
A Finite Step Projective Algorithm for Solving Linear Matrix

Inequalities

Robert Orsi∗ Mustapha Ait Rami† John B. Moore‡

Abstract

This paper presents an algorithm for finding feasible so-
lutions of linear matrix inequalities. The algorithm is
based on the method of alternating projections (MAP), a
classical method for solving convex feasibility problems.
Unlike MAP, which is an iterative method that converges
asymptotically to a feasible point, the algorithm con-
verges after a finite number of steps. The key compu-
tational component of the algorithm is an eigenvalue-
eigenvector decomposition which is carried out at each
iteration. Computational results for the algorithm are
presented and comparisons are made with existing algo-
rithms.

1 Introduction

The linear matrix inequality (LMI) problem is to find
x ∈ Rm such that

F (x) := F0 + x1F1 + · · ·+ xmFm > 0. (1)

Here Fi ∈ Rn×n, i = 0, 1, . . . , m, are given real symmet-
ric matrices and > 0 stands for positive definite. LMIs
are by now well known, having numerous applications in
systems and control theory [4] (see also [3]).

In this paper we present a new algorithm for solving
the LMI problem. The algorithm is iterative in nature
and is based on the method of alternating projections
(MAP), a classical method for finding a point in the in-
tersection of a finite number of closed convex sets. Unlike
MAP, which is an iterative method that in general only
converges asymptotically [5], the algorithm converges to
a solution in a finite number of steps.

The work in this paper relies on the ideas presented
in [1]. In that paper a finite step method is given for

∗National ICT Australia, C/- Research School of In-
formation Sciences and Engineering, The Australian Na-
tional University, Canberra ACT, 0200, Australia. Email:
robert.orsi@nicta.com.au

†Mathematisches Institut, Universität Würzburg, Würzburg,
Germany. Email: rami@analysis.mathematik.uni-wuerzburg.de

‡Department of Systems Engineering, Research School of
Information Sciences and Engineering, The Australian Na-
tional University, Canberra ACT, 0200, Australia. Email:
john.moore@anu.edu.au

solving problems involving finding a point in the inter-
section of two convex cones1. Specifically, given closed
convex cones C1 and C2 in a Hilbert space H, a finite
step method is given for finding a point in the intersec-
tion of the interior of C1 and the closed set C2. The
work in this paper can be considered a specialization of
the ideas in [1] to the LMI problem.

As well as giving the theoretical underpinnings of
our algorithm, the paper contains computational results
showing that, subject to constraints on how large m is
in comparison to n, the algorithm compares very favor-
ably with existing algorithms used for solving the LMI
problem.

The key computational component of the algorithm is
an eigenvalue-eigenvector decomposition which is carried
out at each iteration. The algorithm also contains a
single matrix inversion.

The paper is structured as follows. The remainder
of this section lists some notation which is used in the
rest of the paper. Section 2 introduces the MAP algo-
rithm and related results. The algorithm is described
in Sections 3. This section also contains a pseudo-code
representation of the algorithm. Section 4 contains some
computational results, including comparisons to other al-
gorithms. Section 5 examines the effect of a particular
algorithm parameter on performance. The paper ends
with some concluding remarks.

Notation. R is the set of real numbers. R+ is the set
of non-negative real numbers. R++ is the set of positive
real numbers. Sn is the set of real symmetric n×n matri-
ces. Sn

+ is the set of positive semi-definite real symmetric
n × n matrices. Sn

++ is the set of positive definite real

symmetric n× n matrices.
◦
C denotes the interior of the

set C. AT denotes the transpose of a matrix A. Tr(A)
denotes the sum of the diagonal elements of a square
matrix A. diag(v) for v ∈ Rn denotes the n×n diagonal
matrix whose i’th diagonal term is vi.

1A subset C of a real vector space H is a cone if for each x ∈ C
and scalar θ > 0, it follows that θx ∈ C.

1

2 The Method of Alternating
Projections and the Conic Fea-
sibility Problem

This section introduces the MAP algorithm and the key
ideas from [1]. Also introduced are relaxed projections.

Let H be a Hilbert space with inner product 〈· , ·〉 and
corresponding norm || · ||. If x ∈ H and C is a closed
convex subset of H, there exists a unique element in C
that is closest to x [6].

Theorem 1 Let x be an element in a Hilbert space H
and let C be a closed convex subset of H. Then there
exists a unique c0 ∈ C such that ||x− c0|| ≤ ||x− c|| for
all c ∈ C.

Given x ∈ H and a closed convex subset C, the c0 of
Theorem 1 is called the projection of x onto C. As this
projection is unique for each x ∈ H, we can define the
projection operator PC : H → H which takes each x to
its projection on C.

We now state a classical method for finding a point
in the intersection of a finite number of closed convex
subsets, the method of alternating projections [5]. The
method works by successively projecting onto the convex
subsets in question and is guaranteed to asymptotically
converge to a point in their intersection.

Theorem 2 (MAP) Let C1, . . . , CN be closed convex
sets in a real finite dimensional Hilbert space H. If⋂N

i=1 Ci is nonempty, then starting from an arbitrary
initial value, the following sequence

xi+1 = PCφ(i)(xi), where φ(i) = (i mod N) + 1,

converges to an element in
⋂N

i=1 Ci.

We remark that the usefulness of MAP for finding a
point in the intersection of a number of convex sets is
dependent on being able to compute the projections PCi .

In order to solve the LMI problem via the MAP algo-
rithm, we will reformulate the problem into one of find-
ing an element in the intersection of two convex cones.
Specifically, we will show that it is equivalent to the fol-
lowing conic feasibility problem:

Find x ∈
◦

C1 ∩ C2, (2)

where C1 and C2 are closed convex cones in a Hilbert
space H.

As pointed out in [1], problem (2) is equivalent to the
problem:

Find x ∈ (C1 + e) ∩ C2, (3)

where e is any fixed element in the interior of C1. (C1+e
denotes the set {c + e | c ∈ C1}.) Their equivalence
follows from the fact that [1]:

1. C1 + e ⊂
◦

C1,

2. For any y ∈ H and x ∈
◦

C1 there exists α > 0 such
that αx− y ∈ C1.

Property 1 implies that if x is a solution of (3) then
it is also a solution of (2). Alternatively, property 2
with y = e implies that if x is a solution of (2) then
αx ∈ (C1 + e) ∩ C2 for some α > 0.

Problem (2) can be solved using the following finite
step algorithm [1] which works by applying MAP to the
closed convex sets (C1 + e) and C2.

Theorem 3 Let C1 and C2 be closed convex cones in
a real finite dimensional Hilbert space H and suppose
◦

C1 ∩ C2 is non-empty. Then for any initial condition

x0 ∈ H and e ∈
◦

C1, the sequence

x1 = PC1+e(x0)
x2 = PC2(x1)

...
x2k−1 = PC1+e(x2k−2)

x2k = PC2(x2k−1)
...

converges in a finite number of steps to a point in
◦

C1

∩ C2.

Theorem 2 guarantees that the sequence converges
asymptotically to (C1 + e) ∩ C2. This, the fact that

C1 +e ⊂
◦

C1, and the fact that x2k ∈ C2 for all k, implies

that, for some k sufficiently large, x2k ∈
◦

C1 ∩ C2.

2.1 Improving Convergence Rates: Re-
laxed Projections

We now introduce a modification to the MAP algorithm
which can improve its speed of convergence. The rele-
vant theory is presented in this subsection and the pos-
itive effect on speed of convergence for the algorithm
developed in this paper is demonstrated in the compu-
tational results of Section 4.

Given a Hilbert space H, let Id denote the identity
operator on H, Id(x) = x for all x ∈ H. We have the
following generalization of the MAP algorithm.

Theorem 4 Let C1, . . . , CN be closed convex sets in a
real finite dimensional Hilbert space H. Given constants
t1, . . . , tN in the interval (0, 2), for i = 1, . . . , N , define
the operators

Ri = (1− ti)Id + tiPCi .

2

If
⋂N

i=1 Ci is nonempty, then starting from an arbitrary
initial value, the following sequence

xi+1 = Rφ(i)(xi), where φ(i) = (i mod N) + 1,

converges to an element in
⋂N

i=1 Ci.

For a proof of this result, see for example [10] or [2].
The Ri operators in the theorem are termed relaxed pro-
jection operators. Note that if the ti’s are all 1 then
Theorem 4 reduces to Theorem 2.

Theorem 4 implies that the projection operator PC1+e

of Theorem 3 can be replaced by a relaxed projection
operator. This gives what we term a relaxed version of
Theorem 3. Note that aside from invoking Theorem 4
rather than Theorem 2, the proof of the relaxed theorem
is the same as that of the original theorem. The key point
is that by relaxing only PC1+e and not PC2 , x2k remains
an element of C2 for all k.

3 Algorithm

In this section we show that the LMI problem is equiv-
alent to a conic feasibility problem and derive an algo-
rithm for solving the problem based on the results of
the previous section. We will refer to the algorithm as
LMI-Feas.

3.1 Reformulation of the LMI Problem

This subsection contains a reformulation of the LMI
problem as a conic feasibility problem.

By introducing the slack variable S ∈ Sn and the
scalar variable x0 ∈ R++, the LMI problem is equiva-
lent to the following:

Find (x0, x, S) ∈ R++ × Rm × Sn
++

such that x0F0 + x1F1 + . . . + xmFm − S = 0.
(4)

The equivalence of these problems can be seen as follows.
If x satisfies (1), then (1, x, F0 + x1F1 + . . . + xmFm) is
a solution of (4). Alternatively, if (x0, x, S) is a solution
of (4), then x/x0 satisfies (1).

Problem (4) is a conic feasibility problem with the
same form as problem (2). Indeed let H be the Hilbert
space

H = R× Rm × Sn

with inner product

〈(x0, x, S), (y0, y, T)〉 = x0y0 + xT y + Tr(ST). (5)

Let

K = R+ × Rm × Sn
+

and

L = {(x0, x, S) ∈ H |
x0F0 + x1F1 + . . . + xmFm − S = 0}. (6)

Both K and L are closed convex cones in H, indeed L is
even a linear subspace of H.

The interior of K is R++ × Rm × Sn
++ and hence our

original LMI problem is equivalent to:

Find (x0, x, S) ∈ ◦
K ∩ L. (7)

3.2 Calculation of Projections

In order to solve problem (7) via Theorem 3, all that
remains is to determine PK+e and PL, which we do now.

We start with PK+e. The particular e we will use
is e = (ρ, 0, ρI). Here ρ > 0 can be any posi-
tive constant2 and I denotes the n × n identity ma-
trix. Note, e is an element of the interior of K. For
this choice of e, projection of (x0, x, S) onto K + e
is equivalent to componentwise projection of x0 onto
R+ + ρ, x onto Rm, and S onto Sn

+ + ρI. That is,
PK+e(x0, x, S) = (PR++ρ(x0), PRm(x), PSn

++ρI(S)). Re-
ferring back to Theorem 1, it is easily verified that
PR++ρ(x0) = max{ρ, x0} and PRm(x) = x.

The following lemma from [1] gives PSn
+
(S).

Lemma 5 The projection of S onto Sn
+ is calculated as

follows. Let S = V DV T be an eigenvalue-eigenvector
decomposition of S with D = diag(d1, . . . , dn). If
D̄ = diag(max{0, d1}, . . . , max{0, dn}), then PSn

+
(S) =

V D̄V T .

Calculation of PSn
++ρI is aided by the following result

[1].

Lemma 6 Given a closed convex subset C of a Hilbert
space H, and any y ∈ H, then the projection onto C + y
is given by PC+y(x) = PC(x− y) + y, for all x ∈ H.

Combining Lemmas 5 and 6, if S = V DV T

is an eigenvalue-eigenvector decomposition of
S with D = diag(d1, . . . , dn), then, defining
D̄ = diag(max{ρ, d1}, . . . , max{ρ, dn}), one can
show that PSn

++ρI(S) = V D̄V T .

To calculate PL, we will need the following result [6].

Lemma 7 Suppose H is a Hilbert space and that
{y1, . . . , yp} is a set of linearly independent vectors in
H. If L = {y | 〈y, yi〉 = 0, i = 1, . . . , p}, then the projec-
tion of x ∈ H onto L is given by

PL(x) = x−
p∑

i=1

αiyi,

2The constant ρ can be thought of as an algorithm parameter.
Section 5 contains a discussion of how the choice of ρ effects the
speed of convergence of the algorithm.

3

where α ∈ Rp is given by α = G−1(〈x, y1〉, . . . , 〈x, yp〉)T

and G ∈ Rp×p is given by Gij = 〈yi, yj〉.
The linear constraint that characterizes the elements

of L, see (6), can be re-written as p = n(n + 1)/2 inner
product constraints:

L = {(x0, x, S) ∈ H | 〈(x0, x, S), yij〉 = 0,
i = 1, . . . , n, j = i, . . . , n} (8)

where yij ∈ H is given by

yij = ((F0)ij , ((F1)ij , . . . , (Fm)ij)T ,−Eij) (9)

with Eij ∈ Sn defined as

(Eij)kl =





1, if i = j = k = l,
1/2, if i 6= j, k = i, l = j,
1/2, if i 6= j, k = j, l = i,
0, otherwise.

(10)

PL can now be calculated by applying Lemma 7 to the
characterization of L just given3. PL is given in the
pseudo-code in next subsection. (The detailed calcula-
tions of PL are straightforward though tedious and due
to space limitations have been omitted.)

We now have all the ingredients needed for our algo-
rithm, which is presented in the next subsection.

3.3 An Algorithm for Solving the LMI
Problem: LMI-Feas

This subsection contains our algorithm for finding a x
that satisfies (1). In the algorithm, the relaxed projec-
tion operator

RK+e = (1− t)Id + tPK+e

is used in place of PK+e. As noted in Section 2.1, t can
take any value in the open interval (0, 2). In Section 4
we will see that, in comparison to the unrelaxed algo-
rithm (t = 1), performance of the algorithm improves by
choosing t close to 2. Before presenting the algorithm,
we introduce some additional notation.

Given a symmetric matrix A ∈ Sn, we will use Â to
denote A as an element in Rp, p = n(n+1)

2 . For example
if n = 3 and

A =




a b c
b d e
c e f


 ,

then Â will be understood to be the vector Â =
(a, b, c, d, e, f)T . In a similar manner, if v ∈ Rp, we
will use v̌ to denote the corresponding element in Sn.

3Lemma 7 can be applied as the yij ’s are linearly independent.
This fact follows from the linear independence of the Eij ’s. In
particular, the Fi’s are not required to be linearly independent.

For x0 ∈ R and x ∈ Rm, we will use [x0;x] to denote
[x0, x

T]T ∈ Rm+1.
Here is our algorithm for solving the LMI feasibility

problem.

LMI-Feas:

Problem Data. Real n × n symmetric matrices
F0, F1, . . . , Fm.

Parameter Selection.
Choose ρ > 0. (For example, take ρ = 1.)
Choose t ∈ (0, 2). (For example, take t = 1.99.)

Initialization. Choose any x0 ∈ R, x ∈ Rm and S ∈ Sn.

Calculate G inverse. Q := [F̂0, F̂1, . . . , F̂m] ∈ Rp×(m+1),
p = n(n+1)

2 . Let I denote the n× n identity matrix
and 1 ∈ Rp the vector whose every entry is 1. G :=
QQT + 1

2diag(Î + 1). Ginv := G−1.

repeat

1. Apply RK+e:

• x0 := (1− t)x0 + t max{ρ, x0}.
• Find an eigenvalue-eigenvector decomposition

of S. If S = V DV T with D = diag(d1, . . . , dn),
define D̄ := diag(max{ρ, d1}, . . . , max{ρ, dn}).
S := V ((1− t)D + tD̄)V T .

2. Apply PL:

• α := Ginv(Q[x0; x]− Ŝ).

• [x0; x] := [x0; x]−QT α.

• T := − 1
2 α̌. For i = 1, . . . , n, Tii := 2Tii. S :=

S − T .

until x0 > 0 and the minimum eigenvalue of S is > 0.

Solution: x/x0.

4 Computational Results

This section contains some computational results. Pre-
sented is a comparison of our algorithm with SeDuMi
[8], a freely available convex optimization package that
can be used to solve the LMI problem. A preliminary
comparison with another package, SDPT3 [9], on trial
problems showed that SeDuMi was roughly twice as fast
as SDPT3, so we have omitted a detailed comparison
of LMI-Feas with SDPT3. Note that both SeDuMi and
SDPT3 are leading algorithms in their class [7].

All the computational results we are about to present
were obtained using a 2 GHz Pentium 4 machine, with
512Mb of memory, running Windows XP Professional.

4

Our algorithm was coded using Matlab 6.5 and we note
that SeDuMi is an add-on for Matlab.

All results presented are for randomly chosen LMI
problems: for each problem, each element of each Fi

matrix was drawn from a normal distribution of zero
mean and variance 1. Problems generated in this man-
ner which were infeasible were discarded. For all com-
putational results, unless indicated otherwise, the pa-
rameter ρ that appears in LMI-Feas was set to ρ = 1.
The initial value for LMI-Feas was always (x0, x, S) =
(1, (0, . . . , 0)T , I).

Table 1 compares LMI-Feas with SeDuMi. Results
for LMI-Feas are given for two different values of the
relaxation parameter: t = 1 and t = 1.99. Results are
for n = 10 and for each value of m in the table, each
algorithm was given the same 1000 random problems to
solve and the results are average values determined from
these problems. Listed are the average CPU time and
the average number of iterations taken.

LMI-Feas SeDuMi
t = 1 t = 1.99

m T i T i T i

50 0.0037 2.1 0.0033 1.6 0.071 3.3
40 0.0078 13 0.0058 7.4 0.073 3.4
30 0.16a 330a 0.13b 290b 0.11 4.6

Table 1: A comparison of LMI-Feas and SeDuMi, n =
10. T denotes average CPU time in seconds and i the
average number of iterations. Results with a superscript
are averaged values that do not include problems which
had not converged after 104 iterations. The number of
such problems in each case was: (a) 47 , (b) 30.

This is a small list of computationally results and some
comments are in order. In the first two cases, LMI-
Feas outperformed SeDuMi. For m = 50, LMI-Feas was
about 20 times faster. For m = 40 and t = 1.99, LMI-
Feas was about 13 times faster. These are clearly en-
couraging results. For m = 30, LMI-Feas had instances
of non-convergence after 104 iterations. This combined
with the other results in Table 1 highlight that the per-
formance of LMI-Feas worsens as m is decreased (while
keeping n fixed). Indeed finding a x that satisfies (1)
becomes harder as m is decreased since the smaller m
is, the smaller are the number of variables that can be
adjusted in trying to satisfy (1).

Performance for n = 10, m = 30 can be improved
by using a different value of ρ. Solving the same 1000
problems that produced the last line in Table 1 using
ρ = 0.001 rather than ρ = 1 produces the results in
Table 2.

Notice that by using ρ = 0.001 the number of problems
that had not converged after 104 iterations has reduced
substantially and the average time to convergence has

LMI-Feas
t = 1 t = 1.99

n m T i T i

10 30 0.098a 230a 0.053b 110b

Table 2: Performance can improve by choosing a differ-
ent ρ, in this case ρ = 0.001. Each of these results are
averaged values that do not include problems which had
not converged after 104 iterations. The number of such
problems in each case was: (a) 4 , (b) 3.

also improved. These result demonstrate that ρ can have
a considerable effect on performance. We consider this
matter more fully in Section 5.

For m > 50 (and n = 10), we have not included any
computational results but we note the relative perfor-
mance of LMI-Feas remains much the same as when
m = 50. It remains able to solve problems about 20
times faster than SeDuMi.

The results of Tables 1 and 2 also demonstrate the
benefit of using relaxed projections. In all cases, the
relaxed algorithm (t = 1.99) performs better than the
unrelaxed algorithm (t = 1). In all cases tested, includ-
ing tests not documented here, the algorithm performs
best with t close to 2. Indeed, solving the same problem
a number of times using different values of t it becomes
apparent that performance improves monotonically with
increasing t ∈ (0, 2).

Similar comments to the ones made above apply for
other values of n: if m is large in comparison to n, LMI-
Feas performs very favorably. Averaged results for some
larger values of n are given in Table 3 below.

LMI-Feas SeDuMi
n m T i T i

40 800 2.2 1.6 22 3.2
60 1800 23 2.1 213 3.0

Table 3: Average CPU times and average number of
iterations for two larger n’s. Parameter values for LMI-
Feas: ρ = 1 and t = 1.

In both cases, LMI-Feas was about 10 faster than Se-
DuMi.

5 The Effect of the Parameter ρ

on Performance

Recall that Theorem 3 allows us to choose e ∈ ◦
K. For

LMI-Feas,
◦
K = R++ × Rm × Sn

++ and our choice was
e = (ρ, 0, ρI), with ρ > 0. Of course, we could have
chosen e = (ρ1, 0, ρ2I) with ρ1 6= ρ2, or we could have

5

chosen a completely different e altogether. This raises
the question, which value of e should be used in order to
maximize speed of convergence?

Restricting ourselves to the current algorithm where
e = (ρ, 0, ρI), Figure 1 shows that ρ can have a rather
large effect on performance. Here we have solved the
same LMI problem a number of times, each time using
a different value of ρ. (The LMI problem examined was
randomly generated with n = 10 and m = 30, and t = 1.)

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

0

500

1000

1500

2000

2500

3000

N
um

be
r

of
 It

er
at

io
ns

Parameter ρ

Performance vs. Parameter ρ

Figure 1: The effect of the parameter ρ on performance.

From Figure 1, a number of interesting observations
can be made. Firstly, the performance of LMI-Feas ap-
pears to vary continuously with ρ and appears to have
an optimal setting. Secondly, performance of the algo-
rithm becomes independent of ρ if ρ is sufficiently large.
(In this particular example, if ρ is about 10 or larger.)
Unfortunately, performance for these large values of ρ
can be an order of magnitude worse than at the opti-
mal value. Finally, choosing ρ too small results in very
poor performance. Indeed in the limiting case of ρ = 0,
our algorithm reduces to applying the MAP algorithm
to the sets K and L rather than to K + e and L with
e ∈ ◦

K. This highlights the benefit of our scheme over
a more direct application of the MAP algorithm. Also,
such a direct application will in general only converge to
a point on the boundary of our feasible set rather than
to a point in its interior, as desired.

While the optimal value of ρ seems to be problem de-
pendent, depending both on the size of the problem, that
is, on n and m, as well as on the problem data, the re-
sults of Table 2 demonstrate that given n and m there
may be a ρ that works very well for a high percentage of
problems but does not necessarily work well for all prob-
lems. These slower to converge problems can actually
be solved just as quickly as problems which are quicker
to converge if they are solved using a different value of

ρ. An open question is whether there is a method of
determining a priori an optimal or near optimal ρ? Al-
ternatively, perhaps one could adapt ρ from one iteration
to the next, starting at say a larger value and reducing
ρ until sufficiently fast convergence was detected.

6 Conclusions

In this paper we have presented an algorithm for solv-
ing LMI problems. Assuming that a given problem is
solvable, that is, that there exists x satisfying (1), the
algorithm has been shown to converge to a solution of the
problem in a finite number of steps. Computational re-
sults indicate that the algorithm perform relatively well,
compared to other algorithms tested, for problems with
a larger number of Fi matrices though not as well as such
algorithms when the number of Fi matrices is smaller.

References

[1] M. Ait Rami, U. Helmke, and J. B. Moore. A finite
step algorithm for solving convex feasibility prob-
lems. Submitted to SIAM Journal of Optimization.

[2] H. H. Bauschke and J. M. Borwein. On projection
algorithms for solving convex feasibility problems.
SIAM Review, 38(3):367–426, 1996.

[3] A. Ben-Tal and A. Nemirovski. Lectures on Modern
Convex Optimization: Analysis, Algorithms, and
Engineering Applications. MPS-SIAM Series on Op-
timization. SIAM, Philadelphia, 2001.

[4] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakr-
ishnan. Linear Matrix Inequalities in System and
Control Theory. SIAM Studies in Applied Mathe-
matics. SIAM, Philadelphia, 1994.

[5] L. M. Brègman. The method of successive projec-
tion for finding a common point of convex sets. So-
viet Mathematics, 6(3):688–692, 1965.

[6] D. Luenberger. Optimization by Vector Space Meth-
ods. Wiley, New York, 1969.

[7] H. D. Mittelmann. An independent benchmarking
of SDP and SOCP solvers. To appear in Math. Prog.

[8] J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox
for optimization over symmetric cones. Optimiza-
tion Methods and Software, 11–12:625–653, 1999.
Special issue on Interior Point Methods (CD sup-
plement with software).

[9] R. Tütüncü, K. Toh, and M. Todd. Solv-
ing semidefinite-quadratic-linear programs using
SDPT3. 2001.

[10] D. Youla and H. Webb. Image restoration by the
method of convex projections: Part 1 – theory.
IEEE Trans. on Medical Imaging, MI-1(2):81–94,
1982.

6

