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Abstract— This paper presents two closely related algorithms of this result was later given in [7].) For the borderline &as
for the problem of pole placement via static output feedback. 5,p = n, arbitrary pole placement may not be possible. In [3]
The algorithms are based on two different trust region methods it is shown that form, — p =2 andn = 4 there is a nonempty

and utilize the derivatives of the closed loop poles. Extensive t of t tri f hich arbit le placs
numerical experiments show the effectiveness of the algorithms 9PN SEL 0T System matrices tor which arbitrary pole placeme

in practice though convergence to a solution is not guaranteed for iS not possible.
either algorithm. While desired poles must be distinct, strategies A great deal of research exists for the static output feddbac
for dealing with repeated poles are also presented. pole placement problem. Starting points for further infarm
Index Terms—Pole placement, static output feedback, trust tion are the survey papers [8], [9] and [1], as well as the more
region method, Newton’s method, Levenberg-Marquardt methd, recent papers [10], [11], [12] and [13]. Regarding algarith
eigenvalue derivatives. we mention in particular the ‘eigenstructure assignmeratttm
ods that can be used for systems meeting Kimura’s condition;
see [14], [15], [13] and the papers mentioned within. Ap-
proaches for the larger class of systems satisfying Waragis ¢
Pole placement via static output feedback is a classicftion are fewer and include those presented in [16] and,[17]
problem in systems and control theory. Given system matridgoth of which are based on ‘linearization around a dependent
A e R, B e R™™, C € RP*™ and desired poles compensator.’ Practical use of the approach in [16] appears
AP e C", the aim is findK € R™*? such thatd+ BKC has |imited as produced are a family of controllers paramegefiz
eigenvalues\”. (Desired poles with nonzero imaginary parby a scalar variable, and while closed loop poles approach
are assumed to come in complex conjugate pairs.) the desired poles as — 0, K = K(e) may contain terms
Instances of this problem are not always solvable. Furthejt the form 1/¢, resulting in asymptotically infinite entries.
more the survey paper [1] states that sufficient conditi@ns fThe numerical approach given in [17] may also prodécs
solvability, such as Wang'’s condition (see below), are fyainwith large entries and can involve difficult parameter tgnin
theoretical in nature and that there are no good numeri¢aB]. Another approach is to consider the expressier(s/ —
algorithms available in many cases when a problem is knowna + BKC)) = [[,(s — AP). Equating coefficients gives a
to be solvable. In fact determining solvability has recgntlset of polynomial equations that characterize the solusien
been shown to be NP-hard [2]. In particular, this means thit principle, one can then for example applydBner basis
an efficient (i.e., polynomial time) algorithm that is able ttechniques however the computational complexity of such
correctly solve all instances of the problem cannot be eteec methods limits their use to small dimensional problemsgég
There do exist some readily verifiable necessary or suffticiesiso [10]. Other approaches include [18], though convergen
conditions for arbitrary pole placement. Necessary camuit is not analyzed and it is not clear whether the method is even
include controllability and observability. One way to séést |ocally convergent; [15] and [19] which build on eigensture
is to consider the associated system controllability argkob  assignment methods; and [20] which is based on numerical
ability forms. Another necessary condition is thap > n [3], homotopy methods.
i.e., that the total number of variables is greater than oakq In this paper we present two related numerical algorithms
to the number of poles to be assigned. Regarding sufficigot solving static output feedback pole placement problems
conditions, Kimura showed in 1975 that any controllablgwo trust region approaches are considered for solving the
observable system satisfying + p > n is almost arbitrarily following unconstrained nonlinear least squares problem
pole assignable [4]. Independently, a slightly weaker ioers 1
of the result was given in [5]. Wang showed in 1992 that, for min  f(K):= -||]\(A+ BKC) — \"|2. (1)
generic choices of system matricesp > n is a sufficient KeRmxr 2
condition for arbitrary pole placement [6]. (A simpler pfooHere \(A + BKC) denotes the vector of eigenvalues Af+
BKC, with entries sorted to give the minimum norm. Trust
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of the eigenvalues ofA + BKC must be calculated. The applied to such functions. Such issues are addressed ilmsect
Levenberg-Marquardt based algorithm has the advantagel¥f Section V contains computational results, includinguiés
only requiring the first derivatives of the eigenvalues. [Botfor a number of problems from the literature. The paper ends
resulting algorithms have the desirable property that,r neaith some concluding remarks.
solutions, they can converge quadratically.

A technicality that arises in the proposed approaches is [I. TRUSTREGION METHODS
that the eigenvalues ofl + BKC may not be differentiable
everywhere. They will however be differentiable at all gein
at which A + BKC' has distinct eigenvalues. A consequen

. . . 13 (sufficiently) smooth. The actugl we wish to minimize is
of this is that the algorithms are only appropriate for peohs . . : . .
: . e en in (1) and may not satisfy this assumption. Issueseéla
for which the desired poles are distinct. It turns out that t ven in (1) y Isfy thi umpt u

. . - 1o this fact are addressed in Section IV. Additional infotio
algorithms can still be used to solve problems whose desir

poles are distinct but whose separation is quite small andehe 89 trust region methods can be found in [24] and [25].
this does not appear to be a serious limitation.

Aside from the issue of repeated desired poles, the af- Basic Methodology
proaches can be applied without further restrictions. In pa Trust region methods can be used to minimize smooth
ticular there are no restrictions on m andp. For problems nonconvex functions and are iterative in nature. Given a
that are not solvable, a local minimizer of the cost will beurrent iterater;, (in this section the variable is denoted by
found. The approaches are fundamentally different to tfiosea generic vector: € RY rather than byK), they construct a
[16] and [17] and as a resulf’s are not biased towards havingpossibly nonconvex, quadratic approximation of the olyject
large entries. Other advantages include the possibilitirih  function aboutz,. This model is only assumed to be a good
multiple solutions by using different initial conditionSimple approximation in a certain ball centered abayt This is
modifications allow the approaches to be applied to problemi® so-called ‘trust region’. It turns out that, numerigall
for which the entries of are constrained, for example, polet is possible to readily minimize a quadratic function over
placement by decentralized control, in which casemust a ball. Doing so gives a candidate stpp. The stepp
be block diagonal. The approaches can be used for eitligronly accepted if the difference in the objective function
continuous time or discrete time systems. flzk) — f(xx + pr), is sufficiently close to the difference

The idea of solving pole placement type problems byredicted by the model. |f;, is not acceptable, the trust region
utilizing eigenvalue derivatives is not completely newlded radius is decreased and the process repeated. If the muds! gi
ideas have been used to solve a non-control related invessgood prediction, the trust region radius may be increased,
eigenvalue problem involving symmetric matrices [21]. Howallowing a larger step in the next iteration.
ever, the methods presented in [21] all require one to startwhat follows describes the trust region method in greater
sufficiently close to a solution for them to converge. The usiztail. At each iteration, the quadratic approximation $s a
of a trust region methodology means that this is not the caseémed to be of the formmn,(p) = f(x1) + Vf(xr)Tp +
for our algorithms; this is an important distinguishingtfea. %pTka_ Here B, is typically either the Hessian of at z,
First derivatives of eigenvalues (though not second deves) or some approximation of this Hessian.B, is the Hessian,
have also been used to solve various control problems. [ [2Ben m,, is simply the 2nd order Taylor approximation ¢f
they are used to try to achieve pole placement in certaineonat z. As will be discussed below, it may also be useful to
regions. The methodology that is used there is quite differeconsider other choices fdBj.
to the one used here and is based on convex programmingach constrained minimization problem is of the form
techniques. It requires that the open loop poles are already ]
quite close to the desired poles. Using the eigenvalue ateriv ot mi(p) st |lpll2 < Ay, 2

tives, the change in the eigenvalues due to a small chan ﬁ A 0is th  trust . dius. Th luti
in K is modelled by a first order approximation. This linea eren, > U IS the current rust region radius. The soiution

approximation is used within a convex program to try to pladé of (2) gives a potential step. Whether or not it is a suitable

the poles in nearby regions. Similar ideas based on Iinéé?p is assessed by considering the ratio of actual reductio
a

approximations of eigenvalues and convex programs haoe fae objective to the predicted reduction:
been used for robustness analysis and stabilization; S3e [2 _ flxr) — f(or + pr)
The paper is structured as follows. Section Il contains an Pk = mp(0) — my(pr)
overview of trust region methods. In order to use these meth- . .
: he overall trust region method is as follows.
ods to solve the pole placement problem, the first and Secopc-ir . . .
L : . . rust Region Method, Generic Algorithm ([24])
derivatives of f are required. Details of these calculations, A A
including how to calculate derivatives of the eigenvaliee, Given A >0, Ay € (0,A), andn € [0, 1):
given in Section Ill. Trust region methods require the fimet for k= 0,1,2,...
to be minimized to be differentiable. Whilg will typically Obtain p;, by (approximately) solving (2);
only be differentiable on an open dense set, this turns out Evaluatep, from (3);
to be sufficient. One of the contributions of this paper is if pg <i
the realization that trust region methods can be succégsful Api1 = iAk

This section gives an overview of trust region methods. It
is assumed that the functiofi: RY — R to be minimized
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else to a pure Newton method and is quadratically convergent.

if pr > 2 and||pi|l2 = Ay Theorem 3 ([24, Th 6.4]): Suppose thatB, = V2f(zy).
Agy1 = min{2A,, A} Further, suppose the sequencerpk converges to a point*
else that satisfies the first and second order sufficient condition
Api1 = Ap; a strict local minima,V f(z*) = 0 and V2 f(z*) is positive
if pp >n definite, and thatf is three times continuously differentiable
Tki1l = Tk + Pr in a neighborhood ofc*. Then the trust region boundy
else becomes inactive for akt sufficiently large.
Tkl = Tk, The final result in this section shows that the Levenberg-
end(for). Marquardt method can be locally quadratically convergent t

. . . . _._points whose cost is zero. (Note that this may not be the case
Approximate solutions of the constrained quadratic mlnf— -~ .
or local minima whose cost is not zero.)

mization problem (2) can be obtained in a number of WayS'Theorem 4 ([24, Section 10.2]): Suppose the:'s that de-

One way is the nearly exact solution method described in [2t4’ ) th " i v diff table |
Section 4.2]. Without going into details we mention thasthi ermine f are three IMes continuously ditierentiable n-a
eighborhood of a pointz* satisfying f(z*) = 0. Sup-

method is equivalent to solving a one dimensional root figdinn . N i -
problem which can be solved using a Newton method. pose further that/(z*)7 J(z*) is positive definite. Then the

Regarding the choice oB,'s, the Hessian off at z; is Levenberg-Marquardt method is locally quadratically camv

a natural choice. In this case, the method is calledttbst gent tox”.
region Newton method. When the objective functiofi is a least

M :
squares cost, saf(z) = 3 >,_, rZ(x) for some functions; : [1l. DERIVATIVE CALCULATIONS

RN — R, as is the case in (1), there is another suitable choice. ) ) ,
In this case, if we define(z) = (r1(z), ..., ()T and let In order to apply the trust region methods described in the

J(z) denote the Jacobian efz), thenV f(z) = J(z)7r(z) prior section, we need to calculate the appropriate first and

andV2f(z) = J(z)TJ() +ZM' ri(z)V?r;(z), and a good second derivatives. As already mentioned, the eigenvaities
- i=1"? 1 ’ . :

choice forB, is J(x+)”.J (x4 ). The advantages of this choice’) T B C may not lzeodlﬁerintlable everywhere. For example,

for B, include the fact that it does not require the calculatioffi€ €igenvalues ofg o]+ [7][1 1] are24 4 + 4k when

of the second derivatives of the's and that it gives a good | = —# _@nd hence they are not differentiable @ 1) =

approximation of2 f(z; ) when f(x;) is small, that is, when (=1,1). The next result, which follows from a result in [26,
eachr;(x) is small. For this choice of;’'s, the method is Section 2.5.7], shows that lack of differentiability cabhoocur

called theLevenberg-Marquardt method. at points at which the eigenva!ues are distingt.

Theorem 5: Consider a matrix valued functiod : RN —
R™*", SupposeA(x) is k-times continuously differentiable in
B. Convergence Results . )

. ) ) x in an open neighborhoof. Further, suppose that at each

This subsection contains some general convergence resyisint in(2, A(z) has distinct eigenvalues. Then the eigenvalues
These results are modified versions of those that are refgf—A(x) are k-times continuously differentiable ift.
enced. All assume the nearly exact solution method is USEdSuppose the conditions of Theorem 5 are satisfied with
for the subproblems (2) and that the algorithm parameter o Then for any: € © we can write down explicit expressions

non-zero, that isy € (0, ;) for the first and second derivatives of the eigenvalues of
A simple but important property of trust region methods i§1(1;). If \; denotes theith eigenvalue ofA(z), suppose
that the cost is non-increasing from one iteration to thet:ney, _ diag(\1,...,\,) and let X € C"*" be such that
forall k>0, f(zk) > f(zrs1)- A(z)X = XD. Then
Here are some less simple properties. The following result
concerns global convergence to stationary points. % _ (XlaA(:c) X) @)
Theorem 1 ([24, Th 4.8]): Suppose that on the sublevel set orp Oxy, i

{z | f(z) < f(x0)}, f is twice continuously differentiable and . .
bounded below, and tht; || < 3 for some constant. Then and if we define
limg_,00 Vf(z1) = 0. _,0A(z)
Theorem 1 holds for both the trust region Newton method P=X o1
and the Levenberg-Marquardt method. For the former method,
the following result also holds. then
Theor'em 2 (24, Th 4.9].): Syppose 'the sefx .| f(z) < 2N L 0%A(2) " PuQsi + PiQu
f(zo)} is compact, thaf is twice continuously differentiable Iy Z S DU U (6)
on this set, and thaB, = V2f(z). Then thex,’s have a R & v
limit point x* that satisfies the first and second order necessary
conditions for a local minimay f(z*) = 0 and V2f(z*) is Results (4)—(6) extend those appearing in [27], which deal
positive semidefinite. solely with the scalar variable case, i.&/,= 1. They can be
The following result for the trust region Newton methogroved by appropriately modifying the techniques used at th
implies that near a strict local minimum the method reducgaper. Details are not presented here.

X and Q:X*LA(LT)X, ®)
Tk 8:}51

al’kaxl

j=1
G



The above results can be used to calculate the derivativeslifhtly so that they are distinct. While having distinct but
our objective functionf(K) = 3 Y1, (i — AP)*(\; — AP).  close eigenvalues does lead to a degree of ill-conditioning

Differentiating we have our algorithms, the algorithms can still be effectivelylinéd
n in such cases, as will be shown in the numerical resultsaecti
Of (K) — Re Z()‘i —\Py* 9Ai (7) Regarding the global convergence properties of the algo-
0K P 0K rithms, including behavior near non-optimal stationaryngg

a detailed analysis is required and will not be attempted in

and the present short paper. For the time being we simply mention
PfK) Re zn: < O >* < o\ ) N that, if the desired eigenvalues are distinct, it is ourefehat,
OK0K,, —~ \ 0Ky 0K, modulo small changes, the global results of Subsection II-B
n ) (8)  should still hold, at least generically.
S - APy }
i=1 0ROk pq V. COMPUTATIONAL RESULTS
Note that ‘%@’ is given by This section contains results for both random problems and
problems from the literature. The random problem results
M = B,C,, (9) include a comparison to the numerical homotopy based algo-
OK rithm in [20], which is written in Ada and C, and is now part of

where By, is the kth column of B and C; is thelth row of the publicly available software PHCpack [28]. Our algarith
C. ldentity (9) implies that the first term appearing in (6jre coded using Matlab 74 All results were obtained using
is always zero. Combining (4)—(9) we now have a complege3.2 GHz Pentium 4 640 machine with 1 GB of RAM.
characterization of the first and second derivatives of @st ¢

(at points whered + BKC' has distinct eigenvalues). A Random Problems

For the Levenberg-Marquardt method, the approximate sec-
ond derivatives are given by the real part of the first sumonati A 1000 random problems were created for each of a number
in (8). of different choices for the system dimensiopg m,p). As

for all randomly generated matrices in the paper, entrigben
IV. ADDITIONAL COMMENTS system matricgs were drawn from a normal distribution obzer
) ) mean and variancé. EachA” was taken to be the spectrum

When evaluating the cosf(K), the eigenvalues ofi + ¢ 5 randomly generated matrix, and a scalar was added to
BKC must be matched with the desired eigenvalues in a quﬁé entries of each\” to ensuremax; Re AP = —0.1. As
squares sense. Suppose a given problem has distinct desired, triple(n, m, p) was chosen to satisfmlp > n, Wang's
eigenvalues and that it is solvable. Then, near a solution Qfticient condition ensured each problem was solvable.
the problem, the eigenvalues df +- BKC will be distinct,  £or oyr algorithms, an attempt was made to solve each
which eigenvalues ofd + BKC' match to which desired noniem using up to5 randomly chosen initial conditions
eigenvalues will not change, and the eigenvalued 8 BKC 504 3 maximum of 2000 iterations per initial condition. The
will depend smoothly orf{. As a result, for problems that areconvergence condition used Wha(A + BKC) — AP||s < e,
solvable and have distinct desired eigenvalues, our obgect. _ 1,-3 Fqr the numerical homotopy algorithm, as it is able
function f will be smooth in a neighborhood of solutions,, ¢ multiple solutions, some of which may be complex

An important consequence of this is that the results ffofer than real, it was limited to finding at most 10 soluion

Subsection II-B regarding local convergence to solutidfib s 54 \was deemed successful if one of these was real. Results
apply. In particular, near solutions of problems with disti . given in Table I.

eigenvalues, both our algorithms can converge quadritical
The comments above address the behavior of the algorithms TABLE |

in a neighborhood of a solution. What about behavior far awayA compaARISON OF PERFORMANCE FOR DIFFERENT, m AND p. S.R.
from a solution? Are the algorithms even defined in SuCheNOTES THE SUCCESS RATET DENOTES THE AVERAGE SOLUTION TIME
regions? Considering the steps involved, all that is reglirin CPUSECONDS AND 4 THE AVERAGE NUMBER OF ITERATIONS 7" AND i
for the algorithms to be well defined is that, for each iterate ARE BASED ONLY ON THOSE PROBLEMS THAT WERE SUCCESSFULLY
A+ BKC have distinct eigenvalues. If the desired eigenvalues SOLVED. € = 1073,

are distinct and a generic initial condition is used, it isikety
that for either algorithm, that for any iteratd, + BKC has

| [ (mmp) | 3.22) ] (643)] (955)]

: : . Trust SR. %) | 100 100 92
repeated_ eigenvalues. Hence, ur_1der these _m|_ld_assumpt|ons Region T 01l 44 84
the algorithms should be well defined and this is indeed what Newton i 44 260 910
is observed in practice. Levenberg- | S.R. %) | 100 100 99
If the desired eigenvalues are not distinct, the cost may Marquardt I 004 | 012 | 072
. . ) A i 41 110 380
not be differentiable at a solution. This indicates that the Nomerical [ SR 00) 0 =3
requirement of distinct desired eigenvalues is also necgss Homotopy [20] T 0387 77

This does not limit the usefulness of the algorithms too
much however as desired eigenvalues can always be perturbéthe code is available from http://rsise.anu.edwaabert/pole/.



TABLE Il

Not surprisingly, given the reduced computation required PARTICULAR PROBLEMS. ¢ — 10-6.

for its implementation, the Levenberg-Marquardt based-alg

rithm is faster than the trust region Newton based algorithm No. references (nmp | T i | SR. (%)
notice in particular the large difference i for the (9,5, 5) % 1a (5] . (2’ é g) 8-82 5 18%0
problems. What is perhaps surprising is that the Levenberg-5 ElS' e 2} 55' 3 2; oos| 18 | 100
Marquardt based algorithm is more likely to find a solution. 4 | [14],[15,ex2],[19,ex3]| (5,2, 4) | 0.14 | 81 95
Regarding the performance of the homotopy algorithm, fer thj > [15, ex1, casel] (4,2,2) | 0.14 | 100 78
9,5,5) problems, no solutions could be found due to memor 6 [15, ex, case2] (+.2.2) | 0021 77 e
(9,5,5) p , nory 7 [18, ex 1] (4,2,2) | 0.08| 41 | 96
limitations. For the other problems, the homotopy algonith | s [18, ex 2] (6,3,2) | 041 | 250 53
had lower success rates and was slower than our algorithms.2 [18, ex 3] (53,2 | 022] 130 | 100
i ) . 10 [29, ex 1] (4,3,2) | 003 12 100
The problems in Table | are ‘easy’ in the sense that they [29, ex 2] (3.1,2) | 0.02| 4.0 100
actually satisfy Kimura’s conditiony» + p > n, and in most | 12 [29, ex 3] (4,2,2) | 0.03| 8.8 100
cases the number of variablesp is significantly larger than L 13 [30] (843 |028] 130] 90

n. Results for some harder problems are presented in Table Il
For these problemspyp—n = 1. For our algorithms, maximum

iterations per initial condition were increased to 5000. C. Repeated Eigenvalues

Each of the problems considered in the prior subsection (as

TABLE I well as all the random problems) had distinct desired eigenv
SOME HARDER RANDOM PROBLEMS € = 10—3. ues. In this subsection we consider what can be achieved if th
desired eigenvalues are not distinct. We consider the secon
l [ (nmp) [ 632 [ 724 ] 9,25 ] example from [19]. For this problenin,m,p) = (6,2,3)
RTergL;is;n S-RT%) f.% ig g? and the desired poles ave’ = [-3,-3,-2,-2,—1,-1]".
Newton z 540 | 1800 | 2800 The algorithms do not provide a way to exactly solve this
Levenberg- | SR. 5) | 100 95 79 problem. However, a fairly good approximate solution can be
Marquardt T 0.25 13 4.0 found by considering a slightly perturbed desired spectrum
: ‘ 480 | 1300 2700 with distinct entries. For example, suppos€ is replaced
e PEB T E T With \D = (35,8, 24,2, 14, ~1]", 6 =10

Then this perturbed problem can often be solved.
An alternative strategy is to solve a series of perturbed
For these more difficult problems, the Levenberg-Marquargioplems with decreasings. First solve a perturbed problem
based algorithm again performed better than the trust megiith § = 10-1. Then, settingy = 102 and using the solution
Newton based algorithm. Overall, success rates for botbralgf the prior problem as an initial condition, solve this new
rithms decreased. The homotopy algorithm, compared to tB@rturbed problem. Continue with= 10~3 and§ = 10~*.
better performing of the two trust region based algorithnasl ~ ysing the Levenberg-Marquardt based algorithm, the first
slightly greater success rates at the expense of longeti®olu strategy lead to a solution fdi6% of initial conditions tried,
times. with average convergence time of 0.59 CPU seconds. The
second strategy was successfubiifs of cases, with average
convergence time of 0.29 CPU seconds.
B. Particular Problems The main issue we encountered in solving these problems
was not convergence to local minima, though this can occur,
For the Levenberg-Marquardt based algorithm, Table Ill bgyt rather that near solutions the Hessian of the cost ca@ hav
low contains results for particular problems from the btere. very large eigenvalues. This leads to numerical issues when
In order to present a number of results, rather than pregentirying to solve the constrained quadratic subproblemsT(&s.
the details of each problem, only references are given.  code we have implemented for these subproblems works very
For each problem;500 random initial conditions were well in the vast majority of cases though we expect it could
tested. Maximum iterations per initial condition was00 still be improved further and hence that even better results
(expect for Problens for which 1500 was used). To highlight may be achievable.
the accuracy that is achievable, the termination parameter
was reduced te = 1075, VI. CONCLUSION

Performance was again very good. Solutions could be foundin this paper two related numerical methods for the static
from many different initial conditions, and aside from Plesh  output feedback pole placement problem have been pre-
8, for those initial conditions that lead to a solution, @g& sented. Both algorithms are well behaved globally and local
convergence times were less than 0.3 CPU seconds. convergence to solutions can occur quadratically. Extensi

Problem 8 was the most sensitive to initial conditions. lnomputational results presented in the paper indicatethigat
fact, its results in the table are based on choosing theesntralgorithms can be highly effective in practice. While it is
of initial K's from a normal distribution of zero mean andequired that the desired poles are distinct, the algostbam
variancel00. (Choosing initial conditions in the same mannestill be successfully utilized for problems with repeatedes
as for all the other problems lead to a low success rat&of if small perturbations to the desired poles are allowed.
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