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Abstract—This paper proposes a new blind algorithm for joint
carrier offset estimation and data detection, which is based on
particle filtering and recursively estimates the joint posterior
probability density function of the unknown transmitted data
and the unknown carrier offset. We develop new guidelines for
resampling of the particles to take into account carrier offset
estimation ambiguity at the edges of the range, and for fine
tuning estimates to achieve fast, accurate convergence. The Mean
Square Error (MSE) and Bit Error Rate (BER) performance of
the proposed algorithm is studied through computer simulations.
The results show that the proposed algorithm achieves fast
convergence for the full acquisition range for normalized carrier
frequency offsets.

Index Terms—Synchronization, Particle filters, Frequency off-
set estimation, Blind Algorithms.

I. INTRODUCTION

Carrier Frequency Offset (CFO) correction is a fundamental
requirement for reliable data transmission in any wireless com-
munication system. The CFOs arise because the transmitter
and receiver oscillators can never be perfectly synchronous.
The CFO manifests itself as a time-varying phase offset and
results in a time-varying rotation of the data symbols. It is
well known that even small residual errors in CFO estimation
can lead to large errors in data detection [1]. Thus CFO must
be compensated for accurately prior to data detection.

The existing CFO estimators can be classified as either
data-aided or blind. Data aided schemes use training or pilot
symbols (known to both the transmitter and the receiver) and
are bandwidth consuming [2]. Blind schemes do not require
any initial training and can be broadly classified into two
categories: (a) algorithms which operate in feedback mode
and employ Phase Lock Loop (PLL) or automatic frequency
control loops [3]; and (b) algorithms which operate in feed
forward mode and are based on open loop frequency estima-
tion [4]–[6]. PLL based algorithms require a long convergence
time and suffer from the well known M -fold symmetric ambi-
guity, resulting in a limited acquisition range for the frequency
offset, i.e., |f | < 1/(2M), where M is the constellation size
and f is the normalised digital frequency offset. Feed forward
algorithms rely on the statistics of the received signal and
require oversampling and long data records for processing.

In recent years, there has been growing interest in appli-
cation of particle filtering (also known as Sequential Monte
Carlo) methods to synchronization problem in wireless com-
munication systems [7], [8]. Particle filters are a powerful

tool for estimating unknown parameters in non-linear, non-
Gaussian, real-time applications. The core principle of particle
filtering is to build a recursive Bayesian filter in order to esti-
mate the posterior probability density function of the unknown
parameters. Prior work in this area has looked at particle
filters for joint blind equalization and data detection [9] and
joint blind timing estimation and data detection [10], [11],
respectively. To the best of author’s knowledge, the use of
particle filters for carrier frequency offset estimation has not
been considered before.

In this paper, we propose a new particle filter based blind
algorithm for joint carrier offset estimation and data detection
in Additive White Gaussian Noise (AWGN) channels. The
proposed algorithm recursively estimates the joint posterior
probability density function of the unknown transmitted data
and the unknown carrier offsets and achieves very fast carrier
recovery. The major contributions of this paper, in comparison
to previous research, are as follows:

• We propose a particle filters based algorithm for non-data
aided, joint estimation of frequency offset and transmitted
symbols. We develop new guidelines for resampling of
the particles to taken into account carrier offset estimation
ambiguity at the edges of the frequency range and for fine
tuning of estimates.

• The results demonstrate that the proposed algorithm
achieves full-range acquisition of carrier frequency offset
|f | < 1/2, without the need for oversampling of the
received signal. In addition, the algorithm converges
extremely fast and yields accurate estimation of frequency
offset within 15−20 time instants with only 50 particles.

The remainder of this paper is organised as follows. The un-
derlying signal model is described in Section II and the particle
filter formulation is given in Section III. The proposed particle
filtering algorithm is described in Section IV. The simulation
results are presented in Section V. Finally, conclusions are
drawn in Section VI.

II. SYSTEM MODEL

A. Signal Model

We consider a digital communication system where the
transmitter sends the data symbols, chosen from a discrete
alphabet of size M , over an Additive White Gaussian Noise
(AWGN) channel. The noisy signal at the output of receiver
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matched filter can be written as

z(t) =
D−1∑

d=0

xd h(t− dT + τT ) ej2πFt + v(t), (1)

where xd is the dth transmitted symbol, D is the frame size,
i.e., a transmission block of bits, h(t) represents the overall
pulse shaping filter response for transmitter and receiver
ends, T is the symbol period, τ , is the normalised fractional
unknown timing offset (|τ | ≤ 1

2 ) between the transmitter and
receiver, F is the frequency offset between the transmitter
and receiver oscillators in Hz and v, with variance σ2

v , is the
AWGN.

The equivalent discrete-time system model after sampling
is given by

zk =
D−1∑

d=0

xd h(kTs − dT + τT ) ej2πfk + vk, (2)

where zk = z(kTs), vk = v(kTs), Ts = T/Q is the sampling
period, Q is the number of samples per symbol and f = F/Fs

is the digital frequency offset in cycles/sample. The frequency
offset, f , has the range [−F/(2Fs), F/(2Fs)] for the baseband
signal model lying between −F/2 and F/2 Hz.

Assuming h(t) to be a causal filter with finite duration L,
the sampled received signal can be expressed as

zk =
k∑

d=k−L

xd h(kTs − dT + τT ) ej2πfk + vk, (3)

The above equation can also be written in vector form as

zk = xT
k hk(τ) e

j2πfk + vk, (4)

where the superscript (·)T denotes the hermitian transpose
operator, k = 0, 1, . . . , D − 1, xk = [xk−L, . . . , xk]T and
hk(τ) =

[
h(LT + τ), . . . , h(τ)

]T are (L+ 1)× 1 vectors.
In this paper, we assume that the timing offset is perfectly

compensated, i.e., hk(τ) = [0, . . . , 0, 1]T with L zeros in the
pre-cursor. In addition, we are able to demonstrate good results
without oversampling, Q = 1 implying Fs = F , and for the
full range for the frequency offset (−0.5, 0.5). Hence we focus
on the problem of jointly estimating the carrier frequency
offset and data symbols. Hence, (4) simplifies to scalar form

zk = xk ej2πfk + vk, (5)

B. Estimation Objective
The problem of joint blind estimation of transmitted sym-

bols and the frequency offset, is to estimate data sym-
bols x0:D−1 = {x0, . . . , xD−1} and corresponding carrier
frequency offset f0:D−1, from the available observations
z0:D−1 = {z0, . . . , zD−1}. Note that the notation f0:k denotes
the estimates of f at time instants 0 to k and it does not
represent a time-varying frequency offset.

From a Bayesian perspective, all the necessary information
for the estimation of unknown parameters (xk, fk) at time k, is
contained in the joint posterior probability distribution func-
tion p(x0:k, f0:k|z0:k). Since this distribution is analytically

intractable, we use a particle filter to represent the posterior
pdf by means of a discrete probability measure with random
support.

III. PARTICLE FILTER FORMULATION

In this section, we formulate a particle filter based method
for approximating p(x0:k, f0:k|z0:k). To this aim, we first
introduce a change of frequency variable as f = f + 0.5
such that f has the range [0, 1]. The reason for this change
of variable is explained in Section IV-B.

The particle filter approximates the posterior pdf of un-
known variables, p(x0:k, f0:k|z0:k), by a set of N particles,
{(x0:k, f0:k)(i)}Ni=1, with associated weights {w(i)

k }Ni=1. One
of the most widely used techniques for implementing particle
filters and calculating the weights is the Sequential Importance
Sampling (SIS) method. The basic principle of this technique
is to build a recursive empirical approximation of a desired
PDF by drawing samples from a different distribution (called
the importance function) and assigning appropriate normalised
importance weights to these samples. The reader is referred to
[12] for a tutorial introduction to this technique.

According to this technique, the weights can be computed
as

w(i)
k ∝

p
(
x(i)
0:k, f

(i)
0:k|z0:k

)

π
(
x(i)
0:k, f

(i)
0:k|z0:k

) (6)

where the importance function π(·) is chosen to admit a
factorization of the form

π
(
x(i)
0:k, f

(i)
0:k|z0:k

)
= p

(
fk|f(i)0:k−1, x

(i)
0:k−1, z0:k−1

)

× p
(
xk|x(i)

0:k−1, f
(i)
0:k, z0:k

)
(7)

By resorting to a recursive decomposition of the posterior
distribution, the numerator in (6) can be expressed as

p
(
x(i)
0:k, f

(i)
0:k|z0:k

)
∝ p

(
fk|f(i)0:k−1, x

(i)
0:k−1, z0:k−1

)

× p
(
zk|x(i)

k−1, f
(i)
k

)
× p

(
xk|x(i)

0:k−1, f
(i)
0:k, z0:k

)

× p
(
x(i)
0:k−1, f

(i)
0:k−1|z0:k−1

)
(8)

We can identify that two PDFs in (8) are the same as in (7).
Substituting (8) and (7) in (6) and after some manipulation,
we obtain

w(i)
k = w(i)

k−1 p
(
zk|x(i)

k−1, f
(i)
k

)
(9)

The posterior PDF can be then approximated as

p(x0:k, f0:k|z0:k) ≈
N∑

i=1

w(i)
k δ

(
(x0:k, f0:k)

(i) − (x0:k, f0:k)
)

(10)
where δ(·) denotes Dirac’s delta function. Using this approx-
imated posterior PDF, estimates of data and frequency offset
can be easily computed.



IV. PROPOSED ALGORITHM FOR DATA DETECTION AND
FREQUENCY OFFSET ESTIMATION

In this section, based on the particle filter formulation
presented in Section III, we describe the proposed algorithm
for joint data detection and frequency offset estimation. The
algorithm consists of the following steps:

A. Initialization

We assume that the prior distribution of the transmitted sym-
bol and frequency offset, p(x−1, f−1), is known. The density
of the frequency offset, f−1, is considered to be uniform in the
range (0, 1), since the applied frequency offset, f , is uniformly
distributed in the range (− 1

2 ,
1
2 ). In addition, we assume that

the first symbol, x−1, is known. This simple assumption helps
us to avoid the M -fold ambiguity of the constellation and
to acquire the full-range acquisition of the frequency offset.
Note that the use of a single pilot bit transmission to resolve
ambiguities is common to many blind schemes [13]. Thus,
we initialize the algorithm at time k = −1 as x(i)

−1 = x−1 and
f(i)−1 ∼ U(0, 1), i = 1, 2, . . . , N . We initialize the weights of
all the particles to be equal, i.e., w(i)

−1 = 1/N .

B. Importance Sampling

The sampling from the importance function in (7) is ac-
complished in two steps. First, we obtain the frequency offset
sample from p

(
fk|f(i)0:k−1, x

(i)
0:k−1, z0:k−1

)
. Since this density

cannot be exactly determined, we must approximate it using
a suitable density. Following the approach in [10], we ap-
proximate this distribution by a beta distribution. Since beta
distribution has a range [0, 1], we introduced a change in the
frequency variable in Section III to have the same range. Thus,
we draw the frequency offset sample from

fk ∼ β(fk;Uk, Vk) (11)

where beta distribution parameters Uk and Vk, see [10], are
obtained by

Uk = f̄k
( f̄k(1− f̄k)

σ2
fk

− 1
)

(12)

Vk = (1− f̄k)
( f̄k(1− f̄k)

σ2
fk

− 1
)

(13)

where f̄k and σ2
fk

can be computed as

f̄k =
N∑

i=1

w(i)
k−1f

(i)
k−1 (14)

σ2
fk =

N∑

i=1

w(i)
k−1

(
f(i)k−1 − f̄k

)2 (15)

After drawing a carrier frequency offset sample, we draw
a sample of the transmitted symbols from the second term of
the proposal distribution p

(
xk|x(i)

k−1, f
(i)
k , zk

)
. Since the trans-

mitted symbols are independent and identically distributed
(i.i.d.) discrete uniform random variables, we can ignore the

dependency on all of the previous time states and the sampling
density can be rewritten as

p
(
xk = Xm|x(i)

k−1, f
(i)
k , zk

)
∝ p

(
zk|xk = Xm, x(i)

k−1, f
(i)
k

)

= N
(
µ(i)
k (Xm),σ2

v

)
(16)

where N (µ,σ2) denotes the Gaussian distribution with mean
µ and variance σ2, Xm is one of the possible transmitted
symbols of the modulation alphabet, X = {X1, X2, . . . , XM}
and µ(i)

k (Xm) = Xmej2πf
(i)
k k, where f (i)

k = f(i)k − 0.5.
From (16), we can derive the probability mass function for
each symbol of X as

ρ(i)(xk) = p(xk = Xm|x(i)
k−1, f

(i)
k , zk)

=
N
(
µ(i)
k (Xm),σ2

v

)

∑
X∈X N

(
µ(i)
k (X),σ2

v

) (17)

where i = 1, 2, . . . , N . Hence, we draw the transmitted symbol
according to

x(i)
k ∼ ρ(i)(xk) (18)

C. Weight update
After obtaining the new particles, we update their corre-

sponding importance weights. Since all the possible trans-
mitted symbols are equiprobable, we can rewrite the weight
update expression (9) as

w̃(i)
k ∝ w(i)

k−1

∑

X∈X
p
(
zk|xk = X,x(i)

k−1, f
(i)
k

)

= w(i)
k−1

∑

X∈X
N
(
µ(i)
k (X),σ2

v

)
(19)

where w̃(i)
k is the non-normalized importance weight for the ith

particle and we use the assumption that p
(
xk|x(i)

k−1

)
= p(xk).

Finally, we normalize the weights as

w(i)
k =

w̃(i)
k∑N

n=1 w̃
(n)
k

(20)

D. Resampling
A well known problem in the practical implementation

of the Sequential Importance Sampling algorithm is that the
discrete measure of the particles {(xk, fk)(i)} degenerates
quickly, i.e., after a few time steps, most of the importance
weights have negligible values (w(i)

k ' 0). The common
solution to this problem is to resample the particles [12].
Resampling eliminates the particles with small weights, while
replicating those with larger weights. Thus the basic resam-
pling operation involves generation of N new particles by
sampling the discrete set {(xk, fk)(i)}Ni=1 with probabilities
w(i)

k and then resetting the importance weights to equal values
1/N . Resampling at every time step is not needed [12].
We consider that resampling is carried out in our algorithm
whenever the effective sample size of the particle filter, Neff,
approximated as,

Neff =
1

∑N
i=1

(
w(i)

k

)2 ≤ N/2 (21)



goes below a certain threshold (typically a fraction of N ) [14].
In addition to the standard resampling as described above,

we propose two new resampling schemes to take into account
carrier offset estimation ambiguity at the edge of the frequency
range and for fine tuning the estimates. These are described in
the next two subsections. It must be noted that without these
two steps, the algorithm may not always lead to meaningful
results.

E. Resampling Guidelines
In this paper, we consider the full frequency offset acquisi-

tion range (−0.5, 0.5) as a cyclic range. When the number
of particles is small, the particle filter may converge to a
value which is close to but not the true carrier frequency
offset estimate. Since even small residual errors in CFO
estimation can lead to large errors in data detection, we
propose a check on the weights for fine tuning the estimates.
Once the weights fall below a selected threshold, indicating
convergence, we regenerate the particles in the range ±0.015
of the most recurring particle and update the corresponding
weights. In addition, the edges of the frequency offset range,
(−0.5,−0.45) and (0.45, 0.5), are very sensitive to error since
even a small noise can perturb the received signal and lead to
the posterior density of frequency offset to evolve in the wrong
estimation region. We mitigate this problem by putting a check
on the first symbol after resampling. The results in Sec. V-A
indicate that with this resampling, the algorithm achieves very
accurate estimates of the carrier frequency offset.

F. Estimation
Finally, the importance weights and the drawn samples for

the carrier frequency offset are used to compute the Minimum
Mean Square Error (MMSE) estimate of the true frequency
offset f̂k as

f̂k =
( N∑

i=1

f(i)k w(i)
k

)
− 0.5 (22)

In addition, we compute the maximum a posteriori (MAP)
estimates of the kth transmitted symbol as

x̂k = arg max
X∈X

{ N∑

i=1

w(i)
k δ

(
x(i)
k −X

)}
(23)

The proposed algorithm is summarized in Fig. 1.

V. SIMULATION RESULTS

In this section, we present simulation results to verify
the performance of our proposed algorithm. We consider a
communication system with a Binary Phase Shift Keying
(BPSK) modulation and an AWGN channel. Note that AWGN
channel is considered by many authors in the synchronization
context [15], [16] . The random frequency offset is assumed
to be uniformly distributed in the range (−0.48, 0.48), i.e.,
approximately full acquisition range acquisition. We use N =
50, 100 and 200 particles to estimate data symbols and the
frequency offset jointly. The simulation results are averaged
over R = 600 Monte Carlo simulations, with each run
consisting of a block of M = 100 transmitted bits.

PROPOSED ALGORITHM

Draw f(i)−1 ∼ U(0, 1) for i = 1, 2, . . . , N (total number of
particles)
Set w(i)

−1 = 1/N
For k = 0 to D − 1 (total number of symbols)

For i = 1 to N (total number of particles)
Compute f̄k, σ2

fk
, Uk & Vk using

(14), (15), (12) & (13)
Draw fk ∼ β(fk;Uk, Vk)

Draw x(i)
k ∼ ρ(i)(xk) ∝ N (µ(i)

k (xk),σ2
v)

Update weights w̃(i)
k = w(i)

k−1

∑
X∈X N (µ(i)

k (X),σ2
v)

end
if (

∑N
i=1 w̃

(i)
k == 0 || max{w̃(i)

k } < 10−11)
Resampling for fine tuning of estimates

end
Normalize weights w(i)

k = (
∑N

n=1 w̃
(n)
k )−1w̃(i)

k

Resample if Neff =
1∑N

i=1(w
(i)
k )2

≤ N/2

Resampling to resolve edge ambiguities ( ∀ k = 0 )
Frequency offset Estimation and Symbol Detection
f̂k =

(∑N
i=1 f

(i)
k w(i)

k

)
− 0.5

x̂k = arg max
X∈X

{
∑N

i=1 δ(x
(i)
k −X)w(i)

k

}

end

Fig. 1. Proposed Algorithm for Joint Blind Carrier Frequency Offset
Estimation and Data Detection.
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Fig. 2. Estimate of the frequency offset f̂k at different time instants for
SNR = 14 dB, system frequency offset, f = 0.45 and number of particles
N = 50, 100 and 200, respectively.

A. Acquisition range and fast convergence

Fig. 2 shows one realization of the particle filter estimates
of the frequency offset at different time instants for a Signal to
Noise Ratio (SNR) of 14 dB. The true frequency offset is f =
0.45 or equivalently fk = 0.95. The figure demonstrates that
the estimated frequency offset f̂k converges to the true value
after just 15− 20 time instants, e.g., for N = 50 particles, the
value is f̂k = 0.4494 after 20 time instants which is very close
to the true estimate. In addition, as we increase the number of
particles, the estimate converges more rapidly.
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B. Mean Square Error (MSE) of frequency offset estimation
Fig. 3 shows the Mean Square Error (MSE) of frequency

offset estimation for different values of SNR. The MSE was
approximated as, MSE =

∑R
"=1(f(') − f̂D−1('))2, where R

is the number of Monte Carlo simulation runs for each value
of SNR, f(') is the introduced random frequency offset for
'th simulation and f̂D−1(') is the estimate of frequency offset
for (D− 1)th symbol and 'th simulation. We can see that the
MSE decreases considerably after 10 dB SNR and increasing
the number of particles results in lower MSE value.

C. Bit Error Rate (BER) performance
Fig. 4 show the BER as a function of the SNR. The

reference curve in this figure is the theoretical BER curve
for BPSK in AWGN channels with no frequency offset error.
We can see that there is a performance loss compared to the
reference curve, e.g., an SNR of 16 dB is required to achieve
a BER of 10−5 for N = 200 particles which is approximately
6dB from the reference curve. However we can see that at
high SNR, the slope of the simulated BER curves approaches
that of the reference curve which confirms the correct working
of the proposed algorithm.

The apparent loss in performance can be attributed to the
fact that the carrier frequency offset is a very sensitive synchro-
nization parameter. Even small residual errors in frequency
offset estimation (of the order of 0.01) can lead to huge
errors in data detection and bias the averaged BER results.
The presented BER simulation results are unbiased results,
i.e., we have not artificially discarded any initial bits to allow
the algorithm to converge or 5% extreme results as suggested
in [9]. Also note that the BER result in Fig. 4 corresponds
to the worst case scenario with frequency offset randomly
distributed in the full acquisition range.

VI. CONCLUSIONS

In this paper, we have developed a particle filter algorithm
to jointly estimate the carrier frequency offset and transmitted
data. We have proposed two new resampling procedures to
deal with carrier offset estimation ambiguity at the edges
and to fine tuning estimates. The simulation results confirmed
that the proposed algorithm achieves full-range acquisition of

frequency offset and achieves fast accurate convergence in
about 15-20 time instants with only 50 particles.
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