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Abstract— A numerical method for solving the H∞ syn-
thesis problem is presented. The problem is posed as an
unconstrained, nonsmooth, nonconvex minimization problem.
The optimization variables consist solely of the entries of
the output feedback matrix. No additional variables, such as
Lyapunov variables, need to be introduced. The optimization
procedure uses a line search mechanism where the descent
direction is defined by a recently introduced dynamical systems
approach. Numerical results for various benchmark problems
are included.

I. INTRODUCTION

The H∞ synthesis problem involves finding an output
feedback control matrix K that minimizes the H∞ norm of
a certain transfer function, subject to the constraint that K is
stabilizing. This is a challenging problem and even finding
a stabilizing K can be difficult. Indeed, if the entries of K

are restricted to lie in prescribed intervals, then finding a
stabilizing K is an NP-hard problem [5].

Existing numerical methods for the H∞ synthesis problem
are often based on first reformulating the problem into one
involving linear matrix inequalities (LMIs) and an additional
nonconvex rank constraint or nonconvex equality constraint.
Numerical methods for such reformulations of the problem
include those based on linearization [8], [16], [19]; alter-
nating projections [13], [12], [25]; augmented Lagrangian
methods [9], [4], [24], [3]; and sequential semidefinite pro-
gramming [10].

The H∞ synthesis problem can also be reformulating
into a problem involving bilinear matrix inequalities (BMIs).
Numerical methods for such reformulations of the problem
include [10], [21], [17] and [27]. See also the references
therein.

A disadvantage of these approaches is that they require
the introduction of Lyapunov variables. As the number of
Lyapunov variables grows quadratically with the number
of state variables, the total number of variables can be
quite large and even problems of moderate size can lead
to numerical difficulties [2].

In this paper the H∞ synthesis problem is posed as an
unconstrained, nonsmooth, nonconvex minimization prob-
lem. The optimization variables for this reformulation consist
solely of the entries of the output feedback matrix K and
no additional variables, such as Lyapunov variables, need to
be introduced. The approach taken to solve this problem is
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based on using the recently developed global optimization
algorithm presented in [22] and [23]. This optimization
algorithm uses a line search mechanism where the descent
direction is defined via a dynamical systems approach. It
can be applied to a wide range of functions, requiring only
function evaluations to work. In particular it does not require
gradient (or gradient like) information and hence it is well
suited to optimizing our reformulation of the H∞ synthesis
problem.

Similar approaches, that is, ones based on directly mini-
mizing an appropriate nonsmooth function of K, are taken
in [6] in addressing various problems of robust stabilization,
and in [1] and [2] for the H∞ synthesis problem. The cost
function we use is different to the ones used in these other
works, as is our underlying method of optimization.

In addition, in [6] when optimizing robust stability and in
[1] and [2] when dealing with the H∞ synthesis problem,
a stabilizing solution is first sought by trying to solve some
auxiliary problem and then optimization is performed locally
about this solution. While an initial stabilizing solution can
be utilized by our algorithm, it is not required.

The paper is structured as follows. In Section II we recall
the H∞ synthesis problem as well as a specialization of
this problem, the robust stabilization problem. In Section III
we reformulate these problems as unconstrained optimization
problems in K. We also mention some of the issues involved
in trying to solve such problems. Section IV outlines the op-
timization approach used. Numerical experiments for various
H∞ synthesis and robust stabilization problems are presented
in Section V. The paper ends with some concluding remarks.

II. PROBLEM FORMULATIONS

A. The H∞ Synthesis Problem

Recall the static output feedback H∞ synthesis problem.
Problem 1: Given a linear time invariant (LTI) system
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where x ∈ R
n is the state, u ∈ R

m2 is the control, y ∈ R
p2

is the measured output, w ∈ R
m1 is the external input and

z ∈ R
p1 is the controlled output, find a static output feedback

u = Ky

such that the H∞ norm of Tw,z(s,K), the closed loop
transfer function from w to z, is minimal over the set of
K for which A + B2KC2 is stable. �



We note that, given a system (1) and a output feedback
matrix K, the closed loop dynamics from w to z are given
by

[

ẋ

z

]

=

[

A + B2KC2 B1 + B2KD21

C1 + D12KC2 D11 + D12KD21

] [

x

w

]

.

As is well known, the dynamic output feedback H∞

synthesis problem can be posed as a static output feedback
problem for an augmented system. Indeed, for a given system
(1), suppose we would like to find an order k ≤ n dynamic
controller of the form

[

ẋK

u

]

=

[

AK BK

CK DK

] [

xK

y

]

.

Here xK ∈ R
k. Then the dynamic output feedback H∞

synthesis problem is equivalent to Problem 1 with the
following substitutions:

K →

[

AK BK

CK DK

]

, A →

[

A 0
0 0k

]

, B1 →

[

B1

0

]

,

B2 →

[

0 B2

Ik 0

]

, C1 →
[

C1 0
]

, C2 →

[

0 Ik

C2 0

]

,

D12 →
[

0 D12

]

, D21 →

[

0
D21

]

.

0k and Ik denote the k × k zero and identity matrices
respectively. Note that K which was m2 × p2 has been
replaced by a matrix of dimension (k + m2) × (k + p2).

B. The Robust Stabilization Problem

Before introducing the robust stabilization problem, we
present some preliminaries.

If X is a square matrix, let α(X) denote the maximum of
the real parts of the eigenvalues of X ,

α(X) := max
i

Re(λi(X)).

Of course, X is stable if and only if α(X) < 0.
For X ∈ C

n×n, let β(X) denote its complex stability
radius [14],

β(X) := min{‖E‖ | E ∈ C
n×n, α(X + E) ≥ 0}.

Here ‖·‖ denotes the maximum singular value norm, ‖E‖ =
σmax(E). β(X) is zero if and only if X is unstable. The
complex stability radius of a stable matrix X determines how
robust the stability of X is with respect to additive (complex)
perturbations of X . For any X , β(X) gives the distance to
the unstable matrices.

The robust stabilization problem is the following.
Problem 2: Given a linear time invariant (LTI) system

ẋ = Ax + Bu

y = Cx

where x ∈ R
n is the state, u ∈ R

m is the control, and y ∈ R
p

the output, find a static output feedback control law

u = Ky

that maximizes the complex stability radius of the closed
loop system matrix A + BKC:

max
K∈Rm×p

β(A + BKC).

�

Problem 2 is a special case of Problem 1, as we now
show. Suppose X is a stable matrix with associated transfer
function H(s) := (sI−X)−1. Then β(X) and the H∞ norm
of H are related by

β(X) = ‖H(s)‖−1
∞

.

As a result, Problem 2 is equivalent to minimizing the H∞

norm of the transfer function (sI − (A + BKC))−1 subject
to the constraint that A + BKC is stable. Given A, B and
C as in Problem 2, taking the same A, B1 = I , B2 = B,
C1 = I , C2 = C, D11 = 0, D12 = 0 and D21 = 0, it can
be readily shown that Problem 1 reduces to Problem 2.

III. A NONSMOOTH, NONCONVEX OPTIMIZATION
PROBLEM

Using the terminology of Problem 1, define

f(K) :=

{

−‖Tw,z(s,K)‖−1
∞

, if α(A + B2KC2) < 0,
α(A + B2KC2), if α(A + B2KC2) ≥ 0.

(2)
We try to solve Problem 1 by solving the following

unconstrained minimization problem:

min
K∈Rm2×p2

f(K).

Our motivation for choosing this particular objective func-
tion is as follows. The set of stabilizing K’s is {K | α(A +
B2KC2) < 0} and our aim is to minimize ‖Tw,z(s,K)‖∞
over this set. Finding a K that minimizes ‖Tw,z(s,K)‖∞ is
the same as finding a K that minimizes −‖Tw,z(s,K)‖−1

∞
.

However, using −‖Tw,z(s,K)‖−1
∞

has the following advan-
tage. Within the stabilizing set, −‖Tw,z(s,K)‖−1

∞
is negative

and converges to zero if α(A + B2KC2) converges to zero.
It follows that f is a continuous function of K, that is a
globally defined extension of −‖Tw,z(s,K)‖−1

∞
. (Note that

‖Tw,z(s,K)‖∞ does not have a useful continuous extension
as it becomes unbounded as K goes to the boundary of
the set of stabilizing K’s.) Furthermore, f penalizes non-
stabilizing K’s. This obviates the need to deal with stability
and H∞ norm minimization separately.

The fact that ‖Tw,z(s,K)‖∞ can only be evaluated at
stabilizing K’s makes minimizing this quantity more dif-
ficult. Non-stabilizing K’s provide a rather limited amount
of information in regard to this objective function. The only
information they do provide is the extent to which they are in
fact non-stabilizing. This information is given by the quantity
α(A + B2KC2), and has been incorporated into f .

The algorithm which will be used to minimize f , see
Section IV, only needs to be able to evaluate f in order to
work. There exist efficient numerical methods for calculating
H∞ norms (and hence for calculating f ). We use the Matlab
function hinfnorm.



We now make some observations regarding the robust
stabilization problem. These observations will of course also
necessarily tell us something about the more general H∞

synthesis problem.
If the problem we are considering is actually a robust

stabilization problem, i.e., a case of Problem 2, then in the
definition of f , the term −‖Tw,z(s,K)‖−1

∞
is just −β(A +

BKC). Both α and −β are nonsmooth and nonconvex, and
β, but not α, is locally Lipschitz [6]. As noted in [6], lack
of convexity means finding a global minimizer of −β can be
expected to be difficult and lack of smoothness means it is
not possible to use standard local optimization methods such
as steepest descent and Newton type methods. (Apparently
applying such local optimization methods leads to problems
at points where the gradient of β is discontinuous.)

Therefore we have a nonsmooth, nonconvex global opti-
mization problem; quite a difficult problem. To our advantage
we have not had to introduce Lyapunov variables and hence
we have a problem formulation in many less variables
than we would have otherwise. Here are some additional,
particular aspects of the problem that are worth keeping in
mind.

As already mentioned, just finding a stabilizing solution
can be a challenge in itself. The set of stabilizing K’s can
be quite small. For example, for the Boeing 767 system con-
sidered in Section V, the following is a stabilizing solution,

K =

[

−1.7319 −2.1035e−5
4.5059e+1 2.1706e−4

]

.

Changing the (1, 2) entry of this K by plus or minus 10−5

makes the closed loop system unstable. As the feasible region
can be quite localized, one would expect that finding such
solutions, and moreover finding globally optimal solutions,
would be quite difficult. A global search would have to
search quite small regions. This may not be feasible. For
example, the calculation of a function value can be fairly time
consuming; in the Boeing 767 problem, which has 55 states,
to calculate the value of β at a point takes approximately
0.35 seconds on a 3 GHz Pentium 4 machine.

As we have already indicated, for Problem 1, the function
we are really interested in minimizing is not defined for
all K’s. (Problem 2 is similar in that, while β is defined
everywhere, it is 0 for all non-stabilizing K’s.) In ‘ordinary’
constrained optimization (see [26] and references therein),
it is still possible to evaluate the objective function outside
the feasible region. This may be extremely helpful for
finding deep local minimizers inside the feasible region. For
Problems 1 and 2 we do not have this advantage. In fact,
the feasible region, the set of stabilizing K’s, cannot even
be usefully quantified.

Finally, it is worth mentioning that finding K that min-
imizes α(A + BKC) is quite different to finding K that
minimizes −β(A + BKC). In the first case, one seeks to
find a K that causes solutions of the closed loop system
to decay to zero as quickly as possible. (We are assuming
there exist K for which the closed loop system is stable.)
No regard is given to how robustly stable A+BKC is with

respect to perturbations. In the second case, one optimizes
robust stability. While K must stabilize the system, no regard
is given to how quickly solutions decay to zero. In other
words, in terms of optimality, the behaviors of the functions
α(A + BKC) and −β(A + BKC) are quite different.

IV. A GLOBAL OPTIMIZATION ALGORITHM

To minimize f , we will use the recently developed global
optimization algorithm AGOP, which is presented in [22] and
[23]. AGOP is designed for solving unconstrained continuous
optimization problems. It uses a line search mechanism
where the descent direction is defined via a dynamical
systems approach.

AGOP can be applied to a wide range of functions,
requiring only function evaluations to work. In particular it
does not require gradient information and can be used to
find minima of non-differentiable functions. Briefly, it works
as follows. Suppose f : R

n → R is the function to be
minimized. The algorithm must first be given a set of points,
say Ω = {x1, ..., xq} ⊂ R

n. A suitable choice for an initial
set of points is the set of vertices of a box centered around
x = 0. Suppose that x? ∈ Ω has the smallest cost of the
points in Ω, that is, that f(x?) ≤ f(x) for all x ∈ Ω. The
set Ω and the values of f at each of the points in Ω allow us
to generate a dynamical system and this dynamical system
determines a possible descent direction v at the point x?.
(The details of this are rather involved and are not presented
here. We refer the reader to [22] for further information.) An
inexact line search along this direction provides a new point
x̂q+1. A local search about x̂q+1 is then carried out. This
is done using a direct search method called local variation.
This is an efficient local optimization technique that does not
explicitly use derivatives and can be applied to nonsmooth
functions. (A good survey of direct search methods can be
found in [18].) Letting xq+1 denote the optimal solution of
this local search, the set Ω is augmented to include xq+1.
Starting with this updated Ω, the whole process can be
repeated. The process is terminated when v is approximately
0 (or a prescribed bound on the number of iterations is
reached). The solution returned is the current x?, that is,
the point in Ω with the smallest cost. (If f is continuously
differentiable then the solution will be a local minima.)

Note that the convex hull of the set of points in the initial
Ω is roughly where AGOP looks for a solution. However,
because line search segments are not constrained to lie in
some prescribed region, during its operation the algorithm
may add to Ω points that are not in the convex hull of
the original Ω. As a result, the solution produced by the
algorithm may not lie in the convex hull of the initial set of
points.

In applying the algorithm to the problems in the next
section, Ω is often taken to be the vertices of a box of the
form

{K ∈ R
m2×p2 | |Kij − K̄ij | ≤ ρ for all i, j}. (3)

The box center K̄ is initially taken as K̄ = 0.



Given a reasonable choice for ρ, the solution from an
initial set of vertices, let us denote it by K?, is often
stabilizing and ‖Tw,z(s,K?)‖∞ can be quite small as well.
However, if desired, the user can try to find an even more
optimal solution by re-running the algorithm with K̄ = K?

and using either the same value of ρ or a smaller value. This
produces another solution which can itself be used as a new
K̄ and this process can be repeated as long as desired.

Our aim in this paper is to show that the methods presented
here can be successfully used for finding deep optimal
solutions to H∞ synthesis problems. How best to choose
successive boxes from which to define Ω, optimal stopping
criteria, and other such questions, have not been considered
here. They are interesting questions for future investigations.

V. NUMERICAL EXPERIMENTS

This section contains some numerical experiments for
various problems from the literature. Considered are both
robust stabilization problems and H∞ synthesis problems.

All computational results were obtained using a 3 GHz
Pentium 4 machine. Our algorithm was coded using Matlab
7.0.

A. Turbo-generator: Robust Stabilization

The first system considered is a turbo-generator model
from [15] (system TG1 from the COMPleib collection [20]).
For this system, n = 10 and m = p = 2. The A matrix for
this system is stable with β(A) = 0.00767. Our aim is to
find K that maximizes β(A + BKC).

With Ω given by the vertices of the box in (3) with K̄ = 0
and ρ = 5, the algorithm found the following solution

K =

[

0.43526 1.0001
−0.095954 −0.14290

]

, (4)

for which β(A+BKC) = 0.0739. This value is substantially
better than β(A). Total solution time was 9.3 seconds.

Next, the algorithm was re-run with K̄ given by K in (4)
and ρ = 1. This gave the following solution,

K =

[

−1.0203 −1.1188
−0.11116 −0.16429

]

,

for which β(A + BKC) = 0.0780. This solution is better
than the first solution though the improvement is fairly
modest. The time taken for this second step was 16 seconds.

Robust stabilization of the turbo-generator model is also
considered in [6]. The solution given there is

K =

[

−0.7763 −0.7193
−0.0935 −0.1515

]

,

for which β(A + BKC) = 0.0785. This value is slightly
better than our own value.

Taking a different set Ω, we were also able to find a
K which produces the same stability radius. Indeed, taking
K̄ij = −0.5 and ρ = 0.5, gives

K =

[

−0.98379 −1.0554
−0.098679 −0.15851

]

,

for which β(A + BKC) = 0.0785. Solution time was 30
seconds. This further highlights that different Ω’s may lead
to different solutions.

Other K̄’s and ρ’s were also tried however it was not
possible to further significantly improve β(A + BKC). The
best K found was

K =

[

−0.86223 −0.85477
−0.093992 −0.15384

]

,

for which β(A + BKC) = 0.0786. It is most likely that the
global optimal value for this problem is 0.0786 or close to
it.

B. Boeing 767: Robust Stabilization

The next system considered is a model of a Boeing 767
aircraft at a flutter condition [7] (system AC10 from the
COMPleib collection [20]). For this system, n = 55 and
m = p = 2. The A matrix is unstable. In this subsection we
consider for this system the problems of robust stabilization
via static control and robust stabilization via low-order
dynamic control.

Numerical methods capable of finding stabilizing con-
trollers for the system have only recently appeared; see
[6], [1] and [2]. Applying the algorithm with K̄ = 0 and
various choices for ρ, we were initially unsuccessful in
finding a stabilizing solution. Examining the system matrices
reveals that, while the nonzero entries in B are of the same
magnitude, the entries in the first row of C are roughly 105

times smaller in magnitude than the entries of the second
row of C. That is, the problem is poorly scaled. This issue
can be overcome by multiplying the second row of C by
10−5. If a controller K could be found for this re-scaled
system, a controller for the original unscaled system would
be K with its last column multiplied by 10−5. Using this
re-scaling method, with K̄ = 0 and ρ = 10, the following
static controller was found,

K =

[

2.3884 5.6913e−7
5.2871 2.7660e−5

]

, (5)

for which β(A + BKC) = 6.81 × 10−5. Time taken was
210 seconds.

In [6], robust stabilization of the system is considered
for k = 0 (the static controller case), and k = 1 and k = 2
(low-order dynamic control). We now demonstrate that our
algorithm is able to improve on the solutions in [6], which
up to now have been the best available. To do this, for each
k, we use the existing solution in [6] to help us define an
appropriate Ω. If we denote the solution in [6] by K̃, Ω is
taken to be the vertices of a box roughly centered at K̃.
For each box, edge lengths are not necessarily equal and
are taken to be roughly proportional to the magnitudes of
the corresponding entries in K̃. The algorithm is run with
this Ω and then possibly re-run, one or more times, using a
refined Ω. The results below highlight that the algorithm is
capable of improving on existing results though the process
we have mentioned requires human intervention and hence
is not currently fully automated. The results achieved are as



follows.

k = 0. The solution obtained in [6] produces a stability
radius of β(A + BKC) = 7.91× 10−5. Note that this value
is greater than the value produced by K in (5). However, the
best solution found by our algorithm was

K =

[

−1.3249 −1.4779e−5
4.2684e+1 1.6041e−4

]

, (6)

for which β(A + BKC) = 9.23 × 10−5. This value is
greater than the value from [6].

k = 1. The solution obtained in [6] produces a stability
radius of 9.98 × 10−5. The best solution found by our
algorithm was

[

AK BK

CK DK

]

=





−1.0530e−1 −5.0163e+1 −2.5015e−3
−6.0702e−5 1.6448 6.8933e−6
−7.6961e−1 2.6326 1.1263e−4



 ,

for which the stability radius is 2.00 × 10−4. This is a
significantly improved value.

k = 2. The solution obtained in [6] produces a stability
radius of 1.02 × 10−4. The best solution found by our
algorithm was

[

AK BK

CK DK

]

=





−2.5278e−2 −1.5700e−1 −5.6533e+1 −3.2344e−3

2.7429e−1 −1.4034 2.4156e+1 −1.8510e−3

5.9569e−5 −3.3545e−2 1.6173 1.5836e−5

−4.1751e−1 −2.3468e−1 3.5466 1.8787e−4



 ,

for which the stability radius is 2.22 × 10−4. This stability
radius is again much better than the value given in [6].

C. Boeing 767: H∞ Synthesis

In this subsection we again consider the Boeing 767
system but this time consider the problem of H∞ synthesis.
The system re-scaling technique used in the prior subsection
to calculate (5) is again employed. (As we are considering
the H∞ problem, we would normally have to scale the last
row of D21 by the same factor used to scale the last row of
C. For this problem, however, D21 = 0.)

k = 0. Taking K̄ = 0 and ρ = 10, the algorithm found
the following solution,

K =

[

−8.9569e−1 1.8405e−5
4.1215 4.3066e−5

]

,

for which ‖Tw,z(s,K)‖∞ = 13.4. Total solution time was
260 seconds. For comparison purposes, the best result from
the literature, see [2], has a H∞ norm equal to 13.1.

k = 1. Taking K̄ = 0 and ρ = 5, the algorithm found
the following solution,
[

AK BK

CK DK

]

=





−1.3893 0.15545 −8.6745e−5
8.2769 0.22304 1.3279e−5
2.7554 −0.34522 4.9694e−5



 ,

for which ‖Tw,z(s, [AK BK ; CK DK ])‖∞ = 10.2. Total
solution time was 610 seconds. The best result from the
literature, again see [2], has the same H∞ norm.

D. Transport Airplane: H∞ Synthesis

The final system considered is a transport airplane [11]
(system AC8 from the COMPleib collection [20]). For this
system, n = 9, m2 = 1 and p2 = 5. The A matrix is
unstable.

Taking K̄ = 0 and ρ = 5, the algorithm found the
following static controller,

K =
[

1.0156 −1.0300 −1.5001 0.074096 1.5314
]

,

for which ‖Tw,z(s,K)‖∞ = 2.01. Total solution time was
18 seconds. In [2], the result for this problem has the same
H∞ norm.

VI. CONCLUSIONS

In this paper the H∞ synthesis problem was posed as an
unconstrained, nonsmooth, nonconvex minimization problem
in the entries of the output feedback matrix K. A numerical
method for solving this reformulation of the problem was
presented and application of the algorithm to various bench-
mark problems produced quite positive results. In particular,
the algorithm was able to significantly improve on the best
results appearing in the literature for robust stabilization
of the Boeing 767 model. While these preliminary results
are very promising, the algorithm is currently not fully
automated and more work is needed in this regard.

In addition, in the future, rather than using the Matlab
function hinfnorm for calculating H∞ norms, a much
faster Fortran routine will be used. Aside from having to
do numerous H∞ norm calculations, our algorithm does not
require much additional computational effort and hence it is
expected that this change will substantially reduce solution
times.
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