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Abstract

It has recently been shown that supervised learning linear classifiers with two of
the most popular losses, the logistic and square loss, is equivalent to optimizing an
equivalent loss over sufficient statistics about the class: Rademacher observations
(rados). It has also been shown that learning over rados brings solutions to two
prominent problems for which the state of the art of learning from examples can be
comparatively inferior and in fact less convenient: (i) protecting and learning from
private examples, (ii) learning from distributed datasets without entity resolution.
Bis repetita placent: the two proofs of equivalence are different and rely on specific
properties of the corresponding losses, so whether these can be unified and general-
ized inevitably comes to mind. This is our first contribution: we show how they can
be fit into the same theory for the equivalence between example and rado losses. As
a second contribution, we show that the generalization unveils a surprising new con-
nection to regularized learning, and in particular a sufficient condition under which
regularizing the loss over examples is equivalent to regularizing the rados (i.e. the
data) in the equivalent rado loss, in such a way that an efficient algorithm for one
regularized rado loss may be as efficient when changing the regularizer. This is our
third contribution: we give a formal boosting algorithm for the regularized expo-
nential rado-loss which boost with any of the ridge, lasso, SLOPE, `∞, or elastic
net regularizer, using the same master routine for all. Because the regularized ex-
ponential rado-loss is the equivalent of the regularized logistic loss over examples
we obtain the first efficient proxy to the minimization of the regularized logistic
loss over examples using such a wide spectrum of regularizers. Experiments with a
readily available code display that regularization significantly improves rado-based
learning and compares favourably with example-based learning.

1 Introduction

What kind of data should we use to train a supervised learner ? A recent result has shown that
minimising the popular logistic loss over examples with linear classifiers (in supervised learning) is
equivalent to the minimisation of the exponential loss over sufficient statistics about the class known
as Rademacher observations (rados, [Nock et al., 2015]), for the same classifier. In short, we fit a
classifier over data that is different from examples, and the same classifier generalizes well to new
observations. It has been shown that rados offer solutions for two problems for which the state of the
art involving examples can be comparatively significantly inferior:

• protection of the examples’ privacy from various algebraic, geometric, statistical and com-
putational standpoints, and learning from private data [Nock et al., 2015];

• learning from a large number of distributed datasets without having to perform entity
resolution between datasets [Patrini et al., 2016].

Quite remarkably, the training time of the algorithms involved can be smaller than it would be on
examples, by orders of magnitude [Patrini et al., 2016]. Two key problems remain however: the
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accuracy of learning from rados can compete experimentally with that of learning from examples, yet
there is a gap to reduce for rados to be not just a good material to learn from in a privacy/distributed
setting, but also a serious alternative to learning from examples at large, yielding new avenues to
supervised learning. Second, theoretically speaking, it is now known that two widely popular losses
over examples admit an equivalent loss in the rado world: the logistic loss and the square loss [Nock
et al., 2015, Patrini et al., 2016]. This inevitably suggests that this property may hold for more losses,
yet barely anything displays patterns of generalizability in the existing proofs.

Our contributions: in this paper, we provide answers to these two questions, with three main
contributions. Our first contribution is to show that this generalization indeed holds: other example
losses admit equivalent losses in the rado world, meaning in particular that their minimiser classifier
is the same, regardless of the dataset of examples. The technique we use exploits a two-player zero
sum game representation of convex losses, that has been very useful to analyse boosting algorithms
[Schapire, 2003, Telgarsky, 2012], with one key difference: payoffs are non-linear convex, eventually
non-differentiable. These also resemble the entropic dual losses [Reid et al., 2015], with the difference
that we do not enforce conjugacy over the simplex. The conditions of the game are slightly different
for examples and rados. We provide necessary and sufficient conditions for the resulting losses over
examples and rados to be equivalent. Informally, equivalence happens iff the convex functions of the
games satisfy a symmetry relationship and the weights satisfy a linear system of equations. Some
popular losses fit in the equivalence [Nair and Hinton, 2010, Gentile and Warmuth, 1998, Nock and
Nielsen, 2008, Telgarsky, 2012, Vapnik, 1998, van Rooyen et al., 2015].

Our second contribution came unexpectedly through this equivalence. Regularizing a loss is standard
in machine learning [Bach et al., 2011]. We show a sufficient condition for the equivalence under
which regularizing the example loss is equivalent to regularizing the rados in the equivalent rado
loss, i.e. making a Minkowski sum of the rado set with a classifier-based set. This property is
independent of the regularizer, and incidentally happens to hold for all our cases of equivalence (Cf
first contribution). A regularizer added to a loss over examples thus transfers to data in the rado world,
in essentially the same way for all regularizers, and if one can solve the non-trivial computational and
optimization problem that poses this data modification for one regularized rado loss, then, basically,

"A good optimization algorithm for this regularized rado loss may fit to other regularizers as well”

Our third contribution exemplifies this. We propose an iterative boosting algorithm, Ω-R.ADABOOST,
that learns a classifier from rados using the exponential regularized rado loss, with regularization
choice belonging to the ridge, lasso, `∞, or the recently coined SLOPE [Bogdan et al., 2015]. Since
rado regularization would theoretically require to modify data at each iteration, such schemes are
computationally non-trivial. We show that this modification can in fact be bypassed for the exponen-
tial rado loss, and the algorithm, Ω-R.ADABOOST, is as fast as ADABOOST. Ω-R.ADABOOST has
however a key advantage over ADABOOST that to our knowledge is new in the boosting world: for
any of these four regularizers, Ω-R.ADABOOST is a boosting algorithm — thus, because of the
equivalence between the minimization of the logistic loss over examples and the minimization of the
exponential rado loss, Ω-R.ADABOOST is in fact an efficient proxy to boost the regularized logistic
loss over examples using whichever of the four regularizers, and by extension, linear combination of
them (e.g., elastic net regularization [Zou and Hastie, 2005]). We are not aware of any regularized
logistic loss formal boosting algorithm with such a wide spectrum of regularizers. Extensive exper-
iments validate this property: Ω-R.ADABOOST is all the better vs ADABOOST (unregularized or
regularized) as the domain gets larger, and is able to rapidly learn both accurate and sparse classifiers,
making it an especially good contender for supervised learning at large on big domains.

The rest of this paper is as follows. Sections §2, 3 and 4 respectively present the equivalence
between example and rado losses, its extension to regularized learning and Ω-R.ADABOOST. §5
and 6 respectively present experiments, and conclude. In order not to laden the paper’s body, a
Supplementary Material (SM) contains the proofs and additional theoretical and experimental results.

2 Games and equivalent example/rado losses

To avoid notational load, we briefly present our learning setting to point the key quantity in our
formulation of the general two players game. Let [m]

.
= {1, 2, ...,m} and Σm

.
= {−1, 1}m, for

m > 0. The classical (batch) supervised learner is example-based: it is given a set of examples
S = {(xi, yi), i ∈ [m]} where xi ∈ Rd, yi ∈ Σ1, ∀i ∈ [m]. It returns a classifier h : Rd → R from
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a predefined set H. Let zi(h)
.
= yh(xi) and abbreviate z(h) by z for short. The learner fits h to the

minimization of a loss. Table 1, column `e, presents some losses that can be used: we remark that h
appears only through z, so let us consider in this section that the learner rather fits vector z ∈ Rm.

We can now define our two players game setting. Let ϕe : R→ R and ϕr : R→ R two convex and
lower-semicontinuous generators. We define functionsLe : Rm×Rm → R andLr : R2m×Rm → R:

Le(p, z)
.
=

∑
i∈[m]

pizi + µe

∑
i∈[m]

ϕe(pi) , (1)

Lr(q, z)
.
=

∑
I⊆[m]

qI
∑
i∈I

zi + µr

∑
I⊆[m]

ϕr(qI) , (2)

where µe,µr > 0 do not depend on z. For the notation to be meaningful, the coordinates in q are
assumed (wlog) to be in bijection with 2[m]. The dependence of both problems in their respective
generators is implicit and shall be clear from context. The adversary’s goal is to fit

p∗(z)
.
= arg min

p∈Rm
Le(p, z) , (3)

q∗(z)
.
= arg min

q∈H2m
Lr(q, z) , (4)

with H2m .
= {q ∈ R2m

: 1>q = 1}, so as to attain

Le(z)
.
= Le(p

∗(z), z) , (5)
Lr(z)

.
= Lr(q

∗(z), z) , (6)

and let ∂Le(z) and ∂Lr(z) denote their subdifferentials. We view the learner’s task as the problem
of maximising the corresponding problems in eq. (5) (with examples; this is already sketched above)
or (6) (with what we shall call Rademacher observations, or rados), or equivalently minimising
negative the corresponding function, and then resort to a loss function. The question of when these
two problems are equivalent from the learner’s standpoint motivates the following definition.

Definition 1 Two generators ϕe, ϕr are said proportionate iff ∀m > 0, there exists (µe,µr) such that

Le(z) = Lr(z) + b , ∀z ∈ Rm . (7)

(b does not depend on z) ∀m ∈ N∗, let

Gm
.
=

[
0>2m−1 1>2m−1

Gm−1 Gm−1

]
(∈ {0, 1}m×2m

) (8)

if m > 1, and G1
.
= [0 1] otherwise (notation zd indicates a vector in Rd).

Theorem 2 ϕe, ϕr are proportionate iff the optima p∗(z) and q∗(z) to eqs (3) and (4) satisfy:

p∗(z) ∈ ∂Lr(z) , (9)
Gmq

∗(z) ∈ ∂Le(z) . (10)

If ϕe, ϕr are differentiable and strictly convex, they are proportionate iff p∗(z) = Gmq∗(z).

We can alleviate the fact that convexity is strict, which results in a set-valued identity for ϕe, ϕr to be
proportionate. This gives a necessary and sufficient condition for two generators to be proportionate.
It does not say how to construct one from the other, if possible. We now show that it is indeed possible
and prune the search space: if ϕe is proportionate to some ϕr, then it has to be a “symmetrized”
version of ϕr, according to the following definition.

Definition 3 Let ϕr s.t. domϕr ⊇ (0, 1). ϕs(r)(z)
.
= ϕr(z) + ϕr(1− z) is the symmetrisation of ϕr.

Lemma 4 If ϕe and ϕr are proportionate, then ϕe(z) = (µr/µe) · ϕs(r)(z) + (b/µe) (b is in (7)).
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# `e(z,µe) `r(z,µr) ϕr(z) µe and µr ae

I
∑

i∈[m] log (1 + exp (ze
i ))

∑
I⊆[m] exp (zr

I) z log z − z ∀µe = µr µe

II
∑

i∈[m] (1 + ze
i )

2 −(EI [−zr
I]− µr · VI [−zr

I]) (1/2) · z2 ∀µe = µr µe/4

III
∑

i∈[m] max {0, ze
i } max

{
0,maxI⊆[m]{zr

I}
}

χ[0,1](z) ∀µe,µr µe

IV
∑

i z
e
i EI [zr

I] χ[ 1
2m

, 1
2 ](z) ∀µe,µr µe

Table 1: Examples of equivalent example and rado losses. Names of the rado-losses `r(z,µr) are
respectively the Exponential (I), Mean-variance (II), ReLU (III) and Unhinged (IV) rado loss. We
use shorthands ze

i
.
= −(1/µe) · zi and zr

I

.
= −(1/µr) ·

∑
i∈I zi. Parameter ae appears in eq. (14).

Column “µe and µr” gives the constraints for the equivalence to hold. EI and VI are the expectation
and variance over uniform sampling in sets I ⊆ [m] (see text for details).

To summarize, ϕe and ϕr are proportionate iff (i) they meet the structural property that ϕe is
(proportional to) the symmetrized version of ϕr (according to Definition 3), and (ii) the optimal
solutions p∗(z) and q∗(z) to problems (1) and (2) satisfy the conditions of Theorem 2. Depending on
the direction, we have two cases to craft proportionate generators. First, if we have ϕr, then necessarily
ϕe ∝ ϕs(r) so we merely have to check Theorem 2. Second, if we have ϕe, then it matches Definition
31. In this case, we have to find ϕr = f + g where g(z) = −g(1− z) and ϕe(z) = f(z) + f(1− z).
We now come back to Le(z), Lr(z) (Definition 1), and make the connection with example and rado
losses. In the next definition, an e-loss `e(z) is a function defined over the coordinates of z, and a
r-loss `r(z) is a function defined over the subsets of sums of coordinates. Functions can depend on
other parameters as well.

Definition 5 Suppose e-loss `e(z) and r-loss `r(z) are such that there exist (i) fe : R → R and
fr(z) : R→ R both strictly increasing and such that ∀z ∈ Rm,

−Le(z) = fe (`e(z)) , (11)
−Lr(z) = fr (`r(z)) , (12)

where Le(z) and Lr(z) are defined via two proportionate generators ϕe and ϕr (Definition 1). Then
the couple (`e, `r) is called a couple of equivalent example-rado losses.

Following is the main Theorem of this Section, which summarizes all the cases of equivalence
between example and rado losses, and shows that the theory developed on example / rado losses with
proportionate generators encompasses the specific proofs and cases already known [Nock et al., 2015,
Patrini et al., 2016]. Table 1 also displays generator ϕr.

Theorem 6 In each row of Table 1, `e(z,µe) and `r(z,µr) are equivalent for µe and µr as indicated.

The proof (SM, Subsection 2.3) details for each case the proportionate generators ϕe and ϕr.

3 Learning with (rado) regularized losses

We now detail further the learning setting. In the preceeding Section, we have definef zi(h)
.
= yh(xi),

which we plug in the losses of Table 1 to obtain the corresponding example and rado losses. Losses
simplify conveniently when H consists of linear classifiers, h(x)

.
= θ>x for some θ ∈ Θ ⊆ Rd. In

this case, the example loss can be described using edge vectors Se
.
= {yi · xi, i = 1, 2, ...,m} since

zi = θ>(yi ·xi), and the rado loss can be described using rademacher observations [Nock et al., 2015],
since

∑
i∈I zi = θ>πσ for σi = yi iff i ∈ I (and −yi otherwise) and πσ

.
= (1/2) ·

∑
i(σi + yi) ·xi.

Let us define S∗r
.
= {πσ,σ ∈ Σm} the set of all rademacher observations. We rewrite any couple of

equivalent example and rado losses as `e(Se,θ) and `r(S
∗
r ,θ) respectively2, omitting parameters µe

and µr, assumed to be fixed beforehand for the equivalence to hold (see Table 1). Let us regularize
the example loss, so that the learner’s goal is to minimize

`e(Se,θ,Ω)
.
= `e(Se,θ) + Ω(θ) , (13)

1Alternatively, −ϕe is permissible [Kearns and Mansour, 1999].
2To prevent notational overload, we blend notions of (pointwise) loss and (samplewise) risk, as just “losses”.
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Algorithm 1 Ω-R.ADABOOST

Input set of rados Sr
.
= {π1,π2, ...,πn}; T ∈ N∗; parameters γ ∈ (0, 1),ω ∈ R+;

Step 1 : let θ0 ← 0, w0 ← (1/n)1 ;
Step 2 : for t = 1, 2, ..., T

Step 2.1 : call the weak learner: (ι(t), rt)← Ω-WL(Sr,wt,γ,ω,θt−1);
Step 2.2 : compute update parameters αι(t) and δt (here, π∗k

.
= maxj |πjk|):

αι(t) ← (1/(2π∗ι(t))) log((1 + rt)/(1− rt)) and δt ← ω · (Ω(θt)− Ω(θt−1)) ; (16)

Step 2.3 : update and normalize weights: for j = 1, 2, ..., n,

wtj ← w(t−1)j · exp
(
−αtπjι(t) + δt

)
/Zt ; (17)

Return θT ;

with Ω a regularizer [Bach et al., 2011]. The following shows that when fe in eq. (11) is linear, there
is a rado-loss equivalent to this regularized loss, regardless of Ω.

Theorem 7 Suppose H contains linear classifiers. Let (`e(Se,θ), `r(S
∗
r ,θ)) be any couple of equiv-

alent example-rado losses such that fe in eq. (11) is linear:

fe(z) = ae · z + be , (14)

for some ae > 0, be ∈ R. Then for any regularizer Ω(.) (assuming wlog Ω(0) = 0), the regularized
example loss `e(Se,θ,Ω) is equivalent to rado loss `r(S

∗,Ω,θ
r ,θ) computed over regularized rados:

S∗,Ω,θr
.
= S∗r ⊕ {−Ω̃(θ) · θ} , (15)

Here, ⊕ is Minkowski sum and Ω̃(θ)
.
= ae · Ω(θ)/‖θ‖22 if θ 6= 0 (and 0 otherwise).

Theorem 7 applies to all rado losses (I-IV) in Table 1. The effect of regularization on rados is intuitive
from the margin standpoint: assume that a “good” classifier θ is one that ensures lowerbounded inner
products θ>z ≥ τ for some margin threshold τ . Then any good classifier on a regularized rado πσ
shall actually meet, over examples,

∑
i:yi=σi

θ>(yi · xi) ≥ τ + ae · Ω(θ). This inequality ties an
"accuracy" of θ (edges, left hand-side) and its sparsity (right-hand side). Clearly, Theorem 7 has an
unfamiliar shape since regularisation modifies data in the rado world: a different θ, or a different
Ω, yields a different S∗,Ω,θr , and therefore it may seem very tricky to minimize such a regularized
loss. Even more, iterative algorithms like boosting algorithms look at first glance a poor choice, since
any update on θ implies an update on the rados as well. What we show in the following Section
is essentially the opposite for the exponential rado loss, and a generalization of the RADOBOOST
algorithm of Nock et al. [2015], which does not modify rados, is a formal boosting algorithm for a
broad set of regularizers. Also, remarkably, only the high-level code of the weak learner depends on
the regularizer; that of the strong learner is not affected.

4 Boosting with (rado) regularized losses

Ω-R.ADABOOST presents our approach to learning with rados regularized with regularizer Ω to
minimise loss `exp

r (Sr,θ,Ω)
.
= `r(Sr⊕{−(ωΩ(θ)/‖θ‖22) ·θ},θ) (ω > 0, full expression in eq. (45),

SM). Classifier θt is defined as θt
.
=
∑t
t′=1 αι(t′) · 1ι(t′), where 1k is the kth canonical basis vector.

The expected edge rt used to compute αt in eq. (16) is based on the following basis assignation:

rι(t) ← 1

π∗ι(t)

n∑
j=1

wtjπjι(t) (∈ [−1, 1]) . (19)

The computation of rt is eventually tweaked by the weak learner, as displayed in Algorithm Ω-
WL. We investigate four choices for Ω. For each of them, we prove the boosting ability of Ω-
R.ADABOOST (Γ is symmetric positive definite, Sd is the symmetric group of order d, |θ| is the
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Algorithm 2 Ω-WL, for Ω ∈ {‖.‖1, ‖.‖2Γ, ‖.‖∞, ‖.‖Φ}
Input set of rados Sr

.
= {π1,π2, ...,πn}; weights w ∈ 4n; parameters γ ∈ (0, 1), ω ∈ R+;

classifier θ ∈ Rd;
Step 1 : pick weak feature ι∗ ∈ [d];

Optional — use preference order: ι � ι′ ⇔ |rι| − δι ≥ |rι′ | − δι′
// δι

.
= ω · (Ω(θ + αι · 1ι)− Ω(θ)), rι is given in (19) and αι is given in (16)

Step 2 : if Ω = ‖.‖2Γ then

r∗ ←
{

rι∗ if rι∗ ∈ [−γ,γ]
sign (rι∗) · γ otherwise ; (18)

else r∗ ← rι∗ ;
Return (ι∗, r∗);

vector whose coordinates are the absolute values of the coordinates of θ):

Ω(θ) =


‖θ‖1

.
= |θ|>1 Lasso

‖θ‖2Γ
.
= θ>Γθ Ridge

‖θ‖∞
.
= maxk |θk| `∞

‖θ‖Φ
.
= maxM∈Sd

(M|θ|)>ξ SLOPE

(20)

[Bach et al., 2011, Bogdan et al., 2015, Duchi and Singer, 2009, Su and Candès, 2015]. The
coordinates of ξ in SLOPE are ξk

.
= Φ−1(1− kq/(2d)) where Φ−1(.) is the quantile of the standard

normal distribution and q ∈ (0, 1); thus, the largest coordinates (in absolute value) of θ are more
penalized. We now establish the boosting ability of Ω-R.ADABOOST. We give no direction for Step
1 in Ω-WL, which is consistent with the definition of a weak learner in the boosting theory: all we
require from the weak learner is |r.| no smaller than some weak learning threshold γWL > 0.

Definition 8 Fix any constant γWL ∈ (0, 1). Ω-WL is said to be a γWL-Weak Learner iff the feature
ι(t) it picks at iteration t satisfies |rι(t)| ≥ γWL, for any t = 1, 2, ..., T .

We also provide an optional step for the weak learner in Ω-WL, which we exploit in the experimenta-
tions, which gives a total preference order on features to optimise further Ω-R.ADABOOST.

Theorem 9 (boosting with ridge). Take Ω(.) = ‖.‖2Γ. Fix any 0 < a < 1/5, and suppose that ω
and the number of iterations T of Ω-R.ADABOOST are chosen so that

ω < (2amin
k

max
j
π2
jk)/(TλΓ) , (21)

where λΓ > 0 is the largest eigenvalue of Γ. Then there exists some γ > 0 (depending on a,
and given to Ω-WL) such that for any fixed 0 < γWL < γ, if Ω-WL is a γWL-Weak Learner, then
Ω-R.ADABOOST returns at the end of the T boosting iterations a classifier θT which meets:

`exp
r (Sr,θT , ‖.‖2Γ) ≤ exp(−aγ2

WLT/2) . (22)

Furthermore, if we fix a = 1/7, then we can fix γ = 0.98, and if a = 1/10, then we can fix γ = 0.999.

Two remarks are in order. First, the cases a = 1/7, 1/10 show that Ω-WL can still obtain large
edges in eq. (19), so even a “strong” weak learner might fit in for Ω-WL, without clamping edges.
Second, the right-hand side of ineq. (21) may be very large if we consider that mink maxj π

2
jk may

be proportional to m2. So the constraint onω is in fact loose.

Theorem 10 (boosting with lasso or `∞). Take Ω(.) ∈ {‖.‖1, ‖.‖∞}. Suppose Ω-WL is a γWL-Weak
Learner for some γWL > 0. Suppose ∃0 < a < 3/11 s. t. ω satisfies:

ω = aγWL min
k

max
j
|πjk| . (23)

Then Ω-R.ADABOOST returns at the end of the T boosting iterations a classifier θT which meets:

`exp
r (Sr,θT ,Ω) ≤ exp(−T̃γ2

WL/2) , (24)
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where T̃ = aγWLT if Ω = ‖.‖1, and T̃ = (T − T∗) + aγWL · T∗ if Ω = ‖.‖∞; T∗ is the number of
iterations where the feature computing the `∞ norm was updated3.

We finally investigate the SLOPE choice. The Theorem is proven for ω = 1 in Ω-R.ADABOOST, for
two reasons: it matches the original definition [Bogdan et al., 2015] and furthermore it unveils an
interesting connection between boosting and SLOPE properties.

Theorem 11 (boosting with SLOPE). Take Ω(.) = ‖.‖Φ. Let a .
= min{3γWL/11,Φ−1(1 −

q/(2d))/mink maxj |πjk|}. Suppose wlog |θTk| ≥ |θT (k+1)|,∀k, and fix ω = 1. Suppose (i)
Ω-WL is a γWL-Weak Learner for some γWL > 0, and (ii) the q-value is chosen to meet:

q ≥ 2 ·max
k

{(
1− Φ

(
3γWL

11
·max

j
|πjk|

))/(
k

d

)}
.

Then classifier θT returned by Ω-R.ADABOOST at the end of the T boosting iterations satisfies:

`exp
r (Sr,θT , ‖.‖Φ) ≤ exp(−aγ2

WLT/2) . (25)

Constraint (ii) on q is interesting in the light of the properties of SLOPE [Su and Candès, 2015].
Modulo some assumptions, SLOPE yields a control the false discovery rate (FDR) — i.e., negligible
coefficients in the "true” linear model θ∗ that are found significant in the learned θ —. Constraint
(ii) links the "small” achievable FDR (upperbounded by q) to the "boostability” of the data: the fact
that each feature k can be chosen by the weak learner for a "large” γWL, or has maxj |πjk| large,
precisely flags potential significant features, thus reducing the risk of sparsity errors, and allowing
small q, which is constraint (ii). Using the second order approximation of normal quantiles [Su and
Candès, 2015], a sufficient condition for (ii) is that, for some K > 0,

γWL min
j

max
j
|πjk| ≥ K ·

√
log d+ log q−1 ; (26)

but minj maxj |πjk| is proportional to m, so ineq. (26), and thus (ii), may hold even for small
samples and q-values. An additional Theorem deferred to SM sor space considerations shows that
for any applicable choice of regularization (eq. 20), the regularized log-loss of θT over examples
enjoys with high probability a monotonically decreasing upperbound with T as: `log

e (Se,θ,Ω) ≤
log 2− κ · T + τ(m), with τ(m)→ 0 when m→∞ (and τ does not depend on T ), and κ > 0 does
not depend on T . Hence, Ω-R.ADABOOST is an efficient proxy to boost the regularized log-loss over
examples, using whichever of the ridge, lasso, `∞ or SLOPE regularization — establishing the first
boosting algorithm for this choice —, or linear combinations of the choices, e.g. for elastic nets. If
we were to compare Theorems 9 – 11 (eqs (22, 24, 25)), then the convergence looks best for ridge
(the unsigned exponent is Õ(γ2

WL)) while it looks slightly worse for `∞ and SLOPE (the unsigned
exponent is now Õ(γ3

WL)), the lasso being in between.

5 Experiments

We have implemented Ω-WL4 using the order suggested to retrieve the topmost feature in the order.
Hence, the weak learner returns the feature maximising |rι| − δι. The rationale for this comes from
the proofs of Theorems 9 — 11, showing that

∏
t exp(−(r2

ι(t)/2− δι(t))) is an upperbound on the
exponential regularized rado-loss. We do not clamp the weak learner for Ω(.) = ‖.‖2Γ, so the weak
learner is restricted to Step 1 in Ω-WL5.

The objective of these experiments is to evaluate Ω-R.ADABOOST as a contender for supervised
learning per se. We compared Ω-R.ADABOOST to ADABOOST/`1 regularized-ADABOOST [Schapire
and Singer, 1999, Xi et al., 2009]. All algorithms are run for a total of T = 1000 iterations, and
at the end of the iterations, the classifier in the sequence that minimizes the empirical loss is kept.
Notice therefore that rado-based classifiers are evaluated on the training set which computes the

3If several features match this criterion, T∗ is the total number of iterations for all these features.
4Code available at: http://users.cecs.anu.edu.au/∼rnock/
5the values forω that we test, in {10−u, u ∈ {0, 1, 2, 3, 4, 5}}, are small with respect to the upperbound in

ineq. (21) given the number of boosting steps (T = 1000), and would yield on most domains a maximal γ ≈ 1.
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rados. To obtain very sparse solutions for regularized-ADABOOST, we pick its ω (β in [Xi et al.,
2009]) in {10−4, 1, 104}. The complete results aggregate experiments on twenty (20) domains, all
but one coming from the UCI [Bache and Lichman, 2013] (plus the Kaggle competition domain
“Give me some credit”), with up to d =500+ features and m =100 000+ examples. Two tables, in
the SM (Tables 1 and 2 in Section 3) report respectively the test errors and sparsity of classifiers,
whose summary is given here in Table 2. The experimental setup is a ten-folds stratified cross
validation for all algorithms and each domain. ADABOOST/regularized-ADABOOST is trained
using the complete training fold. When the domain size m ≤ 40000, the number of rados n
used for Ω-R.ADABOOST is a random subset of rados of size equal to that of the training fold.
When the domain size exceeds 40000, a random set of n = 10000 rados is computed from the
training fold. Thus, (i) there is no optimisation of the examples chosen to compute rados, (ii) we
always keep a very small number of rados compared to the maximum available, and (iii) when the
domain size gets large, we keep a comparatively tiny number of rados. Hence, the performances
of Ω-R.ADABOOST do not stem from any optimization in the choice or size of the rado sample.

Ada ∅ ‖.‖2Id ‖.‖1 ‖.‖∞ ‖.‖Φ
Ada 11 10 10 8 9
∅ 9 3 3 2 1
‖.‖2Id 10 17 11 9 7
‖.‖1 10 17 7 7 4
‖.‖∞ 11 18 9 9 8
‖.‖Φ 10 19 10 10 11

Table 2: Number of domains for which algorithm in
row beats algorithm in column (Ada = best result of AD-
ABOOST, ∅ = Ω-R.ADABOOST not regularized, see text).

Experiments support several key observations.
First, regularization consistently reduces the
test error of Ω-R.ADABOOST, by more than
15% on Magic, and 20% on Kaggle. In Table
2, Ω-R.ADABOOST unregularized ("∅") is vir-
tually always beaten by its SLOPE regularized
version. Second, Ω-R.ADABOOST is able to
obtain both very sparse and accurate classi-
fiers (Magic, Hardware, Marketing, Kaggle).
Third, Ω-R.ADABOOST competes or beats
ADABOOST on all domains, and is all the
better as the domain gets bigger. Even qual-
itatively as seen in Table 2, the best result

obtained by ADABOOST (regularized or not) does not manage to beat any of the regularized versions
of Ω-R.ADABOOST on the majority of the domains. Fourth, it is important to have several choices
of regularizers at hand. On domain Statlog, the difference in test error between the worst and the
best regularization of Ω-R.ADABOOST exceeds 15%. Fifth, as already remarked [Nock et al., 2015],
significantly subsampling rados (e.g. Marketing, Kaggle) still yields very accurate classifiers. Sixth,
regularization in Ω-R.ADABOOST successfully reduces sparsity to learn more accurate classifiers on
several domains (Spectf, Transfusion, Hill-noise, Winered, Magic, Marketing), achieving efficient
adaptive sparsity control. Last, the comparatively extremely poor results of ADABOOST on the
biggest domains seems to come from another advantage of rados that the theory developed so far does
not take into account: on domains for which some features are significantly correlated with the class
and for which we have a large number of examples, the concentration of the expected feature value in
rados seems to provide leveraging coefficients that tend to have much larger (absolute) value than in
ADABOOST, making the convergence of Ω-R.ADABOOST significantly faster than ADABOOST. For
example, we have checked that it takes much more than the T = 1000 iterations for ADABOOST to
start converging to the results of regularized Ω-R.ADABOOST on Hardware or Kaggle.

6 Conclusion

We have shown that the recent equivalences between two example and rado losses can be unified
and generalized via a principled representation of a loss function in a two-player zero-sum game.
Furthermore, we have shown that this equivalence extends to regularized losses, where the regulariza-
tion in the rado loss is performed over the rados themselves with Minkowski sums. Our theory and
experiments on Ω-R.ADABOOST with prominent regularizers (including ridge, lasso, `∞, SLOPE)
indicate that when such a simple regularized form of the rado loss is available, it may help to devise
accurate and efficient workarounds to boost a regularized loss over examples via the rado loss, even
when the regularizer is significantly more involved like e.g. for group norms [Bach et al., 2011].
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