
A PROJECTIVE ALGORITHM FOR STATIC

OUTPUT FEEDBACK STABILIZATION

Kaiyang Yang∗†, Robert Orsi∗ and John B. Moore∗†

∗ Department of Systems Engineering, The Australian

National University, Canberra ACT 0200, Australia.
† National ICT Australia Limited, Locked Bag 8001,

Canberra ACT 2601, Australia.

{Kaiyang.Yang, Robert.Orsi, John.Moore}@anu.edu.au

Abstract: This paper presents an algorithm for the static output feedback stabi-
lization problem. The algorithm is iterative in nature and is based on alternating
projection ideas. The main computational component of each iteration of the algo-
rithm is a Schur matrix decomposition and the solution of a standard least squares
problem. The paper contains computational results illustrating the effectiveness of
the algorithm. Copyright c© 2004 IFAC.
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1. INTRODUCTION

Consider the static output feedback (SOF) stabi-
lization problem.

Problem 1. Given a linear time invariant (LTI)
system

ẋ = Ax + Bu

y = Cx

where x ∈ Rn, u ∈ Rm, and y ∈ Rp, find a static
output feedback control law

u = Ky

where K ∈ Rm×p is a constant matrix such that
the eigenvalues of the resulting closed-loop system
matrix A + BKC have non-positive real parts.

Problem 1 is not always solvable. Indeed, there are
no testable necessary and sufficient conditions for
the existence of a solution for Problem 1 (Syrmos
et al., 1997).

Various numerical methods have been proposed
for solving Problem 1. A comparison of such algo-

rithms is given in (de Oliveira and Geromel, 1997).
More recent work includes (El Ghaoui et al., 1997)
and (Iwasaki, 1999). All the algorithms appearing
in these papers attempt to solve the problem by
trying to solve related non-convex problems in-
volving linear matrix inequalities (LMIs).

In this paper we present a new algorithm for the
SOF stabilization problem. We show the problem
is equivalent to finding a point in the intersection
of two closed sets. Our algorithm is iterative in
nature and utilizes Schur’s matrix decomposition
in an alternating projection like scheme.

Other algorithms based on alternating projection
ideas can be applied to the SOF problem, see
in particular (Grigoriadis and Beran, 1999) and
(Orsi et al., 2004). However, unlike these methods,
our algorithm does not involve LMIs.

While the algorithm is often able to find solutions,
like other existing algorithms, convergence to a
solution is not guaranteed even if a solution exists.
The ability to start the algorithm from different
initial conditions and the ability to modify a cer-



tain algorithm parameter increase the likelihood
that a solution can be found.

The problem solved by our algorithm is a feasi-
bility problem involving non-symmetric matrices.
The idea of solving such problems via alternat-
ing projections that utilize Schur’s decomposition
originates in (Orsi and Yang, n.d.).

Finally we note that being able to solve the SOF
problem enables one to solve other related prob-
lems. For example, finding a K that places the
closed loop eigenvalues in the set {z ∈ C |Re(z) ≤
−α} can be achieved by solving a SOF problem
with A replaced by A+αI. (I denotes the identity
matrix.) The reduced-order dynamic output feed-
back stabilization problem can also be solved via
a system augmentation technique; see for example
(Syrmos et al., 1997).

The structure of the paper is as follows. The
remainder of this section lists some notation which
is used in the rest of the paper. Section 2 intro-
duces projections and how alternating projections
can be used to find a point in the intersection of
a finite number of closed (convex) sets. In order
to motivate our solution methodology, in Section
3 we first consider a special case of the SOF
problem in which the system and the output feed-
back matrix are symmetric. Section 4 considers
the general non-symmetric problem and includes
a description of the algorithm. Section 5 contains
computational results. The paper ends with some
concluding remarks.

Some notation: Sr is the set of real symmetric
r × r matrices. diag(v) for v ∈ Cr denotes the
r × r diagonal matrix whose i’th diagonal term is
vi. ρ(Z) denotes the maximum of the real parts
of the eigenvalues of the matrix Z. For Z ∈ Cr×s,
vec(Z) ∈ Crs consists of the columns of Z stacked
below each other (Horn and Johnson, 1991). Y ⊗Z
denotes the Kronecker product of Y and Z (Horn
and Johnson, 1991). For Z ∈ Cr×s,Re(Z) ∈ Rr×s

and Im(Z) ∈ Rr×s denote respectively the real
and imaginary parts of Z; Z = Re(Z) + i Im(Z).

2. PROJECTIONS

This section introduces projections and how al-
ternating projections can be used to find a point
in the intersection of a finite number of closed
(convex) sets.

Let x be an element in a Hilbert space H and let
C be a closed (possibly non-convex) subset of H.
Any c0 ∈ C such that ‖ x − c0 ‖≤‖ x − c ‖ for all
c ∈ C will be called a projection of x onto C. In
the cases of interest here, namely that H is a finite
dimensional Hilbert space, there is always at least
one such point for each x. If C is convex as well as

closed then each x has exactly one such minimum
distance point. Any function PC : H → H will
be called a projection operator (for C) if for each
x ∈ H,

PC(x) ∈ C and

‖ x − PC(x) ‖ ≤ ‖ x − c ‖ for all c ∈ C.

A point in the intersection of a finite number of
closed convex sets can be found via alternating
projections (Brègman, 1965).

Theorem 2. Let C1, . . . , CN be closed convex sets
in a real finite dimensional Hilbert space H.
If

⋂N

i=1
Ci is nonempty, then starting from an

arbitrary initial value, the following sequence

xi+1 = PCφ(i)
(xi),where φ(i) = (i mod N) + 1,

converges to an element in
⋂N

i=1
Ci.

When one or more Ci’s are non-convex, Theorem
2 no longer applies and starting the algorithm of
Theorem 2 from certain initial values may result
in a sequence of points that does not converge to
a solution of the problem. However, (Combettes
and Trussell, 1990) suggests that alternating pro-
jections for problems with one or more non-convex
sets converge locally; they will converge if the ini-
tial starting point is sufficiently close to a feasible
point.

3. THE SYMMETRIC PROBLEM

In order to motivate our solution methodology,
we first consider the following special case, the so-
called symmetric case.

Problem 3. A LTI system of the following form

ẋ = Ax + Bu, A = AT ,

y = BT x,

where x ∈ Rn, u ∈ Rm, and y ∈ Rm, will
be termed symmetric. For such a system, the
symmetric SOF problem is to find K ∈ Sm such
that ρ(A + BKBT ) ≤ 0.

As the system is symmetric and as we restrict
K to be symmetric, the symmetric SOF problem
is equivalent to an LMI problem. Hence, if the
problem is solvable, a numerical solution to the
problem can be readily found using existing LMI
algorithms, see for example (Vandenberghe and
Boyd, 1996).

We now introduce a different solution method
based on alternating projections. The main ad-
vantage of this new scheme will be that it can
be extended to the general non-symmetric SOF
problem.



Let

L = {Z ∈ Sn | Z = A + BKBT

for some K ∈ Sm}

and let M denote the negative semidefinite ma-
trices,

M = {Z ∈ Sn | ρ(Z) ≤ 0}.

The symmetric SOF problem can be stated as
follows:

Find X ∈ L ∩M.

As the sets L and M are both convex and as
projections onto these sets are readily calculated,
a solution method is to alternatively project onto
L and M. Projection onto L involves solving a
least squares problem. (The details of this projec-
tion are not used in the rest of the paper and are
omitted.) Projection onto M is given by Theorem
5 below and is based on the following result of
Hoffman and Wielandt.

Lemma 4. Suppose Y,Z ∈ Sn have eigenvalue-
eigenvector decompositions

Y = V DV T , D = diag(λY
1 , . . . , λY

n ),

Z = WEWT , E = diag(λZ
1 , . . . , λZ

n ),

where V,W ∈ Rn×n are orthogonal and λY
1 ≥

. . . ≥ λY
n and λZ

1 ≥ . . . ≥ λZ
n . Then

‖D − E‖ ≤ ‖Y − Z‖,

where ‖ · ‖ denotes the Frobenius norm.

Proof . See for example (Horn and Johnson, 1985,
Corollary 6.3.8). �

Theorem 5. Given Y ∈ Sn, let Y = V DV T be an
eigenvalue-eigenvector decomposition of Y with
D = diag(λ1, . . . , λn). If D̄ = diag(min{0, λ1}, .. ,
min{0, λn}), then PM(Y ) := V D̄V T is the best
approximant in M to Y in the Frobenius norm.

Proof . Let Y be as in the theorem statement. As
PM(Y ) ∈ M, it remains to show

‖Y − PM(Y )‖ ≤ ‖Y − Z‖ for all Z ∈ M.

Without loss of generality,suppose the eigenvalues
of Y are ordered, i.e., λ1 ≥ . . . ≥ λn. Similarly,
for Z ∈ M, let Z = WEW T be an eigenvalue-
eigenvector decomposition with λZ

1 ≥ . . . ≥ λZ
n .

Using the fact that the Frobenius norm is orthog-
onally invariant, we have

‖Y − PM(Y )‖ = ‖V (D − D̄)V T ‖

= ‖D − D̄‖.

By Lemma 4, the theorem follows if we can show

‖D − D̄‖ ≤ ‖D − E‖. (1)

To show this, note that

‖D − E‖2 =
∑

k

(Dkk − Ekk)2.

A similar equality holds for ‖D − D̄‖2. Hence (1)
holds if we can show, given any d ∈ R,

(d − min{0, d})2 ≤ (d − e)2 for all e ≤ 0.

This inequality readily follows by considering the
two possible cases, d ≤ 0 and d > 0. �

Note that to calculate PM(Y ) we keep the orig-
inal orthogonal matrix V and simply modify the
diagonal matrix D to D̄. The fact that V remains
unchanged will be used to motivate our solution
method for the general non-symmetric case.

4. THE GENERAL NON-SYMMETRIC
PROBLEM

In this section, Cn×n will be regarded as a Hilbert
space with inner product

〈Y,Z〉 = tr(Y Z∗) =
∑

i,j

yij z̄ij .

The associated norm is the Frobenius norm ‖ Z ‖

= 〈Z,Z〉
1
2 .

Consider again Problem 1, i.e., the general non-
symmetric SOF problem. Let L now denote the
set of all possible closed-loop system matrices,

L = {Z ∈ Rn×n | Z = A + BKC

for some K ∈ Rm×p},

and let M now denote the set of matrices with
eigenvalues in the left half plane,

M = {Z ∈ Cn×n | ρ(Z) ≤ 0}.

The non-symmetric problem can be stated as:

Find X ∈ L ∩M.

The set L is again an affine subspace and hence
convex. However, M is no longer a convex set. For
example, the matrices

Z1 =

(

−1 4
0 −1

)

and Z2 =

(

−1 0
4 −1

)

are elements of M, however, the convex combi-
nation (Z1 + Z2)/2 has eigenvalues {−3, 1} and
hence is not in M.

The general non-symmetric problem is much
harder to solve than the symmetric problem.
There are two reasons for this. The first is the
non-convexity of M; alternating projections are
no longer guaranteed to converge. The second,
even more important issue is that it is not clear
how to project onto M. That is, given a point Z,
it is not clear how to find a point in M of minimal
distance to Z.

Motivated by the symmetric case, we propose the
following map as a substitute for a projection map
onto M.



Before proceeding, recall Schur’s result (Horn and
Johnson, 1985).

Theorem 6. Given Z ∈ Cn×n with eigenvalues
λ1, . . . , λn in any prescribed order, there is a
unitary matrix V ∈ Cn×n and an upper triangular
matrix T ∈ Cn×n such that

Z = V TV ∗,

and Tkk = λk, k = 1, . . . , n.

Definition 7. For any V ∈ Cn×n unitary and any
T ∈ Cn×n upper triangular, define

PM(V, T ) = V T̄V ∗,

where

T̄kl =

{

min{0,Re(Tkk)} + i Im(Tkk), if k = l,
Tkl, otherwise.

A given Z ∈ Cn×n may have a non-unique
Schur decomposition and Z = V1T1V

∗
1 = V2T2V

∗
2

does not imply PM(V1, T1) = PM(V2, T2). Hence,
PM may give different points for different Schur
decompositions of the same matrix. Despite this,
the following result shows that different Schur
decompositions lead to points in M of equal
distance from the original matrix.

Theorem 8. Suppose Z = V1T1V
∗
1 = V2T2V

∗
2

where V1, V2 ∈ Cn×n are unitary and T1, T2 ∈
Cn×n are upper triangular. Then

‖PM(V1, T1) − Z‖ = ‖PM(V2, T2) − Z‖.

Proof . Suppose Z = V TV ∗ where V is unitary
and T is upper triangular. If T̄ is the matrix given
by Definition 7, then by the unitary invariance of
the Frobenius norm

‖PM(V, T ) − Z‖ = ‖T̄ − T‖.

From Definition 7, if λ1, . . . , λn are the eigenvalues
of Z, then

‖T̄ − T‖2 =
∑

i

(min{0,Re(λi)} − Re(λi))
2. (2)

The result follows by noting that the right hand
side of (2) only depends on the eigenvalues of Z.
In particular this value would be exactly the same
for any other Schur decomposition of Z. �

For the next theorem, we define

T = {T ∈ Cn×n |T is upper triangular

and ρ(T ) ≤ 0}.

Note, Theorem 6 implies

M = {Z ∈ Cn×n | Z = V TV ∗

for some unitary V and some T ∈ T }.

Theorem 9. Suppose Z = V TV ∗ ∈ Cn×n with V
unitary and T upper triangular. Then PM(V, T )
satisfies

‖PM(V, T ) − Z‖ ≤ ‖V T̃V ∗ − Z‖ for all T̃ ∈ T .

Proof . Let T̃ be a matrix in T . The unitary in-
variance of the Frobenius norm implies the result
will be established if we can show

‖T̄ − T‖ ≤ ‖T̃ − T‖, (3)

where T̄ is the matrix given in Definition 7. As
both T̃ and T are upper triangular, it follows that

‖T̃ −T‖2 =

n
∑

k=1

|T̃kk−Tkk|
2+

∑

k<l

|T̃kl−Tkl|
2. (4)

Using similar reasoning to that used in the proof
of Theorem 5, it follows that ‖T̄ −T‖2 is less than
or equal to the first summation on the right hand
side of the equality in (4). Hence, (3) holds. �

Finally, note that the map of Definition 7 is not a
projection. For example if Z = V TV ∗ where

V =

(

0.8165 −0.5774
0.5774 0.8165

)

, T =

(

2.4142 1.0000
0 −0.4142

)

,

then it is readily verified that if Y =

(

0 1
0 0

)

then

‖ Z − PM(V, T ) ‖ 
 ‖ Z − Y ‖.

Projection onto L involves solving a standard least
squares problem.

Lemma 10. The projection of X ∈ Cn×n onto L
is given by PL(X) = A + BKC where K is a
solution of the least squares problem

arg min
K∈Rm×p

‖ (CT ⊗B) vec(K)− vec(Re(X)−A) ‖2 .

Here ‖ · ‖2 denotes the standard vector 2 norm.

Proof . We would like to find K ∈ Rm×p that
minimizes

‖X − (A + BKC)‖2. (5)

As A,B and C are real matrices, it follows that
(5) equals

‖Re(X) − (A + BKC)‖2 + ‖Im(X)‖2, (6)

and hence that the problem is equivalent to min-
imizing the first term in (6).

The result now follows by noting that for any
Z ∈ Cn×n, ‖Z‖ = ‖vec(Z)‖2, and that for
any (appropriately sized) matrices P,Q and R,
vec(PQR) = (RT ⊗P ) vec(Q) (Horn and Johnson,
1991). �



Here is our algorithm for the SOF stabilization
problem.

Algorithm:

Problem Data. A ∈ Rn×n, B ∈ Rn×m, C ∈
Rp×n.

Initialization. Choose a randomly generated
Y ∈ Rn×n. For example, draw each entry of
Y from a normal distribution of zero mean
and variance 1.

repeat

1. Calculate a Schur decomposition of Y :
Y = V TV ∗.

2. X := PM(V, T ).

3. Y := PL(X).

until ρ(Y ) ≤ 0.

While convergence of the above algorithm is not
guaranteed, as will be demonstrated in the next
section, it does indeed often converge to a solu-
tion.

Numerical experiments show that the perfor-
mance of the algorithm can actually be improved
by using the following slightly modified version of
PM which depends on a parameter γ ∈ R.

Definition 11. Let γ ∈ R be non-positive. For any
V ∈ Cn×n unitary and any T ∈ Cn×n upper
triangular, define

P γ
M(V, T ) = V T̄V ∗,

where

T̄kl =







min{γ,Re(Tkk)} + i Im(Tkk),
if k = l and Re(Tkk) ≥ 0,

Tkl, otherwise.

P γ
M shifts the real parts of the unstable eigenval-

ues to γ (6 0) rather than to 0. (If γ = 0 then P 0
M

is just PM.) As we will see in the numerical results
section, choosing γ < 0 can significantly reduce
the number of iterations required to converge to
a solution.

Finally we note (without proof) that if A = AT ,
C = BT , and the initial condition Y is chosen
symmetric, then the algorithm with γ set to zero
reduces to the one outlined in Section 3 for the
symmetric problem.

5. COMPUTATIONAL RESULTS

This section presents computational results for
some randomly generated problems and a partic-
ular problem from the literature.

The algorithm was implemented in Matlab 6.5
and all results were obtained using a 3.06 GHz
Pentium 4 machine, with 1Gb of memory, running
Windows XP Professional.

5.1 Randomly generated examples

This subsection contains results for some ran-
domly generated problems. In order to guarantee
that the problems have solutions, we choose the
system dimensions so that they satisfy Kimura’s
generic stabilization condition (Kimura, 1975):
n < m + p. In particular, we take n = 6, m = 4
and p = 3. For each random problem, each of the
elements of A, B and C were drawn from a normal
distribution of zero mean and variance 1.

A 1000 randomly generated problems were con-
structed. Table 1 shows how effective the algo-
rithm is in solving these problems using various
values of γ. Shown are the percentage of problem
that converged within certain iteration ranges and
the average CPU time. As can be seen, the al-
gorithm performs best with γ < 0. Performance
is roughly equally good for each negative γ and,
for these γ’s, solutions were found in about 50%
of cases. Though not reported here, even smaller
values of γ produce similar results to γ = −3 and
γ = −5. (Values down to γ = −20 were tested.)

Table 1. A comparison of performance
for different values of γ. i denotes the
number of iterations, ‘NC’ denotes non-
convergence after 1000 iterations, and
T denotes the average convergence time
in CPU seconds for the problems that

converge within 1000 iterations.

No. of iterations γ = 0 γ = −1 γ = −3 γ = −5

1 ≤ i ≤ 10 1% 22% 28% 30%

10 < i ≤ 100 8% 19% 15% 13%

100 < i ≤ 1000 25% 7% 5% 4%

NC 66% 52% 52% 53%

T 0.17 0.03 0.03 0.03

Figure 1 shows how the success rate improves if we
try to solve each problem using up to 10 different
initial conditions.

Fig. 1. A comparison of performance for different
values of γ using up to 10 initial conditions.
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For all γ’s, solutions were found in about 70%
of cases. The average total solution time for the



problems that were successfully solved was 0.68
CPU seconds.

5.2 A problem from the literature

The following problem taken from (Keel et al.,
1988) appears frequently in the literature. The
system considered is the nominal linearized model
of a helicopter:

A =









−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.0100 0.0024 −4.0208
0.1002 0.3681 −0.7070 1.4200
0.0000 0.0000 1.0000 0.0000









,

B =









0.4422 0.1761
3.5446 −7.5922

−5.5200 4.4900
0.0000 0.0000









, C =









0
1
0
0









T

.

In this problem we wish to place the closed loop
eigenvalues in the set {z ∈ C |Re(z) ≤ −α} with
α = 0.1. To achieve this, we apply the algorithm
with A replaced by A + αI. Regarding the choice
of the parameter γ, a number of different values
are selected. When γ ≥ −17, the algorithm is
not always convergent. However, when γ ≤ −18,
for example −18,−19,−20, . . . , the algorithm ap-
pears to be always convergent. Typically the al-
gorithm converges within 1000 iterations, with
computational time under 0.7 CPU seconds. A
particular solution is

K =
(

0.0939 1.1127
)T

for which A + BKC has eigenvalues {−0.1440,
− 9.3716,−0.1765 ± i0.7909}.

6. CONCLUSIONS

This paper has proposed a novel projective algo-
rithm for the static output feedback stabilization
problem. As for other algorithms for this problem,
convergence to a solution is not guaranteed. Even
so the algorithm can be useful in practice. The
ability to start the algorithm from different initial
conditions and the ability to modify a certain al-
gorithm parameter increasing the likelihood that
problems can be solved.
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