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Abstract

This is the Supplementary Material to paper ”On Regularizing Rademacher Observation Losses”,
by R. Nock, appearing in NIPS 2016.
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2 Supplementary Material on Proofs

2.1 Proof of Theorem 2

We split the proof in two parts, the first concerning the case where both generators are differentiable
since some of the derivations shall be used hereafter, and then the case where they are not. Remark
that because of Lemma 4, we do not have to cover the case where just one of the two generators would
be differentiable.
Case 1: 'e,'r are strictly convex and differentiable. We show in this case that being proportionate is
equivalent to having:

p

⇤
(z) = Gmq

⇤
(z) . (1)

Solving eqs. (3) and (4) bring respectively:

p⇤i (z) = '0
e
�1

✓
� 1

µe

· zi
◆

, (2)

q⇤I (z) = '0
r
�1

 
� 1

µr

·
X

i2I

zi +
�

µr

!
, (3)

where � is picked so that q⇤
(z) 2 H2

m , that is,

X

I✓[m]

'0
r
�1

 
� 1

µr

·
X

i2I

zi +
�

µr

!
= 1 . (4)

We obtain

Le(z) = �µe

X

i2[m]

'?
e

✓
� 1

µe

· zi
◆

, (5)

Lr(z) = �� µr

X

I✓[m]

'r
?

 
� 1

µr

·
X

i2I

zi +
�

µr

!
, (6)

where '?
(z)

.
= supz0{zz0 � '(z0)} denotes the convex conjugate of '. It follows from eq. (5) that:

@

@zi
Le(z) = '?

e
0
✓
� 1

µe

· zi
◆

= '0
e
�1

✓
� 1

µe

· zi
◆

(7)

= p⇤i (z) , (8)
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where eq. (7) follows from properties of '?. We also have

@

@zi
Lr(z)

=

0

@
1�

X

I✓[m]

'0
r
�1

 
� 1

µr

·
X

j2I

zj +
�

µr

!1

A · @�
@zi

+

X

I✓[m]:i2I

'0
r
�1

 
� 1

µr

·
X

j2I

zj +
�

µr

!

=

@�

@zi

+

X

I✓[m]

✓
1i2I �

@�

@zi

◆
'0

r
�1

 
� 1

µr

·
X

j2I

zj +
�

µr

!

=

@�

@zi
+

X

I✓[m]

✓
1i2I �

@�

@zi

◆
· q⇤I (z)

=

@�

@zi
·

0

@
1�

X

I✓[m]

q⇤I (z)

1

A
+

X

I✓[m]

1i2I · q⇤I (z)

=

X

I✓[m]

1i2I · q⇤I (z) , (9)

since q

⇤
(z) 2 H2

m .
Now suppose 'e and 'r proportionate. It comes that there exists (µe,µr) such that the gradients of

eq. (7) yield rLe(z) = rLr(z), and from eqs. (8) and (9) we obtain p

⇤
(z) = Gmq

⇤
(z).

Reciprocally, having p

⇤
(z) = Gmq

⇤
(z) for some 'e,'r and µe,µr > 0 implies as well rLe(z) =

rLr(z) from eqs. (8) and (9), and therefore eq. (7) holds as well. This ends the proof of Case 1 for
Theorem 2.

Case 2: 'e,'r are not differentiable. To simplify the statement and proofs, we assume that µe = µr =

1. We define the following problems

Le(z)
.
= inf

p2Rm
z

>
p+ 'e(p) , (10)

Lr(z)
.
= inf

q2H2m
z

>Gmq + 'r(q) , (11)

where 'e : Rm ! R and 'r : R2

m ! R are convex. Recall that @Le and @Lr are their subdifferentials,
and p(z) and q(z) the arguments of the infima, assuming without loss of generality that they are finite.
We now show that being proportionate is equivalent to having, for any z,

p(z) 2 @Lr(z) , (12)
Gmq(z) 2 @Le(z) . (13)
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This property is an immediate consequence of the following property, which we shall in fact show:

p(z) 2 @Le(z) , (14)
Gmq(z) 2 @Lr(z) . (15)

Granted all (12—15) hold, Eq. (1) of Theorem 2 follows whenever subgradients are singletons. To
see why the statement of the Theorem follows from (12–13), if the functions are proportionate, then
their subdifferentials match from Definition 1 (main file) and we immediately get (12) and (13) from
(14) and (15). If, on the other hand, we have both (12) and (13), then we get from (14) and (15) that
@Le(z) \ @Lr(z) 6= ;, 8z and so 0 2 @(Le(z) � Lr(z)), yieding the fact that the epigraphs of Le(z)

and Lr(z) match by a translation of some b that does not depend on z, and by extension, the fact that
'e and 'r meet Definition 1 (main file) and are proportionate.

To show (14), we first remark that �z0 2 @'e(p(z
0
)) for any z

0 because of the definition of p in
(10). So, from the definition of subdifferentials, for any z,

'e(p(z
0
)) + (�z0

)

>
(p(z)� p(z

0
))  'e(p(z)) .

Reorganising and substracting z

>
p(z) to both sides, we get

�'e(p(z
0
))� z

0>
p(z

0
)

� �'e(p(z))� z

>
p(z) + (�p(z))>(z0 � z) ,

which shows that �p(z) 2 @ � ('e(p(z)) + z

>
p(z)), and so p(z) 2 @Le(z).

We then tackle (15). We show that there exists � 2 R such that � · 1
2

m � G>
mz 2 @'r(q(z)) at

the optimal q(z). Suppose it is not the case. Then because of the definition of subgradients, for any
� 2 R, there exists q 2 H2

m
, q 6= q(z) such that

'r(q(z)) + (� · 1
2

m � G>
mz)

>
(q � q(z)) > 'r(q) .

Reorganising and using the fact that q, q⇤ 2 H2

m , we get 'r(q(z)) + z

>Gmq(z) > 'r(q) + z

>Gmq,
contradicting the optimality of q(z). Consider any z

0 and its corresponding optimal q(z0
). Since

�0 · 1
2

m � G>
mz 2 @'r(q(z)) for some �0 2 R, we get from the definition of subgradients that

'r(q(z))

� 'r(q(z
0
)) + (�0 · 1

2

m � G>
mz

0
)

>
(q(z)� q(z

0
)) .

Reorganising and using the fact that q(z), q(z0
) 2 H2

m , we get

�('r(q(z
0
)) + z

0>Gmq(z
0
))

� �('r(q(z)) + z

>Gmq(z))

+(�Gmq(z))
>
(z

0 � z) , (16)

showing that �Gmq(z) 2 @ � ('r(q(z)) + z

>Gmq(z)), and so Gmq(z) 2 @Lr(z).

4



2.2 Proof of Lemma 4

Take m = 1, and replace z by real z
1

. We have Le(p, z1) = pz
1

+ 'e(z1) and Lr(q, z) = q{1}z1 +
'r(q{1}) + 'r(q;). Remark that we can drop the constraint q 2 H2 since then q; = 1� q{1}. So we get

Lr(q) = min

q2R
qz

1

+ µr'r(q) + µr'r(1� q)

= min

q2R
qz

1

+ µr's(r)(q)

= �µr'
?
s(r)

✓
� 1

µr

· z
1

◆
,

whereas

Le(p) = �µe'
?
r

✓
� 1

µe

· z
1

◆
,

and since 'e and 'r are proportionate, then

'?
r

✓
� 1

µe

· z
1

◆
=

µr

µe

· '?
s(r)

✓
� 1

µr

· z
1

◆
� b

µe

. (17)

We then make the variable change z
.
= �z

1

/µe and get

'?
e (z) =

µr

µe

· '?
s(r)

✓
µe

µr

· z
◆
� b

µe

, (18)

which yields, since 'e, 'r, and by extension 's(r), are all convex and lower-semicontinuous,

'e(z) =

µr

µe

· 's(r)(z) +
b

µe

, (19)

as claimed.

2.3 Proof of Theorem 6

We detail all proofs for all entries in Table 1 (see main file). Hereafter, we just write 's instead of 's(r).

Lemma 1 'r(z)
.
= z log z�z is proportionate to 'e

.
= 's = z log z+(1�z) log(1�z)�1, whenever

µe = µr.

Proof We use the fact that whenever ' is differentiable, '?
(z)

.
= z · '0�1

(z) � '('0�1

(z)). We have
'0

r(z) = log z, '0
r
�1

(z) = exp z = '?
r (z). Therefore, the Lagrange multiplier � in (4) is

� = �µr · log

0

@
X

I✓[m]

exp

 
� 1

µr

·
X

i2I

zi

!1

A , (20)

which yields from (3):

q⇤I (z) =

exp

⇣
� 1

µr
·
P

i2I zi

⌘

P
J✓[m]

exp

⇣
� 1

µr
·
P

j2J zj

⌘ , 8I ✓ [m] .
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On the other hand, we also have '0
s(z) = log(z/(1 � z)), '0

s
�1

(z) = exp(z)/(1 + exp(z)) and
'?

s (z) = 1 + log(1 + exp(z)), which yields from (2):

p⇤i (z) =

exp

⇣
� 1

µe
· zi
⌘

1 + exp

⇣
� 1

µe
· zi
⌘ , 8i 2 [m] . (21)

We then check that for any i 2 [m], we indeed have
X

I✓[m]

1i2I · q⇤I (z)

=

X

I✓[m]

1i2I ·
exp

⇣
� 1

µr
·
P

i02I zi0
⌘

P
J✓[m]

exp

⇣
� 1

µr
·
P

j2J zj

⌘

= exp

✓
� 1

µe

· zi
◆
·

P
J✓[m]\{i} exp

⇣
� 1

µr
·
P

j2I zj

⌘

P
J✓[m]

exp

⇣
� 1

µr
·
P

j2J zj

⌘

= exp

✓
� 1

µe

· zi
◆
· c⇣

1 + exp

⇣
� 1

µe
· zi
⌘⌘

· c

=

exp

⇣
� 1

µr
· zi
⌘

1 + exp

⇣
� 1

µr
· zi
⌘ , (22)

with c
.
=

P
J✓[m]\{i} exp

⇣
� 1

µr
·
P

j2I zj

⌘
. We check that eq. (22) equals eq. (21) whenever µe = µr.

Hence eq. (1) holds. We conclude that 'r and 'e = 's are proportionate whenever µe = µr (End of the
proof of Lemma 1).

Corollary 2 The following example and rado losses are equivalent for any µ > 0:

`e(z,µ) =

X

i2[m]

log

✓
1 + exp

✓
� 1

µ
· zi
◆◆

, (23)

`r(z,µ) =

X

I✓[m]

exp

 
� 1

µ
·
X

i2I

zi

!
. (24)

Proof Consider 'r(z)
.
= z log z � z and 'e = 's. We obtain from eq. (5):

�Le(z)

= fe

0

@
X

i2[m]

log

✓
1 + exp

✓
� 1

µe

· zi
◆◆1

A ,
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with fe(z) = µe · z + µem. We have also '?
r (z) = exp(z), and so using � in eq. (20) and eq. (6), we

obtain

�Lr(z)

= µr · log

0

@
X

I✓[m]

exp

 
� 1

µr

·
X

i2I

zi

!1

A

+µr · exp
✓
�

µr

◆
·
X

I✓[m]

exp

 
� 1

µr

·
X

i2I

zi

!

= µr · log

0

@
X

I✓[m]

exp

 
� 1

µr

·
X

i2I

zi

!1

A

+µr ·

P
I✓[m]

exp

⇣
� 1

µr
·
P

i2I zi

⌘

P
I✓[m]

exp

⇣
� 1

µr
·
P

i2I zi

⌘

| {z }
=1

= fr

0

@
X

I✓[m]

exp

 
� 1

µr

·
X

i2I

zi

!1

A ,

with fr(z) = µr · log z + µr. We get from Lemma 1 that the following example and rado risks are
equivalent whenever µe = µr:

`e(z,µe) =

X

i2[m]

log

✓
1 + exp

✓
� 1

µe

· zi
◆◆

, (25)

`r(z,µr) =

X

I✓[m]

exp

 
� 1

µr

·
X

i2I

zi

!
, (26)

from which we get the statement of the Corollary by fixing µ = µe = µr (end of the proof of Corollary
2).

Lemma 3 'r(z)
.
= (1/2) · z2 is proportionate to 'e

.
= 's = (1/2) · (1 � 2z(1 � z)) whenever

µe = µr/2
m�1

.

Proof We proceed as in the proof of Lemma 1. We have '0
r(z) = z, '0

r
�1

(z) = z and '?
r (z) = 'r(z).

Therefore, the Lagrange multiplier � in (4) is

� =

µr

2

m
+

1

2

m
·
X

I✓[m]

X

i2I

zi (27)

=

µr

2

m
+

1

2

·
X

i2[m]

zi , (28)
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since any i belongs exactly to half of the subsets of [m]. We obtain:

q⇤I (z) =

1

2

m
� 1

µr

·
X

i2I

zi +
1

2µr

·
X

i2[m]

zi , 8I ✓ [m] .

On the other hand, we also have '0
s(z) = 2z � 1, '0

s
�1

(z) = (1 + z)/2 and '?
s (z) = �(1/4) + (1/4) ·

(1 + z)2, which yields from (2):

p⇤i (z) =

1

2

·
✓
1� 1

µe

· zi
◆

, 8i 2 [m] . (29)

We then check that for any i 2 [m], we have
X

I✓[m]

1i2I · q⇤I (z)

=

X

I✓[m]

1i2I ·

0

@ 1

2

m
� 1

µr

·
X

i2I

zi +
1

2µr

·
X

i2[m]

zi

1

A

=

1

2

� 1

µr

·
X

I✓[m]

1i2I ·
X

i2I

zi +
2

m�2

µr

·
X

i2[m]

zi

=

1

2

� 2

m�1

µr

· zi �
1

µr

·
X

I✓[m]\{i}

X

i2I

zi

+

2

m�2

µr

·
X

i2[m]

zi

=

1

2

� 2

m�1

µr

· zi �
2

m�2

µr

·
X

i2[m]\{i}

zi

+

2

m�2

µr

·
X

i2[m]

zi

=

1

2

� 2

m�1

µr

· zi +
2

m�2

µr

· zi

=

1

2

✓
1� 2

m�1

µr

· zi
◆

. (30)

We check that eq. (30) equals eq. (29) whenever µe = µr/2
m�1. Hence eq. (1) holds. We conclude

that 'r is proportionate to 'e = 's whenever µe = µr/2
m�1 (end of the proof of Lemma 3).

Corollary 4 The following example and rado losses are equivalent, for any µ > 0:

`e(z,µ) =

X

i2[m]

✓
1� 1

µ
· zi
◆

2

, (31)

`r(z,µ) = �
 
EI

"
1

µ
·
X

i2I

zi

#
� µ · VI

"
1

µ
·
X

i2I

zi

#!
, (32)
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where EI[X(I)] and VI[X(I)] denote the expectation and variance of X wrt uniform weights on I ✓
[m].

Proof Consider 'r(z)
.
= (1/2) · z2 and 'e = 's. We obtain from eq. (5):

�Le(z)

= fe

0

@
X

i2[m]

✓
1� 1

µe

· zi
◆

2

1

A ,
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with fe(z) = (µe/4) · z + (µem/4). We have also '?
r (z) = (1/2) · z2, and so using eq. (6) and � in eq.

(27), we obtain

�Lr(z)

= � µr

2

m
� 1

2

m
·
X

I✓[m]

X

i2I

zi

+

1

2µr

X

I✓[m]

0

@
X

i2I

zi �
µr

2

m
� 1

2

m
·
X

I✓[m]

X

i2I

zi

1

A
2

= � µr

2

m
� 1

2

m
·
X

I✓[m]

X

i2I

zi +
µr

2

m+1

� 1

2

m
·
X

I✓[m]

0

@
X

i2I

zi �
1

2

m
·
X

I✓[m]

X

i2I

zi

1

A

| {z }
=0

+

1

2µr

X

I✓[m]

0

@
X

i2I

zi �
1

2

m
·
X

I✓[m]

X

i2I

zi

1

A
2

= � µr

2

m+1

� 1

2

m
·
X

I✓[m]

X

i2I

zi

+

2

m�1

µr

· 1

2

m
·
X

I✓[m]

0

@
X

i2I

zi �
1

2

m
·
X

I✓[m]

X

i2I

zi

1

A
2

= � µr

2

m+1

�EI⇠[m]

"
X

i2I

zi

#
+

2

m�1

µr

· VI⇠[m]

"
X

i2I

zi

#

= � µr

2

m+1

+

µr

2

m�1

·

0

@�

0

@
EI⇠[m]

h
2

m�1

µr
·
P

i2I zi

i

� µr
2

m�1 · VI⇠[m]

h
2

m�1

µr

P
i2I zi

i

1

A

1

A

= fr

0

@�

0

@
EI⇠[m]

h
2

m�1

µr
·
P

i2I zi

i

� µr
2

m�1 · VI⇠[m]

h
2

m�1

µr

P
i2I zi

i

1

A

1

A , (33)
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with fr(z) = (µr/2
m�1

) ·z�(µr/2
m+1

). Therefore, it comes from Lemma 3 that the following example
and rado risks are equivalent whenever µe = µr/2

m�1:

`e(z,µe) =

X

i2[m]

✓
1� 1

µe

· zi
◆

2

,

`r(z,µr) = �
 
EI

"
2

m�1

µr

·
X

i2I

zi

#

� µr

2

m�1

· VI

"
2

m�1

µr

·
X

i2I

zi

#!
.

There remains to fix µ
.
= µe = µr/2

m�1 to obtain the statement of the Corollary (end of the proof of
Corollary 4).

We now investigate cases of non differentiable proportionate generators, the first of which is self-
proportionate ('e = 'r). We let �A(z) be the indicator function: �A(z)

.
= 0 if z 2 A (and +1

otherwise), convex since A = [0, 1] is convex.

Lemma 5 'r(z)
.
= �

[0,1](z) is self-proportionate,8µe,µr.

Proof Define4d as the d-dimensional probability simplex. Then it comes with that choice of 'r(qI):

min

q2H2m
Lr(q, z)

= min

q242m

X

I✓[m]

qI
X

i2I

zi

=

⇢
0 if

P
i2I zi > 0, 8I 6= ; ,P

i:zi<0

zi otherwise , (34)

since whenever no zi is negative, the minimum is achieved by putting all the mass (1) on q;, and
when some are negative, the minimum is achieved by putting all the mass on the smallest over all I ofP

i2I zi, which is the one which collects all the indexes of the negative coordinates in z.
On the other hand, remark that fixing 'e

.
= 's still yields 'e(z) = �

[0,1](z) = 'r(z), yet this time
we have the following on Le(p, z):

min

p2Rm
Lr(q, z) = min

p2[0,1]m

X

i2[m]

pizi

= �µe ·
X

i2[m]

max

⇢
0,� 1

µe

· zi
�

, (35)

since the optimal choice for p⇤i is to put 1 only when zi is negative. We obtain p

⇤
(z) = Gmq

⇤
(z) for

any choice of µe,µr, and so 'r(z) is self-proportionate for any µe,µr. This ends the proof of Lemma 5.
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Corollary 6 The following example and rado losses are equivalent, for any µe,µr:

`e(z,µe) =

X

i2[m]

max

⇢
0,� 1

µe

· zi
�

, (36)

`r(z,µr) = max

(
0,max

I✓[m]

(
� 1

µr

·
X

i2I

zi

))
. (37)

Proof We obtain from Lemma 5 that �Lr(z) = fr(`r(z,µr)) with fr(z) = µr · z and:

`r(z,µr) = max

(
0,max

I✓[m]

(
� 1

µr

·
X

i2I

zi

))
. (38)

On the other hand, it comes from eq. (35) that �Le(z) = fr(`e(z,µe)) with fe(z) = µe · z and:

`e(z,µe) =

X

i2[m]

max

⇢
0,� 1

µe

· zi
�

. (39)

This concludes the proof of Corollary 6.

Lemma 7 'r(z)
.
= �

[

1
2m , 12 ]

(z) is proportionate to 'e
.
= 's = �{ 1

2}(z), for any µe,µr.

Proof The choice of

'r(z) = �
[

1
2m , 12 ]

(z) , (40)

under the constraint that q 2 H2

m , enforces q⇤I = 1/2m, 8I ✓ [m]. Furthermore, fixing 'e
.
= 's indeed

yields

'e = �
[

1
2m , 12 ]

(z) + �
[

1
2m , 12 ]

(1� z)

= �{ 1
2}(z) , (41)

which enforces p⇤i = 1/2, 8i. Since each i belongs to exactly 2

m�1 subsets of [m], we obtain
p

⇤
(z) = Gmq

⇤
(z), for any µe,µr, and so 'r is proportionate to 'e = 's for any µe,µr. This con-

cludes the proof of Lemma 7.

Corollary 8 The following example and rado losses are equivalent, for any µe,µr:

`e(z,µe) =

X

i

� 1

µe

· zi , (42)

`r(z,µr) = EI

"
� 1

µr

·
X

i2I

zi

#
. (43)
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Proof We obtain from Lemma 7 that �Lr(z) = fr(`r(z,µr)) with fr(z) = z and:

`r(z,µr) = EI

"
� 1

µr

·
X

i2I

zi

#
.

On the other hand, it comes from eq. (35) that �Le(z) = fr(`e(z,µe)) with fe(z) = (1/2) · z and:

`e(z,µe) =

X

i

� 1

µe

· zi .

This concludes the proof of Corollary 8.

2.4 Proof of Theorem 7

The key to the poof is the constraint q 2 Hm in eq. (4). Since fe(z) = ae · z + be, we have Le(z) =

ae ·(`e(z) +!)+be�ae ·! for any ! 2 R. It follows from eq. (7) (see main file) that ae ·(`e(z) +!)+

be � ae ·! = Lr(z) + b =
P

I✓[m]

q⇤I
P

i2I zi + µr

P
I✓[m]

'r(q
⇤
I ) + b, and so

ae · (`e(z) +!) + be

= �

8
<

:min

q2Hm

0

@
X

I✓[m]

qI
X

i2I

zi + µr

X

I✓[m]

'r(qI)

1

A� ae!

9
=

;

+b

= � min

q2Hm

0

@
X

I✓[m]

qI

 
X

i2I

zi � ae!

!
+ µr

X

I✓[m]

'r(qI)

1

A

+b ,

since q 2 Hm and ae,!, a are not a function of q. We thus get ae ·(`e(z) +!)+be = ar ·fr

⇣
˜`r(z)

⌘
+br,

where ˜`r(z) equals `r(z) in which each
P

i2I zi is replaced by
P

i2I zi� ae!. For zi = ✓

>
(yi ·xi) and

! = ⌦(✓), we obtain that whenever ✓ 6= 0, 8I ✓ [m],

X

i2I

zi + ae! = ✓

>
✓
⇡� �

ae⌦(✓)

k✓k2
2

· ✓
◆

, (44)

for �i = yi iff i 2 I (and �yi otherwise), and the statement of the Theorem follows.

Remark — one important question, not addressed in the main file to save space, is the way the
minimisation of the regularized rado loss impacts the minimisation of the regularized examples loss
when one subsamples the rados, and learns ✓ from some Sr ✓ S⇤

r with eventually |Sr| ⌧ |S⇤
r |. We

13



give an answer for the log-loss [Nock et al., 2015] (row I in Table 1), and for this objective define the
⌦-regularized exp-rado-loss computed over Sr, with |Sr| = n and ! > 0 user-fixed:

`expr (Sr,✓,⌦)

.
=

1

n
·
X

j2[n]

exp

✓
�✓>

✓
⇡j �! · ⌦(✓)k✓k2

2

· ✓
◆◆

, (45)

whenever ✓ 6= 0 (otherwise, we discard the factor depending on ! in the formula). We assume
that ⌦ is a norm, and let `expr (Sr,✓) denote the unregularized loss (! = 0 in eq. (45)), and we
let `loge (Se,✓,⌦)

.
= (1/m)

P
i log

�
1 + exp

�
�✓>

(yi · xi)
��

+ ⌦(✓) denote the ⌦-regularized log-
loss. Notice that we normalize losses. We define the open ball B

⌦

(0, r)
.
= {x 2 Rd

: ⌦(x) < r}
and r?⇡

.
= (1/m) · maxS⇤r ⌦

?
(⇡�), where ⌦

? is the dual norm of ⌦. The following Theorem is a
direct application of Theorem 3 in [Nock et al., 2015], and shows mild conditions on Sr ✓ S⇤

r for the
minimization of `expr (Sr,✓,⌦) to indeed yield that of `loge (Se,✓,⌦).

Theorem 9 Assume ⇥ ✓ Bk.k2(0, r✓), with r✓ > 0. Let %(✓)
.
= (sup✓02⇥ max⇡�2S⇤r exp(�✓0>⇡�))/`

exp

r (S⇤
r,✓).

Then if m is sufficiently large, 8� > 0, there is probability � 1 � � over the sampling of Sr that any

✓ 2 ⇥ satisfies:

`loge (Se,✓,⌦)  log 2 + (1/m) · log `expr (Sr,✓,⌦)

+O

 
%(✓)

m�
·
r

r✓r?⇡
n

+

d

nm
log

n

d�

!
,

as long as ! � um for some constant u > 0.

2.5 Proof of Theorem 9

The proof of the Theorem contains two parts, the first of which follows ADABOOST’s exponential
convergence rate proof, and the second departs from this proof to cover ⌦-R.ADABOOST.

We use the fact that ↵◆(t)⇡j◆(t) = ↵◆(t) · 1>
◆(t)⇡j = (✓T � ✓T�1

)

>⇡j to unravel the weights as:

wTj

=

w
(T�1)j

ZT
· exp

�
�↵◆(T )

⇡j◆(T )

+ �T
�

=

w
(T�1)j

ZT
· exp

✓
�(✓T � ✓T�1

)

>⇡j

+! · (k✓Tk2
2

� k✓T�1

k2
2

)

◆

=

w
(T�1)j

ZT
· exp

✓
�✓>

T (⇡j �! · ✓T )

+✓

>
T�1

(⇡j �! · ✓T�1

)

◆

=

w
0QT

t=1

Zt

· exp
✓
�✓>

T (⇡j �! · ✓T )

+✓

>
0

(⇡j �! · ✓
0

)

◆
(46)

=

w
0QT

t=1

Zt

· exp
�
�✓>

T (⇡j �! · ✓T )
�

, (47)

since the sums telescope in eq. (46) when we unravel the weight update and ✓

0

= 0. We therefore get

`expr (Sr,✓, k.k2
2

) =

TY

t=1

Zt , (48)
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as in the classical ADABOOST analysis [Schapire and Singer, 1999]. This time however, we have,
letting ˜⇡j◆(t)

.
= ⇡j◆(t)/⇡⇤◆(t) 2 [�1, 1] and ↵̃◆(t)

.
= ⇡⇤◆(t) · ↵t for short,

Zt+1

=

X

j2[n]

wtj · exp
�
�↵◆(t)⇡j◆(t) + �t

�

= exp(�t) ·
X

j2[n]

wtj · exp
�
�↵◆(t)⇡j◆(t)

�

= exp(�t) ·
X

j2[n]

wtj · exp
�
�↵̃◆(t) ˜⇡j◆(t)

�

 exp(�t)

2

·
X

j2[n]

wtj ·
✓

(1 +

˜⇡j◆(t)) · exp
�
�↵̃◆(t)

�

+(1� ˜⇡j◆(t)) · exp
�
↵̃◆(t)

�
◆

(49)

= exp(�t) ·
p
1� r2t (50)

= exp

✓
! · (k✓tk2

2

� k✓t�1

k2
2

)� 1

2

ln

1

1� r2t

◆
.

This is where our proof follows a different path from ADABOOST’s: in eq. (50), we do not upperbound
the

p
1� r2t term, so it can absorb more easily the new exp(�t) factor which appears because of

regularization.
Ineq. (49) holds because of the convexity of exp, and eq. (50) is an equality when rt < �. If

rt > � is clamped to rt  � by the weak learner in (18), then we have instead the derivation

X

j2[n]

wtj ·
✓

(1 +

˜⇡j◆(t)) · exp
�
�↵̃◆(t)

�

+(1� ˜⇡j◆(t)) · exp
�
↵̃◆(t)

�
◆

= (1 + rt) ·
r

1� �

1 + �
+ (1� rt) ·

r
1 + �

1� �

 2

p
1� �2 , (51)

since function in (51) is decreasing on rt > 0. If rt < �� is clamped to rt  ��, we get the same
conclusion as in ineq (51) because this time ↵̃◆(t) = (1/2) · ln((1��)/(1+�)). Summarising, whether
rt has been clamped or not by the weak learner in (18), we get

Zt+1

 exp

✓
! · (k✓tk2

2

� k✓t�1

k2
2

)� 1

2

ln

1

1� r2t

◆
, (52)

with the additional fact that |rt|  �. For any feature index k 2 [d], let Fk ✓ [T ] the iteration indexes
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for which ◆(t) = k. Letting �
�

(> 0) the largest eigenvalue of � , we obtain:
TY

t=1

Zt

 exp

 
! · k✓Tk2� �

X

t

1

2

log

1

1� r2t

!

 exp

 
!�

�

· k✓Tk2
2

�
X

t

1

2

log

1

1� r2t

!

= exp

0

@�1

2

·
X

k2[d]

⇤k

1

A , (53)

With

⇤k
.
= log

1Q
t:◆(t)2Fk

(1� r2t )

�!�
�

2⇡2

⇤k
log

2

Y

t:◆(t)2Fk

✓
1 + rt
1� rt

◆
. (54)

Since (

Pu
l=1

al)
2  u

Pu
l=1

a2l and mink maxj |⇡jk|  |⇡⇤k|, ⇤k satisfies:

⇤k �
X

t:◆(t)2Fk

⇢
log

1

1� r2t

�Tk!�
�

2M2

log

2

1 + rt
1� rt

�
, (55)

with Tk
.
= |Fk| and M

.
= mink maxj |⇡jk|. For any a > 0, let

fa(z)
.
=

1

az2
·
✓
log

1

1� z2
� a · log2 1 + z

1� z

◆
� 1 .

It satisfies

fa(z) ⇡0

✓
1

a
� 5

◆
+

✓
1

2a
� 8

3

◆
· z2

+

✓
1

3a
� 92

45

◆
· z4 + o(z4) . (56)

Since fa(z) is continuous for any a 6= 0, 80 < a < 1/5, 9z⇤(a) > 0 such that fa(z) � 0, 8z 2 [0, z⇤].
So, for any such a < 1/5 and any ! satisfying ! < (2aM2

)/(Tk��

), as long as each rt  z⇤(a), we
shall obtain

⇤k � a
X

t:◆(t)2Fk

r2t . (57)

There remains to tune �  z⇤(a), and remark that if we fix a = 1/7, then numerical calculations reveal
that z⇤(a) > 0.98, and if a = 1/10 then numerical calculations give z⇤(a) > 0.999, completing the
statement of Theorem 9.
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2.6 Proof of Theorem 10

We consider the case ⌦(.) = k.k1, from which we shall derive the case ⌦(.) = k.k
1

. We proceed as
in the proof of Theorem 9, with the main change that we have now �t = ! · (k✓tk1�k✓t�1

k1), so in
place of ⇤k in ineq . (53) we have to use, letting k⇤ any feature that gives the `1 norm,

⇤k
.
=

8
><

>:

P
t:◆(t)2Fk

log

1

1�r2t

� !
⇡⇤k

���
P

t:◆(t)2Fk
log

1+rt
1�rt

���
if k = k⇤

P
t:◆(t)2Fk

log

1

1�r2t
otherwise

. (58)

It also comes

⇤k⇤

�
X

t:◆(t)2Fk⇤

⇢
log

1

1� r2t
� !

⇡⇤k⇤
log

1 + |rt|
1� |rt|

�

�
X

t:◆(t)2Fk⇤

⇢
log

1

1� r2t
� !

M
log

1 + |rt|
1� |rt|

�
, (59)

with M
.
= mink maxj |⇡jk|. Let us analyze ⇤k⇤ and define for any b > 0

gb(z)
.
= log

1

1� z2
� b · log 1 + z

1� z

�
✓
�2bz + z2 � 2bz3

3

◆
. (60)

Inspecting gb shows that gb(0) = 0, g0b(0) = 0 and gb(z) is convex over [0, 1) for any b  3, which
shows that gb(z) � 0, 8z 2 [0, 1), 8b  3, and so, after dividing by bz2 and reorganising, yields in
these cases:

1

bz2
·
✓
log

1

1� z2
� b · log 1 + z

1� z

◆
� 1

�
✓
�2

z
+

✓
1

b
� 1

◆
� 2z

3

◆
. (61)

Hence, both functions being continuous on (0, 1), the function in the left-hand side zeroes before the
one in the right-hand side (when this one does on (0, 1)). The zeroes of the polynomial

pb(z)
.
= �2z2

3

+

✓
1

b
� 1

◆
z � 2 (62)

exist iff b 
p
3/(4 +

p
3), in which case any z 2 [0, 1) must satisfy

z � 3

4

·

0

@1

b
� 1�

s✓
1

b
� 1

◆
2

� 16

3

1

A (63)
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to guarantee that pb(z) � 0. Whenever this happens, we shall have from (61):

log

1

1� z2
� b · log 1 + z

1� z
� bz2 . (64)

Since ⌦-WL is a �WL-weak learner, if we can guarantee that the right-hand side of ineq. (63) is no
more than �WL, then there is nothing more to require from the weak learner to have ineq. (64) — and
therefore to have ⇤k⇤ � b�2

WL · |Fk⇤ |. This yields equivalently the following constraint on b:

b 
8�WL

3

16�2
WL

9

+

8�WL

3

+

16

3

. (65)

Since �WL  1, ineq (65) ensured as long as

b 
8�WL

3

16

9

+

8

3

+

16

3

=

3�WL

11

, (66)

which also guarantees b 
p
3/(4 +

p
3). So, letting T⇤

.
= |Fk⇤ | and recollecting

b
.
=

!

mink maxj |⇡jk|
(67)

from eq. (59), we obtain from ineqs (59) and (64):

⇤k⇤ �
!T⇤�

2

WL

mink maxj |⇡jk|
. (68)

We need to ensure !  3mink maxj |⇡jk|�WL/11 from ineq . (66), which holds if we pick it according
to eq. (23). In this case, we finally obtain

⇤k⇤ � (a�WLT⇤) · �2

WL . (69)

Now, since log(1/(1� x2

)) � x2, we also have for k 6= k⇤ in eq. (58),

⇤k =

X

t:◆(t)2Fk

log

1

1� r2t

�
X

t:◆(t)2Fk

r2t

� |Fk|�2

WL , 8k 6= k⇤ . (70)

So, we finally obtain from eq. (51) and ineq. (53),

`expr (Sr,✓, k.k2
2

)  exp

 
�

˜T�2

WL

2

!
, (71)

with ˜T
.
= (T � T⇤) + a�WL · T⇤, as claimed when ⌦(.) = k.k1. The case ⌦ = k.k

1

follows form the
fact that all ⇤k match the bound of ⇤k⇤ .
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2.7 Proof of Theorem 11

We use the proof of Theorem 10, since when ⌦(.) = k.k
�

, eq. (58) becomes

⇤k
.
=

X

t:◆(t)2Fk

log

1

1� r2t
(72)

� ⇠k
⇡⇤k

������

X

t:◆(t)2Fk

log

1 + rt
1� rt

������

�
X

t:◆(t)2Fk

⇢
log

1

1� r2t
� ⇠k

maxj |⇡jk|
log

1 + |rt|
1� |rt|

�
, (73)

assuming without loss of generality that the classifier at iteration T , ✓T , satisfies |✓Tk| � |✓T (k+1)

| for
k = 1, 2, ..., d� 1. We recall that ⇠k

.
= �

�1

(1� kq/(2d)) where �

�1

(.) is the quantile of the standard
normal distribution and q 2 (0, 1) is the user-fixed q-value. The constraint b  3�WL/11 from ineq.
(66) now has to hold with

b = bk
.
=

⇠k
maxj |⇡jk|

. (74)

Now, fix

a
.
= min

⇢
3�WL

11

,
�

�1

(1� q/(2d))

mink maxj |⇡jk|

�
. (75)

Remark that

⇠k
.
= �

�1

✓
1� kq

2d

◆

� �

�1

⇣
1� q

2d

⌘

� amin

k0
max

j
|⇡jk0 | . (76)

Suppose q is chosen such that

⇠k 
3�WL

11

·max

j
|⇡jk| , 8k 2 [d] . (77)

This ensures bk  3�WL/11 (8k 2 [d]) in ineq. (66), while ineq. (76) ensures

⇤k � bk
X

t:◆(t)2Fk

r2t (78)

� ⇠k
mink0 maxj |⇡jk0 |

·
X

t:◆(t)2Fk

r2t (79)

� a|Fk|�2

WL . (80)
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Ineq. (78) holds because of ineqs (73) and (64). Ineq. (80) holds because of the weak learning
assumption and ineq. (77). So, we obtain, under the weak learning assumption,

`expr (Sr,✓, k.k�)  exp

✓
�aT�2

WL

2

◆
. (81)

Ensuring ineq. (77) is done if, after replacing ⇠k by its expression and reorganising, we can ensure

q � 2 ·max

k

qN,k

qD,k
, (82)

with

(0, 1) 3 qN,k
.
= 1� �

✓
3�WL

11

·max

j
|⇡jk|

◆
, (83)

(0, 1] 3 qD,k
.
=

k

d
. (84)

(85)

3 Supplementary Material on Experiments

3.1 Test errors, complete results

To save space, Table 1 below reports only the lowest error of all of ADABOOST variants.

3.2 Supports for rados (complement to Table 1)

Table 2 in this Supplementary Information provides the supports used to summarize Table 1.
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ADABOOST^ ⌦-R.ADABOOST
reg.-ADABOOST ! = 0 ⌦ = k.k2Id ⌦ = k.k1 ⌦ = k.k1 ⌦ = k.k�

domain m d err±� err±� err±� � err±� � err±� � err±� �

Fertility 100 9 ⇧ 40.00±14.1 40.00±14.9 41.00±16.6 8.00 • 41.00±14.5 4.00 � 41.00±21.3 6.00 38.00±14.0 7.00
Sonar 208 60 ⌅⇧ 24.57±9.11 • 27.88±4.33 25.05±7.56 8.14 24.05±8.41 4.83 24.52±8.65 10.12 � 25.00±13.4 3.83
Spectf 267 44 ⌅⇧ 45.67±11.0 � 44.96±8.27 • 43.43±11.7 3.35 44.57±12.5 1.85 43.09±11.0 1.85 43.79±13.9 3.05

Ionosphere 351 33 ⌅⇧ 13.11±6.36 • 14.51±7.36 13.64±5.99 5.43 14.24±6.15 2.83 � 13.38±4.44 3.15 � 14.25±5.04 3.41
Breastwisc 699 9 ⌅⇧ 3.00±1.96 3.43±2.25 2.57±1.62 1.14 � 3.29±2.24 0.86 2.86±2.13 0.86 • 3.00±2.18 0.29
Transfusion 748 4 ⌅⇧ 39.17±7.01 � 37.97±7.42 37.57±5.60 2.40 � 36.50±6.78 2.14 � 37.43±8.08 1.21 • 36.10±8.06 3.21

Qsar 1 055 31 ⌅⇧ 22.09±3.73 24.37±4.06 22.47±3.84 3.41 • 23.13±2.74 2.75 • 23.23±3.64 2.64 � 23.80±3.79 2.55
Hill-nonoise 1 212 100 ⇧ 47.52±5.14 45.63±6.68 45.71±6.61 0.33 45.46±6.88 0.66 � 45.87±6.69 0.49 • 45.62±7.26 0.42
Hill-noise 1 212 100 ⇧ 47.61±3.48 � 45.05±2.98 44.80±2.86 0.99 44.97±3.37 0.66 44.88±2.82 0.66 • 44.64±3.26 0.74
Winered 1 599 11 ⌅⇧ 26.33±2.75 � 28.02±3.32 • 27.83±3.95 1.19 • 27.45±4.17 1.00 � 27.58±3.76 1.12 • 27.45±3.34 1.25
Abalone 4 177 10 ⌅ 22.98±2.70 • 26.57±2.31 � 24.18±2.51 0.00 24.13±2.48 0.14 � 24.18±2.51 0.00 24.11±2.59 0.07
Statlog 4 435 36 ⌅ 4.49±0.61 22.41±2.20 • 4.71±0.82 0.25 � 20.43±1.89 0.23 4.69±0.72 0.45 20.00±1.80 0.18

Winewhite 4 898 11 ⌅⇧ 30.73±2.20 • 32.63±2.52 • 31.85±1.66 1.18 32.16±1.73 1.31 32.16±2.02 0.90 � 31.97±2.26 1.12
Smartphone 7 352 561 0.00±0.00 � 0.67±0.25 0.19±0.22 0.00 � 0.44±0.29 0.03 • 0.20±0.24 0.01 0.19±0.22 0.04
Firmteacher 10 800 16 ⌅⇧ 44.44±1.34 40.58±4.87 • 40.89±3.95 2.35 39.81±4.37 2.89 � 38.91±4.51 3.56 � 38.01±6.15 5.02

Eeg 14 980 14 ⇧ 45.38±2.04 • 44.09±2.32 � 44.01±1.48 0.40 • 43.89±2.19 0.89 � 44.07±2.02 0.81 • 43.87±1.40 0.95
Magic 19 020 10 21.07±1.09 � 37.51±0.46 • 22.11±1.32 0.28 � 26.41±1.08 0.00 23.00±1.71 0.66 � 26.41±1.08 0.00

Hardware 28 179 96 16.77±0.73 � 9.41±0.71 6.43±0.74 0.18 � 11.72±1.24 0.41 • 6.50±0.67 0.10 6.42±0.69 0.13
Marketing 45 211 27 ⌅ 30.68±1.01 27.70±0.69 27.33±0.73 0.33 � 28.02±0.47 0.00 • 27.19±0.87 0.51 � 28.02±0.47 0.00

Kaggle 120 269 10 ⌅ 47.80±0.47 • 39.22±8.47 � 16.90±0.51 0.00 16.90±0.51 0.00 16.89±0.50 0.01 16.90±0.51 0.00

Table 1: Best result of ADABOOST/regularized-ADABOOST [Schapire and Singer, 1999, Xi et al., 2009], vs ⌦-R.ADABOOST (with or
without regularization, trained with n = m random rados (above bold horizontal line) or n = 10000 rados (below bold horizontal line)),
according to the expected true error. Table shows the best result over all !s, as well as the difference between the worst and best (�).
Shaded cells display the best result of ⌦-R.ADABOOST. For each domain, the sparsest of ⌦-R.ADABOOST’s method (in average) is
indicated with ”�”, and the least sparse is indicated with ”•”. When ADABOOST (resp. `

1

-ADABOOST) yields the least sparse (resp.
the sparsest) of all methods (including ⌦-R.ADABOOST), it is shown with ”⌅” (resp. ”⇧”). All domains but Kaggle are UCI [Bache
and Lichman, 2013]. The best test error (and std deviation) of ADABOOST and reg.-ADABOOST on Smartphone is zero only up to the
second decimal.
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