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This paper studies head-related transfer function �HRTF� sampling and synthesis in a
three-dimensional auditory scene based on a general modal decomposition of the HRTF in all
frequency-range-angle domains. The main finding is that the HRTF decomposition with the derived
spatial basis function modes can be well approximated by a finite number, which is defined as the
spatial dimensionality of the HRTF. The dimensionality determines the minimum number of
parameters to represent the HRTF corresponding to all directions and also the required spatial
resolution in HRTF measurement. The general model is further developed to a continuous HRTF
representation, in which the normalized spatial modes can achieve HRTF near-field and far-field
representations in one formulation. The remaining HRTF spectral components are compactly
represented using a Fourier spherical Bessel series, where the aim is to generate the HRTF with
much higher spectral resolution in fewer parameters from typical measurements, which usually have
limited spectral resolution constrained by sampling conditions. A low-computation algorithm is
developed to obtain the model coefficients from the existing measurements. The HRTF synthesis
using the proposed model is validated by three sets of data: �i� synthetic HRTFs from the spherical
head model, �ii� the MIT KEMAR �Knowles Electronics Mannequin for Acoustics Research� data,
and �iii� 45-subject CIPIC HRTF measurements.
© 2010 Acoustical Society of America. �DOI: 10.1121/1.3336399�

PACS number�s�: 43.60.Ac, 43.60.Uv, 43.66.Pn �EJS� Pages: 2347–2357
r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y

I. INTRODUCTION

A. Motivation and background

People hear sound in three dimensions and the percep-
tion of the spatial aspects of sound has been essential to
people’s lives. Multiple cues are involved for the spatial
localization1 including the amplitude and the time arrival of
the sound at each ear and, most importantly, the spectrum of
the sound, which is modified by the interaction between the
sound wave and a person’s body �the torso, head, and exter-
nal pinna shape�. The head-related transfer function
�HRTF�,2 an acoustic transfer function from the sound source
to a listener’s eardrums, contains all the listening cues used
by the hearing mechanism for decoding spatial information
encoded in binaural signals. The HRTF changes with direc-
tion from which sound arrives to the listener, and any sound
source can be realistically located by filtering sound with the
HRTF corresponding to the desired location and presenting
the resulting binaural signals to the subject using two play-
back channels achieved typically by a pair of headphones.3

Nowadays, in practice, hundreds of measured HRTFs
from all directions surrounding a subject �person or dummy
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head� are fully recorded and have always been directly ap-
plied to study the transformation characteristics of the exter-
nal ear and to synthesize virtual reality over headphones.2,4,5

Two major problems with the direct use of measured HRTFs
are that first it is impossible to simulate every conceivable
direction and create source movement �panning� smoothly
through the space given the HRTF measurements are discrete
by necessity, and second there is no standard HRTF spatial
sampling theory to make HRTF measurement practical for
commercial applications.

One common approach toward the goal to study the
HRTF is to model the HRTF or head-related impulse re-
sponse �HRIR� by a reduced number of parameters and to
make the processing more effective by operating in this para-
metric domain. In the case of discrete data and sets of mea-
surements corresponding to different human subjects, many
techniques have been proposed for HRTF modeling. The fil-
ter bank models3,6 could achieve accurate reconstruction of
the original HRTF measurements, but the expansion weights
in the model are coupled with both angle and frequency vari-
ables, which limits the usefulness of the model for HRTF
analysis. Statistical methods have been used to analyze the
HRTF in an effort to reduce the redundancy �correlation� of a
data set. One important study is principal component analy-

7,8
sis �PCA�. However, the facts are that this PCA represen-
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tation is not continuous and the basis vectors may change for
each individual. Both filter bank models and statistical mod-
els such as PCA only allow the synthesis of the measured
HRTF samples. Interpolation is still required9–11 between the
discrete measurement positions.

HRTFs have also been represented as a weighted sum of
spherical harmonics in three dimensions,12 and as a series of
multipoles based on the reciprocity principle.13 The spherical
harmonics, a complete orthogonal basis function on the two-
sphere, provide a natural continuous representation in the
angular domain. Therefore, it leads to a straightforward so-
lution to the problem of HRTF interpolation in elevation and
azimuth. In both models, the expansion weights are functions
of frequency; analyzing these components can provide a new
means to study the scattering behavior of the human body.

B. Contributions and organization

In the previous work,14 we studied horizontal plane
HRTF representation. Here we extended our work to three-
dimensional auditory scene. Three main contributions of this
paper are summarized below.

In Sec. II, we use the acoustic reciprocity principle and
modal expansion of the wave equation solution to develop a
general HRTF representation in all frequency-range-angle
domains. We show that the HRTF decomposition with the
derived spatial basis function modes can be truncated to a
finite number and still with relative high accuracy. This
means that the HRTF is essentially a mode-limited function;
a finite number of spatial modes �named the dimensionality�
can represent the HRTF corresponding to all directions. The
value of dimensionality also determines the required spatial
resolution in HRTF measurement.

In Sec. III, we further develop the general HRTF model
to a continuous representation. We apply normalized spatial
modes to achieve near-field and far-field HRTF representa-
tions in one formulation, which provides a way to obtain the
range dependence of the HRTF from measurements con-
ducted at only a single range. We study the radially invariant
HRTF spectral components and find that the HRTF spectrum
has an underlying pattern similar to the spherical Bessel
functions. We use an orthogonal property of the Bessel func-
tions to form frequency basis functions, Fourier spherical
Bessel �FSB� series, to model the HRTF spectral compo-
nents. Besides achieving much higher spectral resolution,
this series representation can has far few parameters com-
pared to the measurements for a more efficient HRTF repre-
sentation.

The practical model implementation issues are discussed
in Sec. IV. A low-computation algorithm is proposed to cal-
culate the model coefficients from discrete measurements.
The proposed method separates the HRTF azimuth and el-
evation sampling effects, from which we have the following
observations: �i� The HRTF measurements that are coarsely
sampled in elevation can still be reconstructed with reason-
able accuracy and �ii� as for the azimuth, we need finer azi-
muthal sampling on the elevations closer to the equator but
less azimuthal sampling points closer to the pole.
Section V validates the developed HRTF sampling
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theory and the proposed HRTF continuous representation by
decomposing the experimentally measured15,16 �or analyti-
cally simulated17� HRTFs on a single sphere and synthesiz-
ing HRTFs at any frequency for an arbitrary spatial location
to check both reconstruction and interpolation performances.

II. MODAL ANALYSIS OF HRTF

HRTFs are usually obtained by emitting a signal from a
loudspeaker at different positions in space and recording it at
a microphone in the listener’s ear. At the physical level, the
HRTF is characterized by the classical wave equation subject
to boundary conditions. The general solution to the wave
equation can be obtained by separation of variables �fre-
quency, range, azimuth, and elevation angles�. Thus, in prin-
ciple, we can use the wave equation solution to expand the
HRTF with separable basis functions.

A. Theoretical development

When sound propagates from the source to the listener,
the received sound at the listener’s ear is transformed by the
structure and shape of the listener’s body. We seek a repre-
sentation of the sound pressure at the listener’s ear �left or
right�, where two sources should be taken into account: one
is the original acoustic source from the speaker and the other
is the secondary source due to the scattering of human body.
It is a complicated problem to apply the wave equation in
this configuration because the receiver, the listener’s ear, is
within the scatterer region of human body. The principle of
reciprocity18 can be used to remove this difficulty and to
develop a general representation of the HRTF.13

To apply the principle of reciprocity to the HRTF analy-
sis, we assume that the original acoustic source is located at
the listener’s ear and microphones are some distance away
�Fig. 1�. Here, we consider all the scattering sources of hu-
man body as the secondary level sources with the original
sources at the listener’s ear together constituting the source
field. From Huygens’ principle,19 the sum of the waves from
all the sources �including both original and secondary
sources� to any point beyond the scatterers �the human body�
can be calculated by integration or numerical modeling. To
exactly model the effect of the source field, we develop an
equivalent source field on a sphere of radius s with origin at

FIG. 1. �Color online� Geometry of HRTF measurement based on the reci-
procity principle.
the head center, as shown in Fig. 1, where the sphere should

Zhang et al.: Dimensionality of head-related transfer function A
u

th
o



r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y

be large enough to enclose all the sources. Note that the
reason we choose the sphere to include all the sources is
because we can use a specific set of orthogonal series,
spherical harmonics, to represent the source field; for ex-
ample, we write the equivalent source field as a function of
angular position and wavenumber; i.e.,

��x̂s,k� = �
n=0

�

�
m=−n

n

�n
m�k�Yn

m�x̂s� , �1�

where x̂s is a unit vector �or a set of 2D angles, elevation and
azimuth ��s ,�s�� pointing into the equivalent source direc-
tion and xs�s · x̂s defines the equivalent source position. The
wavenumber is defined as k=2�f /c, where f is frequency
and c is the speed of sound propagation. Yn

m�x̂s� are the
spherical harmonics characterized by two indices, degree n
and order m,

Yn
m�x̂s� �	2n + 1

4�

�n − 
m
�!
�n + 
m
�!

Pn

m
�cos �s�eim�s. �2�

�n
m�k� are the spherical harmonic coefficients of the equiva-

lent source field at wavenumber k and obtained from

�n
m�k� = �

S2
��x̂s,k�Yn

m�x̂s�d��x̂s� �3�

on the two-sphere S2, where � · � stands for the complex con-
jugate and �S2 d��x̂s�=�0

2��0
�sin �sd�sd�s. We can see that

the �n
m�k� carry information about the original source and

also the human body scattering behavior. Then the received
signal at y�r · ŷ �the HRTF corresponding to that position�
can be written in terms of the equivalent source field as

Ĥ�y,k� = �
S2

��x̂s,k�
eik
xs−y


4�
xs − y

d��x̂s�, r � s , �4�

where r is the distance between the head center �origin or
source center� and the receiver position and ŷ is the direction
of the receiver. The integral is over the sphere to account for
all sources. Using the Jacobi–Anger expansion,19 we have

eik
xs−y


4�
xs − y

= ik�

n=0

�

�
m=−n

n

jn�ks�hn
�1��kr�Yn

m�x̂s�Yn
m�ŷ�, r � s ,

�5�

where jn� · � is the spherical Bessel function and hn
�1�� · � is the

spherical Hankel function of the first kind. By substituting
Eq. �5� into Eq. �4�, we can expand the HRTF at position y as

Ĥ�r, ŷ,k� = �
n=0

�

�
m=−n

n

�̂n
m�k�hn

�1��kr�Yn
m�ŷ� , �6�

where

�̂n
m�k� = 4�ik�n

m�k�jn�ks� . �7�

In Eq. �6�, the HRTF dependence on each variable �fre-
quency, range, and 2D angle� is represented by separable

basis functions. The spatial modes, i.e.,
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hn
�1��kr�Yn

m�ŷ� , �8�

account for the HRTF spatial variations and �̂n
m�k� are the

modal decomposed HRTF spectral components.

B. Dimensionality of HRTF as a mode-limited function

In this section, we show that the HRTF decomposition in
Eq. �6� can be well approximated by choosing a sufficiently
large truncation order N, viz.,

Ĥ�r, ŷ,k� � �
n=0

N

�
m=−n

n

�̂n
m�k�hn

�1��kr�Yn
m�ŷ� , �9�

which indicates that the HRTF is essentially a mode-limited
function.20 The required number �N+1�2 of spatial modes �8�
to represent the HRTF spatial variations should be deter-
mined by a typical size of human head/torso and by bounds
on the spherical Bessel function jn�ks�, which decides the

upper limit of �̂n
m�k� in Eq. �6� �because first, both the source

field coefficients �n
m�k� and the spherical harmonics Yn

m� · �
are bounded functions; second, the spherical Hankel function
hn

�1��kr� has a weaker impact than the same order of the
spherical Bessel function jn�ks� �Ref. 21��. We define this
number of spatial modes as the spatial dimensionality of the
HRTF.

Figure 2 illustrates typical dependence of the spherical
Bessel function on the degree n for various values of ks. It is
clearly seen that there are two distinct regions separated by
value22,23

N = �eks/2� . �10�

For n	 �eks /2�, the spherical Bessel functions oscillate and
there is no decay in the amplitude for growing n. However,
when n
 �eks /2�, the functions monotonically decay to zero
with growing n, and the decay is very fast. Therefore, we
only need to include all spatial modes lower than the order of
N= �eks /2� for HRTF spatial representation. This yields the
spatial dimensionality of the HRTF, or the required number

of weights ��̂n
m�k�� that can represent HRTFs corresponding
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FIG. 2. �Color online� Dependence of the spherical Bessel function jn�ks� vs
degree n at different ks shown on the vertically shifted curves.
to all directions; i.e.,
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DIM�H� = �N + 1�2 = ��eks/2� + 1�2. �11�

In order to obtain the required number of weights, Eq. �11�
also defines the least number of the HRTF samples in the
space. The dimensionality depends on the wavenumber k and
the radius of the equivalent source field s, and we have the
following comments.

�1� The dimensionality increases with wavenumber/
frequency. This is because for a fixed size region of
sphere, the low frequency HRTF requires fewer spatial
modes since the waves are spatially varying more
slowly; for increasing frequency, we need more spatial
modes as the smaller wavelength indicates faster
changes in the space.

�2� The value of s relates to the typical size of human head/
torso. For example, for the spherical head, the value of s
is simply the radius of the head �0.09 m�. While for the
Knowles Electronics Mannequin for Acoustics Research
�KEMAR� or human subjects, we need to enlarge the
radius of the equivalent source field to include the main
torso effect, i.e., the shoulder reflection. However, the
torso only contributes to the HRTF at frequencies below
3 kHz. For frequencies above 3 kHz, it is the pinna effect
that allows the perception of elevation effects.24,25 So we
propose to set two separate values of the equivalent
source field radius for two ranges of frequency, that is,

s = �0.20 m for f � 3 kHz

0.09 m for f � 3 kHz.
� �12�

�3� Figure 3 plots the calculated truncation order N required
for HRTF representation �9� as a function of frequency
�note that an interpolation function on the truncation or-
der derived from the two equivalent source field radii is
applied; the value of N in the frequency range of �3, 6�
kHz is decided by the maximum value at f =3 kHz after
which the source field radius reduces to 0.09 m�. In the
case for a given frequency range, such as the audible
frequency range �200 Hz—20 kHz�, the maximum num-
ber of the discrete frequency points included in the fre-
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FIG. 3. Calculated the required truncation order N for the HRTF represen-
tation as a function of frequency.
quency range determines the least number of measure-
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ments. For example, 20 kHz bandwidth has the highest
truncation order N=46 and requires at least 2209 HRTF
measurements in the space.

III. HRTF CONTINUOUS REPRESENTATION

In this section, we further develop general representation
�9� into a continuous HRTF model, which can �i� link near-
field and far-field HRTFs directly, and �ii� parametrize the
spectral components by a set of basis functions.

A. Normalized modes for HRTF spatial representation

The spatial modes in Eq. �6� cannot directly represent
far-field HRTFs because the radial term tends to zero, viz.,

hn
�1��kr� � �− i��n+1�e

ikr

kr
→ 0 as r → � . �13�

It is desirable to normalize the spherical Hankel function;
i.e.,

Rn�kr� � i�n+1�kre−ikrhn
�1��kr� , �14�

so that we can achieve both near-field HRTF and far-field
HRTF representations in one formulation. As demonstrated
later in this section, we will show that this definition is con-
sistent with the analytical spherical HRTF model.

Referring to Eq. �9�, the modified HRTF representation
with the normalization is then

H�r, ŷ,k� = �
n=0

N

�
m=−n

n

�n
m�k�Rn�kr�Yn

m�ŷ� , �15�

noting that limr→� Rn�kr�=1, ∀n, when r→�, we have
the normalized far-field representation

H�ŷ,k� = �
n=0

N

�
m=−n

n

�n
m�k�Yn

m�ŷ� . �16�

Equations �15� and �16� show that the HRTF spectral com-
ponents �n

m�k� are radially invariant and can be obtained
from the spherical harmonic transform of the measurements
at a single radius; i.e.,

�n
m�k� = �

1

Rn�kr��S2
H�r, ŷ,k�Yn

m�ŷ�d��ŷ� near-field

�
S2

H�ŷ,k�Yn
m�ŷ�d��ŷ� far-field, �

�17�

and later used for HRTF reconstruction at any spatial point.
In addition, from Eq. �7�, we have

�n
m�k� =

�̂n
m�k�

i�n+1�kre−ikr =
4��n

m�k�jn�ks�
inre−ikr . �18�

Example of spherical head model. We use the spherical
head model17 as an example to solve the HRTF spectral com-

ponents, in which the HRTFs are represented as
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�H�r,
,k� =
− r

ka2e−ikr�
n=0

�

�2n + 1�Pn�cos 
�
hn

�1��kr�
hn�

�1��ka�
, r � a ,

�19�

where a is the spherical head radius, 
 is the angle of inci-
dence �the angle between the ray from the center of the
sphere to the source, ŷ, and the ray to the measurement point

on the surface of the sphere, �̂ear�, Pn� · � is the Legendre
function of degree n, and hn

�1�� · � and hn
��1�� · � are the spherical

Hankel function of the first kind and its derivative. Applying
the addition theorem,19 we have

Pn�cos 
� =
4�

2n + 1 �
m=−n

n

Yn
m�ŷ�Yn

m��̂ear� . �20�

Then we can expand the spherical head model HRTF with
the normalized modes, where the spectral components are

�n
m�k� =

4�Yn
m��̂ear�
in � jn�ka� − jn��ka�

hn
�1��ka�

hn�
�1��ka�

� . �21�

B. Fourier spherical Bessel series for HRTF spectral
representation

The goal of seeking an efficient continuous HRTF spec-
tral representation is to determine the spectrum of the HRTF
with higher spectral resolution and fewer parameters from a
finite number of measurements, which usually have limited
spectral resolution constrained by the sampling rate and
number of samples �or the record time�.

The �n
m�k� exhibit an underlying pattern similar to the

spherical Bessel functions �implicitly shown in Eq. �18��.26

An example is the spectral components of the spherical head
HRTF, Eq. �21�, in which the first component represents the
incident wavefield and the second term is the scattered field.
Both terms show the similar structures to the spherical
Bessel functions, so we can observe the strong correlation
between the HRTF spectral components and spherical Bessel
functions in Fig. 4.

Figure 5 shows the energy spread of the HRTF spectrum
over the spatial modes �n ,m� and wavenumber k, which has
a significant triangular null region and has been described as
the butterfly shape of the HRTF spectrum14,27 for the hori-
zontal plane HRTF. The explanation for this special shape of
the spectrum is because the HRTF dimensionality increases
linearly with frequency, as shown in Sec. II B. At low fre-
quencies, only low order spatial modes are signification and
the high spatial modes have very small contributions; at
higher frequencies, the higher order spatial modes become
significant. Therefore, most of �n

m�k� energy is present in a
triangular shaped region and, outside this region, the energy
is greatly reduced.

In Fig. 4, the resemblance between the patterns of �n
m�k�

and the spherical Bessel functions of the same degree indi-
cates that the HRTF spectrum can be compactly represented
by the spherical Bessel functions. Here, we apply the FSB
series for the representation of the HRTF spectral compo-

28
nents. The FSB series �derived from the Fourier Bessel
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series used for the horizontal plane HRTF spectral
representation14� are orthogonal basis functions on the inter-
val �0,1� as follows:

�
0

1

x2jn�xZ�
�n��jn�xZh

�n��dx =
1

2
��,h�jn+1�Z�

�n���2, �22�

where Z�
�n� and Zh

�n� are the positive roots of the jn� · �, and ��,h

is the Dirac delta function. The derived HRTF spectral com-
ponent representation is

�n
m�k� = �

�=1

�

An;�
m jn� Z�

�n�

kmax
k� , �23�

where from Eq. �22�

An;�
m =

2

kmax
3 jn+1

2 �Z�
�n��
�

0

kmax

k2�n
m�k�jn� Z�

�n�

kmax
k�dk . �24�

kmax is the maximum wavenumber of a HRTF data set being
modeled. In Eq. �23�, the HRTF spectral components are
decomposed as a linear combination of FSB series. Given
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FIG. 4. Examples to demonstrate the structural similarities between the
HRTF spectral components �n

m�k� and the spherical Bessel functions of the
first kind. Top plots and middle plots are the real and imaginary parts of
�n

m�k� with �a� n=0,m=0 and �b� n=12,m=0; and the bottom plots are the
spherical Bessel functions jn� · � at the corresponding degrees n=0 and n
=12 against arguments from 0 to 30.

FIG. 5. �Color online� Magnitude of the HRTF spectral components over
spatial modes and wavenumber for the spherical head case. The spatial
mode of degree n and order m corresponds to number of n2+n+m+1 on

x-axis.
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the FSB series expansion is convergent, Eq. �23� can be trun-
cated as

�n
m�k� � �

�=1

L

An;�
m jn� Z�

�n�

kmax
k� , �25�

where by choosing L sufficiently large the contribution of the
neglected higher order FSB terms can be made sufficiently
small. Section IV gives a practical way to determine L.

Besides compact representation, the continuous FSB se-
ries can achieve HRTF spectral reconstruction at any fre-
quency value �not necessity of measured frequencies� and
therefore provide a way for generating HRTFs at higher
spectral resolutions than the measurements.

C. Proposed continuous HRTF model

In summary, the above development leads to the HRTF
functional model written as

H�r, ŷ,k� = �
n=0

N

�
m=−n

n

�
�=1

L

An;�
m jn� Z�

�n�

kmax
k�Rn�kr�Yn

m�ŷ� , �26�

which can transform any HRTF data set to a set of coeffi-
cients �An;�

m � of cardinality �N+1�2�L. This HRTF represen-
tation exhibits three significant advantages.

• First, the representation has well studied closed form or-
thogonal basis functions, which can make the HRTF ap-
proximation easily implemented and model parameters
An;�

m simply computed using Eqs. �17� and �24�. A low-
computation algorithm is developed in Sec. IV given finite
discrete measured HRTFs.

• Second, using continuous basis functions, the proposed
model is powerful for the computation of the HRTF at any
frequency point for an arbitrary direction from a given set
of measurements at a fixed radius.

• Third, the basis functions are independent of the data. As
the basis is same for all subjects, the model coefficients
An;�

m carry all information about the individuality. Thus, the
model has capability to represent the individualized HRTF
by assigning a subject specific set of parameters to the
model.

IV. IMPLEMENTATION ANALYSIS

In this section, we investigate the modal decomposition
of the discrete measured HRTFs using the proposed func-
tional model �26�. A practical method to solve integral equa-
tions �17� and �24� given the typical HRTF measurement
setup is introduced in the following.

A. Typical HRTF measurement setup

Typically HRTFs are measured from humans or manne-
quins for both left and right ears at a fixed radius from the
head center. Thus, the source location is specified by a 2D
angle, elevation �, and azimuth � �denoted as a unit vector ŷ
in our previous analysis�. The elevation angle � from top to
bottom is defined as changing from 0° to 180°; and the azi-
muth � is counterclockwise rotating from 0° to 360°, where

0° and 180° are the direct front and back directions and 90°
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and 270° are defined as the left and right sides �note that this
definition is in accordance with the right hand coordinate
system and may be different from others�.

It is commonly believed that the HRTF should be
sampled uniformly on the sphere; however, arranging points
evenly on the sphere is a complicated mathematical problem.
Two most used strategies for HRTF measurement are equi-
distance in the azimuth arc15 and equiangular.16 In the former
one, the sampling points are distributed equally in the azi-
muth arc at all elevations, resulting in a decline of azimuth
resolution toward the pole of the sphere. While the latter one
applies the equal angular interval along both elevation and
azimuth and samples the sphere with very high spatial reso-
lution. These two sampling arrangements are compared in
Sec. V using the proposed modal decomposition method,
which helps us to thoroughly investigate the azimuth and the
elevation sampling effects.

B. Practical modal decomposition method

The proposed modal decomposition method is a two-
step procedure corresponding to approximating the two inte-
gral equations �17� and �24� given the discrete measured
HRTFs.

1. Estimating HRTF spectral components

The HRTF spectral components are obtained from the
spherical harmonic transform of the measurements on a
single sphere, as shown in Eq. �17�. We rewrite the spherical
harmonic transform in elevation and azimuth, given ŷ
= �� ,��, as

�n
m�k� = �

−�

� �
0

�

H��,�,k�Yn
m��,�� sin �d�d� . �27�

Note here we only consider extracting �n
m�k� from far-field

HRTFs; same procedure can be applied to near-field mea-
surements with an additional step of dividing the normalized
spherical Hankel function.

Let H��q ,�v ,k� be the HRTFs measured at several el-
evations �q , q=1, . . . ,Q, and several different/same azi-
muths �v , v=1, . . . ,Vq, at each elevation. We write the far-
field measured HRTF decomposition with spherical
harmonics �16� as

H��q,�v,k� = �
n=0

N

�
m=−n

n

�n
m�k�Yn

m��p,�v� , �28�

where the spherical harmonics Yn
m� · � are defined in terms of

the associated Legendre function Pn

m
� · � and the exponential

function, as shown in Eq. �2�. We use Eq. �2� to express Eq.
�28� in terms of the normalized Legendre function Pn


m
� · �
and the normalized exponential function Em� · � as

H��q,�v,k� = �
n=0

N

�
m=−n

n

�n
m�k�Pn


m
�cos �q�Em��v� , �29�

where Em��v�� �1 /	2��eim�v and


m
 2n + 1 �n − 
m
�! 
m

Pn �cos �q� �	
2 �n + 
m
�!

Pn �cos �q� . �30�
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Azimuth harmonics. At each elevation with the use of
the orthogonality of the exponential functions over circle, we
get an azimuth harmonics

am��q,k� = �
n=
m


N

�n
m�k�Pn


m
�cos �q�; �31�

while given Vq azimuth samplings at each elevation �q, we
have

am��q,k� � ��v�
v=1

Vq

H��q,�v,k�E−m��v� ,


m
 � ��Vq − 1�/2� , �32�

where ��v is the azimuth sampling interval in radians. The
azimuthal HRTFs of Vq samples contain at most Vq expan-
sion components, which means we can estimate am��q ,k� for

m
� ��Vq−1� /2�. However, if the sampling is non-uniform,
we should emphasize that approximation �32� is determined
by the maximum sampling interval; only the coefficients of

m
� ��2� /��v

max−1� /2� can be accurately solved.
Least-squares fitting. By writing Eq. �31� for a specific

order of m for all measured elevations, we can now form a
system of simultaneous equations given by

Pmbm = am, m = − N, . . . ,N , �33�

where the matrix Pm and the vector bm are in the following
forms:

Pm = �P
m


m
�cos �1� ¯ PN


m
�cos �1�

] � ]

P
m


m
�cos �Q� ¯ PN


m
�cos �Q�
� , �34�

bm = ��
m

m �k�,�
m
+1

m �k�, . . . ,�N
m�k��T, �35�

and

am = �am��1,k�,am��2,k�, . . . ,am��Q,k��T. �36�

The HRTF spectral components �n
m�k� can be calculated by

solving these linear equations described by Eq. �33� for each
order m. Since there will be noise in the HRTF measurement,
it is necessary to solve Eq. �33� in the least-squares sense by
minimizing the mean squared error 
Pmbm−am
2. Another
issue in the HRTF measurement is that no samplings are
made for lower elevations �i.e., �
140°� because of the
strong distortions from the ground and measurement appara-
tus. To avoid the enlargement of the unmeasured HRTFs, we
need to regularize the solution �the power in the 
bm
2 may
be included as a constraint�. The minimum norm least-
squares solution is denoted by

bm
+ = Pm

+ am, �37�

where Pm
+ is the general inverse of Pm.29 Given the size of Pm

is Q� �N− 
m
+1�, there are two cases of interest and the
Tikhonov regularized solutions are given explicitly by

+ T −1 T
Pm = �PmPm + �I� Pm, Q 
 �N − 
m
 + 1� , �38�
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Pm
+ = Pm

T �PmPm
T + �I�−1, Q 	 �N − 
m
 + 1� , �39�

where � is the regularization control parameter and I is the
identity matrix. A systematic approach to evaluate � for a
meaningful result is given in the work.30 In our experiment,
we set a small value of �=10−5, which was seen to achieve
reasonable reconstruction and interpolation quality.

Insights into spatial sampling. The main contribution of
this low-computation algorithm is based on factorization of
the spherical harmonics, which helps to separate the azimuth
and the elevation sampling effects. We have the following
comments regarding on the HRTF spatial sampling.

�1� In theory, it is necessary to set Eq. �33� as an overdeter-
mined system; i.e., the number of elevation samples
should be greater than �N+1�, so that the least-squares
solutions are valid. However, with the use of the regu-
larization technique, we can loosen this condition. Our
experiment results show the HRTF measurements that
are coarsely sampled in elevation �given the total num-
ber of samples greater than the dimensionality� can still
be reconstructed with reasonable accuracy.

�2� For smaller elevations �� toward the pole�, the associated
Legendre functions Pn


m
�cos �� have values close to zero
for higher m; i.e., Pn


m
�cos 0�=0, for m�0.31 This means
as elevation increases from the pole toward the equator,
higher order m of coefficients begin to appear. Thus, in
principle, we need less dense azimuth sampling closer to
the pole and more azimuth sampling points on the eleva-
tions closer to the equator. This shows that the sampling
of equidistance in the azimuth arc is appropriate for the
HRTF measurement, which we will further corroborate
using the real data validation.

2. Calculating model coefficients

From the estimated HRTF spectral components �n
m�k�,

the model coefficient An;�
m is obtained by using the left Rie-

mann sum to approximate integral �24�. The most important
issue is to determine the truncation order L. We define the
relative power of the �th order FSB series term against the
total power as

�� =

An;�

m 
2

�
�=1

�


An;�
m 
2

, � = 1,2, . . . . �40�

In Eq. �40�, the denominator is an infinite sum over model
coefficients. Since only HRTFs at discrete frequencies are
obtained by measurements, we evaluate the contribution of
the FSB series over the maximum order Lf �the number of
HRTF frequency samples�; and the relative power ratio is
defined as

� =

�
�=1

L


An;�
m 
2

�
Lf


An;�
m 
2

. �41�
�=1
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Then for each HRTF spectral component �n
m�k�, calculate �

for L=1,2 , . . . ,Lf and when � reaches a power threshold
�such as 0.9�, L is chosen as the truncation order above
which the contribution of higher order FSB series is negli-
gible.

V. SIMULATION RESULTS

A. HRTF database

Three sets of HRTF database are used.

�1� Analytically simulated HRTF from the spherical head
model.17 The HRTF for an ideal rigid sphere is defined as
the pressure on the sphere at the defined ear position
divided by the pressure that would exist at the sphere
center in the absence of the sphere. The synthetic data
are without noise influence and provide reliable refer-
ence to check the proposed sampling theory and the con-
tinuous model performance.

�2� The HRTF database for KEMAR from the MIT media
laboratory.15 KEMAR is designed according to the mean
anatomical size of the population; thus results from
KEMAR HRTF represent the mean performance. The
measurements are the head-related impulse responses in
the time domain at 44.1 kHz sampling rate and each
response is 512 samples long, from which a 512-tap
HRTF can be obtained by the discrete-time Fourier trans-
form. The speakers were at a distance of 1.4 m away
from the head center. The HRIRs �or HRTFs� were
sampled in the equidistance in the azimuth arc, where
the measurements are available for elevation steps of 10°
ranging from 0° �north pole� to 130° �40° underneath the
horizontal plane� and for full azimuth cover but have a
decline of azimuthal resolution toward the pole, as
shown in Table I.

�3� HRTF database of human subjects from CIPIC interface
laboratory.16 The HRIR measurements performed at
CIPIC include 45 subjects. A 200 samples long pseudo-
random signal generated by the snapshot system �sam-
pling frequency is 44.1 kHz� is used as the test signal.
For each subject, the HRTFs are measured at 1250 points
on the sphere of 1 m away from the listener. The eleva-
tion varies uniformly from 0° to 135° in the step of
5.625°; and there are 50 azimuth samples at each ele-
vation but not uniformly sampled; i.e., �= �0:5 :45,

TABLE I. MIT KEMAR data measurement steps �angles in degrees�.

Elevation
���

Azimuth resolution
���

No. of azimuthal
measurements

70–110 5.00 72
60 and 120 6.00 60
50 and 130 6.43 56

40 8.00 45
30 10.00 36
20 15.00 24
10 30.00 12
0 ¯ 1
55,65,80,100,115,125,135:5 :225,235,245,260,280,
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295,305,315:5 :355�°. The samplings are more dense
near the median plane but very coarse near the ear where
the azimuth varies in the step of 20°.

B. Results for dimensionality and analysis

Simulations are run on some audible frequency range for
each HRTF database, where the total number of spatial
samples determines the maximum frequency point that can
be reconstructed with high accuracy. The relative mean
square error �MSE� over all M angles �including both azi-
muth and elevation� at each frequency is used as the error
metric

��f� =

�
j=1

M


H�f , ŷ j� − H̃�f , ŷ j�
2

�
j=1

M


H�f , ŷ j�
2
, �42�

where H�f , ŷ j� and H̃�f , ŷ j� are the original and the recon-
structed HRTFs, respectively.

Figure 6 plots the synthetic HRTF reconstruction perfor-
mance for the whole audible frequency range up to 20 kHz.
The analytically simulated HRTFs are generated at 1.0 m
away from the head center on a sphere according to the equi-
distance in the azimuth arc sampling �2640 samples� and the
equiangular sampling �4371 samples�; both satisfy the re-
quired dimensionality �2209 samples� for reconstruction up
to 20 kHz. We can see that the maximum reconstruction error
is at the highest frequency. This shows that more than dimen-
sionality large number of measurements can fit the low fre-
quency data very well. Both equiangular and equidistance
samplings have very small reconstruction errors; but the
equiangular method needs much more samples and its big-
gest failure is that the sampling points near the pole are
dense, small, and can be very distorted when measurements
in this region are contaminated by noise.

We next investigate the dimensionality results of the
HRTF measurements on KEMAR mannequin and human
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FIG. 6. �Color online� Synthetic HRTF reconstruction error performance for
the audible frequency range of �0.2, 20� kHz.
subjects. Figure 7 shows that both data set reconstruction
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errors are larger than that of the theoretical model due to the
possibility of noise contamination at some measurements.
This is especially more likely to occur for human subjects
where the movement of the subject in the measurements can
lead to inconsistency in the measured response. Thus, we can
see that the reconstruction of KEMAR HRTFs is more accu-
rate than that of the human subject data. In addition, both
data sets have very similar error pattern.

As introduced in Sec. V A, the MIT KEMAR measure-
ments are equidistance sampled, which has 72 azimuth
samples on the horizontal plane and less azimuth samplings
for the elevations toward the pole. In total there are 710
spatial samples on the sphere, which means we can solve the
spatial mode decomposition up to N=25 corresponding to
the frequency about 12 kHz according to Eq. �11�. In Fig.
7�a�, the MIT data reconstruction shows a reasonable match
to the original data in the frequency range of �0.2, 12� kHz
with maximum error less than �40 dB.

The CIPIC data have finer elevation samplings but are
not uniformly sampled in azimuth. Even though the CIPIC
measurements are sampled at a much higher spatial reso-
lution �1250 samples on sphere�, it has even larger errors
�Fig. 7�b�� compared to MIT measurements. This is due to
the possible large measurement variations and the coarse azi-
muthal sampling �50 not uniformly azimuths at each eleva-
tion�. Very large azimuthal interval of 20° at both ear sides
determines that the model coefficients can only be solved
accurately for low order N. This is corroborated in Fig. 7�b�,
where the CIPIC data reconstruction errors are less than �17
dB for f �4 kHz and increase to large values for higher
frequencies.

In summary, the simulation results prove that the pro-
posed dimensionality �11� determines the required number of
spatial samples in the HRTF measurement. Only when the
number of measurements is larger than the required dimen-
sionality for a given frequency range �or a particular fre-
quency point�, reasonable reconstruction with high accuracy
can be achieved. As for the HRTF measurement, equidis-
tance in the azimuth arc is appropriate; with the use of the
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FIG. 7. HRTF measurement reconstruction error performances. �a� MIT
KEMAR mannequin measurements of frequency range �0.2, 12� kHz. �b�
HRTFs of CIPIC subject 3 of frequency range �0.2, 8� kHz.
regularization technique, the spatial sampling for elevations
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can be coarse while the sampling along the azimuth should
be finer �especially for the measurements close to the equa-
tor�.

C. Continuous model performance

1. HRTF reconstruction results

Figure 8 shows how the relative power distribution of
each FSB series coefficient varies with the spatial modes. We
can clearly see that for all spatial modes, the relative contri-
bution of lower order FSB series is significant, which corre-
sponds to the smooth HRTF spectral variations. It also
proves that using the relative power ratio as the criterion to
choose the truncation order of the FSB series expansion is
appropriate. We suggest the truncation order of the FSB se-
ries expansion based on the power criterion of 0.9. Table II
summarizes the number of FSB series and the number of
spatial modes �i.e., the dimensionality results given in Sec.
V B� for the three sets of HRTF database representation for a
given frequency range. Note that we only validate the CIPIC
data at low frequencies here because its spectral components
are accurately solved up to 4 kHz, as stated in Sec. V B. It
can be seen that the number of FSB series for the HRTF
spectral representation increases with frequency; in addition,
the human subjects’ HRTF needs more basis functions to
emulate.
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FIG. 8. �Color online� The relative power distribution of the FSB series
components for the HRTF spectral representation. �a� Analytically simulated
HRTFs from the spherical head model and �b� MIT KEMAR mannequin left
ear HRTFs. For all spatial modes, the relative contribution of lower order
FSB series is significant.

TABLE II. Summary of the number of spatial modes and the number of
FSB series for the three sets of HRTF database.

Given
frequency

range
�kHz�

No. of
spatial modes

No. of
FSB series

Average
MSE
�dB�

Synthetic HRTF �0.2, 20� 472=2209 85 �78.7
KEMAR HRTF �0.2, 12� 262=676 67 �28.6
Subject HRTF �0.2, 4� 162=256 16 �8.6
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Figure 9 plots the original and reconstructed HRTF mag-
nitude and phase for synthetic HRTF ��=90° ,�=80°� and
KEMAR left ear measurements ��=60° ,�=0°�. The recon-
struction errors for both data sets are shown in Table II. It is
clear that the reconstructed responses closely match the syn-
thetic and the KEMAR responses in both cases. We also use
CIPIC subject measurements to check the model perfor-
mance. The emulation error of subjects’ HRTF tends to be a
larger value �average MSE around �8.6 dB�, which demon-
strates that human subjects are harder to model than the
spherical head and the KEMAR mannequin.

2. HRTF interpolation and range extrapolation

We further investigate the HRTF interpolation and range
extrapolation performances using the proposed continuous
model. The MIT KEMAR data are measured at the sampling
frequency of 44.1 kHz with 512 samples for each measure-
ment. Figure 10 plots the polar response magnitudes for data
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FIG. 9. �Color online� Examples of analytical simulated and measured
HRTF reconstruction using the proposed continuous model. �a� Analytical
simulated HRTFs at elevation 90° and azimuth of 80° ��85.3 dB error� and
�b� left ear MIT KEMAR data at elevation 60° and azimuth of 0° ��41.5 dB
error�. Original: dotted line � · � and reconstruction: solid line �–�.

−2

0

2

−2
0

2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
y

z

−2

0

2

−2
0

2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
y

z

(b)(a)

FIG. 10. �Color online� MIT left ear HRTF polar response at 8 kHz: �a�

original data and �b� synthesized response over the sphere.
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at 8 kHz, where the synthesized polar responses �generated at
much higher spatial resolutions of ��=5° and ��=5° at
each elevation� are smooth forms of the original data and the
match is reasonably accurate. In addition, the polar response
at not measured frequency �f =4.15 kHz� is interpolated by
applying the decomposed model coefficients to the continu-
ous HRTF model, as shown in Fig. 11. We can see that the
proposed continuous FSB series can achieve reasonable
HRTF spectrum interpolation.

In Fig. 12, the plots on the left are the magnitudes of the
analytical HRTFs at different ranges on the horizontal plane,
compared to the range extrapolation results from the pro-
posed model on the right. We observe that the reconstruction
is perfect with average approximation error around 0.52%
��45 dB�.

3. Discussion

We summarize the performance of the proposed continu-
ous model in the following three aspects. First, the proposed
continuous functional HRTF model provides accurate recon-
struction to the experimental measurements. The interpolated
results are also reasonable emulations. Second, as given in
Table II, each of the individualized HRTF data set is trans-
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FIG. 11. �Color online� MIT left ear HRTF polar response at 4.15 kHz,
which is not measured but interpolated by applying the modal decomposed
coefficients to the continuous spectral modeling basis functions, FBS series.
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formed to a set of coefficients. This coefficient set is much
smaller in size compared to the original HRTF database. For
example, for frequency range of �0.2, 12� kHz, original MIT
databases have 81 920 sample points �710 directions and 160
frequency samples for each position�; now the transformed
coefficient just has 45 292 entries �N=25, �=67�. The data
that need to be saved have been reduced by nearly 45%.
Compared to the statistical PCA model,8 which is truly the
optimal low-dimensional description for the HRTF data set,
the disadvantage of our model using more basis functions is
countered by the universality �data independent and mea-
surement grid independence of the basis� and the continuous
nature of the basis functions �eliminating the need for inter-
polation�. Third, the proposed model can be regarded as
noise discriminated as the basis functions we choose have
structural similarities to the HRTF being analyzed. Thus, the
unwanted components �noise or distortion� will not be rep-
resented with the same accuracy as the signal interested. For
example, the noise components of high spatial bandwidth
�n�N� are removed and the noise with frequency compo-
nents outside the triangular shaped region will be signifi-
cantly reduced.

VI. CONCLUSION

A general HRTF representation in all frequency-range-
angle domains was developed in this paper. The HRTF spa-
tial dimensionality is defined as the required number of spa-
tial modes to represent HRTFs corresponding to all
directions. A continuous functional model can represent the
HRTF in both spatial and spectral domains. The model is
powerful for the computation of the HRTF at any arbitrary
position in space and at any frequency point from a given set
of measurements at a fixed distance. A practical method was
developed to obtain the model coefficients. We observed
good HRTF spatial and spectral components’ reconstruction
and interpolation results from both analytical solutions and
measurement data. We also need to state that the current
approach is dealing with the representation of empirical mea-
surements at the technical level. Psychoacoustic validation
has to be performed in the future to confirm the error bounds
and the truncation orders given in the paper.
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