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NUMERICAL METHODS FOR SOLVING INVERSE EIGENVALUE
PROBLEMS FOR NONNEGATIVE MATRICES∗
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Abstract. Presented here are two related numerical methods, one for the inverse eigenvalue
problem for nonnegative or stochastic matrices and another for the inverse eigenvalue problem for
symmetric nonnegative matrices. The methods are iterative in nature and utilize alternating projec-
tion ideas. For the algorithm for the symmetric problem, the main computational component of each
iteration is an eigenvalue-eigenvector decomposition, while for the other algorithm, it is a Schur ma-
trix decomposition. Convergence properties of the algorithms are investigated and numerical results
are also presented. While the paper deals with two specific types of inverse eigenvalue problems, the
ideas presented here should be applicable to many other inverse eigenvalue problems, including those
involving nonsymmetric matrices.
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1. Introduction. A real n × n matrix is said to be nonnegative if each of its
entries is nonnegative.

The nonnegative inverse eigenvalue problem (NIEP) is the following: given a
list of n complex numbers λ = {λ1, . . . , λn}, find a nonnegative n × n matrix with
eigenvalues λ (if such a matrix exists).

A related problem is the symmetric nonnegative inverse eigenvalue problem
(SNIEP): given a list of n real numbers λ = {λ1, . . . , λn}, find a symmetric non-
negative n× n matrix with eigenvalues λ (if such a matrix exists)1.

Finding necessary and sufficient conditions for a list λ to be realizable as the
eigenvalues of a nonnegative matrix has been a challenging area of research for over
fifty years, and this problem is still unsolved [12]. As noted in [6, section 6], while
various necessary or sufficient conditions exist, the necessary conditions are usually
too general while the sufficient conditions are too specific. Under a few special suffi-
cient conditions, a nonnegative matrix with the desired spectrum can be constructed;
however, in general, proofs of sufficient conditions are nonconstructive. Two sufficient
conditions that are constructive and not restricted to small n are, respectively, given
in [20], for the SNIEP, and [21], for the NIEP with real λ. (See also [19] for an ex-
tension of the results of the latter paper.) A good overview of known results relating
to necessary or sufficient conditions can be found in the recent survey paper [12] and
general background material on nonnegative matrices, including inverse eigenvalue
problems and applications, can be found in the texts [2] and [18]. We also mention
the recent paper [9], which can be used to help determine whether a given list λ may
be realizable as the eigenvalues of a nonnegative matrix.
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1The NIEP and SNIEP are different problems even if λ is restricted to contain only real entries;

there exist lists of n real numbers λ for which the NIEP is solvable but the SNIEP is not [16].
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In this paper we are interested in generally applicable numerical methods for
solving NIEPs and SNIEPs. To the best of our knowledge, the only algorithms that
have appeared up to now in the literature consist of [5] for the SNIEP and [8] for the
NIEP. In the case of [5], the following constrained optimization problem is considered:

min
QTQ=I, R=RT

1

2
‖QTΛQ−R ◦R‖2.(1.1)

Here Λ is a constant diagonal matrix with the desired spectrum and ◦ stands for the
Hadamard product, i.e., componentwise product. Note that the symmetric matrices
with the desired spectrum are exactly the elements of {QTΛQ | Q ∈ Rn×n orthogonal}
and that the symmetric nonnegative matrices are exactly the elements of {R◦R | R ∈
Rn×n symmetric}. In [5], a gradient flow based on (1.1) is constructed. A solution
to the SNIEP is found if the gradient flow converges to a Q and an R that zero the
objective function. The approach taken in [8] for the NIEP is similar but is com-
plicated by the fact that the set of all matrices, both symmetric and nonsymmetric,
with a particular desired spectrum is not nicely parameterizable. In particular, these
matrices can no longer be parameterized by the orthogonal matrices.

In this paper we present a numerical algorithm for the NIEP and another for
the SNIEP. In both cases, the problems are posed as problems of finding a point in
the intersection of two particular sets. Unlike the approaches in [5] and [8] which
are based on gradient flows, our algorithms are iterative in nature. For the SNIEP,
the solution methodology is based on a alternating projection scheme between the
two sets in question. The solution methodology for the NIEP is also based on an
alternating projection-like scheme but is more involved, as we will shortly explain.

While alternating projections can often be a very effective means of finding a
point in the intersection of two or more convex sets, for both the SNIEP and NIEP
formulations, one set is nonconvex. Nonconvexity of one of the sets means that
alternating projections may not converge to a solution. This is in contrast to the case
where all sets are convex and convergence to a solution is guaranteed.

In addition to problem formulations, the development of the corresponding al-
gorithms, and their convergence analysis, another contribution of the paper is as
follows. As mentioned above, for each problem, one set in the problem formulation
is nonconvex. For the NIEP, this set is particularly complicated; it consists of all
matrices with the desired spectrum. At least some of the members of this set will be
nonsymmetric matrices and it is this that causes complications. In particular, though
the set is closed and hence projections are well defined theoretically, how to calculate
projections onto such sets is an unsolved difficult problem. We formulate an alternate
method for mapping onto this set. Though the resulting points are not necessarily
projected points, they are members of the set and share a number of other desirable
properties. As will be shown, this alternate “projection” is very effective in our con-
text. Furthermore, we believe that it may also be quite effective for other inverse
eigenvalue problems involving nonsymmetric matrices2. For more on other inverse
eigenvalue problems, see the survey papers [4] and [6], and the recent text [7].

Before concluding this introductory section we would like to point out how the
NIEP is related to another problem involving stochastic matrices. A n× n matrix is
said to be stochastic if it is nonnegative and the sum of the entries in each row equals
one. Another variation of the NIEP is the stochastic inverse eigenvalue problem

2Preliminary indications of this are given in [24] and [23], where this idea is applied to inverse
eigenvalue type problems arising in control theory.
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(StIEP): given a list of n complex numbers λ = {λ1, . . . , λn}, find a stochastic n× n
matrix with eigenvalues λ (if such a matrix exists). It turns out that the NIEP and
the StIEP are almost exactly the same problem, as we now show. (See also [8].)

The vector of all 1’s is always an eigenvector for a stochastic matrix, implying
each stochastic matrix must have 1 as an eigenvalue. Also, the maximum row sum
matrix norm of a stochastic matrix equals 1 and hence the spectral radius cannot be
greater than 1, and as a result, must actually equal 1. Suppose λ satisfies the above
mentioned necessary conditions to be the spectrum of a stochastic matrix and that
a nonnegative matrix A with this spectrum can be found. Then if an eigenvector x
of A corresponding to the eigenvalue 1 can be chosen to have positive entries (by the
Perron–Frobenius theorem this is certainly possible if A is irreducible), then, if we
define D = diag(x), it is straightforward to verify that

D−1AD

is a stochastic matrix with the desired spectrum. (In fact it can be shown that if
λ satisfies the above mentioned necessary conditions, then it is the spectrum of a
stochastic matrix if and only if it is the spectrum of a nonnegative matrix [22, Lemma
5.3.2].)

The rest of the paper is structured as follows. The last part of this section contains
some notation. Projections play a key part in the algorithms and section 2 contains
general properties of projections that are used throughout the paper. The SNIEP
algorithm is presented first, in section 3, and then insights from this algorithm are
used to address the more difficult NIEP in section 4. Section 5 contains convergence
results. This includes a detailed analysis of fixed points of the SNIEP algorithm for
the n = 2 case. This is the easiest case though we believe the analysis presented is still
quite interesting and also gives insight into higher-dimensional problems. Numerical
results for both algorithms are presented in section 6, and an appendix contains some
supplementary projection results.

Notation. R is the set of real numbers. C is the set of complex numbers. Sn is
the set of real symmetric n × n matrices. AT denotes the transpose of a matrix A.
A∗ denotes the complex conjugate transpose of a matrix A. tr(A) denotes the sum of
the diagonal elements of a square matrix A. For two n×n symmetric matrices A and
B, [A,B] denotes AB − BA. diag(v) for v ∈ Cn denotes the n × n diagonal matrix
whose ith diagonal term is vi. Re(z) denotes the real part of z ∈ C.

2. Projections. Projections play a key part in the algorithms. This section
contains general properties of projections that will be used throughout the paper.

Let x be an element in a Hilbert space H and let C be a closed (possibly non-
convex) subset of H. Any c0 ∈ C such that ‖x − c0‖ ≤ ‖x − c‖ for all c ∈ C will
be called a projection of x onto C. In the cases of interest here, namely where H is
a finite dimensional Hilbert space, there is always at least one such point for each x.
If C is convex as well as closed, then each x has exactly one such minimum distance
point [17]. Where convenient, we will use y = PC(x) to denote that y is a projection
of x onto C. We emphasize that y = PC(x) only says y is a projection of x onto C
and does not make any statement regarding uniqueness.

All problems of interest in this paper are feasibility problems of the following
abstract form.

Problem 2.1. Given closed sets C1, . . . , CN in a finite dimensional Hilbert space
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H, find a point in the intersection

N⋂
i=1

Ci

(assuming the intersection is nonempty).
(In fact, we will solely be interested in the case N = 2.)
If all the Ci’s in Problem 2.1 are convex, a classical method of solving Problem

2.1 is to alternatively project onto the Ci’s. This method is often referred to as the
method of alternating projections (MAP). If the Ci’s have a nonempty intersection,
the successive projections are guaranteed to asymptotically converge to an intersection
point [3].

Theorem 2.2 (MAP). Let C1, . . . , CN be closed convex sets in a finite dimen-

sional Hilbert space H. Suppose
⋂N

i=1 Ci is nonempty. Then starting from an arbitrary
initial value x0, the sequence

xi+1 = PCφ(i)
(xi), where φ(i) = (i mod N) + 1,

converges to an element in
⋂N

i=1 Ci.
We remark that the usefulness of MAP for finding a point in the intersection of

a number of sets is dependent on being able to compute projections onto each of the
Ci’s.

While MAP is not guaranteed to converge to a solution if one or more of the
Ci’s is nonconvex, for alternating projections between two sets, the following distance
reduction property always holds.

Theorem 2.3. Let C1 and C2 be closed (nonempty) sets in a finite dimensional
Hilbert space H. For any initial value y0 ∈ C2, if

x1 = PC1
(y0), y1 = PC2

(x1), x2 = PC1
(y1),

then

‖x2 − y1‖ ≤ ‖x1 − y1‖ ≤ ‖x1 − y0‖.

Proof. The second inequality holds as y1 is a projection of x1 onto C2 and hence
its distance to x1 is less than or equal to the distance of x1 to any other point in C2

such as y0. The first inequality holds by similar reasoning.
Corollary 2.4. If for i = 0, 1, . . . ,

xi+1 = PC1
(yi), yi+1 = PC2

(xi+1),

that is, the xi’s and yi’s are successive projections between two closed sets, then ‖xi−
yi‖ is a nonincreasing function of i.

Suppose one is interested in solving Problem 2.1 in the case of two sets, C1 and C2,
when one or both sets are nonconvex. If projections onto these sets are computable,
a solution method is to alternately project onto C1 and C2. Corollary 2.4 ensures
that the distance ‖xi − yi‖ is nonincreasing with i. While this is promising, there is,
however, no guarantee that this distance goes to zero and hence that a solution to the
problem will be found.

Most of the literature on alternating projection methods deals with the case of
convex subsets of a (possibly infinite dimensional) Hilbert space; a survey of these
results is contained in [1]. The text [11] is also recommended. There is much less
available for the case of one or more nonconvex sets; see in particular [10].
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3. The symmetric problem. Our algorithm for solving the SNIEP consists of
alternately projecting onto two particular sets. The details are given in this section.

Given a list of real eigenvalues λ = {λ1, . . . , λn}, renumbering if necessary, sup-
pose λ1 ≥ · · · ≥ λn. Let

Λ = diag(λ1, . . . , λn),(3.1)

and let M denote the set of all real symmetric matrices with eigenvalues λ,

M = {A ∈ Sn |A = V ΛV T for some orthogonal V }.(3.2)

Let N denote the set of symmetric nonnegative matrices,

N = {A ∈ Sn |Aij ≥ 0 for all i, j}.(3.3)

The SNIEP can now be stated as the following particular case of Problem 2.1:

Find X ∈ M∩N .(3.4)

Our solution approach is to alternatively project between M and N , and we next
show that it is indeed possible to calculate projections onto these sets. First, in order
for the term “projection” to make sense, we need to define an appropriate Hilbert
space and associated norm. From now on, Sn will be viewed as a Hilbert space with
inner product

〈A,B〉 = tr(AB) =
∑
i,j

AijBij .(3.5)

The associated norm is the Frobenius norm ‖A‖ = 〈A,A〉 1
2 .

The projection of A ∈ Sn onto M is given by Theorem 3.2 below. More precisely,
it gives a projection of A onto M. The reason for this is that the set M is nonconvex3

and hence projections onto this set are not guaranteed to be unique. We will need
the following classical result [13, section 10.2].

Lemma 3.1. Suppose x, y ∈ Rn and x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn. If σ is a
permutation of {1, . . . , n}, then

∑
i

xiyi ≥
∑
i

xiyσ(i).

Theorem 3.2. Given A ∈ Sn, let A = V diag(μ1, . . . , μn)V T with V a real
orthogonal matrix and μ1 ≥ · · · ≥ μn. If Λ is given by (3.1), then V ΛV T is a best
approximant in M to A in the Frobenius norm.

Proof. For all X ∈ M, tr(X2) = tr(Λ2). As a result, finding X ∈ M that
minimizes ‖X−A‖2 is the same as finding X ∈ M that maximizes tr(XA). Consider
the function

f : M → R, X �→ tr(XA).

3M is nonconvex if its defining λ contains a pair of nonequal eigenvalues. For example, if n = 2,
consider

A =

[
λ1 0
0 λ2

]
and B =

[
λ2 0
0 λ1

]
.

If λ1 �= λ2, then the convex combination (A + B)/2 does not have the same spectrum as A and B.
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M is a smooth manifold and its tangent space at a point X is {[X,Ω] | Ω = −ΩT ∈
Rn×n}; see, for example, [14, Chapter 2]. The derivative of f at a point X in the
tangent direction [X,Ω] is

Df(X)([X,Ω]) = tr([X,Ω]A) = tr((AX −XA)Ω).

If X maximizes f , then this derivative must be zero in all tangent directions, or
equivalently, AX − XA must be symmetric. This in turn is equivalent to X and A
commuting. X and A commute if and only if they are simultaneously diagonalizable;
see [15, Theorem 2.5.15]. Hence if X maximizes f , then there must exist an orthogonal
matrix U and a diagonal matrix Λσ with the same spectrum as Λ such that A =
U diag(μ1, . . . , μn)UT and X = UΛσU

T . This combined with Lemma 3.1 implies f
has maximum value tr(Λ diag(μ1, . . . , μn)) and implies the result.

Projection onto N is straightforward and is given by Theorem 3.3 below.
Theorem 3.3. Given A ∈ Sn, define A+ ∈ Sn by

(A+)ij = max {Aij , 0} for all 1 ≤ i, j ≤ n.(3.6)

A+ is the best approximant in N to A in the Frobenius norm.
Proof. The projection of x ∈ R onto the nonnegative real numbers equals

max {x, 0}. The general result follows by noting that if B ∈ Sn, and in particular if
B ∈ N , then

‖A−B‖ =

(∑
i,j

|Aij −Bij |2
) 1

2

and hence that the problem reduces to n2 decoupled scalar problems.
Our proposed algorithm for solving the SNIEP is the following.

SNIEP algorithm:

Problem data. List of desired real eigenvalues λ = {λ1, . . . , λn}, λ1 ≥ · · · ≥ λn.

Initialization. Choose a randomly generated symmetric nonnegative matrix Y ∈Rn×n.

repeat

1. Calculate an eigenvalue-eigenvector decomposition of Y :
Y = V diag(μ1, . . . , μn)V T , μ1 ≥ · · · ≥ μn.

2. X := V diag(λ1, . . . , λn)V T .

3. X := (X + XT )/2.

4. Y := X+.

until ‖X − Y ‖ < ε.

In the above algorithm, X+ is given by (3.6).
Note that at each iteration of the algorithm, X has the desired spectrum λ and Y

is nonnegative. If ε is small, say ε = 10−14, termination of the loop ensures X equals
Y (approximately) and hence that Y solves the SNIEP.

Due to small numerical inaccuracy, X from Step 2 of the algorithm may not be
perfectly symmetric. Step 3 makes it so.

Of course, while Corollary 2.4 ensures ‖X−Y ‖ is nonincreasing from one iteration
to the next, the set M is nonconvex and hence there is no guarantee that the algorithm
will terminate. A detailed analysis of convergence is postponed to section 5.
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4. The general problem. Throughout this section, Cn×n will be viewed as a
Hilbert space with inner product

〈A,B〉 = tr(AB∗) =
∑
i,j

AijBij .

The associated norm is the Frobenius norm ‖A‖ = 〈A,A〉 1
2 .

Recall Schur’s result that any matrix A ∈ Cn×n is unitarily equivalent to an upper
triangular matrix.

Theorem 4.1. Given A ∈ Cn×n with eigenvalues μ1, . . . , μn in any prescribed
order, there is a unitary matrix U ∈ Cn×n and an upper triangular matrix T ∈ Cn×n

such that

A = UTU∗(4.1)

and Tii = μi, i = 1, . . . , n.
Proof. See, for example, [15, Theorem 2.3.1].
We now redefine some terms from the prior section.
Let λ = {λ1, . . . , λn} be a given list of complex eigenvalues. Define

T = {T ∈ Cn×n |T is upper triangular with spectrum λ}.(4.2)

Theorem 4.1 implies that the set of all complex matrices with spectrum λ is given
by the following set:

M = {A ∈ Cn×n |A = UTU∗ for some unitary U and some T ∈ T }.(4.3)

Let N denote the set of (not necessarily symmetric) nonnegative matrices,

N = {A ∈ Rn×n |Aij ≥ 0 for all i, j}.(4.4)

Having redefined M and N , the NIEP can now be stated as the following partic-
ular case of Problem 2.1:

Find X ∈ M∩N .(4.5)

A difficulty now occurs. We would like to use alternating projections to solve the
NIEP. However, to the best of our knowledge, the way to calculate projections onto
M is an unsolved problem. Suppose instead we could find a mapping that was in
some sense a reasonable substitute for a projection map for M. Using this substitute
mapping and the projection map for N in an alternating projection-like scheme may
still produce a viable algorithm. Indeed, we now propose the following function PM
as a substitute for a true projection map onto M. (The notation PM is used as it is
suggestive; however, recall that we have already used y = PC(x) to denote that y is
a projection of x onto a set C. The two different uses of the notation should be clear
from their context and should not cause confusion.)

Definition 4.2. Suppose U ∈ Cn×n is unitary and T ∈ Cn×n is upper triangular.
Let {λ̂1, . . . , λ̂n} be a permutation of the list of eigenvalues λ such that, among all
possible permutations, it minimizes

n∑
i=1

|λ̂i − Tii|2.(4.6)
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Define

PM(U, T ) = UT̂U∗,(4.7)

where T̂ ∈ T is given by

T̂ij =

{
λ̂i if i = j,
Tij otherwise.

Note that PM maps into the set M.
A given matrix A ∈ Cn×n may have a nonunique Schur decomposition and A =

U1T1U
∗
1 = U2T2U

∗
2 does not imply PM(U1, T1) = PM(U2, T2). For example, if

T1 =

⎡
⎣1 1 4

0 2 2
0 0 3

⎤
⎦, T2 =

⎡
⎣2 −1 3

√
2

0 1
√

2
0 0 3

⎤
⎦ , and U =

1√
2

⎡
⎣1 1 0

1 −1 0

0 0
√

2

⎤
⎦,

then U is unitary and UT1U
∗ = T2, [15]. If λ = {0, 0, 0}, PM(U, T1) 
= PM(I, T2).

It turns out that this nonuniqueness is not particularly important. The following
result shows that for different Schur decompositions of the same matrix, PM gives
points in M of equal distance from the original matrix.

Theorem 4.3. Suppose A = U1T1U
∗
1 = U2T2U

∗
2 , where U1, U2 ∈ Cn×n are

unitary and T1, T2 ∈ Cn×n are upper triangular. Then

‖PM(U1, T1) −A‖ = ‖PM(U2, T2) −A‖.

Proof. Suppose A = UTU∗, where U is unitary and T is upper triangular. If T̂
is the matrix given in Definition 4.2, then by the unitary invariance of the Frobenius
norm,

‖PM(U, T ) −A‖ = ‖T̂ − T‖.

As ‖T̂ − T‖2 equals the quantity in (4.6), ‖PM(U, T ) − A‖ depends only on λ and
T11, . . . , Tnn. The result now follows by noting that the Tii’s are the eigenvalues of A
and that (4.6) does not depend on the ordering of the Tii’s.

The next theorem shows that given A = UTU∗, if we restrict attention to matrices
of the form UT̃U∗, T̃ ∈ T , then PM(U, T ) is a point in M closest to A.

Theorem 4.4. Suppose A = UTU∗ ∈ Cn×n with U a unitary matrix and T
upper triangular. Then PM(U, T ) satisfies

‖PM(U, T ) −A‖ ≤ ‖UT̃U∗ −A‖ for all T̃ ∈ T .

Proof. Let T̃ be a matrix in T . The unitary invariance of the Frobenius norm
implies the result will be established if we can show

‖T̂ − T‖ ≤ ‖T̃ − T‖,

where T̂ is the matrix given in Definition 4.2. Note that

‖T̃ − T‖2 =

n∑
i=1

|T̃ii − Tii|2 +
∑
i �=j

|T̃ij − Tij |2(4.8)
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and that the T̃ii’s are some permutation of the list of eigenvalues λ. The result follows
by noting that ‖T̂ − T‖2 equals the quantity in (4.6) and that this value must be
less than or equal to the first summation on the right-hand side of the equality in
(4.8).

For completeness, we note that, given A = UTU∗, PM(U, T ) may not satisfy

‖PM(U, T ) −A‖ ≤ ‖M −A‖ for all M ∈ M.

For example if

U =
1

5

[
−3 4
4 3

]
, T =

[
1 −3
0 2

]
, Ũ =

1

5

[
−4 3
3 4

]
, T̃ =

[
0 −3
0 0

]
,

and λ = {0, 0}, then one can readily verify that

‖PM(U, T ) − UTU∗‖ � ‖Ũ T̃ Ũ∗ − UTU∗‖.

As for the symmetric case, projection onto N is straightforward.
Theorem 4.5. Given A ∈ Cn×n, define A+ ∈ Rn×n by

(A+)ij = max{Re(Aij), 0} for all 1 ≤ i, j ≤ n.(4.9)

A+ is the best approximant in N to A in the Frobenius norm.
Proof. The projection of z ∈ C onto the nonnegative real numbers is given by

max{Re(z), 0}. The remainder of the proof follows by exactly the same reasoning
used in the proof of Theorem 3.3.

Our proposed algorithm for solving the NIEP is the following.

NIEP algorithm:

Problem data. List of desired complex eigenvalues λ = {λ1, . . . , λn}.
Initialization. Choose a randomly generated nonnegative matrix Y ∈ Rn×n.

repeat

1. Calculate a Schur decomposition of Y : Y = UTU∗.

2. X := PM(U, T ).

3. Y := X+.

until ‖X − Y ‖ < ε.

In the above algorithm, PM(U, T ) is given by Definition 4.2 and X+ is given by
(4.9).

As for the SNIEP algorithm, at each iteration of the NIEP algorithm, X has the
desired spectrum λ and Y is nonnegative. If ε is small, say ε = 10−14, termination of
the loop ensures X equals Y (approximately) and hence that Y solves the NIEP.

Remark 4.6. If each of the members of λ are real and we seek a symmetric
nonnegative matrix with spectrum λ, then the NIEP algorithm reduces to the SNIEP
algorithm. More precisely, this is true if the members of λ are real, if the initial
condition Y is a symmetric nonnegative matrix, and, for Schur decompositions used
in the NIEP algorithm, if U is restricted to be real.

Indeed, suppose the current Y is symmetric and nonnegative. For any Schur
decomposition of Y , T must be a real diagonal matrix. As we restrict the U matrix
to be real, such a decomposition is nothing but a standard eigenvalue-eigenvector



NONNEGATIVE INVERSE EIGENVALUE PROBLEMS 199

decomposition for a symmetric matrix (though the eigenvalue are not necessarily
ordered along the diagonal of T ).

As both the elements of λ and the diagonal entries of T are real, the permutation
that minimizes (4.6) can be easily characterized. Indeed, in this case (4.6) is minimized
if and only if

n∑
i=1

λ̂iTii(4.10)

is maximized. From Lemma 3.1, (4.10) is maximized if the λ̂i’s are ordered in the
same way as the Tii’s. This implies that if Y is symmetric, the step of producing a
X from Y is the same in both algorithms.

Lastly, projection of a symmetric matrix onto (4.4) gives the same matrix as
projection onto (3.3) and hence this step in both algorithms is also the same. This
establishes our claim.

We close this section by noting that unlike the SNIEP algorithm, for the NIEP
algorithm there is no guarantee that ‖X − Y ‖ is nonincreasing from one iteration to
the next.

5. Convergence. In this section we study the convergence properties of the
SNIEP and NIEP algorithms. We present a number of results for the SNIEP algo-
rithm, though limit ourselves to a local convergence result for the NIEP algorithm.
We start by characterizing the SNIEP algorithm fixed points. All references to “M,”
“N ,” and “the algorithm” refer to the SNIEP versions of these objects, unless other-
wise stated.

5.1. Fixed points. As there may be more than one projection of a point Y onto
the set M, some care needs to be taken in regard to the definition of fixed points of
the algorithm. This subsection includes such a definition, as well as a characterization
of these points.

Definition 5.1. X ∈ Sn is a fixed point of the algorithm if there exists an
eigenvalue-eigenvector decomposition of X+,

X+ = U Λ̃UT ,(5.1)

where Λ̃ = diag(λ̃1, . . . , λ̃n), λ̃1 ≥ · · · ≥ λ̃n, and U is orthogonal such that

X = UΛUT .(5.2)

X is a fixed point if and only if there is a projection of X+ onto M which equals
X.

We would like to point out an important fact regarding this definition of a fixed
point. If X ∈ M is an infeasible fixed point, that is, X ∈ M is a fixed point which is
not in the solution set M∩N , it does not necessarily mean that the algorithm cannot
make further progress toward a feasible solution from X. This is a consequence of the
possible nonuniqueness of the algorithm’s matrix decompositions, as we now explain.

If X+ has distinct eigenvalues, then the orthonormal eigenvectors of X+ are
unique up to multiplication by −1. In this case, any decomposition (5.1) of X+

will result in the same projected point (5.2). On the other hand, if X+ has repeated
eigenvalues, then there are an infinite number of different decompositions of X+. If
this is the case for an infeasible fixed point X, it may be possible to escape from X
by forcing the algorithm to use a different decomposition of X+.
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Theorem 5.2. Suppose X ∈ M is an infeasible fixed point. Furthermore, suppose
that there exists an orthogonal matrix V such that X+ = V Λ̃V T and (V ΛV T )+ 
= X+,
that is, that there exists an alternate decomposition of X+ which leads to a different
point in N . Then using this alternate decomposition, the algorithm is able to escape
from X.

Proof. We will show that

‖X −X+‖ = ‖V ΛV T −X+‖ > ‖V ΛV T − (V ΛV T )+‖.(5.3)

Note that if (5.3) holds, then V ΛV T ∈ M and (V ΛV T )+ ∈ N are closer together
than X and X+, and the distance reduction property, Theorem 2.3, implies the result.

The equality in (5.3) holds as both X and V ΛV T are projections of X+ onto M.
The inequality in (5.3) follows by noting that, as N is closed and convex, (V ΛV T )+
is the unique closest point in N to V ΛV T .

For the main result of this subsection, we will need the following lemma.
Lemma 5.3. Suppose x, y ∈ Rn and x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn. If σ is a

permutation of {1, . . . , n} such that

∑
i

xiyi =
∑
i

xiyσ(i),(5.4)

and, for some i and j,

i < j and yσ(i) < yσ(j),

then

xi = xj .(5.5)

Proof. From Lemma 3.1, for any permutation π of {1, . . . , n},
∑
i

xiyi ≥
∑
i

xiyπ(i).(5.6)

Suppose (5.5) does not hold. Then xi > xj , which implies

(xi − xj)(yσ(i) − yσ(j)) < 0,

or rearranging the terms,

xiyσ(i) + xjyσ(j) < xiyσ(j) + xjyσ(i).

This combined with (5.4) implies there is a permutation that violates (5.6). As this
is not possible, (5.5) must hold.

Theorem 5.4. Suppose X ∈ M. X is a fixed point of the algorithm if and only
if

[X,X+] = 0(5.7)

and

tr(ΛΛ̃) = tr(Λ̃2),(5.8)
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where Λ̃ = diag(λ̃1, . . . , λ̃n), λ̃1 ≥ · · · ≥ λ̃n, is the diagonal matrix of eigenvalues of
X+.

Proof. (⇒) If X is a fixed point, there exists an orthogonal matrix U such that

X+ = U Λ̃UT and X = UΛUT .(5.9)

Hence X and X+ commute and (5.7) holds.
Equality (5.8) follows from

tr(XX+) = tr(X2
+)

and (5.9).
(⇐) From (5.7), X and X+ are simultaneously diagonalizable. Hence there exists an
orthogonal matrix U and a diagonal matrix Λ̃σ whose diagonal entries are a permu-
tation of the diagonal entries of Λ̃ such that

X+ = U Λ̃σU
T and X = UΛUT .

By an argument similar to the one used in the first part of the proof,

tr(ΛΛ̃σ) = tr(Λ̃2
σ).(5.10)

Equalities (5.8) and (5.10) imply

tr(ΛΛ̃) = tr(ΛΛ̃σ).

From Lemma 5.3, if i < j and (Λ̃σ)ii < (Λ̃σ)jj , then Λii = Λjj . Hence, the
columns of U can always be reordered to get a new U so that (5.9) holds, and hence,
X is a fixed point.

Remark 5.5. It is interesting to compare the fixed points of the algorithm with
those of the SNIEP gradient flow algorithm of [5]. The gradient flow used in [5] is

dX

dt
= [X, [X,Y ]],

dY

dt
= 4Y ◦ (X − Y ).

(5.11)

If (X(t), Y (t)), t ≥ 0, is a solution of this differential equation, then X(t) is isospectral,
that is, it preserves the spectrum of X(0), and Y (t) is nonnegative for all t ≥ 0 if
Y (0) is. Suppose X(0) is chosen to have the desired spectrum and Y (0) is chosen
nonnegative. Then, if X(t) and Y (t) converge to the same point, that point is a
solution of the problem.

The fixed points of (5.11) are the points (X,Y ) for which the right-hand side
is 0:

[X, [X,Y ]] = 0,

Y ◦ (X − Y ) = 0.

Note that for any X,Y ∈ Sn, [X, [X,Y ]] = 0 if and only if [X,Y ] = 0: If [X, [X,Y ]] =
0, then 0 = tr(Y [X, [X,Y ]]) = tr([X,Y ]T [X,Y ]) and hence [X,Y ] = 0. For any
X ∈ Sn, X+ ◦ (X − X+) = 0. Hence, if X ∈ M is a fixed point of our SNIEP
algorithm, then (X,X+) is a fixed point of the algorithm of [5]. Roughly speaking,
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the set of fixed points of the SNIEP algorithm of this paper is a subset of the set of
fixed points of the algorithm of [5].

There do exist infeasible fixed points. If Λ contains negative values (the SNIEP
is trivial if it does not), then X = Λ is an infeasible fixed point. It may or may not
be possible to escape from such a fixed point using alternate decompositions of X+.
An example where escape via this technique is not possible is when Λ = diag(λ1, λ2)
with λ1 > 0 and λ2 < 0, in which case Λ+ has distinct eigenvalues.

If X is a fixed point, then so is PXPT for any permutation matrix P . In partic-
ular, PΛPT is a fixed point for any permutation matrix P .

The attractive set of the diagonal fixed points includes the matrices with non-
positive off diagonal terms: Suppose X is such a matrix. Then X+ is diagonal and can
be decomposed as X+ = P Λ̃PT , where Λ̃ is diagonal with ordered diagonal entries
and P is a permutation matrix. For this decomposition of X+, Step 2 of the algorithm
maps onto the diagonal fixed point PΛPT .

5.2. General convergence properties. The following is a general result re-
garding convergence to fixed points.

Theorem 5.6. Suppose X1, X2, . . . , is a sequence of X’s produced by the algo-
rithm. Then there is a limit point X of this sequence which is a fixed point of the
algorithm and which satisfies

‖X −X+‖ = lim
i→∞

‖Xi − (Xi)+‖.(5.12)

If the limit in (5.12) is zero, then every limit point of the sequence is a solution of the
problem.

Proof. The Xi’s are elements of the compact set M and hence contain a conver-
gent subsequence. Let Xik denote the kth element in this subsequence and denote

the limit of the Xik ’s by X̂. For each k, let Uik and Λ̃ik be the matrices from the
decomposition of (Xik)+ used to produce Xik+1, that is, (Xik)+ = Uik Λ̃ikU

T
ik

and

Xik+1 = UikΛUT
ik

. As the Uik ’s are members of a compact set, without loss of gener-
ality we can assume they converge to a point U . This implies the Xik+1’s converge,
and we denote the corresponding limit point by X.

Corollary 2.4 implies limi→∞‖Xi − (Xi)+‖ exists. This and the fact that projec-
tion onto N is a continuous operation implies

‖X̂ − X̂+‖ = lim
k→∞

‖Xik − (Xik)+‖ = lim
k→∞

‖Xik+1 − (Xik+1)+‖ = ‖X −X+‖.
(5.13)

As (Xik)+ converges to X̂+ and the orthogonal matrices Uik converges to U , it

follows that the Λ̃ik ’s also converge to, say, Λ̃. Hence X̂+ = limk→∞(Xik)+ = U Λ̃UT

and X = limk→∞ Xik+1 = UΛUT . This implies X is a projection of X̂+ onto M.

The equality (5.13) and the fact that X is a projection of X̂+ onto M imply

‖X −X+‖ ≥ ‖X − X̂+‖.

As X+ is the unique projection of X onto N , this implies X̂+ = X+. As X is a
projection of X̂+ = X+ onto M, X is a fixed point.

Suppose now that the limit in (5.12) equals zero. Consider an arbitrary subse-
quence Xi1 , Xi2 , . . . , which converges to some point X̃. Note that X̃ is a limit of
points in M. The inequality

‖(Xik)+ − X̃‖ ≤ ‖(Xik)+ −Xik‖ + ‖Xik − X̃‖



NONNEGATIVE INVERSE EIGENVALUE PROBLEMS 203

implies it is also a limit of points in N . The last part of the theorem now follows as
both M and N are closed.

The next theorem gives a local convergence result which holds for both SNIEP
and NIEP algorithms. If M and N are given, respectively, by (3.2) and (3.3), and
◦
N denotes the interior of N , then, if the intersection of M and

◦
N is nonempty, the

SNIEP algorithm converges to a solution from points in an open neighborhood of this
intersection set. The analogous result for the NIEP algorithm is also true.

Theorem 5.7. Let “the algorithm,” “the problem,” “M” and “N” refer to
either “the SNIEP algorithm,” “the SNIEP problem,” (3.2) and (3.3), or “the NIEP

algorithm,” “the NIEP problem,” (4.3) and (4.4). Suppose M ∩
◦
N is nonempty.

Then there is an open neighborhood of M∩
◦
N from which the algorithm converges to

a solution of the problem (in a single additional iteration).

Proof. We prove the result for the NIEP algorithm. The proof for the SNIEP
algorithm is almost identical.

Suppose X ∈ M∩
◦
N and let ε > 0 be small enough so that the open ball B(X, ε)

is a subset of N . Choose δ > 0 such that if Y ∈ B(X, δ) and λ̃1, . . . , λ̃n are the
eigenvalues of Y , then (reordering the λ̃i’s if necessary)

(∑
i

|λi − λ̃i|2
) 1

2

< ε/2.(5.14)

Here the λi’s are the desired eigenvalues which define the NIEP. Decreasing δ if
necessary, we assume δ ≤ ε/2.

We now show that if Y ∈ B(X, δ), then any projection of Y onto M is in B(X, ε).
As B(X, ε) ⊂ N , such a projection of Y is a solution of the problem.

Let Y ∈ B(X, δ) and suppose it has Schur decomposition Y = UTU∗. Consider

‖X − PM(U, T )‖ ≤ ‖X − Y ‖ + ‖Y − PM(U, T )‖.

The first term on the right of the inequality is less than ε/2, as is the second term by
the definition of PM(U, T ) and (5.14). This completes the result.

As we will see in the next subsection, every feasible n = 2 SNIEP has only a finite
number of infeasible fixed points. The following result exploits such a situation.

Theorem 5.8. Suppose a given feasible SNIEP has only a finite number of
infeasible fixed points. There exists a constant c > 0 such that if X1, X2, . . . , is a
sequence of X’s produced by the algorithm and ‖Xi∗ − (Xi∗)+‖ < c for some i∗, then
any limit point of the Xi’s (there must be at least one) is a solution of the problem.

Proof. Let c > 0 be such that ‖Z−Z+‖ ≥ c for all infeasible fixed points Z. Such
a c exists as there are only a finite number of infeasible fixed points. By Corollary 2.4,
‖Xi − (Xi)+‖ is a nonincreasing function of i and hence must have a limit. Theorem
5.6 implies this limit must be zero. The rest now also follows from Theorem 5.6.

If a limit point in Theorem 5.8 is in M∩
◦
N , then Theorem 5.7 implies the sequence

of Xi’s will converge to a solution (in a finite number of iterations).

Do all feasible SNIEPs have only a finite number of infeasible fixed points? Al-
ternatively, as M is compact, an equivalent question is: Are all infeasible fixed points
of a feasible SNIEP isolated? These are interesting questions, to which we currently
do not have an answer.
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5.3. Further analysis: n = 2 SNIEP. In this subsection we continue our
analysis of convergence; in particular we investigate the n = 2 SNIEP. Though neces-
sary and sufficient conditions exist for the solvability of the n = 2 SNIEP, and there
exists an analytic solution when these conditions are met, we believe the analysis
presented here is still quite interesting and also gives insight into higher-dimensional
problems.

As noted in [5], for n = 2, feasible SNIEPs have a very nice geometric interpreta-
tion. If the 2×2 symmetric matrices are parameterized by R3 in the standard way and
the eigenvalues defining M are distinct, then the points with the desired spectrum
form a one dimensional ellipse in R3, and the SNIEP is equivalent to finding a point
on this ellipse that is also in the nonnegative orthant of R3.

As the trace of a matrix equals the sum of its eigenvalues, a necessary condition
for solvability is that λ1 +λ2 ≥ 0. In fact, this condition is also sufficient; if it is met,
then a solution of the problem is

X =
1

2

(
λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2

)
.(5.15)

As normal, here we assume the eigenvalues are ordered: λ1 ≥ λ2.
The feasible cases can be enumerated as follows:
1. λ1 = λ2 ≥ 0,
2. λ1 > λ2 ≥ 0,
3. λ1 > 0 > λ2, λ1 ≥ |λ2|.

Theorem 5.10 below characterizes the infeasible fixed points of the algorithm for
the different cases listed above. We will need the following lemma.

Lemma 5.9. Suppose

X =

(
a b
b a

)

for some a and some b ≤ 0. Then X ∈ M and is a fixed point if and only if

X =
1

2

(
λ1 + λ2 λ2 − λ1

λ2 − λ1 λ1 + λ2

)
.(5.16)

Proof. (⇒) X ∈ M and b ≤ 0 implies λ1 = a − b and λ2 = a + b. Solving for a
and b gives (5.16).
(⇐) If X is given by (5.16), then its eigenvalues are λ1 and λ2, and hence it is a
member of M. As λ2 − λ1 ≤ 0, X+ is a constant multiple of the identity. If U is any
orthogonal matrix such that X = UΛUT , then X+ = U Λ̃UT with Λ̃ = X+ and hence
X is a fixed point.

Theorem 5.10. For case 1, M contains only the single element (5.15) (which
equals λ1I) and hence in this case the algorithm does not have any infeasible fixed
points. For case 2, there is a single infeasible fixed point, (5.16). For case 3, there
are three infeasible fixed points, (5.16),

X =

(
λ1 0
0 λ2

)
,(5.17)

and

X =

(
λ2 0
0 λ1

)
.(5.18)
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Proof. We assume X ∈ M is a fixed point given by

X =

(
a b
b c

)

and consider all possibilities for a, b, and c.
Case 2. If a = 0 or c = 0, then det(X) ≥ 0 implies b = 0, which implies X is

feasible. If a > 0 > c or c > 0 > a, then det(X) < 0, which is not possible. If a < 0
and c < 0, then tr(X) < 0, which is not possible. Hence it remains to consider the
subcase a > 0 and c > 0.

Suppose a > 0 and c > 0. If b ≥ 0, X is feasible. If b < 0, then X+ = diag(a, c).
If a 
= c, then the orthonormal eigenvectors of X+, up to multiplication by −1, are
the standard orthonormal basis vectors for R2. This would imply X is diagonal,
contradicting b < 0. If a = c, by Lemma 5.9, the only X ∈ M which is a fixed point
is given by (5.16). As λ2 − λ1 < 0, X is infeasible.

Case 3. By considering the equalities tr(X) = λ1 + λ2 and det(X) = λ1λ2, it
follows that

X =

(
a b
b λ1 + λ2 − a

)
, b = ±

√
(λ1 − a)(a− λ2), and that a ∈ [λ2, λ1].

Suppose b ≤ 0. Then X+ = diag(a+, (λ1+λ2−a)+). X+ has repeated eigenvalues
if and only if a = (λ1+λ2)/2. If X+ does have repeated eigenvalues, then the diagonal
terms of X are equal and by Lemma 5.9 the only X ∈ M which is a fixed point is
given by (5.16). As λ2 − λ1 < 0, X is infeasible. If X+ has distinct eigenvalues, then
X must be one of the infeasible fixed points (5.17) or (5.18).

Suppose b > 0. If a ∈ [0, λ1 + λ2], X is feasible. It is not possible that a = λ1

or a = λ2 as then, b = 0. Hence it remains to consider a ∈ (λ1 + λ2, λ1) (the case
a ∈ (λ2, 0) follows from this case by replacing a with λ1 + λ2 − a). If X+ and X are
given by (5.1) and (5.2), respectively, then

X −X+ =

(
0 0
0 λ1 + λ2 − a

)
= U(Λ − Λ̃)UT .

This implies Λ − Λ̃ has distinct eigenvalues and hence that (up to multiplication of
its columns by −1)

U = I or U =

(
0 1
1 0

)
.

This implies X is diagonal but this contradicts the fact that b > 0 and hence this
subcase cannot occur.

Consider the infeasible fixed point X given by (5.16). The U satisfying (5.1) and
(5.2) is unique up to multiplication of its columns by −1. It is given by

U =
1√
2

(
1 1
−1 1

)
.

Notice that X+ is a constant multiple of the identity. If X+ = V Λ̃V T is any alternate
decomposition of X+, that is, if V is any orthogonal matrix that does not equal U
nor U with one or both of its columns multiplied by −1, then V ΛV T 
= X, and
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Theorem 5.10 implies (V ΛV T )+ 
= X+. Hence, Theorem 5.2 implies, using almost
any decomposition of X+, the algorithm is able to escape from X.

The only other infeasible fixed points are the diagonal ones given by (5.17) and
(5.18). For these fixed points, X+ has distinct eigenvalues, and alternate decom-
positions as a means of escape cannot be utilized. Despite this, the next theorem
shows that such fixed points are unstable and one can escape from them by adding
an arbitrarily small perturbation.

Theorem 5.11. Suppose X is the fixed point (5.17) or (5.18) (λ1 > 0 > λ2).
Then there exist a positive constant b̄ such that for each b satisfying 0 < b ≤ b̄ there
exist positive ā = ā(b) and c̄ = c̄(b) such that if |a| ≤ ā and |c| ≤ c̄, then replacing X
by X + P , where

P =

(
a b
b c

)
,

leads to escape from the fixed point X.
Proof. To prove the theorem we will show that if P is as above and (X + P )+ =

V Λ̃V T , then

‖X+ −X‖ > ‖(X + P )+ − V ΛV T ‖.(5.19)

Inequality (5.19) and Theorem 2.3 together imply we cannot return to X.
We assume the fixed point X is given by (5.17). (The proof of the (5.18) case is

identical except for a permutation of matrix rows and columns.)
Suppose a ≥ −λ1, b > 0, and c ≤ −λ2. Then

(X + P )+ =

(
λ1 + a b

b 0

)
.(5.20)

If Λ̃ = diag(λ̃1, λ̃2), then

λ̃1, λ̃2 =
λ1 + a±

√
(λ1 + a)2 + 4b2

2
.

By the unitary invariance of the Frobenius norm, (5.19) is equivalent to

λ2
2 > (λ1 − λ̃1)

2 + (λ2 − λ̃2)
2.

Substituting λ̃1 + λ̃2 = λ1 + a, we have

λ2
2 > (λ̃2 − a)2 + (λ2 − λ̃2)

2.(5.21)

For now, suppose a = 0. Noting that λ̃2 < 0 as b 
= 0, straightforward algebraic
manipulations imply (5.21) is equivalent to λ2 < λ̃2. Hence, for a = 0, (5.19) holds if

and only if λ1 −
√
λ2

1 + 4b2 > 2λ2. As λ1 > 0 > λ2, this inequality holds for all b > 0
small enough.

Each b > 0 that satisfies (5.21) when a = 0 also satisfies this inequality for all a
sufficiently small as the right-hand side of (5.21) depends continuously on a.

Suppose that for i = 1, 2, . . . , (a, b) = (ai, bi), bi > 0, satisfies (5.21) and that the
bi’s converge to zero. Examination of (5.21) and the expression for λ̃2 shows that the
ai’s must also converge to zero, and hence this theorem is the best we can do.

Theorem 5.11 can be readily extended to infeasible diagonal fixed points of prob-
lems of size n > 2.
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Table 6.1

SNIEP: A comparison of performance for different problem sizes n. i denotes the average
number of iterations and T denotes the average convergence time in CPU seconds.

n i T % solved
5 19 0.0016 100
10 18 0.0030 100
20 17 0.0075 100
100 12 0.15 100

6. Numerical experiments. This section contains some numerical results for
both the SNIEP and NIEP algorithms.

All computational results were obtained using a 3 GHz Pentium 4 machine. The
algorithms were coded using Matlab 7.0.

Throughout this section, when we say a matrix is “randomly generated” we mean
each entry of that matrix is randomly drawn from the uniform distribution on the
interval [0, 1]. When dealing with the SNIEP algorithm, all randomly generated ma-
trices are chosen symmetric.

For both algorithms, the initial starting Y is always randomly generated and the
convergence tolerance ε is set to 10−14.

A final note before presenting the results: Suppose M∩
◦
N is nonempty and X is

a member of this set. Then for any real orthogonal matrix Q that is sufficiently close

to the identity, QXQT is also a solution. In particular, if M∩
◦
N is nonempty, then

there will be multiple solutions. This comment applies to both SNIEPs and NIEPs.

6.1. SNIEP. This subsection starts with some results for randomly generated
SNIEPs. To ensure each problem is feasible, each desired spectrum is taken from a
randomly generated matrix.

Results for various problem sizes n are given in Table 6.1. For each value of n,
1000 problems were considered. The table contains the average number of iterations
required to find a solution, the average time required to find a solution, and the success
rate. As can be seen, the algorithm performed extremely well and was able to solve
every problem. In all cases, both the average number of iterations and the average
solution time was very small.

Remark 6.1. It is interesting to note that T increases with n, as would be
expected, while i decreases. A reason for this could be the following. As already
mentioned, for any choice of desired eigenvalues, M is a smooth manifold. In addition,
if the eigenvalues defining M are distinct, as they will be if they were taken from a
randomly generated matrix, then the dimension of M is n(n− 1)/2; see [14, Chapter
2]. The dimension of Sn is n(n + 1)/2. Hence,

dimM
dimSn

=
n− 1

n + 1
,

which is an increasing function of n. For larger n, M is “thicker” relative to the
ambient space and hence, intuitively, the corresponding SNIEP is easier to solve.

Suppose X1, X2, . . . , is a sequence of X’s produced by the SNIEP algorithm and
that these points converge to a solution X̄. Figure 6.1 shows a typical plot of ‖Xi−X̄‖
versus i. Convergence is clearly linear. This is to be expected: Suppose X̄ is a point
on the boundary of N and that the (Xi)+’s lie in a particular face of N . As M is
a manifold, near X̄ it looks locally like an affine subspace of Sn. As the face of N
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Table 6.2

SNIEP: A problem with repeated eigenvalues, λ = {3 − t, 1 + t,−1,−1,−1,−1}. i denotes the
average number of iterations and T denotes the average convergence time in CPU seconds. i and T
do not include the attempts that had not converged after 5000 iterations.

t i T % solved
0.25 480 0.061 100
0.5 470 0.061 97
0.75 340 0.050 65
0.95 310 0.046 59
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Fig. 6.1. Linear convergence of the SNIEP algorithm.

also looks locally like an affine subspace, we would expect local linear convergence
as alternating projections between two intersecting affine subspaces converge linearly
[11].

Randomly generated problems have properties that are not shared by all SNIEPs.
For example, as already mentioned, randomly generated problems have distinct eigen-
values. We next consider a problem with repeated eigenvalues, namely λ = {3− t, 1+
t,−1,−1,−1,−1} for 0 < t < 1. The t = 1/2 version of the problem is also consid-
ered in [5], where a numerical solution is sought via the gradient flow approach of
that paper. An analytic solution to this problem is given in [20].

Notice that for any value of t the desired eigenvalues sum to zero and hence
there exist arbitrarily small perturbations of the spectrum which lead to an infeasible
SNIEP. In particular this problem cannot have any solutions in the interior of N .
We have tried the SNIEP algorithm on a number of other problems with repeated
eigenvalues with excellent results. This is the hardest problem we have encountered
so far.

The results of applying the algorithm to the problem for various values of t are
given in Table 6.2. They are based on running the algorithm 100 times for each value
of t.

First, the results indicate that the SNIEP algorithm is not always successful in
finding a solution. However, they also show that the algorithm can still be quite
successful if a number of initial conditions are tried. It is interesting to note that the
algorithm becomes more sensitive to the choice of the initial condition the larger t is.
Notice that as t → 1, the eigenvalues 3− t and 1+ t both converge to the same value,
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Table 6.3

NIEP: A comparison of performance for different problem sizes n. i denotes the average number
of iterations and T denotes the average convergence time in CPU seconds. i and T do not include
the problems that had not converged after 5000 iterations.

n i T % solved
5 26 0.011 99.7
10 44 0.045 99.8
20 48 0.12 99.8
100 200 12 96.6

and the dimension of the manifold M (which depends solely on the multiplicities of
the eigenvalues) goes from 9 when 0 < t < 1 to 8 when t = 1 [14, Chapter 2].

Aside: Regarding initial conditions, as noted before, both the SNIEP and NIEP
algorithms use a nonnegative initial starting point. This is important and, in fact,
the performance of neither algorithm is as good if non-nonnegative initial conditions
are used.

Here is a solution that was found to the t = 1/2 problem:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
√

3
2 0 1

0 0 1 1
2 1 0

0 1 0 1
2 1 0√

3
2

1
2

1
2 0 1

2

√
3
2

0 1 1 1
2 0 0

1 0 0
√

3
2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This solution is different to both the solution in [20] and the solution in [5]. A number
of other solutions were also found.

Here is a X+ corresponding to an infeasible X (again for the t = 1/2 problem):

X+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 0 0

√
3
2

0 0 7
8

7
8

7
8 0

0 7
8 0 7

8
7
8 0

0 7
8

7
8 0 7

8 0

0 7
8

7
8

7
8 0 0√

3
2 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues of this matrix are λ̃ = {2 5
8 , 1

1
2 ,−

7
8 ,−

7
8 ,−

7
8 ,−1}.

6.2. NIEP. This subsection starts with some results for randomly generated
NIEPs. Again, to ensure each problem is feasible, each desired spectrum is taken
from a randomly generated matrix. Results are given in Table 6.3.

As can be seen, the results are again very good, with almost all problems solved.
The results indicate that NIEPs are harder to solve than SNIEPs. Also, the

number of iterations, time, and time per iteration are greater. Part of the reason for
an increase in time per iteration will be the extra computation required to calculate
the least squares matching component of each PM(U, T ) calculation; see (4.6). (For
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SNIEPs, the corresponding step is easy: the eigenvalues are real and just need to be
sorted in decreasing order.)

For the NIEPs, both i and T increased with n.
The final problem we consider is taken from [8]. It is to find a stochastic ma-

trix with (presumedly randomly generated) spectrum λ = {1.0000,−0.2608, 0.5046,
0.6438,−0.4483}. Furthermore the problem requires the matrix to have zeros in cer-
tain positions. In the context of Markov chains, we require the states to form a ring
and that each state be linked to at most two immediate neighbors. The zero pattern
is given by the zeros of the following matrix:

Z =

⎛
⎜⎜⎜⎜⎝

1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1

⎞
⎟⎟⎟⎟⎠.(6.1)

Our algorithm as it stands is not able to solve this problem though it is able to
do so if a simple modification is made. Using Z from (6.1), define

Ñ = {A ∈ Rn×n | Aij ≥ 0 and Aij = 0 if Zij = 0}.

Ñ is still a convex set. In the NIEP algorithm, replacing projection onto N by pro-
jection onto Ñ gives solutions (nonnegative matrices) with zeros in the desired places.
Using the transformation discussed in the introduction of the paper, solutions found
by the algorithm can be converted into stochastic matrices with the same spectrum.
Note that this transformation preserves zeros.

Using this methodology readily produced many solutions. An example is

X =

⎛
⎜⎜⎜⎜⎝

0.6931 0.2887 0 0 0.0182
0.1849 0.2422 0.5729 0 0

0 0.5476 0.3622 0.0902 0
0 0 0.5437 0.1233 0.3330

0.3712 0 0 0.6103 0.0185

⎞
⎟⎟⎟⎟⎠.

Another solution is

X =

⎛
⎜⎜⎜⎜⎝

0.8634 0.0431 0 0 0.0936
0.6224 0 0.3776 0 0

0 0.4935 0.1564 0.3501 0
0 0 0.1107 0.0115 0.8778

0.3452 0 0 0.2467 0.4080

⎞
⎟⎟⎟⎟⎠.

Notice that this latter solution has an extra zero. While this X still solves the
problem, by further modifying N it is possible to ensure zeros appear only in the
places specified by (6.1) and nowhere else.

For example, using

Ñ = {A ∈ Rn×n | Aij = 0 if Zij = 0 and Aij ≥ δ otherwise},

with δ > 0 a small constant, does the trick. Note that the stochastic matrix transfor-
mation leaves positive entries positive.



NONNEGATIVE INVERSE EIGENVALUE PROBLEMS 211

7. Conclusion. In this paper we have presented two related numerical methods,
one for the NIEP, which can also be used to solve the inverse eigenvalue problem for
stochastic matrices, and another for the SNIEP. The ideas used in the paper should
also be applicable to many other inverse eigenvalue problems, including other problems
involving nonsymmetric matrices.

8. Appendix. Local uniqueness and smoothness of projections. This ap-
pendix contains some supplementary results regarding projection onto the symmetric
version of M; see (3.2). While these results are not used in the main body of the
paper, we believe they are interesting and worth mentioning. We would also expect
them to be useful for other inverse eigenvalue problems.

Theorem 8.1. There is an open neighborhood of M from which projections onto
M are unique.

Proof. To ease the presentation we will assume Λ has only two distinct eigenvalues.
(The general case follows by similar reasoning.) Let m be such that λm > λm+1. If Z ∈
M, then there exists a neighborhood of Z such that each matrix in this neighborhood
has distinct mth and m+ 1th (ordered) eigenvalues. Suppose Y is an element in this
neighborhood with eigenvalues λ̃1 ≥ · · · ≥ λ̃n. It follows from the proof of Theorem
3.2 that if X is a projection of Y onto M, then there exist orthonormal vectors
u1, . . . , un such that Y =

∑n
i=1 λ̃iuiu

T
i and X = λ1

∑m
i=1 uiu

T
i +λm+1

∑n
i=m+1 uiu

T
i .

Note that here we have used the fact that λ̃m and λ̃m+1 are distinct. The proof will
be complete if we can show X does not depend on the particular decomposition of Y .

Suppose eigenvalue λ̃j has multiplicity k with λ̃j = · · · = λ̃j+k−1. If ûj , . . . , ûj+k−1

is another set of orthonormal vectors that span the eigenspace corresponding to
λ̃j , then there exists a k × k orthogonal matrix Θ such that [ûj , . . . , ûj+k−1] =
[uj , . . . , uj+k−1]Θ. Consequently,

j+k−1∑
i=j

ûiû
T
i =

j+k−1∑
i=j

uiu
T
i .

The separation of eigenvalues implies the indices j, . . . , j + k − 1 are all either less
than or equal to m, or, greater than or equal to m + 1. It follows that X does not
depend on the particular decomposition of Y .

Theorem 8.2. There is an open neighborhood of M from which the (unique)
projections onto M are smooth.

Proof (Outline). M is a submanifold of Sn and hence each point in M is in the
image of a local parametrization of M. The result can be shown to hold locally by
using such a parametrization, using a condition necessary for a point to be a projection
(if X is a projection of Y , then X−Y is normal to the tangent space of M at X), and
employing the implicit function theorem. In trying to satisfy the conditions of the
implicit function theorem, the requirement that points being projected are sufficiently
close to M appears.

As a consequence of the above mentioned necessary condition not being sufficient,
for the proof to work it appears to be that it must be known a priori that in a
neighborhood with unique projections, the projection operation is continuous. This
is indeed the case as can be shown via a contradiction argument.

The proof of the above theorem does not use any properties of M aside from the
fact that it is a (closed) submanifold and that, near the set, projections are unique.
(The projection result that uniqueness implies continuity holds for projections onto
any closed set.) Hence, Theorem 8.2 also holds for any set with these two properties.
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