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Abstract— In this paper we analyze the decision feedback
error propagation in the adaptive turbo equalization with
a decision feedback loop. We derive the exact mathemat-
ical expression for the feedback error probability density
function (pdf) with the assumption that the soft outputs
of channel decoder are identical independent distributed
(i.i.d) Gaussian random variables with known mean value
and variance. We also find a new set of turbo equalizer
coefficients based on the feedback error pdf and MMSE
criterion. New turbo equalizer is shown to outperform the
conventional one (assuming no feedback error propagation)
in terms of Bit Error Rate (BER). The achieved improve-
ment is up to 4 dB for severe frequency-selective channels.
The analysis is applicable to other turbo detection methods
employing the feedback loop.

I. INTRODUCTION

TURBO-coding [1] offers a significant coding
gain for communication over memoryless Additive

White Gaussian Noise channel delivering the Bit Error
Performance within 0.5 dB of Shannon theoretical limit
at BER of 10−5 [2]. The turbo principle has been applied
to a variety of detection/decoding problems such as
equalization, multiuser detection (MUD), channel esti-
mation, phase recovery etc. However, the computational
complexity of turbo detectors is often a prohibitive pa-
rameter for practical design and implementation of such
systems. For example, the computational complexity of a
turbo equalizer applying Maximum Likelihood (Viterbi)
channel equalization as proposed in [3] grows exponen-
tially with the number of discrete-channel coefficients.
The solution for the complexity problem is found in use
of sub-optimum detectors implemented in turbo schemes
which gives a significant reduction of complexity and
maintains BER performances still close to those of the
optimal detectors. Low complexity turbo equalization
combining adaptive Decision Feedback Equalizer (DFE)
and Soft Input Soft Output (SISO) decoding has been
proposed by Glavieux et al. in [4] and later in [5]. Further
analysis has been provided in [6] and [7]. In [8] a hybrid
turbo equalization scheme combining Maximum Likeli-
hood Sequence Estimation (MLSE) based equalizer in
the first turbo iteration and Interference Cancellers (IC)
in higher turbo iterations has been analyzed. The ICs are
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designed so that the outputs from the previous iteration
are used to cancel pre- and post-cursor interference. ICs
are determined according to MMSE criterion assuming
the perfect outputs from the previous iteration. For low
SNRs perfect feedback assumption becomes invalid and
the feedback error propagation has to be taken into
account. In [9] it was shown that the adaptive turbo
equalizer employing Least Mean Square (LMS) adap-
tive algorithm outperforms the MMSE one where the
coefficients are obtained according to perfect decision
feedback assumption.

In this paper we analyze the decision feedback error
propagation in adaptive turbo equalization.

The main contributions of the paper are:

1) We obtain the feedback error (noise) probability
density function for the adaptive turbo equalizer as-
suming that soft outputs from SISO channel decoder
are i.i.d. Gaussian random variables. The function is
obtained analytically and confirmed by simulations.

2) We propose a new turbo equalizer where a new
set of MMSE DFE and MMSE IC coefficients are
obtained based on the derived pdf function without
assuming perfect decision feedback.

3) We show that for time invariant communication
channels, which exhibit sever Inter-Symbol Interfer-
ence (ISI) the proposed turbo equalizer outperforms
one that is obtained according to perfect decision
feedback assumption delivering SNR gain of up to
4 dB, and up to 2 dB relative to the adaptive LMS
turbo equalizer.

This paper is organized as following: In section II we
present the system model. In section III we introduce
a SISO decoding algorithm and analyze feedback error
propagation. In section IV we analyze MMSE decision
feedback structures used in turbo equalization and their
dependence on the error propagation. The simulation
results and conclusion are presented in sections V and
VI, respectively.

II. SYSTEM MODEL

The communication system model applying turbo
equalization is shown in Fig. 1. At the transmitter side
the information data is encoded using a channel encoder.
Interleaved signal is than modulated and transmitted over
discrete-coefficient ISI channel. The received signal is

rk = Hxk + nk (1)
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1: System Model employing Turbo Equalization

where H is the channel impulse response matrix, xk

is the vector of transmitted symbols and k is a time
instant. nk is the vector of Additive White Gaussian
Noise (AWGN) samples, i.e.

H =











hL hL−1 · · · h0 0 0 · · ·
0 hL hL−1 · · · h0 0 · · ·

. . .
0 · · · 0 hL hL−1 · · · h0











(2)

xk =
[

xk−L · · · xk−1 xk xk+1 · · · xk+L

]T

(3)
and

nk =
[

nk+L nk+L−1 · · · nk

]T (4)

At the receiver side, the received sequence is equalized,
deinterleaved and decoded using a SISO channel decoder
which is designed to deliver soft outputs in the form
of the Log-Likelihood Ratios (LLR) [10]. LLRs are
calculated for all coded bits are then used in the next
turbo iteration in order to improve further detection. The
detection is repeated in the same fashion several times.
After a certain number of repetitions (turbo iterations)
the turbo equalizer BER performance reaches the limit
after which it cannot be improved anymore by further
increase of the number of iterations. The optimal channel
equalization [11] is MLSE where the sequence detec-
tion is performed by searching for the path with the
smallest metric through the trellis diagram describing
the discrete channel. However, the MLSE detection has
a complexity proportional to mL, where m is the size
of the input alphabet and L is the length of the channel
impulse response. For long channels the computational
complexity becomes too high so that the alternative
methods for channel equalization have to be applied.
Reduced complexity equalization methods used in this
paper employ DFE and IC.

III. SISO DECODING ALGORITHMS AND FEEDBACK
ERROR PROPAGATION

In this section we briefly present a SISO decoding al-
gorithms named Soft Output Viterbi Algorithm (SOVA).
Soft value of the k-th bit (for binary signaling) is defined
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2: Pdf of LLR at the output of the SISO decoder for different SNRs

as the following LLR [1], [10]

Λ(xk) = log
p(xk = +1|r)

p(xk = −1|r)
= log

∑

(s′,s),xk=+1

p(s′, s, r)

∑

(s′,s),xk=−1

p(s′, s, r)

(5)
where s′ and s are trellis state indexes at time instants
k− 1 and k, respectively. The summations in numerator
and denominator in (5) are over all transitions from
state s′ to state s for which xk = +1 and xk = −1,
respectively. SOVA calculates the approximate values
for the probabilities of (5). It is less accurate but also
significantly less complex than Maximum A Posteriori
Probability (MAP) algorithm (MAP calculates the exact
probabilities). However, it was already shown in [12] that
almost identical BER performance are obtained when
applied in the adaptive turbo equalizer. The soft values
using SOVA can be calculated as [10], [13, p. 129]

Λ(xk) = log
p(xk = +1|r)

p(xk = −1|r)
∼ dk(Mk,c − Mmin) (6)

where Mmin is the path with the minimum metric
through trellis, dk is the k-th symbol in the path with the
minimum metric and Mk,c is the path with the minimum
metric among all paths with the k-th symbol having the
value complementary to dk . Generally, LLRs at the
decoders outputs are very large values and they are not
suitable to be used in the feedback directly so that they
have to be normalized. One possibility is to calculate
expectations of 1s and -1s as it was shown in [5], i.e.

ak = 1 · p{xk = +1|r} + (−1) · p{xk = −1|r} (7)

Combining (5) and (7) we get

ak = tanh
Λ(xk)

2
(8)

It was already shown in [14] that for relatively long
sequences the LLRs at the output of the SISO decoders
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3: Pdf of expectations calculated from the output of the SISO decoder
for different SNRs: Analytical and simulation results

could be considered to be random variables with Gaus-
sian pdf. This statement is supported by the simulation
results of Fig. 2 where the LLRs from the SISO decoder
output are compared with the Gaussian pdf for SNRs
from 0 to 3 dB. Combining (8) and the Gaussian
assumption about feedback error it is shown that the error
pdf is of the form

p(x) =

√

2

πσ2
L

1

1 − x2
exp(−

(log( 1+x
1−x

) − L̄)2

2σ2
L

) (9)

where L̄ and σ2
L are the mean value and the variance of

LLRs obtained according to (5). This result has been
supported by simulations of a turbo equalizer where
the expectation calculation after SISO decoding has
been performed according to (8). The comparison of
the analytically obtained expectation (9) and simulation
results is shown in Fig. 3. Simulations show exact
match between real system and the analytical pdf of the
feedback error for SNRs from 0 to 3 dB. The feedback
error variance can be obtained by numerical evaluation
of the second central moment of pdf in (9), which yields

σ2
b =

√

2

πσ2
L

∫ 1

−1

1 − x

1 + x
exp(−

(log( 1+x
1−x

) − L̄)2

2σ2
L

)dx

(10)

IV. MMSE DFE AND IC WITH IMPERFECT
FEEDBACK

DFE has been shown to be a promising structure that
by combination with coding can achieve the capacity
of ISI-free AWGN channel [15], [16]. DFE consists of
two linear filters namely Feed-Forward Filter (FFF) and
Feed-Back Filter (FBF). In previous work on the DFE
[17] constant-coefficient MMSE criterion has been con-
sidered as the optimization criterion when determining
the equalizer coefficients. Based on the assumption that
already detected symbols in the feedback are correct, a

general expression for both MMSE DFE and MMSE IC
coefficients can be written as

w = R−1
U sk (11)

b = HT
Dw (12)

where w and b are FFF and FBF coefficients, respec-
tively, RU and HD are the correlation matrices related
to decided (cancelled) and undecided (uncancelled) sym-
bols. sk is k-th column of the channel matrix H related to
the symbol currently being detected. RU , HD and s are
explained in more details in Appendix II. The equations
(11) and (12) represent the general solution for both
DFE and IC. However, for different types of feedback
detectors, the matrices RU , HD are different (Appendix
II). The equations (11) and (12) are derived assuming
the perfect (error free) feedback. From practical point
of view, the perfect feedback assumption is valid for
moderate to high SNRs,i.e. the number of the erroneous
bits used in the feedback is relatively small. However,
for low SNRs feedback error cannot be neglected so that
perfect feedback assumption is not valid anymore. The
new set of equations assuming no perfect feedback can
be expressed as

b = (1 + σ2
b )−1HT

Dw. (13)

and

w = (RU +
σ2

b

1 + σ2
b

RD)−1s (14)

where σ2
b is the variance of the feedback error. This

is in contrast to [8] where the MMSE IC coefficients
are obtained with the perfect feedback assumption. It is
clear that when the feedback is perfect (noise-free), the
equations (13) and (14) are equivalent to (11) and (12).
The proof of (13) and (14) can be found in Appendix II.

A. Adaptive Implementation

Since the communication channel impulse response is
usually not known the adaptive implementation becomes
particulary important. In this paper we use LMS adaptive
algorithm due to its simplicity of implementation [18].
For decision feedback type of detectors the algorithm
is usually expressed by the following pair of equation
related to FFF and FBF coefficients [19], i.e.

wk+1 = wk + µ1ekrk (15)

bk+1 = bk − µ2ekdk (16)

where wk and bk are the sets of the adaptive FFF and
FBF coefficients respectively, µ1 and µ2 are appropriate
adaptation constants, ek is the error at the equalizer
output which is obtained as the difference between the
equalizer output and a known training bit. In the tracking
(information) period the error is obtained as a difference
of the symbol values after and before the decision
element. rk is the received vector. Vector dk is a vector
containing previous decisions (estimates).

238



0 2 4 6 8 10 12
10−4

10−3

10−2

10−1

100

B
E

R

Eb/No

Coded System (No ISI)
Proposed detector
Adaptive detector
MMSE (perfect feedback)

4: Turbo equalization over the channel 1 [20]: Adaptive and MMSE
results
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5: Turbo equalization over the channel 2 [21]: Adaptive and MMSE
results

V. SIMULATION RESULTS

The simulations are performed for two different
channels proposed in [20], [21] that exhibit severe ISI.
The channels are represented by vectors of discrete
coefficients as h1=[0.227 0.46 0.688 0.46 0.227]T and
h2=[0.31 0.493 0.562 0.493 0.31]T . Information bits are
encoded by sixteen-state Recursive Systematic Convo-
lutional (RSC) [1] channel encoder with the generator
polynomials given as g1=23 and g2=35, in octals. Clas-
sical Non-Systematic Convolutional (NSC) codes can
be also used since it was already shown in [22] that
when applied in the adaptive turbo equalizer both RSC
and NSC codes using same generator polynomials show
identical BER performance. In the first iteration, DFE is
fed by known bits in training period and estimated hard
decisions from its own output in tracking period. FFF
and FBF are of the length 20 and 10 taps, respectively.
In higher iterations ICs employ 20 taps long FFFs and
FBFs. FFFs in higher iterations (n > 1) are still fed by
received sequence rk, while FBF of n-th iteration is fed

by the output from the previous n-1st iteration obtained
using (8). The adaptation constants µ1 and µ2 in (15) and
(16)are chosen to be 0.01 and 0.0008 in the first iteration,
in training and tracking period respectively, and 0.0004
for the other iterations in tracking period. The encoded
bits are interleaved by random interleaver of size L=2048
bits. Figs. 4 and 5 show BER performance compari-
son of turbo equalizer where its DFE coefficients are
determined using proposed (imperfect MMSE) method,
the adaptive LMS algorithm and conventional MMSE
(perfect feedback). The results of both Figs. show that
the proposed detector outperforms both adaptive and
MMSE detectors after certain number of turbo iterations
delivering SNR gain of up to 2 dB and 4 dB at BER
of 10−4. The BER results show that the feedback error
is better evaluated by using (10) than it was achieved
by the adaptive LMS algorithm. The reason for this is
relatively slow convergence speed of the LMS algorithm
especially in the tracking period when the adaptation rule
is not based on known training bits but on the LLRs,
which for low SNRs can be unreliable. Since the adaptive
LMS turbo equalizer has been already shown to deliver
better BER performance relatively to the convectional
MMSE one [9], the significant SNR gain of up to 4 dB
between the proposed and the conventional MMSE turbo
equalizer is not surprising. For all detectors, simulations
in terms of number of turbo iterations are performed
until the point after which no more improvement can be
achieved by increasing the number of iterations.

VI. CONCLUSION

In this paper we analyzed the decision feedback error
propagation in an adaptive turbo equalization scheme.
Our analysis shows that the exact mathematical expres-
sion can be obtained if the LLRs (soft outputs) from
a SISO decoding algorithm are assumed to be i.i.d.
Gaussian random variables. For this case, it is possible
to calculate a new set of MMSE coefficients without as-
sumption about perfect decision feedback. If the decision
feedback error variance is evaluated properly the BER
performance of the new turbo equalizer can be improved
significantly delivering SNR gain from 2-4 dB relative
to adaptive and the conventional MMSE detectors. The
slow convergence speed of the adaptive LMS algorithm
(especially in the tracking period) is a prohibitive pa-
rameter which prevents the adaptive turbo equalizer to
approach the BER performance of the proposed detector.

APPENDIX I
PROOF OF THE EQUATION (9)

Starting from the equation (8) and introducing new
random variables x and y instead of L(xk) and ā
respectively, we get

y = tanh(
x

2
) (17)
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where x is assumed to comply to the Gaussian proba-
bility distribution. Then, from (17)

x = log
1 + y

1 − y
(18)

From the Fundamental theorem [23] pdf of y can be
found as

fy(y) =
fx(x1)

|g′(x1)|
+ · · · +

fx(xn)

|g′(xn)|
+ · · · (19)

where xn are real roots of the equation y = g(x) and
g′(x) is the derivative of g(x) and it is

g′(x) =
d

dx
(tanh

x

2
) =

2ex

(1 + ex)2
(20)

Combining (18), (19), (20), and Gaussian assumption
about random variable x the pdf of the random variable
y is

fy(y) =

√

2

πσ2
x

1

1 − y2
exp(−

(log 1+y
1−y

− x̄)2

2σ2
x

) (21)

where x̄ and σ2
x are mean and variance of the Gaussian

random variable x.

APPENDIX II
PROOF OF THE EQUATIONS (11) AND (12)

The equation (1) can be expressed as

r = HU x + HDx + n (22)

where HU and HD are referred to undecided (uncan-
celled) and decided (cancelled) symbols respectively.
Here we omit to use the time index k due to simplicity
reasons. For DFE the matrices are

HU =











hL hL−1 · · · h0 | 0 · · · 0
0 hL · · · h1 | 0 · · · 0

. . . |
0 0 · · · hL | 0 · · · 0











(23)
and

HD =











0 0 · · · 0 | 0 · · · 0
0 0 · · · 0 | h0 · · · 0

. . . |
0 0 · · · 0 | hL−1 · · · h0











. (24)

For ICs the matrices take the following forms

HU =











0 0 · · · | h0 | 0 · · · 0
0 0 · · · | h1 | 0 · · · 0

. . . | |
0 0 · · · | hL | 0 · · · 0











(25)

HD =











hL hL−1 · · · | 0 | 0 · · · 0
0 hL · · · | 0 | h0 · · · 0

. . . | |
0 0 · · · | 0 | hL−1 · · · h0











(26)
ek = wT r − bT x̂ − xk (27)

Combining (22) and (27)

ek = wT HU x+wT HDx+wT n−bT x−bT nb−xk (28)

where nb is a vector of decision feedback error samples.
Taking the expectation we get the expression for Mean
Squared Error (MSE)

ε = E[|ek|
2] = wT RU w + wT RDw−

−2wT HDb + bT Rbb − 2wT s + σ2
x (29)

RU , RD and Rb are defined as following

RU = HU HT
U + σ2

nIL (30)

RD = HDHT
D (31)

and
Rb = IL + E[nbnT

b ] (32)

and s is the k-th column of the matrix H related to the
symbol detected at the time instant k. IL is a L × L
identity matrix and σ2

x is the average power of the
received symbols and it can be normalized to 1 without
the loss of generality. σ2

n is the variance of the random
noise process. Finding the gradients and setting them to
0 we get

∇wε =
∂ε

∂w
= 2RU w + 2RDw − 2HDb − 2s = 0 (33)

and

∇bε =
∂ε

∂b
= 2Rbb − 2HT

Dw = 0. (34)

From (34)
b = R−1

b HT
Dw. (35)

Substituting (35) in (33) we get the expression for w as

w = (RU + RD − HDR−1
b HT

D)−1s (36)

If feedback errors are assumed to be i.i.d. random
variables with variance σ2

b than Rb takes the following
form

Rb = (1 + σ2
b )IL (37)

Replacing (37) in (35) and (36) gives

b = (1 + σ2
b )−1HT

Dw. (38)

and

w = (RU +
σ2

b

1 + σ2
b

RD)−1s (39)

If the feedback is perfect than σ2
b = 0 and Rb = IL

which gives the following solutions for w and b

b = HT
Dw. (40)

and
w = R−1

U s (41)
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