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Static Output Feedback Pole Placement via a Trust
Region Approach

Kaiyang Yang∗, Member, IEEE, and Robert Orsi†, Member, IEEE

Abstract— This paper presents two closely related algorithms
for the problem of pole placement via static output feedback.
The algorithms are based on two different trust region methods
and utilize the derivatives of the closed loop poles. Extensive
numerical experiments show the effectiveness of the algorithms
in practice though convergence to a solution is not guaranteed for
either algorithm. While desired poles must be distinct, strategies
for dealing with repeated poles are also presented.

Index Terms— Pole placement, static output feedback, trust
region method, Newton’s method, Levenberg-Marquardt method,
eigenvalue derivatives.

I. I NTRODUCTION

Pole placement via static output feedback is a classical
problem in systems and control theory. Given system matrices
A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n and desired poles
λD ∈ C

n, the aim is findK ∈ R
m×p such thatA+BKC has

eigenvaluesλD. (Desired poles with nonzero imaginary part
are assumed to come in complex conjugate pairs.)

Instances of this problem are not always solvable. Further-
more the survey paper [1] states that sufficient conditions for
solvability, such as Wang’s condition (see below), are mainly
theoretical in nature and that there are no good numerical
algorithms available in many cases when a problem is known
to be solvable. In fact determining solvability has recently
been shown to be NP-hard [2]. In particular, this means that
an efficient (i.e., polynomial time) algorithm that is able to
correctly solve all instances of the problem cannot be expected.

There do exist some readily verifiable necessary or sufficient
conditions for arbitrary pole placement. Necessary conditions
include controllability and observability. One way to see this
is to consider the associated system controllability and observ-
ability forms. Another necessary condition is thatmp ≥ n [3],
i.e., that the total number of variables is greater than or equal
to the number of poles to be assigned. Regarding sufficient
conditions, Kimura showed in 1975 that any controllable
observable system satisfyingm + p > n is almost arbitrarily
pole assignable [4]. Independently, a slightly weaker version
of the result was given in [5]. Wang showed in 1992 that, for
generic choices of system matrices,mp > n is a sufficient
condition for arbitrary pole placement [6]. (A simpler proof
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of this result was later given in [7].) For the borderline case,
mp = n, arbitrary pole placement may not be possible. In [3]
it is shown that form = p = 2 andn = 4 there is a nonempty
open set of system matrices for which arbitrary pole placement
is not possible.

A great deal of research exists for the static output feedback
pole placement problem. Starting points for further informa-
tion are the survey papers [8], [9] and [1], as well as the more
recent papers [10], [11], [12] and [13]. Regarding algorithms,
we mention in particular the ‘eigenstructure assignment’ meth-
ods that can be used for systems meeting Kimura’s condition;
see [14], [15], [13] and the papers mentioned within. Ap-
proaches for the larger class of systems satisfying Wang’s con-
dition are fewer and include those presented in [16] and [17],
both of which are based on ‘linearization around a dependent
compensator.’ Practical use of the approach in [16] appears
limited as produced are a family of controllers parameterized
by a scalar variableǫ, and while closed loop poles approach
the desired poles asǫ → 0, K = K(ǫ) may contain terms
of the form 1/ǫ, resulting in asymptotically infinite entries.
The numerical approach given in [17] may also produceK ’s
with large entries and can involve difficult parameter tuning
[13]. Another approach is to consider the expressiondet(sI−
(A + BKC)) =

∏

i(s − λD
i ). Equating coefficients gives a

set of polynomial equations that characterize the solutionset.
In principle, one can then for example apply Gröbner basis
techniques however the computational complexity of such
methods limits their use to small dimensional problems [1];see
also [10]. Other approaches include [18], though convergence
is not analyzed and it is not clear whether the method is even
locally convergent; [15] and [19] which build on eigenstructure
assignment methods; and [20] which is based on numerical
homotopy methods.

In this paper we present two related numerical algorithms
for solving static output feedback pole placement problems.
Two trust region approaches are considered for solving the
following unconstrained nonlinear least squares problem

min
K∈Rm×p

f(K) :=
1

2
‖λ(A + BKC) − λD‖2

2. (1)

Hereλ(A + BKC) denotes the vector of eigenvalues ofA +
BKC, with entries sorted to give the minimum norm. Trust
region methods, which are well known in the optimization
community, are a type of iterative method for minimizing
nonconvex functions. The specific trust region methods we
use are the trust region Newton method and the Levenberg-
Marquardt method. In order to employ the trust region Newton
method, at each iteration, the first and second derivatives
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of the eigenvalues ofA + BKC must be calculated. The
Levenberg-Marquardt based algorithm has the advantage of
only requiring the first derivatives of the eigenvalues. Both
resulting algorithms have the desirable property that, near
solutions, they can converge quadratically.

A technicality that arises in the proposed approaches is
that the eigenvalues ofA + BKC may not be differentiable
everywhere. They will however be differentiable at all points
at whichA + BKC has distinct eigenvalues. A consequence
of this is that the algorithms are only appropriate for problems
for which the desired poles are distinct. It turns out that the
algorithms can still be used to solve problems whose desired
poles are distinct but whose separation is quite small and hence
this does not appear to be a serious limitation.

Aside from the issue of repeated desired poles, the ap-
proaches can be applied without further restrictions. In par-
ticular there are no restrictions onn, m andp. For problems
that are not solvable, a local minimizer of the cost will be
found. The approaches are fundamentally different to thosein
[16] and [17] and as a resultK ’s are not biased towards having
large entries. Other advantages include the possibility tofind
multiple solutions by using different initial conditions.Simple
modifications allow the approaches to be applied to problems
for which the entries ofK are constrained, for example, pole
placement by decentralized control, in which caseK must
be block diagonal. The approaches can be used for either
continuous time or discrete time systems.

The idea of solving pole placement type problems by
utilizing eigenvalue derivatives is not completely new. Related
ideas have been used to solve a non-control related inverse
eigenvalue problem involving symmetric matrices [21]. How-
ever, the methods presented in [21] all require one to start
sufficiently close to a solution for them to converge. The use
of a trust region methodology means that this is not the case
for our algorithms; this is an important distinguishing feature.
First derivatives of eigenvalues (though not second derivatives)
have also been used to solve various control problems. In [22]
they are used to try to achieve pole placement in certain convex
regions. The methodology that is used there is quite different
to the one used here and is based on convex programming
techniques. It requires that the open loop poles are already
quite close to the desired poles. Using the eigenvalue deriva-
tives, the change in the eigenvalues due to a small change
in K is modelled by a first order approximation. This linear
approximation is used within a convex program to try to place
the poles in nearby regions. Similar ideas based on linear
approximations of eigenvalues and convex programs have also
been used for robustness analysis and stabilization; see [23].

The paper is structured as follows. Section II contains an
overview of trust region methods. In order to use these meth-
ods to solve the pole placement problem, the first and second
derivatives off are required. Details of these calculations,
including how to calculate derivatives of the eigenvalues,are
given in Section III. Trust region methods require the function
to be minimized to be differentiable. Whilef will typically
only be differentiable on an open dense set, this turns out
to be sufficient. One of the contributions of this paper is
the realization that trust region methods can be successfully

applied to such functions. Such issues are addressed in Section
IV. Section V contains computational results, including results
for a number of problems from the literature. The paper ends
with some concluding remarks.

II. T RUST REGION METHODS

This section gives an overview of trust region methods. It
is assumed that the functionf : R

N → R to be minimized
is (sufficiently) smooth. The actualf we wish to minimize is
given in (1) and may not satisfy this assumption. Issues related
to this fact are addressed in Section IV. Additional information
on trust region methods can be found in [24] and [25].

A. Basic Methodology

Trust region methods can be used to minimize smooth
nonconvex functions and are iterative in nature. Given a
current iteratexk (in this section the variable is denoted by
a generic vectorx ∈ R

N rather than byK), they construct a
possibly nonconvex, quadratic approximation of the objective
function aboutxk. This model is only assumed to be a good
approximation in a certain ball centered aboutxk. This is
the so-called ‘trust region’. It turns out that, numerically,
it is possible to readily minimize a quadratic function over
a ball. Doing so gives a candidate steppk. The steppk

is only accepted if the difference in the objective function,
f(xk) − f(xk + pk), is sufficiently close to the difference
predicted by the model. Ifpk is not acceptable, the trust region
radius is decreased and the process repeated. If the model gives
a good prediction, the trust region radius may be increased,
allowing a larger step in the next iteration.

What follows describes the trust region method in greater
detail. At each iteration, the quadratic approximation is as-
sumed to be of the formmk(p) = f(xk) + ∇f(xk)T p +
1
2pT Bkp. HereBk is typically either the Hessian off at xk

or some approximation of this Hessian. IfBk is the Hessian,
then mk is simply the 2nd order Taylor approximation off
at xk. As will be discussed below, it may also be useful to
consider other choices forBk.

Each constrained minimization problem is of the form

min
p∈RN

mk(p) s.t. ‖p‖2 ≤ ∆k, (2)

where∆k > 0 is the current trust region radius. The solution
pk of (2) gives a potential step. Whether or not it is a suitable
step is assessed by considering the ratio of actual reduction of
the objective to the predicted reduction:

ρk =
f(xk) − f(xk + pk)

mk(0) − mk(pk)
. (3)

The overall trust region method is as follows.
Trust Region Method, Generic Algorithm ([24])

Given ∆̂ > 0, ∆0 ∈ (0, ∆̂), andη ∈ [0, 1
4 ):

for k= 0, 1, 2, . . .
Obtainpk by (approximately) solving (2);
Evaluateρk from (3);
if ρk < 1

4
∆k+1 = 1

4∆k
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else
if ρk > 3

4 and‖pk‖2 = ∆k

∆k+1 = min{2∆k, ∆̂}
else

∆k+1 = ∆k;
if ρk > η

xk+1 = xk + pk

else
xk+1 = xk;

end(for).

Approximate solutions of the constrained quadratic mini-
mization problem (2) can be obtained in a number of ways.
One way is the nearly exact solution method described in [24,
Section 4.2]. Without going into details we mention that this
method is equivalent to solving a one dimensional root finding
problem which can be solved using a Newton method.

Regarding the choice ofBk’s, the Hessian off at xk is
a natural choice. In this case, the method is called thetrust
region Newton method. When the objective functionf is a least
squares cost, sayf(x) = 1

2

∑M
i=1 r2

i (x) for some functionsri :
R

N → R, as is the case in (1), there is another suitable choice.
In this case, if we definer(x) = (r1(x), . . . , rM (x))T and let
J(x) denote the Jacobian ofr(x), then∇f(x) = J(x)T r(x)
and∇2f(x) = J(x)T J(x)+

∑M
i=1 ri(x)∇2ri(x), and a good

choice forBk is J(xk)T J(xk). The advantages of this choice
for Bk include the fact that it does not require the calculation
of the second derivatives of theri’s and that it gives a good
approximation of∇2f(xk) whenf(xk) is small, that is, when
eachri(xk) is small. For this choice ofBk’s, the method is
called theLevenberg-Marquardt method.

B. Convergence Results

This subsection contains some general convergence results.
These results are modified versions of those that are refer-
enced. All assume the nearly exact solution method is used
for the subproblems (2) and that the algorithm parameterη is
non-zero, that is,η ∈ (0, 1

4 ).
A simple but important property of trust region methods is

that the cost is non-increasing from one iteration to the next:
for all k ≥ 0, f(xk) ≥ f(xk+1).

Here are some less simple properties. The following result
concerns global convergence to stationary points.

Theorem 1 ([24, Th 4.8]): Suppose that on the sublevel set
{x | f(x) ≤ f(x0)}, f is twice continuously differentiable and
bounded below, and that‖Bk‖ ≤ β for some constantβ. Then
limk→∞ ∇f(xk) = 0.

Theorem 1 holds for both the trust region Newton method
and the Levenberg-Marquardt method. For the former method,
the following result also holds.

Theorem 2 ([24, Th 4.9]): Suppose the set{x | f(x) ≤
f(x0)} is compact, thatf is twice continuously differentiable
on this set, and thatBk = ∇2f(xk). Then thexk’s have a
limit point x∗ that satisfies the first and second order necessary
conditions for a local minima,∇f(x∗) = 0 and∇2f(x∗) is
positive semidefinite.

The following result for the trust region Newton method
implies that near a strict local minimum the method reduces

to a pure Newton method and is quadratically convergent.
Theorem 3 ([24, Th 6.4]): Suppose thatBk = ∇2f(xk).

Further, suppose the sequence ofxk’s converges to a pointx∗

that satisfies the first and second order sufficient conditions for
a strict local minima,∇f(x∗) = 0 and∇2f(x∗) is positive
definite, and thatf is three times continuously differentiable
in a neighborhood ofx∗. Then the trust region bound∆k

becomes inactive for allk sufficiently large.
The final result in this section shows that the Levenberg-

Marquardt method can be locally quadratically convergent to
points whose cost is zero. (Note that this may not be the case
for local minima whose cost is not zero.)

Theorem 4 ([24, Section 10.2]): Suppose theri’s that de-
termine f are three times continuously differentiable in a
neighborhood of a pointx∗ satisfying f(x∗) = 0. Sup-
pose further thatJ(x∗)T J(x∗) is positive definite. Then the
Levenberg-Marquardt method is locally quadratically conver-
gent tox∗.

III. D ERIVATIVE CALCULATIONS

In order to apply the trust region methods described in the
prior section, we need to calculate the appropriate first and
second derivatives. As already mentioned, the eigenvaluesof
A+BKC may not be differentiable everywhere. For example,
the eigenvalues of

[

4 0
0 0

]

+
[

k
l

]

[ 1 1 ] are2 ±
√

4 + 4k when
l = −k and hence they are not differentiable at(k, l) =
(−1, 1). The next result, which follows from a result in [26,
Section 2.5.7], shows that lack of differentiability cannot occur
at points at which the eigenvalues are distinct.

Theorem 5: Consider a matrix valued functionA : R
N →

R
n×n. SupposeA(x) is k-times continuously differentiable in

x in an open neighborhoodΩ. Further, suppose that at each
point inΩ, A(x) has distinct eigenvalues. Then the eigenvalues
of A(x) arek-times continuously differentiable inΩ.

Suppose the conditions of Theorem 5 are satisfied withk ≥
2. Then for anyx ∈ Ω we can write down explicit expressions
for the first and second derivatives of the eigenvalues of
A(x). If λi denotes theith eigenvalue ofA(x), suppose
D = diag(λ1, . . . , λn) and let X ∈ C

n×n be such that
A(x)X = XD. Then

∂λi

∂xk

=

(

X−1 ∂A(x)

∂xk

X

)

ii

, (4)

and if we define

P = X−1 ∂A(x)

∂xk

X and Q = X−1 ∂A(x)

∂xl

X, (5)

then

∂2λi

∂xk∂xl

=

(

X−1 ∂2A(x)

∂xk∂xl

X

)

ii

+

n
∑

j=1
j 6=i

PijQji + PjiQij

λi − λj

. (6)

Results (4)–(6) extend those appearing in [27], which deal
solely with the scalar variable case, i.e.,N = 1. They can be
proved by appropriately modifying the techniques used in that
paper. Details are not presented here.
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The above results can be used to calculate the derivatives of
our objective functionf(K) = 1

2

∑n
i=1(λi − λD

i )∗(λi − λD
i ).

Differentiating we have

∂f(K)

∂Kkl

= Re

{

n
∑

i=1

(λi − λD
i )∗

∂λi

∂Kkl

}

(7)

and

∂2f(K)

∂Kkl∂Kpq

= Re

{

n
∑

i=1

(

∂λi

∂Kkl

)∗ (

∂λi

∂Kpq

)

+

n
∑

i=1

(λi − λD
i )∗

∂2λi

∂Kkl∂Kpq

}

.

(8)

Note that ‘∂A(x)
∂xk

’ is given by

∂(A + BKC)

∂Kkl

= BkCl, (9)

whereBk is the kth column ofB and Cl is the lth row of
C. Identity (9) implies that the first term appearing in (6)
is always zero. Combining (4)–(9) we now have a complete
characterization of the first and second derivatives of our cost
(at points whereA + BKC has distinct eigenvalues).

For the Levenberg-Marquardt method, the approximate sec-
ond derivatives are given by the real part of the first summation
in (8).

IV. A DDITIONAL COMMENTS

When evaluating the costf(K), the eigenvalues ofA +
BKC must be matched with the desired eigenvalues in a least
squares sense. Suppose a given problem has distinct desired
eigenvalues and that it is solvable. Then, near a solution of
the problem, the eigenvalues ofA + BKC will be distinct,
which eigenvalues ofA + BKC match to which desired
eigenvalues will not change, and the eigenvalues ofA+BKC
will depend smoothly onK. As a result, for problems that are
solvable and have distinct desired eigenvalues, our objective
function f will be smooth in a neighborhood of solutions.
An important consequence of this is that the results from
Subsection II-B regarding local convergence to solutions still
apply. In particular, near solutions of problems with distinct
eigenvalues, both our algorithms can converge quadratically.

The comments above address the behavior of the algorithms
in a neighborhood of a solution. What about behavior far away
from a solution? Are the algorithms even defined in such
regions? Considering the steps involved, all that is required
for the algorithms to be well defined is that, for each iterate,
A+BKC have distinct eigenvalues. If the desired eigenvalues
are distinct and a generic initial condition is used, it is unlikely
that for either algorithm, that for any iterate,A + BKC has
repeated eigenvalues. Hence, under these mild assumptions,
the algorithms should be well defined and this is indeed what
is observed in practice.

If the desired eigenvalues are not distinct, the cost may
not be differentiable at a solution. This indicates that the
requirement of distinct desired eigenvalues is also necessary.
This does not limit the usefulness of the algorithms too
much however as desired eigenvalues can always be perturbed

slightly so that they are distinct. While having distinct but
close eigenvalues does lead to a degree of ill-conditioningin
our algorithms, the algorithms can still be effectively utilized
in such cases, as will be shown in the numerical results section.

Regarding the global convergence properties of the algo-
rithms, including behavior near non-optimal stationary points,
a detailed analysis is required and will not be attempted in
the present short paper. For the time being we simply mention
that, if the desired eigenvalues are distinct, it is our belief that,
modulo small changes, the global results of Subsection II-B
should still hold, at least generically.

V. COMPUTATIONAL RESULTS

This section contains results for both random problems and
problems from the literature. The random problem results
include a comparison to the numerical homotopy based algo-
rithm in [20], which is written in Ada and C, and is now part of
the publicly available software PHCpack [28]. Our algorithms
are coded using Matlab 7.11. All results were obtained using
a 3.2 GHz Pentium 4 640 machine with 1 GB of RAM.

A. Random Problems

A 1000 random problems were created for each of a number
of different choices for the system dimensions(n,m, p). As
for all randomly generated matrices in the paper, entries inthe
system matrices were drawn from a normal distribution of zero
mean and variance1. EachλD was taken to be the spectrum
of a randomly generated matrix, and a scalar was added to
the entries of eachλD to ensuremaxi Re λD

i = −0.1. As
each triple(n,m, p) was chosen to satisfymp > n, Wang’s
sufficient condition ensured each problem was solvable.

For our algorithms, an attempt was made to solve each
problem using up to5 randomly chosen initial conditions
and a maximum of 2000 iterations per initial condition. The
convergence condition used was‖λ(A + BKC)− λD‖2 < ǫ,
ǫ = 10−3. For the numerical homotopy algorithm, as it is able
to find multiple solutions, some of which may be complex
rather than real, it was limited to finding at most 10 solutions
and was deemed successful if one of these was real. Results
are given in Table I.

TABLE I

A COMPARISON OF PERFORMANCE FOR DIFFERENTn, m AND p. S.R.

DENOTES THE SUCCESS RATE, T DENOTES THE AVERAGE SOLUTION TIME

IN CPU SECONDS, AND i THE AVERAGE NUMBER OF ITERATIONS. T AND i

ARE BASED ONLY ON THOSE PROBLEMS THAT WERE SUCCESSFULLY

SOLVED. ǫ = 10−3 .

(n,m,p) (3,2,2) (6,4,3) (9,5,5)

Trust S.R. (%) 100 100 92
Region T 0.11 4.4 84
Newton i 44 260 910

Levenberg- S.R. (%) 100 100 99
Marquardt T 0.04 0.12 0.72

i 41 110 380

Numerical S.R. (%) 80 79 -
Homotopy [20] T 0.87 22 -

1The code is available from http://rsise.anu.edu.au/∼robert/pole/.
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Not surprisingly, given the reduced computation required
for its implementation, the Levenberg-Marquardt based algo-
rithm is faster than the trust region Newton based algorithm;
notice in particular the large difference inT for the (9, 5, 5)
problems. What is perhaps surprising is that the Levenberg-
Marquardt based algorithm is more likely to find a solution.
Regarding the performance of the homotopy algorithm, for the
(9, 5, 5) problems, no solutions could be found due to memory
limitations. For the other problems, the homotopy algorithm
had lower success rates and was slower than our algorithms.

The problems in Table I are ‘easy’ in the sense that they
actually satisfy Kimura’s condition,m + p > n, and in most
cases the number of variablesmp is significantly larger than
n. Results for some harder problems are presented in Table II.
For these problems,mp−n = 1. For our algorithms, maximum
iterations per initial condition were increased to 5000.

TABLE II

SOME HARDER RANDOM PROBLEMS. ǫ = 10−3 .

(n,m,p) (5,3,2) (7,2,4) (9, 2, 5)

Trust S.R. (%) 99 92 65
Region T 1.9 15 51
Newton i 540 1800 2800

Levenberg- S.R. (%) 100 95 79
Marquardt T 0.25 1.3 4.0

i 480 1300 2700

Numerical S.R. (%) 100 98 89
Homotopy [20] T 0.47 6.0 22

For these more difficult problems, the Levenberg-Marquardt
based algorithm again performed better than the trust region
Newton based algorithm. Overall, success rates for both algo-
rithms decreased. The homotopy algorithm, compared to the
better performing of the two trust region based algorithms,had
slightly greater success rates at the expense of longer solution
times.

B. Particular Problems

For the Levenberg-Marquardt based algorithm, Table III be-
low contains results for particular problems from the literature.
In order to present a number of results, rather than presenting
the details of each problem, only references are given.

For each problem,500 random initial conditions were
tested. Maximum iterations per initial condition was1000
(expect for Problem8 for which 1500 was used). To highlight
the accuracy that is achievable, the termination parameterǫ
was reduced toǫ = 10−6.

Performance was again very good. Solutions could be found
from many different initial conditions, and aside from Problem
8, for those initial conditions that lead to a solution, average
convergence times were less than 0.3 CPU seconds.

Problem 8 was the most sensitive to initial conditions. In
fact, its results in the table are based on choosing the entries
of initial K ’s from a normal distribution of zero mean and
variance100. (Choosing initial conditions in the same manner
as for all the other problems lead to a low success rate of6%.)

TABLE III

PARTICULAR PROBLEMS. ǫ = 10−6 .

No. references (n, m, p) T i S.R. (%)
1 [5] (3, 2, 2) 0.03 11 100
2 [13, case 1] (5, 3, 2) 0.06 24 89
3 [13, case 2] (5, 3, 2) 0.05 18 100
4 [14], [15, ex 2], [19, ex 3] (5, 2, 4) 0.14 81 95
5 [15, ex1, case1] (4, 2, 2) 0.14 100 78
6 [15, ex1, case2] (4, 2, 2) 0.12 77 91
7 [18, ex 1] (4, 2, 2) 0.08 41 96
8 [18, ex 2] (6, 3, 2) 0.41 250 53
9 [18, ex 3] (5, 3, 2) 0.22 130 100
10 [29, ex 1] (4, 3, 2) 0.03 12 100
11 [29, ex 2] (3, 1, 2) 0.02 4.0 100
12 [29, ex 3] (4, 2, 2) 0.03 8.8 100
13 [30] (8, 4, 3) 0.28 130 90

C. Repeated Eigenvalues

Each of the problems considered in the prior subsection (as
well as all the random problems) had distinct desired eigenval-
ues. In this subsection we consider what can be achieved if the
desired eigenvalues are not distinct. We consider the second
example from [19]. For this problem(n,m, p) = (6, 2, 3)
and the desired poles areλD = [−3,−3,−2,−2,−1,−1]T .
The algorithms do not provide a way to exactly solve this
problem. However, a fairly good approximate solution can be
found by considering a slightly perturbed desired spectrum
with distinct entries. For example, supposeλD is replaced
with λD

δ = [−3− δ,−3,−2− δ,−2,−1− δ,−1]T , δ = 10−4.
Then this perturbed problem can often be solved.

An alternative strategy is to solve a series of perturbed
problems with decreasingδ’s. First solve a perturbed problem
with δ = 10−1. Then, settingδ = 10−2 and using the solution
of the prior problem as an initial condition, solve this new
perturbed problem. Continue withδ = 10−3 andδ = 10−4.

Using the Levenberg-Marquardt based algorithm, the first
strategy lead to a solution for56% of initial conditions tried,
with average convergence time of 0.59 CPU seconds. The
second strategy was successful in59% of cases, with average
convergence time of 0.29 CPU seconds.

The main issue we encountered in solving these problems
was not convergence to local minima, though this can occur,
but rather that near solutions the Hessian of the cost can have
very large eigenvalues. This leads to numerical issues when
trying to solve the constrained quadratic subproblems (2).The
code we have implemented for these subproblems works very
well in the vast majority of cases though we expect it could
still be improved further and hence that even better results
may be achievable.

VI. CONCLUSION

In this paper two related numerical methods for the static
output feedback pole placement problem have been pre-
sented. Both algorithms are well behaved globally and local
convergence to solutions can occur quadratically. Extensive
computational results presented in the paper indicate thatthe
algorithms can be highly effective in practice. While it is
required that the desired poles are distinct, the algorithms can
still be successfully utilized for problems with repeated poles
if small perturbations to the desired poles are allowed.
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