
Novel Receiver Structure for Joint Timing Recovery
and Equalization in Frequency Selective Channels

Dino Miniutti
Research School of Information Sciences and Engineering

The Australian National University
Canberra ACT 0200

Rodney A. Kennedy
National ICT Australia

Locked Bag 8001
Canberra ACT 2601

Abstract— This paper presents a new receiver structure that
addresses the difficult problem of achieving symbol synchroniza-
tion given a frequency-selective channel. The new joint timing
recovery and equalizer structure is partitioned into a number
of component parts. The most critical of these component parts,
a magnitude equalizing portion which is insensitive to timing
errors, is positioned prior to timing recovery, effectively creating
an all-pass channel between the transmitter and timing recovery
portion of the receiver. Such a structure gives rise to gains in
both receiver performance and robustness, and allows the use of
less complex symbol synchronization schemes. It is also shown
that the magnitude equalizing portion of the equalizer can be
retro-fitted to existing receiver designs for corresponding gains.

I. INTRODUCTION

Receivers in digital synchronous communication systems
must sample the received analog signal in order to obtain the
encoded digital information by means of a decision device.
The decision device operates at the symbol rate 1/T , where
T is the symbol period. For maximum noise immunity and
minimum intersymbol interference (ISI) the received signal
should be sampled at the instants of maximum eye opening.

Typically, one samples at a rate of 1/Ts where, ideally,
Ts = T/n, and n is an integer. Due to the inherent inaccuracies
in realizable local oscillators, T and Ts are incommensurate, so
one must either interpolate the sampled signal or alter the sam-
pling phase to sample at the optimal point decision instants.
However, these decision instants are a priori unknown because
of the unknown propagation delay td between the transmitter
and receiver and inaccurate oscillators (phase noise).

In the case of a slowly-varying (or static) channel and stable
local oscillators, it is possible for the equalizer to compensate
for a non-optimal timing phase. This is achieved by incor-
porating a fractional delay filter into the equalizer’s impulse
response. In this case, a separate timing recovery system is
not necessary. However, while it is possible for an equalizer
to perform timing recovery for time-varying channels, it is
unwise. This arizes from the fact that equalization uses a
multi-dimensional parameter space, whereas timing recovery
only requires, in principle, the adaptation of one parameter,
the sampling phase. Hence, timing recovery is best done by
a specialized timing recovery system that is only required to
estimate the optimal sampling phase.

There exists a chicken and egg problem between timing re-
covery and equalization—It is unclear whether timing recovery
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Fig. 1. Preferred structure of the new joint timing recovery and equalizer
scheme.

or equalization should be performed first in the receiver. By
preceding equalization by timing recovery, the time variability
of the channel (as seen by the equalizer) is reduced (as
the effect of the time-varying timing error will have been
compensated for). The timing recovery system, however, is
presented with a possibly time-varying and frequency selective
channel. Such channels can present difficulties for timing
recovery systems, degrading their performance.

Ideally, frequency-selective channels would be compensated
for by an equalizer prior to timing recovery. But we have
already mentioned that it is generally better to perform timing
recovery before equalization. This is the chicken and egg
problem.

Instead of choosing whether to perform timing recovery or
equalization first, we identify which parts of the equalization
process can be done prior to timing recovery. In turn, we
present a five-part receiver structure, as illustrated in Fig. 1.

The structure includes a symbol synchronizer as well as an
equalizer (based on [4]) that is partitioned into four separate
parts. The result is a joint timing recovery and equalizer system
that performs part of the equalization before timing recovery.

This paper expands on the work done by [2], [3], [4] who
decomposed the equalizer into a cascade of linear filters. The
structure presented here most closely resembles that of [4],
which uses a cascade of a purely recursive whitening filter (R),
gain control (GC), phase rotator (PR), and a purely transversal
filter (T ). The authors just listed showed that separating the
tasks of the equalizer into four separate, but easier, subtasks
improved performance. We show that timing recovery can
be introduced into this cascade after the whitening filter
to further improve performance. The resulting cascade will
produce a signal for the timing recovery system that has a
constant power spectral density (PSD), with the remaining
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phase distortion being cleaned up by the transversal filter.
The outcome is a timing recovery unit, and hence receiver,
that is more robust towards multipath and exhibits better
performance under the effects of a time-varying frequency-
selective channel. Furthermore, the new structure may avoid
the catastrophic failure of timing recovery in the case of a
particularly difficult channel.

II. PROBLEM FORMULATION

The overall goal of this work is to provide the timing re-
covery unit with a signal that is uncorrupted by the magnitude
effects of the channel between the transmitter and receiver.
This section details the partitioning of the equalizer into five
component parts, one of which represents timing recovery. It is
shown that some parts of the equalizer can be placed in front of
the timing recovery unit. In doing so, the channel is effectively
reduced to an all-pass channel, which is a significantly easier
problem for timing recovery.

The transfer function (TF) of a non-minimum phase FIR
channel F can be written

F (z) = f

N1∏
i=1

(
1 − zI,iz

−1
) N2∏

j=1

(
z−1
O,j − z−1

)
(1)

where N = N1 + N2 is the order of the channel, f can be
complex, and where |zI,i| < 1 and |zO,i| > 1 correspond to
the zeros inside and outside of the unit circle, respectively.
The channel TF in (1) can be written as F (z) = fA(z)B(z),
where

A(z) =
N2∏
j=1

z−1
O,j − z−1

1 − (zO,jz)−1 (2)

is the transfer function of an all-pass filter and

B(z) =
N1∏
i=1

(
1 − zI,iz

−1
) N2∏

j=1

(
1 − (zO,jz)−1

)
(3)

is the transfer function of a minimum phase filter. In the
absence of noise, the optimal linear equalizer E(z) (in the
MSE sense) should implement the inverse of F (z), up to a
delay δ to maintain causality. The equalizer TF is clearly

E(z) = z−δF−1(z) = f−1T (z)R(z) (4)

where T (z) = z−δA−1(z), R(z) = B−1(z), and f−1 =
ge−jθ. Note that B(z) is causally invertible since it has no
zeros outside of the unit circle and thus requires no introduced
delay. Furthermore, its inverse R(z) is a whitening filter (also
innovator or predictive filter). The effect of R is to flatten
the PSD of a signal that is passed through it to a constant
value. Hence, the cascade R◦F results in the all-pass channel
A which has no amplitude distortion. The filter T should
compensate (with a delay) the phase distortion caused by A.

Equation (4) decomposes the equalizer E into a cascade
of four linear filters GC (g), PR (e−jθ), R and T . The
original contribution of this paper is based on the further

decomposition of the all-pass component of the channel A
into two separate all-pass filters D and P such that

A(z) = P (z)D(z) (5)

where D is a fractional delay filter that represents bulk delays
(linear phase distortions), such as the propagation delay td,
in the signal. P represents the remaining nonlinear phase
distortions of the channel.

The TF T (z), which represents the inverse of A, can now
be written as

T (z) = z−δA−1(z) = z−εD−1(z)P−1(z) (6)

where ε is a delay that is introduced to maintain causality.
Hence the transversal part T of our equalizer may be replaced
by D−1 and P−1. It is important to note that the order of the
linear transformations GC,R,D−1,P−1 and PR is irrelevant
in steady state, but for reasons which will be developed later,
it is recommended to position them in the order just listed.

Since the order of components in the cascade is irrelevent,
we are free to place R before D−1. In doing so we have
effectively moved the magnitude compensating portion of the
equalizer before the timing recovery unit, and, as a result,
provided a signal with constant PSD for timing recovery. More
specifically, the timing recovery unit D−1 directly follows the
cascade R ◦ F which is an all-pass channel A.

III. STRUCTURE

Fig. 1 illustrates the preferred structure for the joint equal-
izer and timing recovery scheme. The following section will
describe the structure of each of the equalizer units and explain
why the configuration of Fig. 1 was chosen.

A. GC — Gain Control

The purpose of gain control is to provide the filters that
follow it with a signal of reduced dynamical range. It is a
one-coefficient real equalizer that scales its input by a gain g.
It generates the output

t(k) = gs(k). (7)

We choose to perform gain control prior to equalization
by the whitening filter, but it may be placed after it, with
comparable performance.

B. R — Whitening Filter

The whitening filter R is an autoregressive filter that pre-
dicts the value of t(k) from past samples and determines the
prediction error u(k). This gives rise to its alternate names of
predictor and innovator. The output is

u(k) = t(k) − t̂(k) (8)

with

t̂(k) =
N∑

l=1

alu(k − l) = AT UN (k − 1) (9)

A = [a1, · · · , aN−1, aN ]T (10)

UN =
(
u(k − 1), · · · , u(k − N)

)T
. (11)
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where A is called the “prediction vector”. The cost function
to be minimised is

Jp = E
{
|u(k)|2

}
. (12)

This criterion attempts to decorrelate the output, thus mak-
ing it white. Note that the cost function relies on second order
statistics, and as such, cannot correct phase distortions in the
input t(k). It is for this reason that filtering by R may be
performed before timing recovery.

C. D−1 — Timing Recovery

As discussed in section II, by having D−1 directly follow
R ◦ F , then the timing recovery unit D−1 is presented
with an all-pass channel A. This opens up the number of
available timing recovery schemes for consideration since the
candidate schemes no longer have to deal with frequency-
selective fading. In this study the Mueller and Müller scheme
[1] is used because it is well known and has relatively low
complexity.

The Mueller and Müller scheme provides an estimate of the
timing error τ that is used to control an interpolator filter. The
interpolator output is

v(k) = u(k − τ). (13)

D. P−1 — Phase Correction

The all-pass filter P−1 is responsible for correcting the
remaining signal phase distortions that were not corrected by
the timing recovery unit. Note that P−1 need not have an all-
pass structure, it may actually be advantageous to employ a
filter that is able to correct residual magnitude distortions that
were not corrected by R. Such an equalizer will be referred to
as a full equalizer henceforth. In this case, the receiver has the
same structure as a conventional receiver (which has timing
recovery followed by full equalization) except for the addition
of the whitening filter R before the timing recovery unit.

A transversal filter that employs the Godard criterion [5] is
used in this study because of its popularity and simplicity, but
other schemes may be used for their own desirable properties.
Note that an equalizer employing the Godard criterion will
correct for residual magnitude errors.

The filter output is

w(k) =
L∑

l=0

blv(k − l) = BT VL+1(k) (14)

where

B = [b0, b1, . . . , bL]T (15)

VL+1 =
(
v(k), v(k − 1), . . . , v(k − L)

)
. (16)

E. PR — Phase Recovery

The input is w(k) and the output is

x(k) = w(k)e−jθ (17)

where θ is an estimate of the carrier phase. It is also possible to
place the PR unit at any other suitable point in the cascade.

For example, phase recovery could be done prior to timing
recovery if the symbol synchroniser was especially susceptible
to the carrier phase.

IV. ADAPTATION

A. GC — Gain Control

The power level of the samples are fixed to a particular
value Ps

E
{
|u(k)|2

}
= Ps. (18)

An adaptive algorithm that controls g in such as way is
presented below

G(k) = G(k − 1) + µG

[
1 − |u(k)|2

]
(19)

g(k) =
√
|G(k)| (20)

with G(0) = 1, and µG is a suitable small positive step size.

B. R — Whitening Filter

Using a stochastic gradient descent algorithm with the cost
function of (12) we arrive at the adaptation rule

A(k) = A(k − 1) + µAu(k)U∗
N (k − 1) (21)

u(k) = t(k) − A(k − 1)T UN (k − 1) (22)

where the superscript ∗ stands for complex conjugatation
and A(0) = [0, 0, . . . , 0]T . Note that this adaptation rule
is approximate since the filter is recursive, however, it is
sufficiently accurate for our purposes.

C. D−1 — Timing Recovery

The Mueller and Müller scheme that was chosen for timing
recovery is an error-tracking style synchroniser; it derives an
indication about the current timing error τ from discrete sym-
bol samples. The timing error detector produces the sequence

y(k) = d̂(k − 1)v(k) − d̂(k)v(k − 1) (23)

where d̂(k) is the timing error detector’s decision about v(k).
The statistical average of y(k) gives an indication of the sign
and magnitude of the timing error τ . This error is used to
control an interpolator that effectively advances/delays the
sampling phase.

D. P−1 — Phase Correction

The Godard algorithm is used to correct the residual dis-
tortions in the magnitude and phase of the signal after timing
recovery. The cost function for the Godard criterion is

JG(B) = E
{[

|w(k)|p − Rp

]2}
(24)

with

Rp =
E

{
|d(k)|2p

}

E
{
|d(k)|p

} (25)

where p = 2. The stochastic gradient adaptation rule to
minimize the cost function of (24) is

B(k) = B(k − 1) + µBw(k)
(
R2 − |w(k)|2

)
V∗

L+1(k) (26)

w(k) = BT (k − 1)VL+1(k) (27)
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Fig. 2. (a) Zeros of f1, (b) Magnitude and phase responses of f1.

where B is initialised with a center tap strategy i.e., B(0) =
[0, 0, . . . , 0, 1, 0, . . . , 0]T , and µB is a suitable small positive
step size.

In the noiseless case, or with a sufficiently high signal-to-
noise ratio, the receiver up to this point is able to recover the
transmitted data symbols d(k) up to a delay δ and arbitrary
phase θ. Consequently, in steady state

w(k) ≈ d(k − δ) exp(jθ) (28)

E. PR — Phase Recovery

One is free to choose any appropriate scheme for phase
recovery as it has no effect on timing recovery and equalization
in the setup of Fig. 1. Consequently, perfect carrier recovery
is assumed for the studies conducted in Section V.

V. RESULTS AND CONCLUSIONS

Simulation results are presented that illustrate the behaviour
of the new receiver structure shown in Fig.1. Results were
obtained via Monte Carlo simulations of 50 runs using severe
channels, f1 and f2, that were proposed in [6] and [7],
respectively. The impulse responses are

f1 = [2 − 0.4j, 1.5 + 1.8j, 1, 1.2 − 1.3j, 0.8 + 1.6j] (29)

f2 = [0.8264,−0.1653, 0.8512, 0.1636, 0.81]. (30)

Figs. 2 and 3 depict the location of the channel zeros and
magnitude and phase responses of channels f1 and f2, re-
spectively. Note that the channels are non-minimum phase
with deep spectral nulls and and nonlinear phase distortions.
The transmitted signal is BPSK {−1, 1} and the SNR at the
receiver is 15dB. The R and T equalizers have 10 and 20
taps, respectively. A timing error of 0.4T is introduced in the
channel and perfect carrier recovery is assumed.

A decision directed mean square error (DDMSE) perfor-
mance measure is used. It is calculated using the following
recursive formula

MDD(k) = λMDD(k − 1) + (1 − λ)|d̂(k) − w(k)|2 (31)

where λ = 0.99 and d̂(k) is the receiver’s decision about w(k).
The eye is open when MDD is small, and in such cases, the
DDMSE is equivalent to the true MSE.

Fig. 4 illustrates the performance of the receiver with and
without D−1 and R present in the cascade of Fig. 1 for
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Fig. 3. (a) Zeros of f2, (b) Magnitude and phase responses of f2.
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Fig. 4. Performance comparison of the proposed receiver setup with and
without timing recovery D−1 and whitening filter R. Naming convention for
labels is <channel>–< R on/off>

channels f1 and f2. Note that the use of the whitening filter
results in a lower DDMSE for both channels. The DDMSE for
channel f2 when the whitening filter is off is constant since
the receiver does not manage to open the eye at all.

As was mentioned in Section III-D, the use of the Godard
criterion for P−1 results in a conventional receiver1, but
with the addition of a whitening filter before timing recovery.
Consequently, the results that compare the operation of the
receiver with the whitening filter on and off are equivalent
to comparing the new receiver structure to a conventional
structure, respectively. From the simulations, it is clear that
the new receiver structure performs better than a conventional
one.

The two curves “f1-on (a)” and “f1-on (b)” represent runs
with channel f1, and the whitening filter turned on, but the
timing recovery unit is turned off in the “(b) case”. Note that
the inclusion of timing recovery in the “(a) case” results a
lower DDMSE and faster convergence. This indicates that the
joint timing recovery and equalizer system is compensating
for the timing error faster than the equalizer alone.

Fig. 5 depicts the estimated value of the timing error over
time for the Mueller and Müller scheme with and without the
whitening filter included in the receiver for the channel f2.

1With a conventional receiver structure being one which employs full
equalization after timing recovery, but without a separate whitening filter.
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Fig. 5. Comparison of timing recovery performance with and without
whitening filter R. Actual timing error is 0.4T .

Observe that the timing recovery scheme estimates the error
of 0.4T more precisely when the whitening filter is included.

VI. CONCLUSION

A novel receiver structure has been presented that performs
joint timing recovery and equalization. The new structure
employs a whitening filter (that is insensitive to timing errors)
prior to equalization, effectively presenting an all-pass channel
between the transmitter and timing recovery portion of the
receiver. This allows for less complex (and cheaper) timing
recovery schemes to be employed in receivers that use such a
structure.

Through simulation, this new structure has been shown to
be better suited to frequency selective channels than its coun-
terpart that conducts timing recovery before any equalization.

It has also been shown that the new receiver structure is
equivalent to a conventional receiver structure (that performs
full equalization after timing recovery), except that it employs
a whitening filter prior to timing recovery. This suggests that a
whitening filter can be added to conventional receiver designs
prior to timing recovery, thus combating the magnitude effects
of the channel, and resulting in structures that are more robust
to frequency selective channels.
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