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Abstract

Bregman divergences play a central role in the design and analysis of a range of
machine learning algorithms through a handful of popular theorems. We present
a new theorem which shows that “Bregman distortions” (employing a potentially
non-convex generator) may be exactly re-written as a scaled Bregman divergence
computed over transformed data. This property can be viewed from the standpoints
of geometry (a scaled isometry with adaptive metrics) or convex optimization (re-
lating generalized perspective transforms). Admissible distortions include geodesic
distances on curved manifolds and projections or gauge-normalisation.
Our theorem allows one to leverage to the wealth and convenience of Bregman
divergences when analysing algorithms relying on the aforementioned Bregman
distortions. We illustrate this with three novel applications of our theorem: a
reduction from multi-class density ratio to class-probability estimation, a new
adaptive projection free yet norm-enforcing dual norm mirror descent algorithm,
and a reduction from clustering on flat manifolds to clustering on curved manifolds.
Experiments on each of these domains validate the analyses and suggest that the
scaled Bregman theorem might be a worthy addition to the popular handful of
Bregman divergence properties that have been pervasive in machine learning.

1 Introduction: Bregman divergences as a reduction tool

Bregman divergences play a central role in the design and analysis of a range of machine learning
(ML) algorithms. In recent years, Bregman divergences have arisen in procedures for convex
optimisation [4], online learning [9, Chapter 11] clustering [3], matrix approximation [13], class-
probability estimation [7, 26, 29, 28], density ratio estimation [35], boosting [10], variational inference
[18], and computational geometry [5]. Despite these being very different applications, many of
these algorithms and their analyses basically rely on three beautiful analytic properties of Bregman
divergences, properties that we summarize for differentiable scalar convex functions ϕ with derivative
ϕ′, conjugate ϕ?, and divergence Dϕ:

• the triangle equality: Dϕ(x‖y) +Dϕ(y‖z)−Dϕ(x‖z) = (ϕ′(z)− ϕ′(y))(x− y);

• the dual symmetry property: Dϕ(x‖y) = Dϕ?(ϕ′(y)‖ϕ′(x));

• the right-centroid (population minimizer) is the average: arg minµ E[Dϕ(X‖µ)] = E[X].

Casting a problem as a Bregman minimisation allows one to employ these properties to simplify
analysis; for example, by interpreting mirror descent as applying a particular Bregman regulariser,
Beck and Teboulle [4] relied on the triangle equality above to simplify its proof of convergence.

Another intriguing possibility is that one may derive reductions amongst learning problems by
connecting their underlying Bregman minimisations. Menon and Ong [24] recently established how
(binary) density ratio estimation (DRE) can be exactly reduced to class-probability estimation (CPE).
This was facilitated by interpreting CPE as a Bregman minimisation [7, Section 19], and a new
property of Bregman divergences — Menon and Ong [24, Lemma 2] showed that for any twice
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Problem A Problem B that Theorem 1 reduces A to Reference
Multiclass density-ratio estimation Multiclass class-probability estimation §3, Lemma 2
Online optimisation on Lq ball Convex unconstrained online learning §4, Lemma 4
Clustering on curved manifolds Clustering on flat manifolds §5, Lemma 5

Table 1: Applications of our scaled Bregman Theorem (Theorem 1) — “Reduction” encompasses
shortcuts on algorithms and on analyses (algorithm/proof A uses algorithm/proof B as subroutine).

differentiable scalar convex ϕ, for g(x) = 1 + x and ϕ̌(x)
.
= g(x) · ϕ(x/g(x)),

g(x) ·Dϕ(x/g(x)‖y/g(y)) = Dϕ̌(x‖y) ,∀x, y. (1)

Since the binary class-probability function η(x) = Pr(Y = 1|X = x) is related to the class-
conditional density ratio r(x) = Pr(X = x|Y = 1)/Pr(X = x|Y = −1) via Bayes’ rule as
η(x) = r(x)/g(r(x)) ([24] assume Pr(Y = 1) = 1/2), any η̂ with small Dϕ(η‖η̂) implicitly
produces an r̂ with low Dϕ̌(r‖r̂) i.e. a good estimate of the density ratio. The Bregman property of
eq. (1) thus establishes a reduction from DRE to CPE. Two questions arise from this analysis: can we
generalise eq. (1) to other g(·), and if so, can we similarly relate other problems to each other?

This paper presents a new Bregman identity (Theorem 1), the scaled Bregman theorem, a significant
generalisation of Menon and Ong [24, Lemma 2]. It shows that general distortionsDϕ̌ – which are not
necessarily convex, positive, bounded or symmetric – may be re-expressed as a Bregman divergence
Dϕ computed over transformed data, and thus inherit their good properties despite appearing prima
facie to be a very different object. This transformation can be as simple as a projection or normalisation
by a gauge, or more involved like the exponential map on lifted coordinates for a curved manifold.
Our theorem can be summarized in two ways. The first is geometric as it specializes to a scaled
isometry involving adaptive metrics. The second calls to a fundamental object of convex analysis,
generalized perspective transforms [11, 22, 23]. Indeed, our theorem states when

"the perspective of a Bregman divergence equals the distortion of a perspective",
for a perspective (ϕ̌ in eq. 1) which is analytically a generalized perspective transform but does
not rely on the same convexity and sign requirements as in Maréchal [22, 23]. We note that the
perspective of a Bregman divergence (the left-hand side of eq. 1) is a special case of conformal
divergence [27], yet to our knowledge it has never been formally defined. As with the aforementioned
key properties of Bregman divergences, Theorem 1 has potentially wide implications for ML. We
give three such novel applications to vastly different problems (see Table 1):

• a reduction of multiple density ratio estimation to multiclass-probability estimation (§3), general-
ising the results of [24] for the binary label case,

• a projection-free yet norm-enforcing mirror gradient algorithm (enforced norms are those of
mirrored vectors and of the offset) with guarantees for adaptive filtering (§4), and

• a seeding approach for clustering on positively or negatively (constant) curved manifolds based
on a popular seeding for flat manifolds and with the same approximation guarantees (§5).

Experiments on each of these domains (§6) validate our analysis. The Supplementary Material (SM)
details the proofs of all results, provides the experimental results in extenso and some additional
(nascent) applications to exponential families and computational information geometry.

2 Main result: the scaled Bregman theorem

In the remaining, [k]
.
= {0, 1, ..., k} and [k]∗

.
= {1, 2, ..., k} for k ∈ N. For any differentiable (but

not necessarily convex) ϕ : X→ R, we define the Bregman distortion Dϕ as

Dϕ(x‖y)
.
= ϕ(x)− ϕ(y)− (x− y)>∇ϕ(y) . (2)

If ϕ is convex, Dϕ is the familiar Bregman divergence with generator ϕ. Without further ado, we
present our main result.

Theorem 1 Let, ϕ : X→ R be convex differentiable, and g : X→ R∗ be differentiable. Then,

g(x) ·Dϕ

(
(1/g(x)) · x

∥∥ (1/g(y)) · y
)

= Dϕ̌

(
x
∥∥ y) ,∀x,y ∈ X , (3)

where ϕ̌(x)
.
= g(x) · ϕ ((1/g(x)) · x) , (4)
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X Dϕ (x‖y) Dϕ̌ (x‖y) g(x)

Rd 1
2 · ‖x− y‖

2
2 ‖x‖2 · (1− cos∠x,y) ‖x‖2

Rd 1
2 · (‖x‖

2
q − ‖y‖2q)−

∑
i

(xi−yi)·sign(yi)·|yi|q−1

‖y‖q−2
q

W · ‖x‖q −W ·
∑
i
xi·sign(yi)·|yi|q−1

‖y‖q−1
q

‖x‖q/W
Rd × R 1

2 · ‖x
S − yS‖22

‖x‖2
sin ‖x‖2 · (1− cosDG(x,y)) ‖x‖2/ sin ‖x‖2

Rd × C 1
2 · ‖x

H − yH‖22 − ‖x‖2
sinh ‖x‖2 · (coshDG(x,y)− 1) −‖x‖2/ sinh ‖x‖2

Rd+
∑
i xi log xi

yi
− 1>(x− y)

∑
i xi log xi

yi
− d · E[X] · log E[X]

E[Y] 1>x

Rd+
∑
i
xi

yi
−
∑
i log xi

yi
− d

∑
i

xi(
∏

j yj)1/d

yi
− d(

∏
j xj)

1/d
∏
i x

1/d
i

S(d) tr (X log X − X log Y)− tr (X) + tr (Y) tr (X log X − X log Y)− tr (X) · log tr(X)
tr(Y) tr (X)

S(d) tr
(

XY−1
)
− log det(XY−1)− d det(Y1/d)tr

(
XY−1

)
− d · det(X1/d) det(X1/d)

Table 2: Examples of (Dϕ, Dϕ̌, g) for which eq. (3) holds. Function xS .
= f(x) : Rd → Rd+1 and

xH
.
= f(x) : Rd → Rd × C are the Sphere and Hyperbolic lifting maps defined in SM, eqs. 51, 62.

W > 0 is a constant. DG denotes the Geodesic distance on the sphere (for xS) or the hyperboloid
(for xH ). S(d) is the set of symmetric real matrices. Related proofs are in SM, Section III.

if and only if (i) g is affine on X, or (ii) for every z ∈ Xg
.
= {(1/g(x)) · x : x ∈ X},

ϕ (z) = z>∇ϕ(z) . (5)

Table 2 presents some examples of (sometimes involved) triplets (Dϕ, Dϕ̌, g) for which eq. (3) holds;
related proofs are in Appendix III. Depending on ϕ and g, there are at least two ways to summarize
Theorem 1. One is geometric: Theorem 1 sometimes states a scaled isometry between X and Xg . The
other one comes from convex optimisation: Theorem 1 defines generalized perspective transforms on
Bregman divergences and roughly states the identity between the perspective transform of a Bregman
divergence and the Bregman distortion of the perspective transform. Appendix VIII gives more
details for both properties. We refer to Theorem 1 as the scaled Bregman theorem.

Remark. If Xg is a vector space, ϕ satisfies eq. (5) if and only if it is positive homogeneous of
degree 1 on Xg (i.e. ϕ(αz) = α · ϕ(z) for any α > 0) from Euler’s homogenous function theorem.
When Xg is not a vector space, this only holds for α such that αz ∈ Xg as well. We thus call the
gradient condition of eq. (5) “restricted positive homogeneity” for simplicity.

Remark. Appendix IV gives a “deep composition” extension of Theorem 1.

For the special case where X = R, and g(x) = 1 + x, Theorem 1 is exactly [24, Lemma 2] (c.f. eq.
1). We wish to highlight a few points with regard to our more general result. First, the “distortion”
generator ϕ̌ may be1 non-convex, as the following illustrates.

Example. Suppose ϕ(x) = (1/2)‖x‖22, the generator for squared Euclidean distance. Then, for
g(x) = 1 + 1>x, we have ϕ̌(x) = (1/2) · ‖x‖22/(1 + 1>x), which is non-convex on X = Rd.

When ϕ̌ is non-convex, the right hand side in eq. (3) is an object that ostensibly bears only a
superficial similarity to a Bregman divergence; it is somewhat remarkable that Theorem 1 shows
this general “distortion” between a pair (x,y) to be entirely equivalent to a (scaling of a) Bregman
divergence between some transformation of the points. Second, when g is linear, eq. (3) holds for any
convex ϕ (This was the case considered in [24]). When g is non-linear, however, ϕ must be chosen
carefully so that (ϕ, g) satisfies the restricted homogeneity conditon2 of eq. (5). In general, given a
convex ϕ, one can “reverse engineer” a suitable g, as illustrated by the following example.

Example. Suppose3 ϕ(x) = (1 + ‖x‖22)/2. Then, eq. (5) requires that ‖x‖22 = 1 for every x ∈ Xg ,
i.e. Xg is (a subset of) the unit sphere. This is afforded by the choice g(x) = ‖x‖2.

Third, Theorem 1 is not merely a mathematical curiosity: we now show that it facilitates novel
results in three very different domains, namely estimating multiclass density ratios, constrained
online optimisation, and clustering data on a manifold with non-zero curvature. We discuss nascent
applications to exponential families and computational geometry in Appendices V and VI.

1Evidently, ϕ̌ is convex iff g is non-negative, by eq. (3) and the fact that a function is convex iff its Bregman
“distortion” is nonnegative [6, Section 3.1.3].

2We stress that this condition only needs to hold on Xg ⊆ X; it would not be really interesting in general for
ϕ to be homogeneous everywhere in its domain, since we would basically have ϕ̌ = ϕ.

3The constant 1/2 added in ϕ does not change Dϕ, since a Bregman divergence is invariant to affine terms;
removing this however would make the divergences Dϕ and Dϕ̌ differ by a constant.
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3 Multiclass density-ratio estimation via class-probability estimation

Given samples from a number of densities, density ratio estimation concerns estimating the ratio
between each density and some reference density. This has applications in the covariate shift problem
wherein the train and test distributions over instances differ [33]. Our first application of Theorem 1
is to show how density ratio estimation can be reduced to class-probability estimation [7, 29].

To proceed, we fix notation. For some integer C ≥ 1, consider a distribution P(X,Y) over an
(instance, label) space X × [C]. Let ({Pc}Cc=1,π) be densities giving P(X|Y = c) and P(Y = c)
respectively, and M giving P(X) accordingly. Fix c∗ ∈ [C] a reference class, and suppose for
simplicity that c∗ = C. Let π̃ ∈ 4C−1 such that π̃c

.
= πc/(1 − πC). Density ratio estimation

[35] concerns inferring the vector r(x) ∈ RC−1 of density ratios relative to C, with rc(x)
.
=

P(X = x|Y = c)/P(X = x|Y = C) , while class-probability estimation [7] concerns inferring the
vector η(x) ∈ RC−1 of class-probabilities, with ηc(x)

.
= P(Y = c|X = x)/π̃c . In both cases, we

estimate the respective quantities given an iid sample S ∼ P(X,Y)m (m is the training sample size).

The genesis of the reduction from density ratio to class-probability estimation is the fact that r(x) =
(πC/(1 − πC)) · η(x)/ηC(x). In practice one will only have an estimate η̂, typically derived by
minimising a suitable loss on the given S [37], with a canonical example being multiclass logistic
regression. Given η̂, it is natural to estimate the density ratio via:

r̂(x) = η̂(x)/η̂C(x) . (6)
While this estimate is intuitive, to establish a formal reduction we must relate the quality of r̂ to
that of η̂. Since the minimisation of a suitable loss for class-probability estimation is equivalent to a
Bregman minimisation [7, Section 19], [37, Proposition 7], this is however immediate by Theorem 1:

Lemma 2 Given a class-probability estimator η̂ : X→ [0, 1]C−1, let the density ratio estimator r̂ be
as per Equation 6. Then for any convex differentiable ϕ : [0, 1]C−1 → R,

EX∼M [Dϕ(η(X)‖η̂(X))] = (1− πC) · EX∼PC

[
Dϕ†(r(X)‖r̂(X))

]
(7)

where ϕ† is as per Equation 4 with g(x)
.
= πC/(1− πC) + π̃>x .

Lemma 2 generalises [24, Proposition 3], which focussed on the binary case with π = 1/2 (See
Appendix VII for a review of that result). Unpacking the Lemma, the LHS in Equation 7 represents
the object minimised by some suitable loss for class-probability estimation. Since g is affine, we
can use any convex, differentiable ϕ, and so can use any suitable class-probability loss to estimate
η̂. Lemma 2 thus implies that producing η̂ by minimising any class-probability loss equivalently
produces an r̂ as per Equation 6 that minimises a Bregman divergence to the true r. Thus, Theorem 1
provides a reduction from density ratio to multiclass probability estimation.

We now detail two applications where g(·) is no longer affine, and ϕ must be chosen more carefully.

4 Dual norm mirror descent: projection-free online learning on Lp balls

A substantial amount of work in the intersection of ML and convex optimisation has focused on
constrained optimisation within a ball [32, 14]. This optimisation is typically via projection operators
that can be expensive to compute [17, 19]. We now show that gauge functions can be used as an
inexpensive alternative, and that Theorem 1 easily yields guarantees for this procedure in online
learning. We consider the adaptive filtering problem, closely related to the online least squares
problem with linear predictors [9, Chapter 11]. Here, over a sequence of T rounds, we observe some
xt ∈ X. We must then predict a target value ŷt = w>t−1xt using our current weight vector wt−1.
The true target yt = u>xt+ εt is then revealed, where εt is some unknown noise, and we may update
our weight to wt. Our goal is to minimise the regret of the sequence {wt}Tt=0,

R(w1:T |u)
.
=

T∑
t=1

(
u>xt −w>t−1xt

)2 − T∑
t=1

(
u>xt − yt

)2
. (8)

Let q ∈ (1, 2] and p be such that 1/p + 1/q = 1. For ϕ .
= (1/2) · ‖x‖2q and loss `t(w) =

(1/2) · (yt −w>xt)2, the p-LMS algorithm [20] employs the stochastic mirror gradient updates:

wt
.
= argmin

w
ηt · `t(w) +Dϕ(w‖wt−1) = (∇ϕ)−1 (∇ϕ(wt−1)− ηt · ∇`t) , (9)
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where ηt is a learning rate to be specified by the user. [20, Theorem 2] shows that for appropriate ηt,
one has R(w1:T |u) ≤ (p− 1) ·maxx∈X ‖x‖2p · ‖u‖2q .

The p-LMS updates do not provide any explicit control on ‖wt‖, i.e. there is no regularisation.
Experiments (Section §6) suggest that leaving ‖wt‖ uncontrolled may not be a good idea as the
increase of the norm sometimes prevents (significant) updates (eq. (9)). Also, the wide success of
regularisation in ML calls for regularised variants that retain the regret guarantees and computational
efficiency of p-LMS. (Adding a projection step to eq. (9) would not achieve both.) We now do just
this. For fixed W > 0, let ϕ .

= (1/2) · (W 2 + ‖x‖2q), a translation of that used in p-LMS. Invoking
Theorem 1 with the admissible gq(x) = ||x||q/W yields ϕ̌ .

= ϕ̌q = W‖x‖q (see Table 2). Using
the fact that Lp and Lq norms are dual of each other, we replace eq. (9) by:

wt
.
= ∇ϕ̌p (∇ϕ̌q(wt−1)− ηt · ∇`t) . (10)

See Lemma A of the Appendix for the simple forms of∇ϕ̌{p,q}. We call update (10) the dual norm
p-LMS (DN-p-LMS) algorithm, noting that the dual refers to the polar transform of the norm, and g
stems from a gauge normalization for Bq(W ), the closed Lq ball with radius W > 0. Namely, we
have γGAU(x) = W/‖x‖q = g(x)−1 for the gauge γGAU(x)

.
= sup{z ≥ 0 : z · x ∈ Bq(W )}, so

that ϕ̌q implicitly performs gauge normalisation of the data. This update is no more computationally
expensive than eq. (9) — we simply need to compute the p- and q-norms of appropriate terms — but,
crucially, automatically constrains the norms of wt and its image by∇ϕ̌q .

Lemma 3 For the update in eq. (10), ‖wt‖q = ‖∇ϕ̌q(wt)‖p = W, ∀t > 0.

Lemma 3 is remarkable, since nowhere in eq. (10) do we project onto the Lq ball. Nonetheless, for
the DN-p-LMS updates to be principled, we need a similar regret guarantee to the original p-LMS.
Fortunately, this may be done using Theorem 1 to exploit the original proof of [20]. For any u ∈ Rd,
define the q-normalised regret of {wt}Tt=0 by

Rq(w1:T |u)
.
=

T∑
t=1

(
(1/gq(u)) · u>xt −w>t−1xt

)2 − T∑
t=1

(
(1/gq(u)) · u>xt − yt

)2
.(11)

We have the following bound on Rq for the DN-p-LMS updates (We cannot expect a bound on the
unnormalised R(·) of eq. (8), since by Lemma 3 we can only compete against norm W vectors).

Lemma 4 Pick any u ∈ Rd, p, q satisfying 1/p + 1/q = 1 and p > 2, and W > 0. Suppose
‖xt‖p ≤ Xp and |yt| ≤ Y,∀t ≤ T . Let {wt} be as per eq. (10), using learning rate

ηt
.
= γt ·

W

4(p− 1) max{W,Xp}XpW + |yt −w>t−1xt|Xp
, (12)

for any desired γt ∈ [1/2, 1]. Then,

Rq(w1:T |u) ≤ 4(p− 1)X2
pW

2 + (16p− 8) max{W,Xp}X2
pW + 8Y X2

p . (13)

Several remarks can be made. First, the bound depends on the maximal signal value Y , but this is the
maximal signal in the observed sequence, so it may not be very large in practice; if it is comparable to
W , then our bound is looser than [20] by just a constant factor. Second, the learning rate is adaptive
in the sense that its choice depends on the last mistake made. There is a nice way to represent the
“offset” vector ηt · ∇`t in eq. (10), since we have, for Q′′ .= 4(p− 1) max{W,Xp}XpW ,

ηt · ∇`t = W ·
|yt −w>t−1xt|Xp

Q′′ + |yt −w>t−1xt|Xp
· sign(yt −w>t−1xt) ·

(
1

Xp
· x
)

, (14)

so the Lp norm of the offset is actually equal to W · Q, where Q ∈ [0, 1] is all the smaller as the
vectorw. gets better. Hence, the update in eq. (10) controls in fact all norms (that ofw., its image by
∇ϕ̌q and the offset). Third, because of the normalisation of u, the bound actually does not depend on
u, but on the radius W chosen for the Lq ball.
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Sphere Hyperboloid

x

Sd

Lifting map

Rd+1

Spherical k-means
(in Sd) (in Rd+1)

k-means(++)

xS

expq(x)

TqSd

q

Sphere Sd

cRd

yDG(y, c)

Drec(y, c)

(in Rd+1)

k-means(++)

xH

Im(xd+1)

Lifting 
map

Figure 1: (L) Lifting map into Rd × R for clustering on the sphere with k-means++. (M) Drec in Eq.
(15) in vertical thick red line. (R) Lifting map into Rd × C for the hyperboloid.

5 Clustering on a curved manifold via clustering on a flat manifold

Our final application can be related to two problems that have received a steadily growing interest
over the past decade in unsupervised ML: clustering on a non-linear manifold [12], and subspace
custering [36]. We consider two fundamental manifolds investigated by [16] to compute centers of
mass from relativistic theory: the sphere Sd and the hyperboloid Hd, the former being of positive
curvature, and the latter of negative curvature. Applications involving these specific manifolds are
numerous in text processing, computer vision, geometric modelling, computer graphics, to name a
few [8, 12, 15, 21, 30, 34]. We emphasize the fact that the clustering problem has significant practical
impact for d as small as 2 in computer vision [34].

The problem is non-trivial for two separate reasons. First, the ambient space, i.e. the space of
registration of the input data, is often implicitly Euclidean and therefore not the manifold [12]: if the
mapping to the manifold is not carefully done, then geodesic distances measured on the manifold may
be inconsistent with respect to the ambient space. Second, the fact that the manifold has non-zero
curvature essentially prevents the direct use of Euclidean optimization algorithms [38] — put simply,
the average of two points that belong to a manifold does not necessarily belong to the manifold, so
we have to be careful on how to compute centroids for hard clustering [16, 27, 30, 31].

What we show now is that Riemannian manifolds with constant sectional curvature may be clustered
with the k-means++ seeding for flat manifolds [2], without even touching a line of the algorithm.
To formalise the problem, we need three key components of Riemannian geometry: tangent planes,
exponential map and geodesics [1]. We assume that the ambient space is a tangent plane to the
manifold M, which conveniently makes it look Euclidean (see Figure 1). The point of tangency is
called q, and the tangent plane TqM. The exponential map, expq : TqM→M, performs a distance
preserving mapping: the geodesic length between q and expq(x) in M is the same as the Euclidean
length between q and x in TqM. Our clustering objective is to find C

.
= {c1, c2, ...ck} ⊂ M such

that Drec(S : C) = infC′⊂M,|C′|=kDrec(S,C′), with

Drec(S,C)
.
=
∑
i∈[m]∗

minj∈[k]∗ Drec(expq(xi), cj) , (15)

where Drec is a reconstruction loss, a function of the geodesic distance between expq(xi) and cj .
We use two loss functions defined from [16] and used in ML for more than a decade [12]:

R+ 3 Drec(y, c)
.
=

{
1− cosDG(y, c) for M = Sd

coshDG(y, c)− 1 for M = Hd . (16)

Here, DG(y, c) is the corresponding geodesic distance of M between y and c. Figure 1 shows
that Drec(y, c) is the orthogonal distance between TcM and y when M = Sd. The solution to the
clustering problem in eq. (15) is therefore the one that minimizes the error between tangent planes
defined at the centroids, and points on the manifold.

It turns out that both distances in 16 can be engineered as Bregman divergences via Theorem 1, as seen
in Table 2. Furthermore, they imply the same ϕ, which is just the generator of Mahalanobis distortion,
but a different g. The construction involves a third party, a lifting map (lift(.)) that increases the
dimension by one. The Sphere lifting map Rd 3 x 7→ xS ∈ Rd+1 is indicated in Table 3 (left). The
new coordinate depends on the norm of x. The Hyperbolic lifting map, Rd 3 x 7→ xH ∈ Rd × C,
involves a pure imaginary additional coordinate, is indicated in in Table 3 (right, with a slight abuse
of notation) and Figure 1. Both xS and xH live on a d-dimensional manifold, depicted in Figure 1.
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(Sphere) Sk-means++(S, k) (Hyperboloid) Hk-means++(S, k)
Input: dataset S ⊂ TqSd, k ∈ N∗;
Step 1: S+ ← {g−1

S (xS) · xS : xS ∈ lift(S)};
Step 2: C+ ← k-means++_seeding(S+, k);
Step 3: C← exp−1

q (C+);
Output: Cluster centers C ∈ TqSd;

Input: dataset S ⊂ TqHd, k ∈ N∗;
Step 1: S+ ← {g−1

H (xH)·xH : xH ∈ lift(S)};
Step 2: C+ ← k-means++_seeding(S+, k);
Step 3: C← exp−1

q (C+);
Output: Cluster centers C ∈ TqHd;

xS
.
= [x1 x2 · · · xd ‖x‖2 cot ‖x‖2] xH

.
= [x1 x2 · · · xd i‖x‖2 coth ‖x‖2]

gS(xS)
.
= ‖x‖2/ sin ‖x‖2 gH(xH)

.
= −‖x‖2/ sinh ‖x‖2

Table 3: How to use k-means++ to cluster points on the sphere (left) or the hyperboloid (right).
(p, q) = (1.17, 6.9) (p, q) = (2.0, 2.0) (p, q) = (6.9, 1.17) (p, q) = (1.17, 6.9) (p, q) = (2.0, 2.0) (p, q) = (6.9, 1.17)
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Table 4: Summary of the experiments displaying (y) the error of p-LMS minus error of DN-p-LMS
(when > 0, DN-p-LMS beats p-LMS) as a function of t, in the setting of [20], for various values of
(p, q) (columns). Left panel: (D)ense target; Right panel: (S)parse target.

When they are scaled by the corresponding g.(.), they happen to be mapped to Sd or Hd, respectively,
by what happens to be the manifold’s exponential map for the original x (see Appendix III).

Theorem 1 is interesting in this case because ϕ corresponds to a Mahalanobis distortion: this shows
that k-means++ seeding [2, 25] can be used directly on the scaled coordinates (g−1

{S,H}(x
{S,H}) ·

x{S,H}) to pick centroids that yield an approximation of the global optimum for the clustering
problem on the manifold which is just as good as the original Euclidean approximation bound [2].

Lemma 5 The expected potential of Sk-means++ seeding over the random choices of C+ satisfies:

E[Drec(S : C)] ≤ 8(2 + log k) · inf
C′∈Sd

Drec(S : C′) . (17)

The same approximation bounds holds for Hk-means++ seeding on the hyperboloid (C′,C+ ∈ Hd).

Lemma 5 is notable since it was only recently shown that such a bound is possible for the sphere [15],
and to our knowledge, no such approximation quality is known for clustering on the hyperboloid [30,
31]. Notice that Lloyd iterations on non-linear manifolds would require repetitive renormalizations
to keep centers on the manifold [12], an additional disadvantage compared to clustering on flat
manifolds that {G,K}-means++ seedings do not bear.

6 Experimental validation

We present some experiments validating our theoretical analysis for the applications above.

Multiple density ratio estimation. See Appendix IX for experiments in this domain.

Dual norm p-LMS (DN-p-LMS). We ran p-LMS and the DN-p-LMS of §4 on the experimental
setting of [20]. We refer to that paper for an exhaustive description of the experimental setting, which
we briefly summarize: it is a noisy signal processing setting, involving a dense or a sparse target. We
compute, over the signal received, the error of our predictor on the signal. We keep all parameters as
they are in [20], except for one: we make sure that data are scaled to fit in a Lp ball of prescribed
radius, to test the assumption related in [20] that fixing the learning rate ηt is not straightforward
in p-LMS. Knowing the true value of Xp, we then scale it by a misestimation factor ρ, typically
in [0.1, 1.7]. We use the same misestimation in DN-p-LMS. Thus, both algorithms suffer the same
source of uncertainty. Also, we periodically change the signal (each 1000 iterations), to assess the
performances of the algorithms in tracking changes in the signal.

Experiments, given in extenso in Appendix X, are sumarized in Table 4. The following trends emerge:
in the mid to long run, DN-p-LMS is never beaten by p-LMS by more than a fraction of percent.
On the other hand, DN-p-LM can beat p-LMS by very significant differences (exceeding 40%), in
particular when p < 2, i.e. when we are outside the regime of the proof of [20]. This indicates that
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Table 5: (L) Relative improvement (decrease) in k-means potential of SKM◦Sk-means++ compared
to SKM alone. (R) Relative improvement of Sk-means++ over Forgy initialization on the sphere.
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Table 6: (L) % of the number of runs of SKM whose output (when it has converged) is better than
Sk-means++. (C) Maximal # of iterations for SKM after which it beats Sk-means++ (ignoring runs
of SKM that do not beat Sk-means++). (R) Average # of iterations for SKM to converge.

significantly stronger and more general results than the one of Lemma 4 may be expected. Also, it
seems that the problem of p-LMS lies in an “exploding” norm problem: in various cases, we observe
that ‖wt‖ (in any norm) blows up with t, and this correlates with a very significant degradation of its
performances. Clearly, DN-p-LMS does not have this problem since all relevant norms are under
tight control. Finally, even when the norm does not explode, DN-p-LMS can still beat p-LMS, by less
important differences though. Of course, the output of p-LMS can repeatedly be normalised, but the
normalisation would escape the theory of [20] and it is not clear which normalisation would be best.

Clustering on the sphere. For k ∈ [50]∗, we simulate on T0S2 a mixture of spherical Gaussian and
uniform densities in random rectangles with 2k components. We run three algorithms: (i) SKM [12]
on the data embedded on S2 with random (Forgy) initialization, (ii), Sk-means++ and (iii) SKM with
Sk-means++ initialisation. Results are averaged over the algorithms’ runs.

Table 5 (left) displays that using Sk-means++ as initialization for SKM brings a very significant
gain over SKM alone, since we almost divide the k-means potential by a factor 2 on some runs.
The right plot of Table 5 shows that S-k-means++ consistently reduces the k-means potential by at
least a factor 2 over Forgy. The left plot in Table 6 displays that even when it has converged, SKM
does not necessarily beat Sk-means++. Finally, the center+right plots in Table 6 display that even
when it does beat Sk-means++ when it has converged, the iteration number after which SKM beats
Sk-means++ increases with k, and in the worst case may exceed the average number of iterations
needed for SKM to converge (we stopped SKM if relative improvement is not above 1o/oo).

7 Conclusion

We presented a new scaled Bregman identity, and used it to derive novel results in several fields
of machine learning: multiple density ratio estimation, adaptive filtering, and clustering on curved
manifolds. We believe that, like other known key properties of Bregman divergences, there is potential
for other applications of the result; Appendices V, VI present preliminary thoughts in this direction.
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