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Abstract— This paper presents a Newton–like algorithm for
solving systems of rank constrained linear matrix inequalities.
Though local quadratic convergence of the algorithm is not
a priori guaranteed or observed in all cases, numerical
experiments, including application to an output feedback
stabilization problem, show the effectiveness of the algorithm.

I. INTRODUCTION

The linear matrix inequality (LMI) problem is a well
known type of convex feasibility problem that has found
many applications to controller analysis and design. The
rank constrained LMI problem is a natural as well as
important generalization of this problem. It is a non-convex
feasibility problem defined by LMI constraints together with
an additional matrix rank constraint.

Interest in rank constrained LMIs arises as many im-
portant output feedback and robust control problems, that
cannot always be addressed in the standard LMI framework,
can be formulated as special cases of this problem [1],
[2], [3], [4]. Examples include bilinear matrix inequality
(BMI) problems, see [3] and [4], that are easily seen to be
equivalent to rank one constrained LMI problems.

In addition to their importance for control, rank con-
strained LMI problems also appear naturally in mathemati-
cal programming and combinatorial optimization tasks: all
optimization problems with polynomial objective and poly-
nomial constraints can be reformulated as LMI optimization
problems with a rank one constraint [5], [6].

In general, if the set of points that satisfy an LMI is
non-empty, then a numerical solution to the LMI problem
can be efficiently found using well developed interior point
algorithms, see for example [7]. Lack of convexity makes
the rank constrained LMI problem much harder to solve.
Currently available algorithms for the rank constrained LMI
problem are heuristic in nature and are not guaranteed to
converge to a solution even if one exists. Solution methods
for this problem, or certain specializations of the problem,
include those based on modified interior point methods [8],
[9]; linearization [10], [11], [12]; alternating projections
[13], [14], [15]; trace minimization methods that try to solve
the problem by solving a related convex problem [16], [17];
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augmented Lagrangian methods [18], [19]; and sequential
semidefinite programming [20]. Aside from [20], these
methods do not have established superlinear convergence
rates and the challenge remains to find numerical schemes
with verifiable local quadratic convergence rates.

In this paper we present a new heuristic method for
solving the rank constrained LMI problem. The method is
closely related to existing alternating projection methods
but is expected to have improved convergence properties
due to a built-in Newton-type step. In [13] and [15] al-
ternating projection algorithms are proposed that involve
tangent-like ideas, similar to our approach. However, the
implementation details are different and the connection to
the Newton method is not mentioned, nor obvious. In fact,
it is this established connection to Newton’s method that
distinguishes our approach to earlier ones.

Our method is based on the “tangent and lift” method-
ology [21], a generalization of Newton’s method. While
the classical Newton algorithm can be used to find zeroes
of functions, the tangent and lift method is more general
and can be used to find a point in the intersection of an
affine subspace and a manifold. We show that the rank
constrained LMI problem can be formulated as a problem
of finding a point in the intersection of an affine subspace
and another set which, though not a manifold, is a union
of manifolds. Part of the contribution of this paper is a
demonstration that tangent and lift methods can be extended
to this more general setting and we present an algorithm for
solving the rank constrained LMI problem based on such
an extension. Numerical simulations show the effectiveness
of this approach.

Since our method is based on a generalization of the
Newton method, local quadratic convergence is expected.
However, complications arise due to the non-smoothness of
the constraints. This makes a rigorous convergence theory
difficult to develop and in fact, as some of our simulations
show, local quadratic convergence cannot be expected in
all cases. The challenge therefore is to single out a class
of problems for which local quadratic convergence can be
rigorously established. This will be done in a future paper.

The rest of the paper is structured as follows. Section II
contains a statement of the rank constrained LMI problem
and a reformulation of this problem into an equivalent form.
Section III contains a discussion of the tangent and lift
method and details of how we extend this methodology so
that it can be applied to the rank constrained LMI problem.
Section IV discusses important geometric properties of rank
constrained positive semidefinite matrices. Our algorithm



for solving the rank constrained LMI problem is given
in Section V. Section VI reports on some numerical ex-
periments and includes an application of the algorithm to
an output feedback problem. The paper ends with some
concluding remarks.

II. PROBLEM FORMULATION

Let R denote the set of real numbers and Sn denote the
set of real symmetric n×n matrices. For A ∈ Sn, let A ≥ 0
denote the property that A is positive semidefinite. The rank
constrained LMI problem is the following:

Problem 1: Find x ∈ R
m such that

F (x) := F0 +
m

∑

i=1

xiFi ≥ 0, (1)

G(x) := G0 +

m
∑

i=1

xiGi ≥ 0, (2)

rank G(x) ≤ r. (3)

The problem data are the real symmetric matrices Fi ∈
SnF and Gi ∈ SnG , and the rank bound r, which is
assumed to be less than or equal to nG.

Problem 1 consists of two LMI constraints, (1) and (2),
and a rank constraint, (3). When r = nG constraint (3)
is always satisfied and the problem reduces to a standard
LMI feasibility problem. The more interesting case is when
r < nG. In this case the problem is non-convex.

Let
Sn

+ = {X ∈ Sn |X ≥ 0}

and, for each integer s, let

Sn
+(s) = {X ∈ Sn |X ≥ 0, rank(X) = s}.

Define

Mr = SnF

+ ×
r

⋃

s=0

SnG

+ (s)

= {(X,Y ) ∈ SnF × SnG |

X ≥ 0, Y ≥ 0, rank(Y ) ≤ r}

(4)

and

L = {(X,Y ) ∈ SnF × SnG |

(X,Y ) = (F (x), G(x)) for some x ∈ R
m}.

Problem 1 can be stated in the following equivalent form.
Problem 2:

Find (X,Y ) ∈ Mr ∩ L.

We will see that, for each s, Sn
+(s) is a manifold and

hence that the rank constrained LMI problem is equivalent
to finding a point in the intersection of an affine subspace
and another set which is a union of manifolds. This structure
will enable us to use the tangent and lift ideas that are
discussed in the next section.

III. TANGENT AND LIFT

In this section we discuss the tangent and lift method-
ology and present an extension that can be applied to the
rank constrained LMI problem.

Before proceeding with the main discussion, a brief note
on projections is required. Let x be an element in a Hilbert
space H and let C be a closed (possibly non-convex) subset
of H . Any c0 ∈ C such that ‖x − c0‖ ≤ ‖x − c‖ for all
c ∈ C will be called a projection of x onto C. In the cases of
interest here, namely that H is a finite dimensional Hilbert
space, there is always at least one such point for each x.
If C is convex as well as closed then each x has exactly
one such minimum distance point [22]. Any function PC :
H → H will be called a projection operator (for C) if for
each x ∈ H ,

PC(x) ∈ C and ‖x − PC(x)‖ ≤ ‖x − c‖ for all c ∈ C.

The tangent and lift method is a generalization of New-
ton’s method and can be used to find a point in the inter-
section of an affine subspace and a manifold. It originated
in [21] and is based on a geometric interpretation of an
algorithm appearing in [23].

Recall that Newton’s method for finding a zero of a
function f : R → R is iterative in nature and is given
by the recursion

xn+1 = xn −
f(xn)

f ′(xn)
.

Geometrically speaking, xn+1 is the x-axis intercept of
the line which is tangent to the graph of f at (xn, f(xn)).
In tangent and lift, the role of the x-axis is replaced by an
affine subspace and the role of the graph of f is replaced by
a manifold. More precisely, the method works as follows.
Let H be a real finite dimensional Hilbert space and suppose
L is an affine subspace of H and that M is a submanifold of
H . Given xn ∈ L, and assuming it is possible to calculate
projections onto M, let yn be a projection of xn onto M.
As M is a manifold, it has a tangent space T at the point
yn. T has a canonical representation as a linear subspace of
H and yn +T can be thought of as an affine subspace of H
that is tangent to the manifold at yn. Assuming yn +T and
L intersect uniquely, xn+1 is taken to be the intersection
point of yn + T and L. As xn+1 ∈ L, the scheme can be
iterated.

A graphically representation of the algorithm is given in
Figure 1(a). Here the Hilbert space H is R

2, L is the x-axis,
and M is the graph of a function f : R → R. In this case,
finding a point in M ∩ L is equivalent to finding a zero
of f . Newton’s method can also be employed to solve this
problem and for purposes of comparison is also illustrated
in Figure 1.

Some points to note. For tangent and lift to work it
must be possible to calculate projections onto M. This step
replaces the process of ‘lifting’ x to (x, f(x)) in Newton’s
method. In addition, at least for all points near a solution,
each yn + T must intersect L uniquely. This essentially
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Fig. 1. Two different methods for finding a zero of a function: (a)Tangent
and lift; (b)Newton’s method.

places a rather strong requirement on the dimensions of L
and M:

dimL + dimM = dim H. (5)

The reasoning is as follows. Firstly, note that if y ∈ M and
T is its tangent space then dimM = dim T = dim(y+T ).
Hence (5) can be interpreted in terms of the dimensions of
the affine subspaces L and y+T . Now if the dimensions of
two affine subspaces sum to less than the dimension of the
ambient space then we would not expect them to intersect;
think of two lines in R

3. Alternatively, if the dimensions
of two affine subspaces sum to more than the dimension
of the ambient space then we would expect them to have
multiple intersection points; think of two planes in R

3. It is
only when the dimensions of two affine subspaces sum to
the dimension of the ambient space that we would expect
the affine subspaces to intersect uniquely; think of a plane
and a line in R

3.
Suppose now that (5) is satisfied and that x is an

intersection point of M and L. If T is the tangent plane
of M at x, and x + T and L intersect uniquely (this
will generically be the case and in the Newton scheme is
equivalent to the requirement that f ′(x) 6= 0), then, omitting
the details, the tangent planes for all points in M near x
will have this property. Hence if xn ‘close to x’ implies
xn+1 is also close to x then the algorithm will be well
defined locally near x.

Though the dimension constraint (5) is not explicitly
discussed in [21], it is satisfied by the problem studied in
that paper and application of the tangent and lift method to
that problem results in a (locally) quadratically convergent
algorithm. Other applications of tangent and lift are given
in [24]. As far as we are aware, tangent and lift methods
have only been employed for problems that satisfy (5).

In Problem 2, Mr is not a manifold but rather a union
of manifolds, see Section IV. This means that each point
in Mr lies in a manifold with a well defined tangent
space. However, as will be shown, these manifolds are
of varying dimensions. Depending on y ∈ Mr, it may
therefore happen that y + T does not intersect L uniquely.
The intersection may be empty or it may contain more
than one point. This may happen even arbitrarily close to a
solution point.

In order to apply tangent and lift ideas to Problem 2, the
approach must be extended to deal with these intersection
issues. Our method of doing this is as follows. We consider
all points in L that are of minimum distance to yn + T
and from these points choose xn+1 to be the point closest
to yn. As we will see in Section V, xn+1 can be found
by solving a linearly constrained least squares problem.
Numerical experiments demonstrate this methodology leads
to a locally convergent algorithm which, though it not
always the case, often exhibits local quadratic convergence.
In fact, generically, local quadratic convergence would hold
if the constraints were defined by a smooth manifold.
Unfortunately, this is not the case here and the extension of
the tangent and lift methodology to singular spaces therefore
presents new challenges for a rigorous convergence theory.

IV. THE GEOMETRY OF RANK CONSTRAINED POSITIVE
SEMIDEFINITE MATRICES

Before proceeding to describe our algorithm for solving
the rank constrained LMI problem in greater detail, in this
section we collect together some geometric properties of
rank constrained positive semidefinite matrices. In particu-
lar, we show that Mr is a union of manifolds and describe
the tangent spaces of these manifolds.

Theorem 3: Sn
+(s) is a connected smooth manifold of

dimension 1
2s(2n − s + 1). The tangent space of Sn

+(s) at
an element X is

TXSn
+(s) = {ΩX + XΩT |Ω ∈ R

n×n}.

Proof: See for example Proposition 1.1 in Chapter 5
of [25].

Corollary 4: Mr is a union of manifolds.
Proof: From (4) it follows that Mr is a union of

terms of the form SnF

+ (s)×SnG

+ (t). Theorem 3 implies both
SnF

+ (s) and SnG

+ (t) are manifolds and the result follows as
a product of manifolds is itself a manifold.

As the next theorem shows, after applying an appropriate
transformation, TXSn

+(s) has a rather simple form.
Theorem 5: Given X ∈ Sn

+(s), let

X = ΘX̄ΘT , X̄ =

[

Λ 0
0 0

]

,

where Θ ∈ R
n×n is orthogonal and Λ ∈ Ss is a positive

definite diagonal matrix. Then

ΘT TXSn
+(s)Θ

= TX̄Sn
+(s)

=

{[

Ω1 ΩT
2

Ω2 0

]

∣

∣

∣
Ω1 ∈ Ss, Ω2 ∈ R

(n−s)×s

}

.

Proof: Omitted due to space limitations.
The following useful fact is obvious from the above

characterization of tangent vectors.
Lemma 6: X ∈ TXSn

+(s) for each X ∈ Sn
+(s).



V. ALGORITHM

This section presents our algorithm for solving the rank
constrained LMI problem. It contains a description of the
algorithm at a conceptual level followed by details of the
various components of the algorithm, including the required
projections and initialization.

In order to do projections, we need to define an appro-
priate Hilbert space and associated norm. From now on Sn

will be regarded as a Hilbert space with inner product

〈A,B〉 = tr(AB) =
∑

i,j

aijbij .

The associated norm is the Frobenius norm ‖A‖ = 〈A,A〉
1

2 .
The sets of most interest will the product space SnF ×

SnG and various subsets of this space such as SnF

+ (s) ×
SnG

+ (t). The space SnF ×SnG will be viewed as a Hilbert
space with inner product

〈(A,B), (C,D)〉 = 〈A,C〉 + 〈B,D〉

where the two inner products on the right of the equality
are the inner products for SnF and SnG respectively. The
associated norm is ‖(A,B)‖ = (‖A‖2 + ‖B‖2)

1

2 .
We will have need to refer to the affine tangent space of

SnF

+ (s) × SnG

+ (t) at a point (X,Y ) as an affine subspace
of SnF ×SnG . For this purpose we introduce the following
definition.

Definition 7: For (X,Y ) ∈ SnF

+ (s) × SnG

+ (t), define

A(X,Y ) = (X,Y ) + T(X,Y )(S
nF

+ (s) × SnG

+ (t)).

Lemma 6 implies that (X,Y ) ∈ T(X,Y )(S
nF

+ (s)×SnG

+ (t)).
Hence, A(X,Y ) = T(X,Y )(S

nF

+ (s)×SnG

+ (t)) and A(X,Y ) is
in fact a linear subspace and not just an affine subspace.

Definition 8: The distance between two non-empty sub-
sets V and W of a vector space with norm ‖·‖ is

dist(V,W ) = inf{‖v − w‖ | v ∈ V,w ∈ W}.

Similarly, the distance between a point v and non-empty
subset W is

dist(v,W ) = inf{‖v − w‖ |w ∈ W}.

At a conceptual level the algorithm can be stated as
follows.

Algorithm:
Problem Data. F0, . . . , Fm ∈ SnF , G0, . . . , Gm ∈ SnG ,

and 0 ≤ r ≤ nG.
Initialization. Either choose any (X1, Y1) ∈ SnF ×SnG ,

or use (X1, Y1) = (F (x), G(x)) where x is the
solution of the semidefinite definite program (6).

repeat
1) Project (X1, Y1) onto Mr to give a new point

(X2, Y2).
2) Define B = {(X,Y ) ∈ L | dist((X,Y ),A(X2,Y2)) =

dist(L,A(X2,Y2))}.
3) (X3, Y3) = arg min(X,Y )∈B‖(X,Y ) − (X2, Y2)‖.

4) Set (X1, Y1) = (X3, Y3).
until (X1, Y1) converges to a solution of Problem 2.

Here are some comments regarding the above algorithm.
Step 1 is readily calculated via eigenvalue-eigenvector de-
compositions of X1 and Y1. This will be shown in Section
V-B below. In Step 2, B is the set of points in L that are
of minimum distance to A(X2,Y2). Step 3 is the projection
of (X2, Y2) onto B. Note that as L and A(X2,Y2) are closed
affine subspaces, the distance between them is zero if and
only if they intersect. Whether the sets intersect or not,
B itself will always be either a single point or an affine
subspace. In the case that B is a single point, Step 3 is
trivial. In the case that B is an affine subspace, Step 3 is
equivalent to solving a linearly constrained least squares
problem. Details of how to solve this step are given in
Section V-C below. Finally, note that each new (X1, Y1)
is in L as (X1, Y1) = (X3, Y3) ∈ B ⊂ L. Hence the
termination criterion of the algorithm can be replaced by
‘until (X1, Y1) ∈ Mr’.

A. Initialization

There is no guarantee that the algorithm will converge
from an arbitrary initial condition (X1, Y1). While a ran-
dom choice for the initial condition does often work, an
alternative choice is to use (X1, Y1) = (F (x), G(x)) where
x is the solution the following semidefinite programming
(SDP) problem:

min
x∈Rm

tr(G(x))

subject to F (x) ≥ 0

G(x) ≥ 0.

(6)

This is based on the heuristic that minimizing the trace of
a matrix subject to LMI constraints often leads a low rank
solution. Applied to a special case of Problem 1, the same
initialization scheme is used in both [15] and [26]. This
trace minimization heuristic also appears in [16] and [17],
and nice insights into why it might be effective can be found
in [27].

As we will see in the results section, in some cases the
solution of (6) will satisfy rankG(x) ≤ r, in which case the
overall problem is solved. In general, however, the solution
of the SDP gives a singular matrix G(x) which does not
satisfy this rank constraint.

B. Projecting onto Mr

Step 1 of the algorithm is the projection of a point
(X1, Y1) onto the set Mr. This projection is equivalent to
componentwise projection of X1 onto SnF

+ =
⋃nF

s=0 S
nF

+ (s)
and Y1 onto

⋃r

s=0 S
nG

+ (s).
The projection of X ∈ Sn onto

⋃r

s=0 S
n
+(s) is given

by the following result. More precisely, the result gives a
projection of X onto

⋃r

s=0 S
n
+(s) as, for r strictly less than

n, the set
⋃r

s=0 S
n
+(s) is non-convex and projections onto

this set are not always guaranteed to be unique.



Theorem 9: Given X ∈ Sn and 0 ≤ r ≤ n, let X =
Θdiag(λ1, . . . , λn)ΘT with λ1 ≥ . . . ≥ λn and Θ a real
orthogonal matrix. Define Pr : Sn → Sn as follows,

Pr(X) = Θdiag(max{λ1, 0}, .. ,max{λr, 0}, 0, .. , 0)Θ
T .

Then Pr(X) is a best approximant in
⋃r

s=0 S
n
+(s) to X in

the Frobenius norm.
Proof: Omitted due to space limitations.

C. Projecting onto B

How to project onto B is detailed in Theorem 11 below.
We will need the following definition.

Definition 10: Suppose (X,Y ) ∈ Mr, s = rank(X),
and t = rank(Y ). Define T(X,Y ) ⊂ SnF × SnG by

T(X,Y ) =

{[

Ω1 ΩT
2

Ω2 0

]

∣

∣

∣
Ω1 ∈ Ss, Ω2 ∈ R

(nF −s)×s

}

×

{[

∆1 ∆T
2

∆2 0

]

∣

∣

∣
∆1 ∈ St, ∆2 ∈ R

(nG−t)×t

}

.

(7)
Note that T(X,Y ) is a linear subspace of dimension N =

s(s+1)/2+(nF −s)s+t(t+1)/2+(nG−t)t that depends
on (X,Y ) through s and t.

Theorem 11: Suppose (X,Y ) ∈ Mr and define s =
rank(X) and t = rank(Y ). Then X and Y have eigenvalue-
eigenvector decompositions

X = V DV T , D =

[

ΛX 0
0 0

]

, (8)

Y = WEWT , E =

[

ΛY 0
0 0

]

, (9)

where V ∈ R
nF ×nF and W ∈ R

nG×nG are orthogonal,
and ΛX ∈ Ss and ΛY ∈ St are positive definite diagonal
matrices.

Let (B1, C1), . . . , (BN , CN ) be any basis for T(X,Y ), see
(7), and define A ∈ R

(n2

F
+n2

G
)×N by

A =

[

vec(B1) . . . vec(BN )
vec(C1) . . . vec(CN )

]

.

Using the Fi’s and Gi’s of (1) and (2), and V and W from
(8) and (9), define b ∈ R

n2

F
+n2

G and B ∈ R
(n2

F
+n2

G
)×m by

b =

[

vec(V T F0V )
vec(WT G0W )

]

,

B =

[

vec(V T F1V ) . . . vec(V T FmV )
vec(WT G1W ) . . . vec(W T GmW )

]

.

Let
C =

[

A −B
]

.

If F (·) and G(·) are the functions defined in (1) and
(2), and ‖·‖2 denotes the standard vector 2-norm, then the
projection of (X,Y ) onto B equals (F (x), G(x)) where
(v, x) is a minimizing solution of

min
v∈RN , x∈Rm

∥

∥

∥

∥

Bx + b −

[

vec(D)
vec(E)

]∥

∥

∥

∥

2

(10)

subject to CT C

[

v
x

]

= CT b. (11)

If (F1, G1), . . . , (Fm, Gm) are linearly independent, then x
is unique.

Proof: Omitted due to space limitations.
Hence projecting onto B is equivalent to solving the

linearly constrained least squares problem (10), (11). Such
problems can be solved in a number of ways, see for
example [28]. A basic solution approach is as follows.
First parameterize the points in the constraint set (using
any particular solution and a basis for the null space of
CT C). Using this parametrization, transform the original
constrained problem into a (lower dimensional) uncon-
strained least squares problem. Finally, use the solution of
this new problem and the parametrization mapping to obtain
a solution of the original problem.

VI. NUMERICAL EXPERIMENTS

This section contains some numerical experiments. Al-
gorithm performance is investigated using both randomly
generated problems and by applying the algorithm to a
particular output feedback problem.

All computational results were obtained using a 2 GHz
Pentium 4 machine, with 512Mb of memory, running
Windows XP Professional. Our algorithm was coded using
Matlab 6.5. For each problem, the initial condition was
found by solving the semidefinite programming problem
(6) using SeDuMi [29].

Convergence Criteria. For purposes of determining con-
vergence, that is determining positive semidefiniteness of
the matrices F (x) and G(x) and the rank of G(x), eigen-
values of these matrices will we considered 0 if they have
magnitude 10−12 or less. (For the problems considered,
typical non-zero eigenvalues have magnitudes between 101

and 10−2.)

A. Random Problems

All results in this subsection are for randomly gener-
ated problems. Each problem is generated as follows. Let
N (0, 1) denote the normal distribution with zero mean and
variance 1. Each entry of the matrices F1, . . . , Fm and
G1, . . . , Gm is drawn from N (0, 1). To ensure feasibility,
F0 and G0 are set to F0 = VF DF V T

F −
∑m

i=0 ξiFi and
G0 = VGDGV T

G −
∑m

i=0 ξiGi, where each ξi is drawn from
N (0, 1); VF and VG are randomly generated orthogonal
matrices; and DF and DG are randomly generated diagonal
matrices: each diagonal entry in DF is drawn from N (0, 1)
and set to zero if it is negative, while r diagonal entries in
DG are drawn from the uniform distribution on the interval
[0, 1] and the others set to zero.

Table I contains results for nF = 10, nG = 10, r = 5
and various values of m. For each value of m in the table,
the algorithm is given 100 random problems to solve. Listed
are a distribution of the number of iterations taken for the
algorithm to converge, the average number of iterations, and
the average CPU time. Iteration 1 is the initialization step
based on the rank minimization heuristic.



TABLE I
EXPERIMENTS FOR RANDOM F AND G WITH nF = 10, nG = 10 AND

r = 5. i DENOTES THE AVERAGE NUMBER OF ITERATIONS AND T

DENOTES AVERAGE CPU TIME IN SECONDS. i AND T DO NOT INCLUDE

THE PROBLEMS THAT HAD NOT CONVERGED AFTER 100 ITERATIONS.
THE NUMBER OF SUCH PROBLEMS FOR EACH m IS GIVEN IN THE ‘NC’

OR ‘NON-CONVERGENCE AFTER 100 ITERATIONS’ COLUMN.

m iterations i T
1 2 − 10 11 − 20 21 − 100 NC

10 97 3 0 0 0 1.1 0.36
20 33 41 13 5 3 10 1.4
30 29 53 8 4 6 7.0 1.5

For m = 10, solutions for all 100 problems were found.
The rank minimization heuristic was very effective, finding
solutions for almost all the problems. The 3 problems that
were not solved in this first iteration, were all solved using
less than 10 iterations. For both m = 20 and m = 30,
the rank minimization heuristic was no longer quite as
successful though it did still manage to find a solution
in about 30% of cases. Approximately 90% of problems
were solved in 20 iterations or less while about 5% had not
converged after 100 iterations. Examination of the problems
that had not converged after 100 iterations showed that
about half were slowly converging to a solution while
progress for the other half seemed to have stopped. For
all values of m, the average CPU time (excluding problems
that had not converged after 100 iterations) was less than
1.5 seconds.

Results for some larger problems are given in Table II.
Here again, for each value of m, the algorithm was given
100 random problems to solve. There are a number of
observations to be made. Let us first consider the results
for m = 20 and m = 60. In both these cases, performance
was again very good. In terms of average iterations and
the distribution of iterations, the results for m = 20 and
m = 60 were respectively very similar to the results for
m = 10 and m = 30 in Table I. Average CPU times
understandably increased due to the larger problem sizes.
For m = 40, while 78 problems converged in 20 iterations
or less, 17 had not converged after 100 iterations. (After
1000 iterations, 7 had not converged. Of these 4 seemed to
be converging slowly.) It is not completely clear why this
value of m leads to slower convergence.

TABLE II
EXPERIMENTS FOR RANDOM F AND G WITH nF = 20, nG = 15 AND

r = 10. †FOR m = 40, 7 PROBLEMS HAD NOT CONVERGED AFTER

1000 ITERATIONS.

m iterations i T
1 2 − 10 11 − 20 21 − 100 NC

20 94 3 3 0 0 1.5 2.7
40 45 23 10 5 17

† 5.7 23
60 32 56 7 2 3 5.2 23

B. Reduced Order Output Feedback Problem

In this subsection we present results of using the algo-
rithm to solve a particular reduced order output feedback
problem. The problem is taken from [14] (see also [13]
and [15]). The problems considered in [14], including the
particular problem we will consider here, result in the
following special case of Problem 1 (‘< 0’ means ‘is
negative definite’):

Problem 12: Find X,Y ∈ Sn such that

EXXFX + (EXXFX)T + QX < 0

EY Y FY + (EY Y FY )T + QY < 0
[

X I
I Y

]

≥ 0

rank

[

X I
I Y

]

≤ n + nc.

The data in the problem are the matrices EX , FX , QX ,
EY , FY , QY and the non-negative integer nc. I is the
n × n identity matrix. For the output synthesis problems
considered, n denotes the order of the LTI system to be
stabilized by output feedback and 0 ≤ nc ≤ n denotes
a user specified bound on the order of the dynamic output
feedback controller. There exists a dynamic output feedback
controller of order ≤ nc that stabilizes the system if
and only if Problem 12 has a solution. A solution to the
feedback synthesis problem can be found from any solution
of Problem 12 by solving an additional LMI or via explicit
formulas [2].

The system considered is a two-mass-spring system with
state space representation:

ẋ = Ax + Bu, y = Cx

where

A =









0 0 1 0
0 0 0 1

−1 1 0 0
1 −1 0 0









, B =









0
0
1
0









, C =









0
1
0
0









T

.

Given α > 0 we wish to find an order 2 dynamic
controller that places the closed loop poles in the set
{z ∈ C |Re(z) ≤ −α}. As is shown in [14], this is
equivalent to solving Problem 12 with n = 4, nc = 2,
EX = B⊥(A + αI), FX = B⊥T , QX = 0, EY = CT⊥,
FY = (A + αI)CT⊥T , and QY = 0, where

B⊥ =





1 0 0 0
0 1 0 0
0 0 0 1



 , CT⊥ =





1 0 0 0
0 0 1 0
0 0 0 1



 .

Technical note: Problem 12 contains two constraints of
the form ‘Z < 0’. In the computations, each of these has
been replaced by ‘−Z ≥ εI’ with ε = 10−6.

The problem was solved for two of the same values of
α given in [14]. The results are listed in Table III. As can
be seen, the harder problem (α = 0.42) took longer to
converge than the easier problem (α = 0.2). Hence, speed



TABLE III
RESULTS FOR THE TWO-MASS-SPRING SYSTEM. α DENOTES THE

STABILITY DEGREE, i THE NUMBER OF ITERATIONS, AND T THE CPU
TIME IN SECONDS.

α i T

0.2 289 15
0.42 1503 70

of convergence seems to be influenced by the size of the
feasible set.

VII. CONCLUSIONS

In this paper we have presented an algorithm for solving
the rank constrained LMI problem. Like all other algorithms
that attempt to solve this problem, the algorithm is heuristic
in nature and convergence from an arbitrary initial condi-
tion is not guaranteed. Though the convergence properties
of the algorithm are not yet completely understood, as
demonstrated by the experiments, the algorithm can be quite
effective. Given that the algorithm is based on a Newton
like methodology, it is not completely apparent why the
algorithm is not always locally quadratically convergent and
further investigations need to be made in this regard.
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