ent generations of GPUs and we refer the reader to [24] for a
detailed discussion.

Areas of the global memory can be mapped as read-only
texture memory. The texture memory is cached and also opti-
mized for 2D and 3D indexing. This is particularly useful for
image processing applications that frequently access adjacent
data elements in a rectangular or cubic grid. Textures also pro-
vide hardware accelerated support for linear interpolation of
adjacent data elements in a grid.

The data is transferred between the host and the device
via the direct memory access (DMA), however, transfers within
the device memory are much faster. To give the reader an
idea, device to device transfers on GTX 8800 and GTX 280 are
around 70 GB/s and 140 GB/s, respectively, whereas, host to
device transfers can be around 2–3 GB/s. As a general rule, host
to device memory transfers should be minimized whenever
possible. One should also batch several smaller data transfers
into a single transfer.

Shared memory is divided into a number of banks that can
be read simultaneously. The efficiency of a kernel can be sig-
nificantly improved by taking advantage of parallel access to
shared memory and by avoiding bank conflicts.

The higher processing power of the GPU compared to the
standard central processor unit (CPU), comes at the cost of
reduced data caching and flow control logic as more tran-
sistors have to be devoted to data processing. This imposes
certain limitations in terms of how an application may access
memory and implement flow control. As a result, implemen-
tation of certain algorithms (even trivial ones) on the GPU
may be difficult or may not be computationally justified. In
particular, CUDA devices with compute capability 1.0 (such as
GTX 8800) do not support atomic operations. GPUs with com-
pute capability 1.1 support some atomic operations on the
global memory. Newer GPUs with compute capability 1.3 (such
as GTX 280) support some atomic operations in the shared
memory. However, existing GPUs still lack other synchroniza-
tion primitives such as critical section and mutual exclusion
(mutex). The only supported synchronization primitive is the
thread join which only works among the threads of the same
thread block.

In designing an algorithm for a massively multi-processing
architecture, regardless of the availability of synchronization
and atomic features, one should minimize dependence on
synchronization among threads, as it essentially causes paral-
lel processes to become serialized and reduces performance.

dx.doi.org/10.1016/j.cmpb.2009.11.004
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Fig. 2 – Parallel calculation of a histogram with B bins distributed to N threads, where each thread processes a vector of size
M + 1. Histogram updates conflict and require synchronization of the threads or atomic updates to the histogram memory.

A typical CUDA implementation consists of the following
stages:

(1) Allocate memory on the device.
(2) Transfer data from the host to the device.
(3) Initialize device memory if required.
(4) Determine the execution configuration.
(5) Execute kernel(s). The result is stored in the device mem-

ory.
(6) Transfer data from the device to the host.

The efficiency of iterative or multi-phase algorithms can be
improved if all the computation can be performed in the GPU,
so that step 5 can be run several times without the need to
transfer the data between the device and the host.

3. Method

In this section, we first discuss the problem of efficient par-
allelization of histogram computation. We then introduce a
novel algorithm for histogram computation using any sort
algorithm that meets certain criteria, known as sort and count
algorithm. We then use bitonic sort and count for efficient
computation of histograms and MI and combine that with effi-
cient computation of transformations and an improved Powell
optimization to perform 3D–3D registrations in real-time.

3.1. Parallel histogram computation

Histogram calculation is straightforward on a sequential pro-
cessor as shown in Listing 1.

Parallelizing a histogram with B bins over N threads is
schematically shown in Fig. 2. The input data is distributed
among the threads. Updates to histogram memory is data
dependent and as such, many threads may attempt to update
the same location of the memory resulting in read/write con-
flicts. Some GPUs lack synchronization primitives to deal with
concurrent updates, others that support atomic updates, still
suffer reduced performance when the conflicts occur. His-

Listing 1 A simple histogram code snippet for a sequen-
tial processor.

tograms have been traditionally difficult to compute efficiently
on the GPU [25]. Lack of an efficient histogram method on
the GPU, often requires the data to be moved back from the
device (GPU) memory to the host (CPU), resulting in costly
data transfers and reduced efficiency. Histogram computation
can indeed become the bottleneck of an otherwise efficient
method.

We propose to use a method which is completely conflict-
free and removes the need for any update synchronization and
costly data transfers between the GPU and the CPU.

3.2. Sort and count algorithm

Let I = {1, 2, . . . , n} be an index set and A be a set with the
same cardinality as I (|A| = n) and with a total order 3 defined
in terms of a comparison operator ≤. A sequence s is defined
as a one-to-one mapping s : I → A. A sort algorithm arranges
an arbitrary sequence

s : {a1, a2, . . . , an}, ai ∈ A

3 A total order is a binary relation that is transitive (x ≤ y, y ≤ z →
x ≤ z), antisymmetric (x ≤ y, y ≤ x → x = y), and total (either x ≤ y
or y ≤ x). A partial order, such as the subset operator (⊂), does not
possess the last property.

dx.doi.org/10.1016/j.cmpb.2009.11.004
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to a new sequence

s′ : {a!(1), a!(2), . . . , a!(n)}

such that

a!(i) ≤ a!(j), for all i < j,

where ! is a permutation of the index set I.
A binary comparison-only sort algorithm, is one that reorga-

nizes a sequence using knowledge gained solely by application
of a comparison operator on a pair of records. A sort algorithm
is stable if it maintains the relative order of elements with
equal keys (e.g. values) [26]. An arbitrary sort algorithm with a
given comparison operator ≤ can be stabilized by introducing
a new comparison operator ≺ such that

ai ≺ aj ⇔ (ai < aj) ∨ (ai = aj ∧ i < j). (6)

Note that no two keys are equal under the new comparison
operator.

Consider a stabilized binary comparison-only sort algo-
rithm such as S. We introduce a modification to S so that it
counts the number of elements that are equal under the origi-
nal comparison operator while sorting. We assign a counter to
each element and initialize the counters to 1 at the beginning

s : {a(1)
1 , a

(1)
2 , . . . , a

(1)
n },

where s is the initial sequence and the superscripts denote the
counters. The counters are updated every time a comparison
is performed if a(ni)

i
= a(nj)

j
with i < j such that

nj ← nj + ni,

ni ← 0.
(7)

In other words, every time a comparison of equal ele-
ments is performed, the element with a higher position in the
sequence accumulates the counter of the lower element. We
call this a sort and count algorithm.

Here is an example of performing a sort and count on
a sequence such as {1, 3, 1, 1, 2, 3}. The sort and count will
result in the following sequence: {1(0), 1(0), 1(3), 2(1), 3(0), 3(2)}.
The steps are given below using a simple bubble sort algorithm.
We can use any sort algorithm that meets the criteria previ-
ously defined. In practice, we will use a parallel sort algorithm
but it is easier to demonstrate the concept using a simpler sort
algorithm such as bubble sort.

{1(1), 3(1), 1(1), 1(1), 2(1), 3(1)}: compare (1, 3), 1 < 3, no order
change

{1(1), 3(1), 1(1), 1(1), 2(1), 3(1)}: compare (3, 1), 3 > 1, swap
{1(1), 1(1), 3(1), 1(1), 2(1), 3(1)}: compare (3, 1), 3 > 1, swap
{1(1), 1(1), 1(1), 3(1), 2(1), 3(1)}: compare (3, 2), 3 > 2, swap
{1(1), 1(1), 1(1), 2(1), 3(1), 3(1)}: compare (3, 3), 3 = 3, no order

change, higher index 3 accumulates the counter
{1(1), 1(1), 1(1), 2(1), 3(0), 3(2)}: compare (1, 1), 1 = 1, no order

change, higher index 1 accumulates the counter
{1(0), 1(2), 1(1), 2(1), 3(0), 3(2)}: compare (1, 1), 1 = 1, no order

change, higher index 1 accumulates the counter
{1(0), 1(0), 1(3), 2(1), 3(0), 3(2)}: compare (1, 2), 1 < 2, no order

change

{1(0), 1(0), 1(3), 2(1), 3(0), 3(2)}: compare (2, 3), 1 < 2, no order
change

The sequence is sorted at this stage, however bubble sort
will take another iteration to realize this fact. As can be seen,
at the end of the sort and count algorithm, numbers with the
highest position in their groups have their counters set to the
number of group elements.

Theorem. At the completion of a sort and count algorithm, all ele-
ments within a subset with equal values have their counters set to
zero except for the element with the highest position in the sequence
whose counter contains the cardinality of the subset.

Proof. Let us denote an arbitrary subset of equally val-
ued elements (if one exists) within the sorted sequence by
{b(nk+1)

k+1 , b(nk+2)
k+2 , . . . , b(nk+m)

k+m
}. For an element such as b(ni)

i
with

i /= k + m to have a non-zero count, it must have never been
compared with b(ni+1)

i+1 , . . . , b(nk+m)
k+m

, otherwise the count would
have been accumulated by the higher position element. Now
let us update bi in the original sequence with bi + " such
that " > 0 and bi + " < bk+m+1. If we run the stabilized sort
algorithm again, this change will not affect the outcome,
because the updated element is still less than bk+m+1, . . . , bn,
it is greater than bi−1, . . . , b1 and since it is never compared
against bi+1, . . . , bk+m, the algorithm makes the exact same
decisions at each step and hence bi must occupy the exact
same position. However, this also means that the algorithm
has failed to sort the sequence (bi + " > bi+1) and the proof is
complete. !

3.3. Sort and count for histogram computation

Assume that we have two images J1 and J2, for which we would
like to determine the joint pmf using a joint histogram with
B1 × B2 bins, where B1 and B2 are the number of bins required
for calculating marginal pmfs of J1 and J2, respectively. We
have assumed that J1(·) and J2(·) are normalized with intensity
values between 0.0 and 1.0. We note that joint histogram com-
putation can be reformulated as a marginal histogram with B
bins, where B = B1 × B2 by combining the elements of J1 and J2
into a single array J such that,

J(x) =
⌊

B1(J1(x) + J2(x)(B2 − 1)) + 0.5
⌋

, (8)

where J(x) is the intensity of the combined images at spatial
locations x with a dynamic range of [0, B1 × B2 − 1] and with
up to B distinct integer values. Calculating a 1D histogram of
J(·) with B bins is equivalent to calculating the 2D histogram
for J1(·) and J2(·) with B1 and B2 bins, respectively.

With a sort algorithm that can be efficiently parallelized
(such as bitonic sort), sort and count can be used to paral-
lelize histogram computation of J. Since the outcome of sort
contains a single non-zero counter for each unique value of
J, a number of threads can process the counters in parallel
and update histogram locations corresponding to each unique
value of J only if the counter is non-zero and as such the algo-
rithm is guaranteed to be free of update conflicts and has no
reliance on synchronization primitives. Of course, in practice,
we do not sort the entire input data, the data is read in blocks,
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Fig. 3 – Conflict-free update of the histogram with sort and count.

sorted and the histogram is updated with the counters in each
iteration. Fig. 3 demonstrates the concept of updating the his-
togram for the simple example of the previous section, where
each thread reads a bin from the sorted sequence and only
writes to the histogram memory if the bin contains a non-
zero count. As can be seen, some threads may not perform
an update and remain idle, however this is a big improvement
over having to serialize them.

3.4. Sort and count for partial volume histogram
computation

The basic sort and count algorithm can be used for computa-
tion of a standard joint histogram as discussed in the previous
section. The method can also be used for other histogram-
based MI computation methods such as B-spline Parzen
window [20] and partial volume histogram [21]. These method
typically require multiple non-integer histogram updates per
joint sample of fixed and moving images. These histogram
computation algorithms can be accommodated with minor
changes to the basic sort and count algorithm. We briefly dis-
cuss PV histogram method in this section.

Under a transformation T, a point such as y in the fixed
image F will correspond to x = Ty in the moving image M.
However, since the coordinates of x are generally non-integral,
the intensity of the transformed point has to be interpolated
from the neighboring points with integer coordinates. In a
standard joint histogram, once the intensity of x is computed,
the histogram bin corresponding to (M(x), F(y)) is incremented
by 1.

In a partial volume histogram, however, x contributes to
multiple histogram bins associated with its neighboring grid
points. The contributions depend on the distance of x from its
neighbors given by

Pv(x, z) =
d∏

i=1

(1 − |xi − zi|), (9)

where z is a neighboring point of x, and d is the number of
dimensions. The partial volume histogram updates the his-
togram bin corresponding to (M(z), F(y)) by Pv(x, z). For 3D
images, partial volume histogram involves 8, generally non-
integral, updates to the histogram.

The following minor changes allow the basic sort and count
algorithm to be used for partial volume histogram computa-
tion:

(1) Bin counters and the histogram data types are defined as
floating point types.

(2) The program adds multiple bins for each pair of points to
the sort and count list.

(3) Bin counters are initialized to corresponding partial vol-
ume contributions.

Computation of MI derivatives using the partial volume
histogram method also translates into computation of an
appropriate histogram for each derivative [22], where the
above method can be used again.

3.5. Bitonic sort algorithm

A sequence of non-decreasing or non-increasing numbers is
called monotonic. A bitonic sequence is one that consists of an
ascending and a descending monotonic sequence. A bitonic
sorter converts a bitonic sequence into a monotonic sequence.
If a bitonic sequence of 2n numbers, {a1, a2, . . . a2n}, is reorga-
nized into

{min(a1, an+1), min(a2, an+2), . . . , min(an, a2n), max(a1, an+1),

max(a2, an+2), . . . , max(an, a2n)},

the new sequence is also bitonic and none of the elements in
the first half of the sequence can be greater than any elements
in the second half [27]. This is known as the bitonic merge the-
orem. So given a bitonic sequence of size 2n one can sort the
sequence by merging the sequence first and using 2 bitonic
sorters of size n. This provides an iterative algorithm for sort-
ing a sequence of L = 2m elements using a bitonic sorter. Fig. 4
shows a bitonic sort network for an input sequence of eight
elements which completes after 6 iterations regardless of the
input sequence. The order of the comparison at each itera-
tion is predetermined as shown in Fig. 4. Bitonic sort is not
an optimal sort4 and requires O(L(log L)2) comparisons. How-

4 An optimal sort algorithm executes in O(L log L) time.
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Fig. 4 – Ascending bitonic sort for a sequence of 8
elements. Each connector represents a comparison in the
direction denoted by the arrow. Elements involved in each
comparison are swapped if they are not in the desired
order. k and j represent block size and comparison offset at
each level, respectively.

ever, since the sequence of comparisons is predetermined
and data-independent, the algorithm can be efficiently par-
allelized.

3.6. Transformations

Transformations can be efficiently implemented on a mas-
sively parallel architecture, as computation for each element
is independent of other elements. Additionally, the GPU pro-
vides a further speedup through the use of textures. A texture
is an area of global memory specifically configured for 1D, 2D
or 3D access. GPU supports caching for textures and access
to adjacent texture coordinates is optimized to minimize a
cache-miss. Textures also support linear filtering from neigh-
boring texture coordinates. This is exactly what is needed for
linear interpolation of intensities when transforming the mov-
ing image and allows us to implement a most efficient 3D
transformation method.

Fig. 5 compares the performance of affine transformations
for typical 3D images given in million voxels that can be pro-
cessed per second, for a standard CPU, GTX 8800 and GTX
280 with and without use of textures. Performance of GPU
implementation is far superior to the CPU and use of texture
improves performance of GPU implementation considerably.
We are able to transform 3D images from the Vanderbilt
database in less than 1 ms using a GTX 280.

3.7. Improved Powell optimization

Powell’s multi-dimensional direction set algorithm finds the
minimum of a cost function by iteratively minimizing the
function along a set of N directions, where N is the number of
independent parameters of the cost function. A line minimiza-
tion algorithm (typically Brent’s) is used to find the minimum
in a given direction.

Our implementation of Powell is based on the algorithm
described in [4] with one major difference that it also incorpo-
rates a resolution parameter per dimension [28]. A minimum
distance or resolution for evaluation of the cost function is
defined. The cost function keeps track of each point in the N-

Fig. 5 – Performance of transformations on the CPU and the
GPU with and without use of textures. GPU implementation
with textures performs best.

dimensional space that it evaluates and will only evaluate a
new point if it falls outside all previously evaluated points by
the specified minimum distance.

In a standard Powell implementation fractional tolerance
and absolute tolerance parameters are used to control conver-
gence of line minimizations. Resolution parameters provide
additional flexibility in controlling Powell’s overall conver-
gence. Use of an appropriate resolution allows our method
to converge much more quickly than standard Powell imple-
mentation without affecting the accuracy of registrations as
demonstrated in Section 4.2.

3.8. CUDA implementation

In our CUDA implementation, the data is distributed among
k blocks each with Nb threads which process input data in
chunks of 2Nb size in each iteration. Each block maintains
a partial histogram in the global memory. The partial his-
tograms are combined using a parallel reduction algorithm at
the end to produce the joint histogram used in computation
of MI. Input values are stored as 32-bit unsigned integer val-
ues, and counters are packed into the higher bits of the same
memory location, for most efficient handling.

Listing 2 shows the kernel function executed by each thread
to perform a bitonic sort and count algorithm. Bins and their
associated counters are packed into 32-bit unsigned integer
variables, where the lower 16-bit word is used to store the
bin number and the higher 16-bin word contains the counter
value. The complete source code can be found online at
http://cecs.anu.edu.au/ ramtin/cuda/.

dx.doi.org/10.1016/j.cmpb.2009.11.004
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Listing 2. Parallel bitonic sort and count.

4. Results

We use Vanderbilt database of brain images (patients 1–9) for
our experiments. The database contains MR-T1, MR-T2, MR-

PD, CT and PET images of real patients. In total, we performed
47 CT to MR registrations and 41 PET to MR registrations
for each experiment. Fig. 6 shows a sample MR-T1 and CT
image from the Vanderbilt database. Even though our focus
is to demonstrate efficiency of our method, we also provide

dx.doi.org/10.1016/j.cmpb.2009.11.004
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Fig. 6 – Sample images from the Vanderbilt database. (a) An MR-T1 image. (b) A CT image.
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Fig. 7 – Performance of different MI computation methods on the GPU. For the range of bins that is of most interest for MI
applications, bitonic sort and count performs best. Also note method 3’s independence on data’s underlying distribution. (a)
MI for two random variables with a uniform distribution. (b) MI for two 3D medical images from the Vanderbilt database.

target registration errors (TRE) for completeness. Accuracy is
measured at multiple volumes of interests (VOIs) in the brain
that are of neurological significance. The TREs are computed
against VOIs registered using the gold standard transforma-
tion which were obtained in the original study by using fiducial
markers [17].

The Vanderbilt database is used for evaluation of rigid 3D
registrations. While we limit our experiments to rigid reg-
istrations, we note that our GPU-based implementation is
capable of performing affine registrations. In addition, the MI
computation algorithm can be readily used for non-rigid reg-
istrations.

4.1. Comparison with other histogram computation
methods on the GPU

We have previously proposed other methods for histogram
computation in [8,9], which can be used for MI computation. In
this section, we compare performance of these methods with
the bitonic sort and count and explain why bitonic sort and
count is most suited for MI computation.

4.1.1. Method 1 – partial histograms and atomic updates
per warp
This method, first presented in [8], maintains a partial his-
togram per warp. The 32-threads in each warp share the same

partial histogram and access to histogram memory is syn-
chronized using a software-based mutex.5 The method allows
for computation of histograms with an arbitrary number of
bins, but the efficiency of the method decreases as bins are
increased. The reason is due to GPU’s small shared memory
size (4 K 32-bit words). To allow calculation of an arbitrary
number of bins, we sub-divide the bin ranges into a number
of sub-ranges that fit in the shared memory. For a given exe-
cution configuration, we run the algorithm as many times as
required to cover the entire bin range. At each iteration the
kernel will only process those data elements which fall in the
specified bin range. For example, with 4 warps and a limit of
1024 bins per execution, a 10,000 bin histogram requires 10
iterations of the algorithm.

The disadvantage of this method is that the throughput is
dependent on the distribution of the data. An input with uni-
form distribution is close to the best case scenario, as for large
inputs the histogram is almost uniform and the histogram
update collisions are close to minimal. A degenerate distribu-
tion results in maximum histogram update collisions, as all
the threads try to update the same histogram bin and as such

5 This method was introduced prior to availability of compute
capability 1.3. For 1.3 devices one can use hardware-based atomic
updates in the shared memory.
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represents the worst case scenario. The performance for a real
application is somewhere in between these lower and upper
bounds.

4.1.2. Method 2 – partial histograms per thread
This method, first presented in [8], allocates a histogram array
per thread in the global memory. A partial histogram is calcu-
lated per thread and finally the partial histograms are reduced
into a single histogram. The benefit is that, given the size of the
global memory, for any practical number of bins the algorithm
only requires a single iteration to complete. In addition, there
will be no concurrent updates of the same memory location
by multiple threads and as such no update synchronization
is required, which in turn means that the performance of the
method is less data-dependent.6

However, there are two drawbacks to this method; firstly,
a much larger memory for partial histograms needs to be
allocated and initialized to zero at the beginning; secondly,
histogram updates need to be done on the global memory,
this entails non-coalesced read/writes per input data and is
inefficient.

To avoid excessive non-coalesced updates of the global
memory, we pack multiple bins in a 32-word in the shared
memory and only update the corresponding bin in the global
memory when the packed bin overflows. This reduces the
updates to the global memory by a factor of 2b, where b is
the number of bits available for storage of a bin in the shared
memory. b depends on the number of threads per block and
the number of bins and is calculated as

b = smax × 32
B × Nb

, (10)

where smax is the maximum number of 32-bit words that can
be allocated in the shared memory, B is the number of bins
and Nb is the number of threads per block.

There is a trade-off between the number of threads
and the number of bits per bin. Increasing the number
of threads, decreases b, resulting in more global memory
updates, while reducing the number of threads can under-
utilize GPU resources and affect the performance. We optimize
these parameters to achieve the best performance.

4.1.3. Method 3 – sort and count
Previous methods, both, suffer from a sharp reduction in per-
formance as the number of bins increases. This is a problem
for MI computation where 100 × 100 to 256 × 256 bins are com-
mon for computation of joint histograms. Fig. 7 compares the
performance of bitonic sort and count with other methods for
two random variables with a uniform distribution (Fig. 7(a))
and for two real images (Fig. 7(b)). As can be seen, method 3
scales much better with increasing number of bins and per-
forms well for computation of 100 × 100 or more bins. The
method is also virtually data-independent since it does not
use a synchronization method and unlike previous methods
can be readily used in any massively multi-processing archi-

6 The method is not completely data-independent. Bin-packing
(explained later) introduces some dependence on the data distri-
bution.

Fig. 8 – Average execution speed for pairs of images from
the Vanderbilt data-set. Our method on GTX 280 is more
than 50 times faster than MIRIT.

tecture. For these reasons, we chose bitonic sort and count for
MI computations in our registration method.

4.2. Comparison with a CPU implementation

We compared performance and accuracy of our method
against MIRIT7, a CPU implementation of MI-based registra-
tion by Maes et al. [21]. We ran MIRIT with recommended
options except for the partial volume option [21]. We found
the accuracy of the registrations were actually better without
this option. Both methods use Powell optimization algo-
rithm. Our registrations were performed using the modified
Powell method with a resolution of 0.02 mm for translation
parameters and 0.05◦ for rotation parameters. The results
with standard Powell (no resolution parameters) are also
included to demonstrate that the accuracy of registrations is
not noticeably affected as a result of introducing the resolution
parameters, while the performance is considerably improved.

Fig. 8 shows the performance of our method for 3D–3D reg-
istrations. On average, we were able to register each image pair
in less than one second which represents more than 50 times
speedup compared to MIRIT running on a CPU. We also note
that by using the enhanced Powell method the performance
of GPU-based method can be improved by around 300%.

Table 1 shows the median TRE for MIRIT, our method with
enhanced Powell, and our method with standard Powell opti-
mization. Our method with or without resolution parameters,
achieves sub-voxel accuracy and even outperforms MIRIT.

7 Multi-modality image registration using information theory.
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Table 1 – Accuracy comparison (median errors in mm).

Modality MIRIT Our method Our method
(std. Powell)

CT–T1 4.73 1.48 1.35
CT–T2 5.30 1.44 1.50
CT–PD 3.50 1.48 1.42
PET–T1 6.33 3.99 4.08
PET–T2 7.33 3.38 3.20
PET–PD 3.19 3.78 3.77

MIRIT failed to converge for a few registrations. MIRIT would
be able to reach convergence with a different set of parameters
for these cases, however, this would result in failed registra-
tion of other successful cases. We set to compare the methods
in a fully automatic setting and it was only fair to run both with
a single set of parameters. We note that, where convergence
was achieved by both methods the TREs were more or less
comparable.

5. Conclusion

With the processing power of modern GPUs, and with support
for general purpose programing, high performance computing
is now possible at an incredibly low cost and low power. Many
problems, previously reserved for super-computing facilities,
can be re-tackled on commodity hardware. To unlock the
full potential of GPU processing, one must be prepared to
rethink existing methods and algorithms and adapt them for a
massively parallel processing environment. We have demon-
strated application of such an approach for registration of
medical images. Our main goal was to show the superior per-
formance of the proposed histogram computation method
used in MI computation and we did so in the context of 3D
rigid registration of images form the Vanderbilt database. The
MI computation method is not limited to rigid/affine registra-
tion and can be used for deformable registration as well. For
deformable registration, gradient-based optimization is typi-
cally used which requires computation of derivatives of the
cost function. Derivatives of MI can be computed by finite dif-
ferences or in closed form using B-spline Parzen histogram
[20] or partial volume histogram method [22], as discussed in
Section 3.4.
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Table A.1 – Host specification

Processor AM2 Athlon 64× 2 6000+ 3.0 GHz
Memory 4 GB, 800 MHz DDR2
Motherboard ASUS M2N-SLI Deluxe
Operating system Windows XP 32-bit

Table A.2 – Device specification (GPU)

Model GTX 8800 GTX 280

Number of multi-processors 16 30
Number of cores per

multi-processor
8 8

Memory 768 MB GDDR3 1 GB GDDR3
Memory interface 384 bits 512 bits
Shared memory per block 16 KB 16 KB
Max number of threads per

block
512 512

Warp size 32 32

Appendix A. Hardware configuration

The hardware specification of our experimental setup is given
in Tables A.1 and A.2.
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