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Abstract

A landmark negative result of Long and Serve-
dio has had a considerable impact on research
and development in boosting algorithms, around
the now famous tagline that “noise defeats all
convex boosters”. In this paper, we appeal to
the half-century+ founding theory of losses for
class probability estimation, an extension of Long
and Servedio’s results and a new general convex
booster to demonstrate that the source of their
negative result is in fact the model class, linear
separators. Losses or algorithms are neither to
blame. This leads us to a discussion on an other-
wise praised aspect of ML, parameterisation.

1. Introduction

In a now very influential paper, Long and Servedio (Long
& Servedio, 2008b; 2010) made a series of observations
on how simple symmetric label noise can “wipe out” the
edge of a learner against the fair coin. The negative result
is extreme in the sense that without noise, the learner fits a
large margin, 100% accurate classifier but as soon as noise
afflicts labels, regardless of its magnitude, the learner ends
up with a classifier only as good as the fair coin; furthermore,
the result also holds if we remove the algorithm from the
equation and just focus on the convex loss’ minimizer®.

It is fair to say that the paper had sizeable impact on research
and development in boosting at large, especially alongside
the tagline retained by history that (emphasis ours)

noise defeats all convex losses / boosters,

as can be seen in papers (Amid et al., 2019a), theses (Ju,
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“Some convex boosters are consistent (Bartlett & Traskin,
2006; Telgarsky, 2013), but the results are based on assumptions
that would not be met in the context of Long and Servedio.

2022), patents (Olabiyi et al., 2021), textbooks (Mohri
et al., 2018), etc. (many others in Appendix, Section I)...
(Notwithstanding mentions in the original papers of noise-
tolerant partition-inducing boosting algorithms minimizing
concave losses, thus seemingly following a different boost-
ing blueprint (Long & Servedio, 2008b; 2010)).

Our contribution is primarily formal and shows that this
tagline, taken at face value, is inaccurate. In the course
of our arguments, we introduce a new convex booster that
overcomes Long and Servedio’s specific hardness result.

Our contribution starts with a striking paradox arising from
the tagline above: when they are symmetric, proper losses
(Savage, 1971) — loss functions eliciting Bayes optimal
prediction and overwhelmingly popular in ML — have a dual
surrogate form, for real-valued classification, which exactly
fits to Long and Servedio’s margin loss blueprint. Enters
the aforementioned paradox: on Long and Servedio’s data,
such losses end up eliciting nothing better than a fair coin —
quite arguably far from even the noise-dependent optimal
prediction!

As we then show, this paradox has deeper roots in Savage’s
properness theory, as Long and Servedio’s results survive
to dropping the “symmetry” constraint on the loss. We thus
extend their result to any strictly proper loss not necessarily
admitting a margin form, albeit satisfying differentiability
and lower-boundedness of the partial losses, which are weak
constraints. Long and Servedio’s result has no flaw, so the
question that follows is naturally what is the source of their
negative result?

We unveil the source of the paradox and show how to resolve
it via a new convex booster. The functional pipeline that es-
timates class probabilities involves training a model, which
is a linear model in Long & Servedio (2010). Informally,
what we show — and which could be a tagline summary of
our work — is that

linear models can break the promise of properness.

To show that, we introduce a simple and general “model-
adaptive” convex booster (MODABOOST) following the
“boosting blueprint” of Long & Servedio (2010). Through
the reliance on an oracle called an architecture emulation
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oracle, MODABOOST boost a very general class of models
that are able to emulate, among others, linear separators,
decision trees, alternating decision trees, nearest neighbor
classifiers and labeled branching programs. Our main theo-
retical result is a general margin / edge boosting rate theorem
for MODABOOST. When applied to these standard model
classes the algorithm works with rates of convergence tied
to the model class. Of independent interest is the fact that
apart from linear separators (Schapire et al., 1998), we are
not aware of the existence of formal margin-based boosting
results for any of the other classes. Since it complies with
the blueprint boosting algorithm of Long and Servedio’s
negative results, when it learns linear separators on Long
and Servedio’s data, MODABOOST can spectacularly fail
and early hit fair coin prediction; however, we formally
show that if it boosts any other class mentioned in the list
above on Long and Servedio’s data, it does learn Bayes
optimal predictor regardless of the noise level.

We finally discuss the implications of our findings in the
context of a much praised aspect of ML: parameterisation —
parameterisation of a loss that results in it being convex, of
an algorithm that results in it emulating a boosting blueprint,
of a model that results in a specific architecture, etc.. Our
discussion goes beyond algorithms, losses and models. All
proofs and additional applications of our algorithm are given
in an Appendix denoted “APP” for short.

2. Definitions and setting

Losses for class probability estimation A loss for class
probability estimation (CPE), £ : Y x [0,1] — R, is

Uy,uw) = Jy=10-b(u) + [y = 1] - L1 (), (D)

where [.] is Iverson’s bracket (Knuth, 1992). Functions
£1,0_1 are called partial losses. A CPE loss is symmetric
when /1 (u) = ¢_1(1 — u),Yu € [0,1] (Nock & Nielsen,
2008), differentiable (resp. lower-bounded) when its partial
losses are differentiable (resp. lowerbounded).

The pointwise conditional risk of local guess u € [0, 1] with
respect to a ground truth v € [0, 1] is:

L(u,v) = v-l1(u)+ (1 —v)- -L_q1(u). (2)
A loss is proper iff for any ground truth v € [0,1],
L(v,v) = inf, L(u,v), and strictly proper iff v = v is
the sole minimiser (Reid & Williamson, 2011). The (point-
wise) Bayes risk is L(v) = inf,, L (u, v). For proper losses,
we thus have:

Lv) = v-£1(v)+ (1 —v)-L_1(v). 3)
Proper losses have a long history in statistics and quantita-
tive psychology that long predates their use in ML (Reid &
Williamson, 2010; Shuford et al., 1966). Hereafter, unless

otherwise stated, we assume the following about the loss at
hand:

L |L(O)[, [L(1)], [ (1)1, [€-1(0)] # 003
2. the loss is strictly proper and differentiable (we call
such losses SPD for short).

Conventional proper losses like the log-, square- or Matusita-
are SPD losses with L(0) = L(1) = ¢,(1) = ¢_1(0) = 0.
Losses satisfying ¢1(1) = ¢_1(0) = 0 are called fair in
(Reid & Williamson, 2010).

Population loss Usually in ML, we are given a training
sample 8 = {(x;,v;),% = 1,2, ...,m} where x; is an obser-
vation from a domain X and y; € Y = {0, 1} a binary repre-
sentation for classes in a two-classes problem (0 goes for the
“negative class,” 1 for the “positive class”). In the CPE set-
ting, we wish to learn an estimated posterior 7 : X — [0, 1],
and to do so, following some of (Long & Servedio, 2010)’s
notations, we wish to learn 1] by minimizing a population
loss called a risk:

(I)(ﬁ, ‘S) = Ei~[m] [g(yzaﬁ(wz))] : (4)

We assume training on the whole domain to fit in the frame-
work of (Long & Servedio, 2010), so the question of the
generalisation abilities of models does not arise. In such a
case, Bayes rule can be computed from the training data.

3. Surrogate losses and a proper paradox

Link, canonical losses
SPD loss is:

The (canonical) inverse link of a

A(z) = (-L)7'(2). (5)

One can check that for any SPD loss, Im(f}) = [0, 1], and
it turns out that the inverse link provides a maximum like-
lihood estimator of the posterior CPE given a learned real-
valued predictor b : X — R (Nock & Nielsen, 2008, Section
5). A substantial part of ML learns real-valued models (from
linear models to deep nets) so the link is important to “nat-
urally” embed the prediction in a CPE loss. A loss using
its own link for the embedding is called a canonical loss
(Reid & Williamson, 2010). One can use a different link,
in which case the loss is called “composite” but technical
conditions arise to keep the whole construction proper (Reid
& Williamson, 2010). We thus restrict ourselves to using
the canonical link for such purpose. When used with real-
valued prediction, each SPD loss has a remarkable analytical
form — called in general a surrogate loss (Nock & Nielsen,
2008) (and references therein).

Surrogate losses It comes from e.g. Nock & Menon
(2020, Theorem 1) that any SPD loss can be written for
a real valued classifier h : X — R on example (x, y) with
binary-described class y € Y as:
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( )
Uy h@) = D-g(yl-L' (h())
= —L(y) + (-L)" (M=) — yh(=)
= L)+ ¢ulth@)) — yh(=)9)
model dependent term
with ge(z) = (=L)*(~=). )
\. J

We single out function ¢, to follow notations from (Long
& Servedio, 2010) (we add ¢ in index to remind it depends
on the loss). Here, D_p, is a Bregman divergence with
generator —L. We use the definition relying on the convex
conjugate, see e.g. (Amari & Nagaoka, 2000). The convex
conjugate of scalar function f is f*(2) = Sup,cqoms 22 —
f(z") (Boyd & Vandenberghe, 2004). Note that (6) does
not fit to the classical margin loss definition in ML (as in,
e.g., (Long & Servedio, 2010)), however, when the loss is in
addition symmetric — which happens to be the case for most
ML losses like log-, square-, Matusita, etc. —, the formula
simplifies further to a margin loss formulation. Indeed,
we remark L(u) = L(1 — u) and it comes (—L)"(—z) =
(—L)*(z) — z. Using a “dual” class y* € Y* = {—1,1} (1
still goes to the positive class), we can write the loss

1+ y*

ay*,hu:)):—L( >+ by h(z)) (@)

model dependent term

We have overloaded notation ¢ in (1) to reparameterize it
as a function of the real-valued prediction h (instead of
class probability «). This has an important consequence:
the Bayes risk L in (3) is concave in its probability argu-
ment, while ¢y in (7) is convex in its real-valued argument.
Popular choices for ¢, like log-, square-, Matusita, yield
as popular forms for ¢y, respectively logistic, square and
Matusita. They are often called losses as well since they
quantify a discrepancy, but equally often they are called sur-
rogates (or surrogate losses) for the simple reason that when
properly scaled, they yield upper bounds of the “historic
loss” of ML, the 0/1 loss (Kearns et al., 1987), which with
our notations equates [sign(h(x)) # y*]. For learning, we
can focus only in the model dependent term in (6), (8) and
thus define the population (surrogate) risk as:

. 1+yf
(R, 8) =By [£(y7, 1)) + Einmy [L ( 2y )]
(general form)

Ei[m] [Pe(yh(x;))]  (for symmetric losses)

A Bayes born paradox There is one technical argument
that needs to be shown to relate the surrogate form in (9) to

(Long & Servedio, 2010)’s results: we need to show that the
corresponding surrogates of any symmetric SPD loss fits to
their blueprint margin loss.

Lemma 1. For any SPD loss, ¢, is C*, convex, decreasing,
has ¢4 (0) < 0 and lim,_, y o de(2) = L(0).

Proof in APP, Section II.1. Hence, if we offset the constant
L(0) or just assume it is 0, any symmetric (8) SPD loss fits
to Long & Servedio (2010, Definition 1). We now explain
Long & Servedio (2010, Section 4)’s data. The domain

X = R? and we have a (multi)set (or bag)

In (Long & Servedio, 2010), K = 5 and v > 0 is a margin
parameter. Since all labels are positive, we easily get Bayes
prediction, n(x) = 1 = P[Y = 1|X = ]. In the setting of
(Long & Servedio, 2010), it is a simple matter to check that
the optimal real-valued linear separator (LS) A minimizing
O (h, Sqean) makes zero mistakes on predicting labels for
Scean- One would expect this to happen since the loss ¢
at the core is proper, yet this seems to all go sideways as
soon as label noise enters the picture. We replace S.,, by a

13 . 29
N0iSY” Soisys

( Snoisy = IV copies of S¢jean U 1 copy of S¢jeqanwith labels flipped. (1 1))

This mimics a symmetric label noise level n, = 1/(N + 1),
with N > 1 (Long & Servedio, 2010). The paradox
mentioned above comes from the following two observa-
tions: (i) Bayes posterior prediction with noise becomes
n(x) = 1 — 1y > 1/2, which still makes no error on 8,
and (ii) (Long & Servedio, 2010) show that regardless of this
noise level, for any margin loss ¢, complying with Lemma
1, the optimal model is as bad as the fair coin on 8,,,. Since
symmetric SPD losses (9) fit to Lemma 1, (Long & Serve-
dio, 2010)’s optimal model should have the same properties
as Bayes’ predictor, yet this clearly does not happen. The
picture looks even gloomier as algorithms enter the stage:
despite its acclaimed performances (Friedman et al., 2000),
boosting can perform so badly that after a single iteration
its “strong” model hits the fair coin prediction. Not only do
we hit a paradox from the standpoint of the optimal model,
we also observe a stark failure of a powerful algorithmic
machinery. There is clearly something that “breaks” the ML
pipeline.

In the context of properness, we have shown that the “margin
form” parameterisation of the loss used by Long & Servedio
(2010) is in fact not mandatory as asymmetric losses do not
comply with it. Since asymmetry alleviates ties between par-
tial losses, one could reasonably hope that it could address
the paradox. We show that it is not the case.
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4. Long and Servedio’s results hold without
symmetry

We reuse some of Long & Servedio (2010)’s notations and
first denote Bi(ge“l the algorithm returning the optimal linear
separator (LS) A minimizing (9).

Lemma 2. Forany N > 1, there exists v > 0, K > 0 such
that when trained on 8,,,, Bge"l ’s classifier has at most
50% accuracy on 8 e

Proof in APP, Section I1.2. The proof displays an interesting
phenomenon for asymmetric losses, which is not observed
on Long & Servedio (2010)’s results. If the noise 7, is large
enough and the asymmetry such that ¢,’(0) < 7y — 1, then
the optimal classifier can do more than 50% mistakes on
Seean — thus perform worse than the unbiased coin. This
cannot happen with symmetric losses since in this case
¢,'(0) = —1/2 and we constrain 7, < 1/2. What this
shows is that asymmetry, while accomodating non-trivial
different misclassification costs depending on the class, can
lead to non-trivial pitfalls over noisy data.

Similarly to Long & Servedio (2010), we denote B;;’il% the
booster of (9) which proceeds by following the boosting
blueprint as described in Long & Servedio (2010); we as-
sume that the weak learner chooses the weak classifier of-
fering the largest absolute edge (20), returning nil if all
possible edges are zero (and then the booster stops). We let
Sctean,05 Snoisy,0 dENOLE Scieun, Snoisy With observations rotated
by an angle 6.

Lemma 3. Forany N > 1,T > 1, there existsy > 0, K >
0,0 € [0,27] such that when trained on 8, 9, within at
most T boosting iterations Bfgﬂ% outputs a classifier at most
50% accurate on 8 iuu o

Proof in APP, Section I1.3.

5. The boosting blueprint does provide a fix

We investigate a new boosting algorithm learning model ar-
chitectures that generalise those of decision trees and linear
separators, among other model classes. We call such models
partition-linear models (PLM). The algorithm boosts any
SPD loss using the blueprint boosting algorithm of (Long
& Servedio, 2010). To our knowledge, it is the first boost-
ing algorithm which can provably boost asymmetric proper
losses, which is non trivial as it involves two different forms
of the corresponding surrogate that are not compliant with
the classical margin representation (Long & Servedio, 2010).
A simple way to define a PLM H; from sequence of triples

(Oéj,hj, xj)je[t] (Oéj € R, hj € Rx,xj' c X)is, fort > 1:

N Ht,l(w) + O[tht(fl?) if xe xt
Hi(z) = { Hy (x) otherwise %
T
= YlzeXi]: ah(@), (13)
t=1

and we add Hy(z) = 0,V € X'. We also define the weight
function

w((@,y), H) = y—y*- (-L)7'(H(=)), (14
which is in [0, 1]. Notice we use both (real and binary) class
encodings in the weight function, recalling the relationship
y* =2y — 1€ {-1,1}. Algorithm MODABOOST presents
the boosting approach to learning PLM. MODABOOST con-
tains the core of boosting algorithms in Steps 2.2, 2.3 and
2.4, albeit in a slightly more general form than the classi-
cal blueprint, in part because the losses it optimizes can be
asymmetric.

The architecture emulation oracle MODABOOST also
contains a new component that we believe has no equivalent
in previous (formal) boosting algorithms: what we denote
as a architecture emulation oracle (AEO). What AEO effec-
tively does is design a subset of the domain from which to
compute a part of the training sample to give to the weak
learner, to train the next weak classifier. Its aim is to design
this subset in a way that the PLM learned emulates a specific
model architecture (hence its name). At the end of train-
ing, we can then represent the PLM learned using a model
architecture that is more familiar to the experimenter. For
example, it is possible to use MODABOOST to learn deci-
sion trees (see application #2). In this case, AEO returns the
subset of X corresponding to a leaf of the emulated current
decision tree, leaf which will then be equivalently split by a
specific choice of the weak classifier in Step 2.2. It is also
possible to use MODABOOST to boost a nearest neighbor
classifier (see application #4): in this case, AEO returns the
subset of X corresponding to the observations for which a
specific training point would vote.

Though each architecture choice is accompanied by a spe-
cific choice of AEO, there is in theory no restriction to the
design of the oracle. The choice however does influence the
boosting rates (Definition 5.1 and Theorem 1). Also, the
requirements that AEO’s inputs are the domain and current
classifier in MODABOOST can be widened to accomodate
for more architectures.

"We can equivalently consider that by = 0 in X\X;. We opt
for (12) since it makes a clear distinction for X;. Notice that this
setting generalizes boosting with weak hypotheses that abstain
(Schapire & Singer, 1998).
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Algorithm 1 MODABOOST(S, ¢, WL, AEO, T")

Input: Dataset 8 = {(x;,v;)}",, SPD loss ¢, weak
learner WL, architecture emulation oracle AEO, iteration
number T" > 1;
Output: PLM Hr;
Step 1: Vi € [m],w;1 =
initialisation
Step2:fort=1,2,....T
Step 2.1: xt «— AEO(X,Htfl);
Step 2.2 : hy «— WL(w5F, 8¢);
// weak learner call: 8; = {(x;,vy;) € S : ; € Xt };
Il w§ = w; restricted to S;
Step 2.3 : compute oy as the solution to:

1 w((@i i), He) -

€[m]¢

w((xi,vi), Ho) // weight

yih(xi) = 0; (15)

// [m]; = indices of 8 in 8;; oy appears in H; (12)
Step 2.4 : Vi € [m]s, wey1,: = w((xi,v:), Hy)
/I weight update
return Hr(z) = 1| Tpex, - achy();

Solutions to (15) are finite We assume without loss of
generality that +h; does not achieve 100% accuracy over
8¢ (Step 2.2; otherwise there would be no need for boosting,
at least in X(;) and that maxg, |h:| « 00, “« 0” denoting
finiteness.

Lemma 4. The solution to (15) satisfies || < oo.

Proof in APP, Section II.5.

The boosting abilities of MODABOOST Given a real val-
ued classifier H and an example (x,y*), we define the
(unnormalized) edge or margin of I on the example as

*H(x) (Nock & Nielsen, 2008; Schapire et al., 1998), a
quantity that integrates both the accuracy of classification
(its sign) and a confidence (its absolute value). Formal
guarantees on edges / margins are not frequent in boosting
(Nock & Nielsen, 2007; Schapire et al., 1998). We now pro-
vide one such general guarantee for MODABOOST. While
requirements on the weak hypotheses follow the weak learn-
ing assumption of boosting, the constraints on the loss itself
are minimal: they essentially require it to be SPD with par-
tial losses meeting a lower-boundedness condition and a
condition on derivatives.

Definition 5.1. Let {u;}ien., be a sequence of strictly pos-
itive reals. We say that the architecture emulation oracle
in Step 2.1 of MODABOOST is “u; compliant” iff, letting
JW,t) = Card(W) - (Eiww[wsi])? where W < [m],
Step 2.1 guarantees:
J([m]s,t) =

ug - J([m],t),vt = 1,2, ..., (16)

The fact that such a sequence exists will be denoted archi-
tecture emulation oracle compliance (AEOC).

Notice that the sum of terms Zthl uy is strictly increasing
and thus invertible. Let U : N. o — R such that

T
2,
t=1

The role of J is fundamental in our results and can guide the
choice of X; in Step 2.1: in short, the larger w;, the better the
rates. Lemma 6 gives a concrete and intuitive simplification
of J in the case of decision trees. In the most general case,
it is good to keep in mind the intuition of boosting that the
weight of an example is larger as the outcome of the current
classifier gets worse. Hence, (16) encourages focus on X
with a large number of examples (Card([m]:)) and with
large weights (E;[,,], [w¢,i]) — hence with subpar current
classification.

a7

Theorem 1. Suppose the following assumptions are satis-
fied on the loss and weak learner:

LOSS the loss is strictly proper differentiable; its partial
losses are such that 1k > 0,C' € R,

-1(0), £

1(1
1nf{£ 4

C, (18)
K

=
> 19)

)
1}
WLA There exists a constant Yy, > 0 such that at each

iteration t € [T'], the weak hypothesis h; returned by
WL satisfies*

ht(iliz)
maxepmi, |7 (2;))|

Wi cuF

= Yw(20)
Zje[m]t Wt j

i€[m];

AEOC there exists a sequence {ui}ien. , of strictly positive

reals such that the choice of X in Step 2.1 is uy
compliant.

Then for any 8 > 0,e > 0, letting w(f) = min{l —
(—=L)~Y0),(=L)~"1(—0)}, if MODABOOST is run for

at least
_1 ((2(®(Ho,8) - C)
T > Ut ’ 21
s b
iterations, then we are guaranteed
Pi~[m] [yZ*HT(wz) < 9] < & 22)

Here, U is crafted as in (17).

Proof in APP, Section I1.6. The proof of the Theorem in-
volves as intermediate step the proof that the surrogate

#The quantity in the absolute value is sometimes called the
(normalized) edge of h; it takes values in [—1, 1].
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®(Hr,8) is also boosted, which is of independent inter-
est given Long & Servedio (2010)’s framework and the
potential asymmetry of the loss (Theorem B in APP).

Remark 1. The LOSS requirements are weak. It can be
shown that strict properness implies inf{¢' | — {1} > 0
(Reid & Williamson, 2010, Theorem 1); since the domain
of the partial losses is closed, we are merely naming the
strictly positive infimum with condition inf{{' | — 01} >
Kk > 0. The “extremal” value condition for partial losses
(0_1(0),41(1) = C) is also weak as if it did not hold, partial
losses would not be lower-bounded on each’s respective best
possible prediction, which would make little sense. Usually,
C = 0 (the best predictions occur no loss) such as for the
square-, log-, Matusita losses.

We now give five possible instantiations of MODABOOST,
each with a separate implementation of AEO and thus a
separate discussion about u, compliance and boosting rates.
We start by the two most important ones: linear separators
and decision trees.

Application of MODABOOST #1: linear separators (LS)
This is a trivial use of MODABOOST.

> wu; compliance of AEO and the weak learner: X; =
X, ¥t so we trivially have u; = 1(Vt) compliance and the
weak learner returns an index of a feature to leverage.

© Boosting rate:  we have
Pyt Yy Hr(xs) < 0] < eif

2@(Hy,8) ~C) _ (1

> =0 55 ).

T2 e C\Ea) @
=Bis

the guarantee that

a dependence (the tilde removes dependences in other fac-
tors) that fits to the general optimal lower-bound in Yy,
(Alon et al., 2021) but is suboptimal in ¢, albeit not far from
lowerbound O(1/¢) (Telgarsky, 2012). The algorithm and
its analysis generalise Nock & Nielsen (2008)’s approach.

> Effect of Long and Servedio’s data: Since
MoDABOOST falls in the negative result’s boosting
blueprint of Long & Servedio (2010, Section 2.5), it does
face the negative result of (Long & Servedio, 2010). A
simple way to demonstrate that is a toy experiment using
MODABOOST with LS provided in APP, Section III. It
clearly displays that accuracy dramatically falls below a
“threshold” margin parameter 7, an observation formally
shown in Long & Servedio (2010).

Application of MODABOOST #2: decision trees (DT)
This is a slightly more involved use of MODABOOST, from
the “location” of the weak learner to the perhaps surprising
observation that in this case, MODABOOST emulates and
generalizes well known top-down induction schemes.

> u; compliance of AEO and the weak learner: we inves-
tigate general u; compliance, where [m]; € P([m]), for
P([m]) a partition of [m] in NV; subsets. Jensen’s inequality
yields

J(W,t
5 (W, 1)

WeP([m])

Z JW t)=m -

Wep([m])
=m - Ew~p(m)) (Einw(wei])?

2
=m - (Eyw~p(m)) [Einwlwe.]])

=m- (EiN[m] [wt,i])2 = J([m],1),

therefore there exists W* € P([m]) such that J(W* t) >
(1/Ny) - J([m], t) and picking any such “heavy” subset of
indices [m]; = W* guarantees u; compliance for u; =
1/N;. AEO makes MODABOOST grow a DT “in disguise”
by computing as X; the domain of a leaf in the current
tree, initialized to a single root (thus, X; = X for the first
iteration). When the current decision tree has ¢ leaves, we
see that we can guarantee u; > 1/t. The weak learner is
used to find splits in a way we now describe, which will
be followed by how the PLM learned indeed emulates a
decision tree, and how MODABOOST ends up being able
to emulate well known top-down induction algorithms for
DT induction.

Regarding the weak learner, MODABOOST iteratively re-
places a leaf in the current tree by a decision stump. There
are two strategies for that: the first consists in asking the
weak learner for one complete split, just like in (Kearns &
Mansour, 1996), but MODABOOST would then fit a single
correction (leveraging coefficient «,) for both leaves and
this would be suboptimal. To correct every single leaf pre-
diction separately, we let the weak learner return a split
and a corresponding real-valued prediction for half the split,
e.g. for “split_predicate = true”. It is easy to show that
if this meets the WLA, then so does the other half (for
“split_predicate = false”). In other words, we get two WLA
compliant weak hypotheses for the price of a single query to
the weak learner, and both turn out to define the split sought.
This is formalized in the following Lemma, which assumes
wlog that the split variable is x;, continuous.

Lemma 5. Suppose the weak learner returns 1,4 - hy
(hy € Roq constant) that meets the WLA for the half split.
Then the “companion” hypothesis h}(x) = 1,,<q - (—ht)
satisfies the WLA.

Proof in APP, Section II.7. The choice of the leaf to split
is simple: denote A(H) the set of leaves of DT H and A
a general leaf. Since the leaves of a DT induce a partition
of the tree, we denote J(\) the expression of J(W, ) for
W = {i : x; reaches \}, omitting index ¢ for readability.
Let us analyze what W* would satisfy in this case.
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Lemma 6. We have

J) o pa- (X (1= p{))% 24)
- —
=L*(pY)

where py = my/m,py = mi/my, my = Card({i :

x; reaches \}),my = Card({i : @; reaches \ A y; = 1})
and L*?(u) = u(1 — w) is Bayes risk for the square loss.

Proof in APP, Section I1.8. Hence, the leaf to split in Step
2.1 has a good compromise between its “weight” (p,) and
its local error (since 2py (1 — p¥) = min{p},1 — p{}.
In traditional “tree-based” boosting papers (from Kearns
& Mansour (1996) to Nock & Williamson (2019)), one
usually picks the heaviest leaf (= arg maxy p,) but it may
well be a leaf with zero error — thus preventing boosting
through splitting. Inversely, focusing only on large error to
pick a leaf might point to leaves with too small weights to
bring overall boosting compliance. Criterion J(.) strikes a
balance weight vs error in the choice.

> Boosting rate: We have u; > 1/t, with Zthl up =

Sg dz/(1 + z) =log(1 +T) = U(T), and so we are guar-
anteed that P; [, [y Hr (x;) < 0] < ¢ if

T>exp (2 (®(Ho, 5) — C)>=exp0 <(€2;> , (25)

K- 52&(9)2’}/\%& WL

=BpT

which is comparable at # = 0 to the bound of Kearns &
Mansour (1996, Theorem 1) for CART and otherwise gen-
eralizes their results to margin/edge-based bounds.

> Miscellaneous: we finish by a last analogy between
MODABOOST and classical DT induction algorithms: there
is a simple closed form solution for the leveraging coeffi-
cients « that simplifies the loss.

Lemma 7. Running MODABOOST fo learn a decision tree
H gives ®(H,8) = Ey nm) [L(pY)], where we recall
py = m} /my and the weight of X is my/m. Furthermore,

the MODABOOST prediction computed at leaf )\, Hy, is
Hy = (=L') (p}).

Proof in APP, Section II.9. We conclude that running
MODABOOST to learn a decision tree is largely equiva-
lent to the minimisation of classical DT induction criteria
(Breiman et al., 1984; Quinlan, 1993; Kearns & Mansour,
1996; Nock & Williamson, 2019), and our boosting rate
analysis generalizes those to asymmetric losses and edge
/ margin bounds. One can also finally notice that we can
easily transform a DT learned using MODABOOST to a clas-
sical DT by “percolating” values down to the leaves, see
Figure 1. such a connection between both types of models
is not new as it dates back to Henry et al. (2007) and was
later exploited in various work (e.g. Luna et al. (2019)).

(split test) .

Fod

Figure 1. Left: DT learned using MODABOOST and its “classical”
equivalent DT. Right: an equivalent representation using an al-
ternating decision tree (black) and a more general ADT (black +
red).

= Effect of Long and Servedio’s data: the triple (N, K, )
being fixed in (10), (11), we say that MODABOOST with
model set H is Bayes optimal in T iterations on Long and
Servedio’s data iff when run on Long & Servedio (2010)’s
noisy 8, for T iteration, MODABOOST returns Hy € H
which has 100% accuracy on Long & Servedio (2010)’s
clean data 8 ey -

Lemma 8. For any (N,K,y) € N2, x R,
MoDABOOST with DT is Bayes optimal in 1 iteration on
Long and Servedio’s data if the loss is symmetric.

The proof, in APP, Section I1.10, shows a much more general
result, in particular encompassing asymmetric losses as well,
a case a bit trickier to handle in terms of noise level.

Application of MODABOOST #3: alternating decision
trees (ADT) Alternating decision trees were introduced
in (Freund & Mason, 1999). An ADT roughly consists of
a root constant prediction and a series of stumps branching
from their leaf prediction nodes in a tree graph, see Figure
1. The equivalent ADT representation of a DT would have
outgoing degree 1 for all these stumps’ leaves. A general
ADT makes this outdegree variable and a prediction is just
the sum of the prediction along all paths an observation can
follow from the ADT’s root node. If a stumps’ leaf branches
on N stumps, then we sum the N corresponding predictions
(and not just 1 for a DT). While using such models is inter-
esting in terms of model’s parameterisation, one also sees
advantages in terms of boosting, since summing boosted
predictions (23) is more efficient than branching on boosted
predictions (25), but the paper of (Freund & Mason, 1999)
contains no such rate (note that the loss optimized here is
AdaBoost’s exponential loss, which is not proper canonical).

> u; compliance of AEO and the weak learner: these are
just combinations of those for LS (when increasing a
stump’s leaf outgoing degree with a new stump) and
DT (when finding the test of a stump). Denote N-ADT the
set of ADTs where non-leaf prediction nodes’ outdegree
is fixed to be N (inclusive of the root node). Notice that
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we can then boost while guaranteeing that u; = 1 for N
boosting iterations (at the root), then u; > 1/2 for N boost-
ing iterations and so on until the last NV iterations with

> Boosting rate: assuming wlog T" a multiple of IV, we have

thus Y7 e > N -V 1/t > NN dz/(1 4+ 2) =

N -log(1+(T/N)) = U(T), and so we are guaranteed that
Py lyi Hr(z;) < 0] < eif

2 (®(Ho, S) — C) 1
T>N - exXp (NK - 62&(9)21/3% :N exp O m .

=BapT

Bearing in mind that Bpt, Bapt are non-tight lowerbounds,
in such a regime, it is easy to see that an ADT can be
exponentially more efficient than a DT, boosting-wise:
for example, letting N = +/B.s, we obtain Bapr <
exp(—M+/Bys) - Bpr for some constant M > 0.

> Effect of Long and Servedio’s data:  a single node
ADT is also a single node DT. Since learning a DT achieves
Bayes optimal prediction with a single root DT on Long &
Servedio (2010), the same happens for a single root ADT.

Lemma 9. For any (N,K,y) € N2, x R,
MoDABOOST with ADT is Bayes optimal in 1 iteration
on Long and Servedio’s data if the loss is symmetric.

Application of MODABOOST #4: (leveraged) nearest
neighbors (NN) nearest neighbor classification is one of
the oldest supervised learning techniques (Cover & Hart,
1967). Since we consider real-valued prediction, we im-
plement NN classification by summing a real constant pre-
diction at one observation’s neighbors and assume that tie
neighbors are included in the voting sample (so one obser-
vation can end up with more than K, neighbors). Local
predictions can have varying magnitudes, which represents a
generalisation of nearest neighbor classification where mag-
nitude is constant, but we still call such classifiers nearest
neighbors, omitting the “leveraging” part.

> u; compliance of AEO and the weak learner: the weak
learner returns an example to leverage and thus X; is its
reciprocal neighborhood (the set of examples for which
it belongs to the K-NN). We assume wlog there are no
“outliers” for classification, so the minimum size of this
neighborhood is some K. > K, > 0, yielding u; =
K../m, Vt.

> Boosting rate: we get P; [y Hr(x;) < 0] < eif

T>

2m (q)(Ho,S) —C)_mBLs —O m
- KrecK/ : 52@(9)2Y%L B Krec B Krec

6%&) (20

a bound substantially better and more general than Nock
et al. (2015, Theorem 4), which holds for § = 0: namely,

our assumptions are weaker, our result cover asymmetric
losses and the dependency of (26) in K. is better.

> Effect of Long and Servedio’s data: it is not hard to see
that the problem is equivalent to leveraging a constant pre-
diction using all examples with a specific observation and
the leveraging coefficient is the same as for a DT where
the root node’s support is restricted to the given observa-
tion. This applies for any choice of K, > 1 neighbors for
NN and we get the following.

Lemma 10. For any (N,K,v) € N2, x R.q and any
Ky = 1, MODABOOST with NN is Bayes optimal in 1 iter-
ation on Long and Servedio’s data if the loss is symmetric.

Application of MODABOOST #5: labeled branching
programs (LBP) A labeled branching program is a
branching program (Mansour & McAllester, 2000) with
real prediction values at each node, just like our encoding
of DT, with the same way of classifying an observation —
sum an observation’s path values from the root to a leaf.
The key difference with classical branching programs is that
to one leaf can correspond as many possible predictions as
there are paths leading to it. To save space, this applica-
tion is fully developed in APP, Section II.11. Notably, while
MODABOOST’s boosting rate is suboptimal compared to the
O(log?(1/e)) dependence of Mansour & McAllester (2000)
shown for # = 0, it achieves an exponential improvement
over MODABOOST’s rate with DT.

6. Discussion: on parameterization

A partial explanation for the confusion about the results of
Long & Servedio (2010) can be offered via the notion of
parameterization. We elaborate alongside three key ingre-
dients: losses, models and algorithms. Much ML research
seems blind to the difference between a change of object,
and a change in the parametrization of an object. The clear-
est example of this is with losses, where it is known (van
Erven et al., 2012) that the features of a loss function that
govern its mixability depend only upon the induced geome-
try of its superprediction set. From this perspective, losses
are better thought of, and analysed in terms of the sets that
they induce (Cranko et al., 2019). The commonplace desire
that the loss function be convex (as a function) is control-
lable, independently, via a link (Reid & Williamson, 2010;
Williamson et al., 2016). Mathematically, the introduction
of the link is tantamount to an (invertible, smooth) reparam-
eterization of the loss.

There is one other point to be made about the loss function.
The abstract idea of a loss function was developed by Wald
(1950) as a formalisation of the notion that when solving a
data-driven problem, one ultimately has some goal in mind,
and that can be captured by an outcome-contingent utility
(Berger, 1985), or ‘loss’. Thus the loss is part of the prob-
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lem statement. In contrast, in the ML literature, such as that
arising from Long & Servedio (2010), a loss function is con-
sidered as part of the specification of a ‘learning algorithm’
(means of solving the problem). From Wald’s perspective,
all of the work inspired by Long & Servedio (2010) is a per-
haps not so surprising side-effect of attempting to solve one
problem (classification using 0-1 loss) by using a method
that utilises a different loss. If one tries to repeat the negative
example of Long & Servedio (2010) without the use of a
surrogate, and always in terms of the Bayes optimal, there
is nothing to see. When one adds some noise, the Bayes risk
may change, but one will not see the apparent paradoxes of
Long & Servedio (2010). Recently, there has been a burst of
research around new loss functions whose formulation aims
to reduce the difficulty of the learning task, some becoming
overwhelmingly popular (Lin et al., 2017). One can see ben-
efits of such a substantial shift from the normative view (of
properness) to a more user-centric “a-la-Wald” design, but
it usually comes with overloading loss functions with new
hyperparameters. Technically, quantifying properties of the
minimizers — in effect, answering the question “what can
be learned from this loss” — can be non-trivial (Sypherd
et al., 2022) but it is an important task: Long and Serve-
dio’s result brightly demonstrates that some choices can
be statistically “unsuitable” (e.g. linear classifier, convex
loss) if training data is subject to corruption. One would
have reasons to stick with linear separators e.g. for their
simplicity and interpretability. In such a case, one might
have to break properness and eventually convexity of the
loss, as e.g. recently shown in Sypherd et al. (2023).

A less widespread example is the reparameterization of a
model class. It is known that the statistical complexity of a
learning problem in the statistical batch setting is controlled
by the complexity of the model class. This complexity is in
terms of the class considered as a set, and is not influenced
by how the elements of the class are parameterized. Thus
the statistical complexity of learning with a model class
comprising rational functions of degree n will not depend
upon whether the functions are parameterized in factored
form, as partial fractions, or as ratios of polynomials in
canonical sum form. Lest it be objected that no-one would
use such a strange class, we note that in the simplest case
analysable, classical sigmoidal neural networks can be repa-
rameterized in terms of rational functions, and thus at least
these three parameterizations are open to use (Williamson
& Helmke, 1995). The parameterization, whilst not chang-
ing the model class (or, say its VC dimension) will change
the behaviour of learning algorithms, in particular gradient
based algorithms, which can misbehave due to attractors at
infinity (Blackmore et al., 1996) — a phenomenon caused
by parameterization.

The final ingredient to consider is the algorithm. We have
demonstrated that a boosting algorithm can be constructed

that works successfully in the noisy situation (when using
suitable model classes), but we have not really addressed
head-on the perhaps more direct response to (Long & Serve-
dio, 2010), which is to challenge the definition of what
is, and what is not, a ‘boosting algorithm.” There are sev-
eral obvious ways to proceed here (e.g. in terms of what
the boosting algorithm is provided as input, in the form of
weak learners). But all such attempts stumble over a more
challenging issue: namely that there is no sensible way to
compare algorithms — we cannot even say ‘when is one al-
gorithm equal to another?’ (Blass et al., 2009). The irony is
that the object that is most valorised in machine learning re-
search, namely the algorithm, hardly satisfies the conceptual
properties one demands of any ‘object” — namely that we
can tell when two objects are the same or different. We do
not attempt to resolve this challenge here; indeed we think it
is intrinsically unresolvable except up to a family of canoni-
cal isomorphisms, which need to be made explicit to really
qualify as a legitimate answer (Mazur, 2008) — perhaps this
will give some insight into ‘natural’ parameterizations of
different learning algorithms.

One promising algorithmic standpoint, we believe, is the
need for boosting algorithms for more complex / overpa-
rameterized architectures. Quite remarkably, in the 40+
references citing Long & Servedio (2010) whose context we
compile in APP, only one alludes to the key sufficient condi-
tion to solve Long & Servedio (2010)’s problem: Schapire
(2013) mentions the potential lack of “richness” of hypothe-
ses available to the weak learner. This resonates with a
comment in Long & Servedio (2010) whereby linear sepa-
rators lack capacity to control confidences as would richer
classes do, a model’s flaw exploited by the negative results.

7. Conclusion

In this paper, we have used the theory of proper losses and
a new boosting algorithm to show that the source of the
negative result in the context of Long and Servedio’s results
is the model class. We believe our results demonstrate
“unforeseeable” pitfalls of general parameterisations of a
ML problem, including model class but also the learning
algorithm and the loss function it optimizes.
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I. What the papers say

Disclaimer: these are cut-paste exerpts of many papers citing (Long & Servedio, 2010) (or the earlier ICML version)®, with
emphasis on (i) most visible venues, (ii) variability (not just papers but also patents, etc.). Apologies for the eventual loss of
context due to cut-paste.

“Long and Servedio [2010] further recently showed the failure of boosting algorithms based on convex potentials to tolerate
random noise [...]” — (Mohri et al., 2018)

“For any boosting estimator with a convex loss, Long and Servedio (2010) constructed datasets that can be fitted well if they
do not contain label noise, but cannot be learned to achieve more than 50% accuracy in the presence of any ratio of label
noise.” — (Ju, 2022)

“Although desirable from an optimization standpoint, convex losses have been shown to be prone to outliers [25]” — (Chen
etal., 2022)

“Servedio and Long [8] proved that, in general, any boosting algorithm that uses a convex potential function can be misled
by random label noise” — (Cheamanunkul et al., 2014)

“In fact, Long and Servedio (2010) proved that any boosting algorithm utilizing a convex potential function (i.e. belonging to
the Anyboost framework) can be deceived by random label noise. This assertion was further tested in a simulation setting by
Freund et al. (2014), which finds merit to the use of non-convex potential boosters.” — (Ju, 2022)

s

“Long and Servedio [2010] prove that any method based on a convex potential is inherently ill-suited to random label noise’
— (Natarajan et al., 2013)

“Robustness of risk minimization depends on the loss function. For binary classification, it is shown that 01 loss is robust to
symmetric or uniform label noise while most of the standard convex loss functions are not robust (Long and Servedio 2010;
Manwani and Sastry 2013)” — (Ghosh et al., 2017a)

“Furthermore, the assumption of sufficient richness among the weak hypotheses can also be problematic. Regarding this last
point, Long and Servedio [18] presented an example of a learning problem which shows just how far off a universally
consistent algorithm like AdaBoost can be from optimal when this assumption does not hold, even when the noise affecting
the data is seemingly very mild.” — (Schapire, 2013)

“[...] it was shown that some boosting algorithms including AdaBoost are extremely sensitive to outliers [30].” — (Walach &
Wolf, 2016)

“Long and Servedio [2010] showed that there exist linearly separable D where, when the learner observes some corruption
D with symmetric label noise of any nonzero rate, minimisation of any convex potential over a linear function class results
in classification performance on D that is equivalent to random guessing. Ostensibly, this establishes that convex losses are
not “SLN-robust” and motivates the use of non-convex losses [Stempfel and Ralaivola, 2009, Masnadi-Shirazi et al., 2010,
Ding and Vishwanathan, 2010, Denchev et al., 2012, Manwani and Sastry, 2013].” — (van Rooyen et al., 2015)

“Long and Servedio (2008) have shown that boosting with convex potential functions (i.e., convex margin losses) is not
robust to random class noise” — (Reid & Williamson, 2010)

$Source: https://scholar.google.com/scholar?oi=bibs&hl=en&cites=14973709218743030313&as_
sdt=5
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“Negative results for convex risk minimization in the presence of label noise have been established by Long and Servido
(2010) and Manwani and Sastry (2011). These works demonstrate a lack of noise tolerance for boosting and empirical risk
minimization based on convex losses, respectively, and suggest that any approach based on convex risk minimization will
require modification of the loss, such that the risk minimizer is the optimal classifier with respect to the uncontaminated
distributions” — (Scott et al., 2013)

“Boosting with convex loss functions is proven to be sensitive to outliers and label noise [19].” — (Saffari et al., 2010)

“While hinge loss used in SVMs (Cortes & Vapnik, 1995) and log loss used in logistic regression may be viewed as convex
surrogates of the 0—1 loss that are computationally efficient to globally optimize (Bartlett et al., 2003), such convex surrogate
losses are not robust to outliers (Wu & Liu, 2007; Long & Servedio, 2010; Ding & Vishwanathan, 2010)” — (Nguyen &
Sanner, 2013)

“[...] For Theorem 29 to hold for AdaBoost, the richness assumption (72) is necessary, since there are examples due to Long
and Servedio (2010) showing that the theorem may not hold when that assumption is violated” — (Mukherjee & Schapire,
2013)

“[...] Long & Servedio (2008) essentially establish that if one does not assume that margin error, v, of the optimal linear
classifier is small enough then any algorithm minimizing any convex loss @ (which they think of as a “potential”) can be
forced to suffer a large misclassification error.”” — (Ben-David et al., 2012)

“The advantage of using a symmetric loss was investigated in the symmetric label noise scenario (Manwani & Sastry, 2013;
Ghosh et al., 2015; Van Rooyen et al., 2015a). The results from Long & Servedio (2010) suggested that convex losses are
non-robust in this scenario” — (Charoenphakdee et al., 2019)

“Overall, label noise is ubiquitous in real-world datasets and will undermine the performance of many machine learning
models (Long & Servedio, 2010; Frenay & Verleysen, 2014).” — (Cheng et al., 2020)

“Although desirable from an optimization standpoint, convex losses have been shown to be prone to outliers [15]” — (Amid
et al., 2019a)

“This is in contrast to recent work by Long and Servedio, showing that convex potential boosters cannot work in the presence
of random classification noise [12].” — (Kalai & Kanade, 2009)

“The second strand has focussed on the design of surrogate losses robust to label noise. Long and Servedio [2008] showed
that even under symmetric label noise, convex potential minimisation with such scorers will produce classifiers that are akin
to random guessing.” — (Menon et al., 2018)

“Negative results for convex risk minimization in the presence of label noise have been established by Long and Servido
[26] and Manwani and Sastry [27]. These works demonstrate a lack of noise tolerance for boosting and empirical risk

minimization based on convex losses, and suggest that any approach based on convex risk minimization will require
modification of the loss, [...]” — (Blanchard et al., 2016)

“For example, the random noise (Long and Servedio 2010) defeats all convex potential boosters [...]” — (Gao et al., 2016)

“Long and Servedio (2010) proved that any convex potential loss is not robust to uniform or symmetric label noise.” —
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(Ghosh et al., 2017b)

“We previously [23] showed that any boosting algorithm that works by stagewise minimization of a convex “potential
function” cannot tolerate random classification noise” — (Long & Servedio, 2011)

“However, the convex loss functions are shown to be prone to mistakes when outliers exist [25].” — (Zhu et al., 2021)

“[...] However, Long and Servedio (2010) pointed out that any boosting algorithm with convex loss functions is highly
susceptible to a random label noise model.” — (Li & Bradic, 2018)

“One drawback of many standard boosting techniques, including AdaBoost, is that they can perform poorly when run on
noisy data [FS96, MO97, Die00, LS08].” — (Long & Servedio, 2008a)

“Therefore, it has been shown that the convex functions are not robust to noise [13].” — (Amid et al., 2019b)

“This is because many boosting algorithms are vulnerable to noise (Dietterich, 2000; Long and Servedio, 2008).” — (Chen
etal., 2016)

“Long and Servedio (2010) showed that there is no convex loss that is robust to label noises.” — (Bao et al., 2020)

“[...] However, as was recently shown by Long and Servedio [4], learning algorithms based on convex loss functions are not
robust to noise” — (Ding & Vishwanathan, 2010)

“[...] For instance, several papers show how outliers and noise can cause linear classifiers learned on convex surrogate
losses to suffer high zero-one loss (Nguyen and Sanner, 2013; Wu and Liu, 2007; Long and Servedio, 2010).” — (Mussmann
& Liang, 2018)

“This is as opposed to most boosting algorithms that are highly susceptible to outliers [24].” — (Noy & Crammer, 2014)

“Moreover, in the case of boosting, it has been shown that convex boosters are necessarily sensitive to noise (Long and
Servedio 2010 [...]” — (Geist, 2015)

“Ostensibly, this result establishes that convex losses are not robust to symmetric label noise, and motivates using non-convex
losses [40, 31, 17, 15, 30].” — (van Rooyen & Menon, 2015)

“Interestingly, (Long and Servedio, 2010) established a lower bound against potential-based convex boosting techniques in
the presence of RCN.” — (Diakonikolas et al., 2021)

“However, it was shown in (Long & Servedio, 2008; 2010) that any convex potential booster can be easily defeated by a very
small amount of label noise” — (Pfetsch & Pokutta, 2020)

“A major roadblock one has to get around in label noise algorithms is the non-robustness of linear classifiers from convex
potentials as given in [10]. ” — (Tripathi & Hemachandra, 2019)

“Coming from the other end, the main argument for non-convexity is that a convex formulation very often fails to capture
fundamental properties of a real problem (e.g. see [1, 2] for examples of some fundamental limitations of convex loss
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functions).” — (Liu et al., 2012)

“A theoretical analysis proposed in [21] proves that any method based on convex surrogate loss is inherently ill-suited to
random label noise.” — (Xie & Huang, 2022)

“It has been observed that application of Friedman’s stochastic gradient boosting to deep neural network training
often led to training instability . See , e.g. Philip M. Long , et al , “ Random Classification Noise Defeats All Con-
vex Potential Boosters, ” in Proceedings of the 25th International Conference on Machine Learning” — (Olabiyi et al., 2021)

“Long and Servedio [2010] showed that random classification noise already makes a large class of convex boosting-type
algorithms fail.” — (Talwar, 2020)

“On the other hand, it has been known that boosting methods work rather poorly when the input data is noisy. In fact, Long
and Servedio show that any convex potential booster suffer from the same problem [6].” — (Choi, 2017)

“Noise-resilience also appears to make CTEs outperform one of their most prominent competitors — boosting — whose
out-of-sample AUC estimates appear to be held back by the level of noise in macroeconomic data (also see Long and
Servedio, 2010)” — (Ward, 2017)

“The brittleness of convex surrogates is not unique to ranking, and plagues their use in standard binary classification as well
(Long and Servedio 2010; Ben-David et al. 2012). > — (Menon, 2019)

I1. Supplementary material on proofs
I1.1. Proof of Lemma 1

Strict convexity follows from its definition. Letting I = L'([0, 1]), we observe:

—z+ L(1) if z<infl
be(z) = sup {—zu+L(u)} =< —z-0(—=2)+L(A(—=2)) if =zel : (27)
uel0,1] L(0) if z>=supl

This directly establishes lim o ¢4(2) = L(0). Strict properness and differentiability ensure L’ strictly decreasing. We also
have

-1 if 2z <infl
bl (2) =4 —(L' H)(=2) if zel , (28)
0 if z>=supl
which shows ¢,'(z) < 0, Vz € R and so ¢ is decreasing. The definition of T ensures lim;,e1 o' (2) = —1, limgypr ¢ (2) =

0 so ¢ is differentiable. Convexity follows from the definition of ¢y.
We now note the useful relationship coming from properness condition and (2) (main file):
L'(u) = bi(u) = loa(w). (29)

This relationship brings two observations: first, the partial losses being differentiable, they are continuous and thus L' is
continuous as well, which, together with dom(L) = [0, 1] brings the continuity of ¢, and so ¢, is C'*. The second is
¢4’ (0) < 0. We first show 0 € intl. Because of (29), if 0 ¢ intI, we either have ¢1(0) — ¢_1(0) < 0 or £1(1) —£_1(1) = 0.
The integral representation of proper losses (Reid & Williamson, 2010)(Theorem 1) (Nock & Menon, 2020) (Appendix
Section 9) yields that there exists a non-negative weight function w : (0,1) — R such that

zl<u)=f(1—t)w(t)dt : z,1<u)=futw(t)dt. (30)

u 0
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The condition ¢1(0) — ¢_1(0) < 0 imposes

1 U

1111% (1 —-tw(t)dt =£:,(0) < (_1(0) = lin% tw(t)dt = 0, (€2))
u—0 J, u—0 J,

which imposes w(.) = 0 almost everywhere and ¢; (u) = 0, Vu. Similarly, the condition ¢1 (1) — ¢_1(1) > 0 imposes
1 u
lim | (1—-tw)dt=41(1) = £_1(1)=1lm | tw(t)dt =0, (32)

u—1 J, u—1 0

which also imposes w(.) = 0 almost everywhere and /_;(u) = 0,Vu. w(.) = 0 almost everywhere implies ¢1(u) =
¢_1(u) = L(u) = 0, Vu, which is impossible given strict properness. So we get 0 € intl and since L' is strictly decreasing,
L'7'(0) > 0, implying

/'(0) = ~(=L))'(0) = ~(L' 1)(0) <0, (33)
and ending the proof of Lemma 1.
I1.2. Proof of Lemma 2
We first simplify the loss to a criterion equivalent to (Long & Servedio, 2010, eq. 5) (notations follow theirs):

®(h,8) = (N+1)ds(—a1)— Naj +2(N + 1)de(—a1y + azy) — 2N (oqy — azy)
+(N + 1)po(—ary — Kazy) — N(ary + Kagv)
= (N+1) - (de(—oa) + 20e(—ary + a27) + de(—ary — Kazy))
=N ((1+3y)ar + (K —2)azv)

We are interested in the properties of the linear classifier &~ minimizing that last expression. Denote for short:

plz) = &(2) + (1 —m),
~ . 1 0®(h,8)
Pi(ar,a2) = N+l ooy
- . 1 09(h,S)
Fo(01,02) YN +1)  bay
We note ¢ is increasing and satisfies lim_o, ¢ = —ny, limy o, = 1 — ny. We get
D !/ /! ! N 1 3
Pilan00) =~ (o)~ {20/ ({0 — a1)7) + b/ (o + Kaz)y)} - o5V
= —p(=a1) = 2v¢((a2 — a1)y) = vp(—(o1 + Kaz)y), (34)
and
~ / p N(K -2
Bufan,z) = 20/ (a2~ ) ~ K¢ (~(oa + Kaa)y) - 1 =2
= 2¢((a2 —a1)7) — Ko(—(a1 + Kas)y). (35)

The system that zeroes both functions P (a1, a9), Py (a1, ag) is thus equivalent to having

(i) @o(—(1+Kaz)y) = 2-o((a2—a1)y)

{an el = 2 p(ag — an)y) (0

We have two cases to solve this system, presented in Figure 2: a “red” case, representing “high” noise, for which
©(0) = u* < 0, and a "blue” case, representing “low” noise, for which ¢(0) = u* > 0.

18



Random Classification Noise does not defeat All Convex Potential Boosters Irrespective of Model Choice

N E—
u'— / u'— ¥
_ koflo | (0o o) —(an + Kaz)y | (
90/ 7 +/£_’ ) (o + Kazy |

—e—— ”
— 1)y

T* L T*

Z 4 z

Figure 2. The two cases of our analysis for the proof of Lemma 2. In each case, we show the polarity of each of the arguments of system
(36).

Red case: we solve (36) for the constraints ce > —a1, 1 < —2*; we pick K = 2/(1 + ¢) for some small 0 < ¢ < 1. Pick
as = (1+¢)(1+ B)-—aj; > —ay for B = 0. The system (36) becomes:

(1) @((1+2B)ar) (I+e)-p((L+ (1 +e)(1+B)) - —ar7) 37)

(ii) —elar) B+e)-o((1+ (1 +e)(1+B))-—ary)
Suppose

ay = 6<0,
for a small |4]. For any such constant § > 0, we see that
—p(=a1) _ ar-—p(=on) . Vi)
5y 1)

and this time V satisfies lim_,» V' = 0,lim_,, V = —o0 and V is continuous because ¢ is, so for any value of the RHS in

(i) that keeps (ag — 1)y € [0, 2*), the product 17y can be split in a couple (v, ) for which the LHS in (i¢) equates its
RHS. We then just have to find a solution to (7) that meets our domain constraints. We observe that (7) becomes:

o((1+2B)d) = (1+e)-o(1+1Q+e)(1+B))-—0), (38)
whose quantities satisfy because of the monotonicity of ¢,
VB =0,V0 <0,0((1+2B)d) < ¢((2+ B)--9), (39)

which is (38) for ¢ = 0. We now show that there is a triple (g, B, d) withd < 0,0 < (ag—ay)y = (1+(14+¢)(1+B))-—6 <
z*, B = 0,e = 0 which reverses the inequality, showing, by continuity of ¢, a solution to (38). Fix small constants
Az, Ay > 0 such that we simultaneously have

(1+2B)d = -—-A,, (40)
A, < _;ﬁ , (41)
o(=Ay) = uF—Ay, 42)
o(Ay) < uF+ A, (43)
The RHS of (38) becomes (1 + ¢) - ¢ (J(g, B) - A;) with
JeB) = 1+(1+5)(1+B). (44)

1+ 2B
J (e, B) satisfies the following property (P):
¥0<e<1,3B>0:J(e,B) = J(0,0) = 1.

Thanks to (P) and the continuity of J and ¢, all we need to show for the existence of a solution to (¢) is that there exists
€ < 1 such that the central inequality underscored with 7 can hold,

1+e)-p(J(EB) Ay) < (T+e)- (u*+ Ay < ut = A, o(—AL). (45)

——
=J(0,0)=1 43) ? (42)
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(41) is equivalent to:

20,

- J < 17
—(u* + Ay)

soany 2A,/ — (u* + A,) < e < 1 brings equivalently (1 + ¢) - (u* + A,) < u* — A, which is ”?” above.

Then, to solve (), we first choose A, satisfying (41), then pick A so that (42) and (43) are satisfied. This fixes the LHS of
(38). From its minimal value ¢ = 0, we progressively increase ¢ while computing B so that (P) holds and getting ¢ from
(40); while for ¢ = 0 (39) holds, we know that there is an € < 1 such that (45) holds, the continuity of  then showing there
must be a value in the interval of es for which equality, and thus (4), holds.

Then, from the value 6 = 1y obtained, we compute the couple (a1,7), @1 < 0,7 > 0 such that (iz) holds, and then get cy
from the identity iy = (1 +¢)(1 + B) - —a1 > —ay.

Blue case: we solve (36) for the constraints as > «; > 0; we pick K = 2/(1 — ¢) for some small 0 < ¢ < 1. Pick
as = (1 —¢)(1+ B)ay > ay foray > 0,B > ¢/(1 — €). The system (36) becomes:

{ (1) (=1 +2(1+ B))ary) (1—¢)-((B(1—¢) —&)ar7)

(i1 =ee) _ (3-6). p((B(1—¢) — e)ary) (#0)
Suppose
ary = 6>0,

a small constant. For any such constant § > 0, we see that

—p(—ay) - —p(—a1) .
~ S = V(Oll)

and V satisfies lim_,+ V = 0,lim; o, V = +00 and V is continuous because ¢ is, so for any value of the RHS in (ii),
there exists a solution (v, ) to (i7). We just need to figure out a solution to (i) for some § > 0 such that all our domain
constraints are met. We observe (7) becomes

p(=(1+2(1+B))5) = (1—¢) o((B(1-¢e)—¢)d)=W(e). (47)

As § — 07, the domain of solutions (e, B) to () converges to {0} x R. B > 0 being fixed, we observe W is continuous
and (noting the constraint e < B/(1 + B))

B u*
= >u* = .
W(0) =¢(Bd) =zu* ; W (1 - B) =B

Remark that if we pick ¢ such that
u® "
—(1+2(1+B)) —
e(—=(1+2(1+ B))s) € <1+B’u)’

then there exists a solution 0 < & < B/1 + B to (i) so we get K > 2 and ratio ao/c; > 1. Then we solve (i7) for (a1, )
and get a; > O and y > 0.

Summary: accuracy of the optimal solution on 8.,. In the blue case, we see that ar; > 0, as > a1, thus the accuracy is
50%. In the red case however, we see that, because ai; < 0, g > —a1, three examples of 8., are badly classified and the
accuracy thus falls to 25%.

I1.3. Proof of Lemma 3

The trick we use is the same as in (Long & Servedio, 2010): we rotate the whole sample (which rotates accordingly
the optimum and thus does not change its properties, loss-wise) in such a way that any booster would pick a “wrong
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direction” to start, where the direction picked is the one with the largest edge (20). Let the rotation matrix of angle 6, with
¢ = cosf,s =sinb,

Ry = [g _s]. (48)

Denoting the rotated sample
e = (L] (LS ) (L2 ) (65 ] ) @

We note the sum of weights W, letting L = (—L")~1(0) € (0,1):

W = 4(1—-n)(1 L) +4nL =41 —-n —L+2n1L), (50)

and we compute both edges (20) for both coordinates with the noisy dataset 8,9 by ranging through left to right of the
examples’ observations in 8,sy,g:

{ (I=n)(A=L)c—nyLe+2(1 —ny)(1 = L)(c+ 8)y —2nyL(c + s)y
+(1 - 77Y)(1 - L)(c - KS)’Y - 77YL(C - K5)7

e, = W
(- m L +3y)(c—a-s)
W b)
and
(L=n = L)(1+37)(a-c+5)
ey = 9
4
with
g = E=2n
1+3y °

We also remind from Lemma 2 function ¢(2) = ¢,'(z) + (1 — 7y) and the proof of Lemma 1 that ¢,'(0) = —(—L")~*(0),
so we remark the key identity:

1_7]Y_L = 1_77Y_(_L/)_1(0) = ¢€/(O)+1_T’Y :90(0)7 (51)

so the factor takes on two different signs in the Blue and Red case of Lemma 2. We thus distinguish two cases:

Blue case: we know (proof of Lemma 2) that a > 0, ¢(0) > 0 and we want e, > |e,| under the constraint that both y
coordinates of the duplicated observations are negative: (s — ¢)vy < 0, so that the booster will pick the y coordinate with a
positive leveraging coefficient and thus will badly classify the duplicated examples of 8..,.9. We end up with the system
(using v > 0)

a-c+s > |c—a-s|,
c—s > 0, , (52)
A+s2 = 1.

which can be put in a vector form for graphical solving, letting u = [ Cll ] ,U = [ —1a ] (note |ul2 = ||v]2), w = [ _11 ]
and 0 = [ Z ] , the vector of unknowns (with a slight abuse of notation), yielding

0'u > (070,
0'w > 0, (53)
162 1.
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0 u>0Tv] oS . xS
---------------- s solutions

solutions

0'u< 7.\9Tv\

Blue case Red case

Figure 3. Solutions that trick the booster in picking a first update that misclassifies the examples in Sciean,¢ sharing the same observation
(the "penalizers” in (Long & Servedio, 2010)).

Figure 3 (left) presents the computation of solutions.

Red case: we now have (proof of Lemma 2) that a < 0, ¢(0) < 0. We now look to a solution to the following system:

0'u < —|0"v),
0w > 0, (54)
1o, = 1.

Figure 3 (right) presents the computation of solutions. The reason why it tricks again the booster in making at least 50%
error on its first update is that 8w < 0 and thus e,oco(0) - 87w > 0 but also |e, | > |e,|oc|p(0) - 8 v| and we check
that because 0" w > 0, the y coordinate of the two examples sharing the same observation (the ’penalizers” in (Long &
Servedio, 2010)) is negative and so they are both misclassified.

Remark 2. The proof of Lemma 3 unveils what happens in the not-blue not-red case, when ©(0) = 0: in this case, the weak
learner is totally "blind” as e, = e, = 0, so there is no possible update of the classifier as the weak learning assumption
breaks down; the final classifier is thus the null vector = unbiased coin.

I1.4. A side negative result for MODABOOST with LS

We can show an impeding result for MODABOOST directly in the setting of Lemma 2: with the square loss (which allows to
compute steps in closed form), MODABOOST hits a classifier as bad as the fair coin on (Long & Servedio, 2010)’s noise-free
data in at most 2 iterations only for some values of the noise level and parameter ~y (there is thus no need to use the rotation
argument of Lemma 3 for the booster to “fail”).

Lemma K. Suppose MODABOOST is run with the square loss to learn a linear separator on 8,,,, and WL returns a
scaled vector from the canonical basis of R%. Then there exists N > 1,0 < v < 1/6 such that in at most two iterations,
MODABOOST hits a linear separator with 50% accuracy on 8 .

Proof: We recall the key parameters of the square loss for some constant L > 0 (unnormalized):

* partial losses: /1 (u) = L(1 —u)? ¢_1(u) = Lu?, pointwise bayes risk: L(u) = Lu(1 — u), convex surrogate:

-z if z<-L
be(z) = { L.(1-2)" if ze[-L,I]
0 if z>1
* weight function w(yH = z):
1 if z<-—-L
w(z) = 1-(1-%) if ze[-L,L]
0 if z>1L

We recall and name the noisy examples, for NV > 1:
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* N copies of (v, 57) (call them A), N copies of (1,0) (call them B), 2N copies of (v, —y) (call them C), all positive;
* 1 copy of (v, 57) (call them D), 1 copy of (1,0) (call them E), 2 copies of (-, —v) (call them F'), all negative;

We have two cases:

Case 1: suppose the first vector output by WL is proportional to (1,0).

Iteration 1: WL returns vector hy = (U, 0) for U > 0, which labels correctly all observations in the noise-free case. The
weights all equal w(0) = 1/2. The edge of h; is (we note max hy = U):

N N
el(hl)i Z Wt i y* ht(ml) _ %+%+2Ty_%_%_2%
iy Delm] Weg T MAXje[m) [ (2)] 2(N+1)
_ (1+3y) N-1
B 4 N+1

The leveraging coefficient for hy, a, is the solution of

N(l U7a1>U7+N<1UO‘1>U+2N<1 - U”‘”)UV

2 L 2 L 2 L
A B c
1 Uy 1 U 1 Uvyoy B
D B F

giving

N N 2N 2
QLU(TW'F?"'TW_%_%_%) _2L(N — 1)(1 + 3)
2 (% 4L 2<N;1>72) U(N + 1)(1 + 342)

(&3] =

We compute the new weight, with notation simplified to ws(.). For A, C, D, F', we remark

joahal (N -1)(1+3y) 1
L (N+1)(1+3y2) 27
and so
1 Ay(N=-1D(1+3y) .1
A) = - — = — k
wa(4) = w2(C) 2 N+ 1)(1+3y%) 2 ™
1L, y(N-1)(+3y) . 1
D) = F - = — k
with
oL (N=D+3y)
2 (N +1)(1+392)
while for B, F/, we have
|l ha |
= 2ks.
T 2
This, together with the fact that
3+ 67 + 372
——— € (2,3],V 0,1 55
1+677372E[7]7’YE[7]’ ( )

yields that if N > 3, then wy(B) = 0, w2(E) = 1 using the extreme expressions of the weight function. Let us assume
N € {2, 3} to prevent this from happening (this simplifies derivations), so that

1
’UJQ(B) = 5—]@2,
1
— + ko.
g T2
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Iteration 2: suppose WL returns vector hy = (0,U) for U > 0. We note this time max hy = 57U and the edge is now

5Nywa(A) — 2Nyw2(C) — ENywa (D) + 2Nyws (F)
20yNU

_ 10N~*(N—1)(1+37) T AN~A%(N—1)(1437)
(N+1)(1+342) (N+1)(1+392)

20vN

eg(hz) = U

3’7]62
10 °

The leveraging coefficient for ho, cua, is the solution of

1 5U 1 1 U
N(2 — kg — 21a2>5U7+N(2 —k:2> 0—2N (—7k2+ Wz) (U)

2

A B C

1 5U~as 1 1 Uryas
—<2+'yk‘2+ 5T )5U7—<2—k2)-0+2(2+’yk2— oL )'(U'Y) = 0,

D E F

giving

3L(N —1)(1 =27y —3+?%)
27U (N + 1)y(1 + 342) ~

Qo =

We check the new weights for A, C, D, F' (others do not change). We remark for A, D:

by + azhsl 2y(N = 1)(1+3y) | 15(N —1)(1 -2y - 37?)
L (N +1)(1+ 3v2) 27(N + 1)(1 + 3+?)

N -1 5+8y+392

N+1  9(1+32)

5+ 8y + 3942
< ————— (Ne{2,3
S11a7 Veizd)
1
while for C, F":
lonhy +azha| 129N -1)(1+3y) (N -1)(1—2y—3°)
L (N +1)(1+3v2) 9(N +1)(1 +342)
N -—1 |—1+20y+57
- N+1 9(1 + 342?)
| — 1+ 207+ 579?|
< Ne{2,3
18(1 + 312) (Ve 2.3
1

so all the new weights are given not by the “extreme” formulas of the weight function. We check the vector 8, learned after
two iterations:

2L(N—1)(1+37)
» l LYy 8y ]
O(N+1)v(1+372)
_ L(N-1) 18v(1 + 37)
9N + 1)y(1 +39%) [ (1—2y—39%) ] ’
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i

and we check that if v < 1/23, then 05 misclassifies both positive examples with observation (7, —7) (called the ”penalizers’
in (Long & Servedio, 2010)) in the noise-free dataset, thereby having 50% accuracy.

Case 2: suppose the first vector output by WL is proportional to (0, 1).
Iteration 1: WL returns vector hy = (0,U) for U > 0. We note max hy = 5yU and the edge is

5yUN 2vUN 57U 2~vU

h = U- 2 2 2 2
e1(f1) 207(N + 1)U
(N -1)
40(N +1)°
The leveraging coefficient for hj, o, is the solution of
1 5Uyo 1 Uvyay
A c
1 5U~ras 1 Urvae
B et 2( = — . =
(2+ 5T )5U7+%+ (2 5T (U~) 0,
D F
giving
L(N-1)
=
QU (N + 1)y
and we check the new weights for A, C, D, F' (others do not change); we remark for A, D:
|0[1h1‘ - 5(N— ].) < 1
L  9N+1) 2
while for C, F":
loala| - (N-1) 1
L 9N +1) 27
so after the first iteration, the vector 6, learned,
0
0, = LiN-1) |,
I(N+1)y
misclassifies again both positive examples with observation (v, —v) (called the ”penalizers” in (Long & Servedio, 2010)) in
the noise-free dataset, thereby having 50% accuracy. [

Remark 3. Remark that the edge substantially decreases between two iterations in Case 1 as:

h 6
e2(hs) _ gl 7 (56)
e1(hy) 5(1 4 3+2)
which indicates that if run for longer, the weak learning assumption will eventually end up being rapidly violated in
MODABOOST, preventing the application of Theorem 1.

IL.5. Proof of Lemma 4
The proof relies on five key observations (assuming wlog h; does not zero over 8;):

(1) The equation can be written with ay explicit as 3,cp,,,1, (vi — ¥ (=L) " (Hy—1(22) + - hu(24))) -y he(:) = 0,
that is (since (y¥)? = 1),

Z (L) (He—1 () + o - he(x)) - hy(;) = Z hi (). (57)

ie[m]: ie[m]s,y¥=1

=J¢ (o)
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(2) Timg ~ Jo(@) = Dicpm], ho i >0 1t (®) = T3

(3) Tima Jo(@) = Dicpm], oy <0 1 (@) = T3

“) Zie[m]t,yl*zl he(w;) € [J-, J1],

(5) Im(—L")~* = [0, 1], since if there was an interval of non-zero measure missing then either L’ would not be defined
over such an interval (impossible by the differentiability assumption) or it would be constant (impossible given the
strict properness condition). The same remarks for a single missing value;

which gives the statement of the Lemma. To get rid of infinite values, we remark that this happens only when
ie[m],, =1 he(i) = Xicpm, b () <o Mt (i) (—he makes perfect classification over 8¢) or 3;cr,.,. yE=1 hi(x;) =
Zie[m]t he ()0 h¢(x;) (hy makes perfect classification over 8;), both of which are not possible.

I1.6. Proof of Theorem 1

We proceed in several steps. The first shows a general guarantee on the decrease of the surrogate risk.

Lemma L. Let Dr denote the Bregman divergence with (convex) generator F'. The difference between two successive
surrogate risks in MODABOOST satisfies:

D_p( i) if =0 ] ’ (58)

O(H:,S) — ®(He-1,8) = —py “Einm], [{ D_p(1 — w1 —wes) if yi=1

where [m], S [m] is the subset of indices of examples "fed” to the weak learner in 8; and p; = Card([m]¢)/m.

Proof: We observe

q)(Htvs) - (I)(Ht 178)
= ptEicpm), [Pe(—He(x:)) — bo(—Hi—1 (i) — yi(Hy — Hy—1)(x4)] - (59

For any example (x,y), if y = 0, by the definition of Bregman divergences and their dual symmetry property,

be(—Hi(x)) — do(—Hi—1(x))
= (=L)"(He(z)) — (—L)" (Hi-1(x))
= —[(-L)*(Hi—1(®)) — (—L)*(Hi(2)) — (H—1 — Hy)(x) - (=L') " (Hy())]
—(Hy—1 — Hy) () - (—L) "' (Hi())

= =D py(Hi(®)|He(2)) — (H—1 — Hy)(2) - (=L') "' (Hy
= =D (L) "(Hi(@)|(=L) (Hi—1(2))) — (
), He—1)) + o - w((

(

|
—D_p(w((z,y), ((
(®,y), Hi-1)) — a - w(

(
= —D_p(w((=,y), (=

y), Hy)|lw((,y
y), He)|[w((z,y

9

If y = 1 (we do not replace y by 1 to mark its locations),

$o(—Hi(x)) = do(—Hi1 () — y(Hy — Hi1)(x)

= (=L)"(Hi(z)) = (—L)" (Hi-1()) — y(H: — Hi1)(x)

= D1 (L) (He(@)|(~L) " (Hi-1(@))) = (Him1 — He)(@) - (L) 7 (He())
—y(Hy — Hy—1)(x)

= —D_1((—L) " (He(@) | (L) (He-1(2))) + (L))" (Hi()) — y) - arhy()

= —D_p((=L)" (He(2)|(=L) " (Hi-1(2))) = (y — (L))" (He(@))) - oy - y* hu()

= =D ply—w((zy), )|y — w((z,y), Hi1)) — ar - w((@,y), Hi) - y* (),
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and thus, we get for MODABOOST the relationship between successive surrogate risks,

®(H;,8) — ®(Hy—1,8)
_ D
= —pt Eipm), { D_.(1 —

Z Ws.t 1'y;kht(mi)

€[m]s

i) if y;=0 ]
wei) if yi=1

= —p-E (60)

~[m]s

[ D_p(wes1,i|we,i) if y; =0 |
D_p(1 — w1l —we) if yi=1 |’

by (15). O
The following Theorem established a general boosting-compliant convergence bound, the central piece of our proof.

Theorem B. Define the expected and normalized weights at iteration t:

Wt 5

Zze[m] Wt,i
- ; wrl();m i 9 , (61)
Card([m]) N TS s

and the following two assumptions (LOSS0, WLA):

w*; =

(LOSS0) The loss chosen { is strictly proper, differentiable and satisfies inf{¢' | — ¢} > & for some k > 0;
(WLA) There exists a constant vy, > 0 such that at each iteration t € [T'], the weak hypothesis hy returned by WL

satisfies
h ZL;
Z wnorm Z t( ) > ,yWL. (62)
= maicg, (o)
1€|lm]y
Then under LOSS0 and WLA the following holds:
T
— 2(®(Hpy,8) — @
Vo e R, Zptw*? > ((0,—2)) = (P(Hr,S) < D). (63)
t=1 K

Proof: Assuming second-order differentiability, we have the classical Taylor approximation of Bregman divergences (Nock
& Menon, 2020, Appendix II): for ¢ € [T],i € [m]s, Jue i, ve 4 € [0, 1] such that:

(=L)" (ut,i) (wes1, — wei)?

D_L( 7’4) = 2 ’
—L)"(ve i) (wiy1,i — wei)?
D_p(1 —wiy14]1 —wei) = (L) era) 2t+17z t) )

It follows from Sypherd et al. (2022, Lemma 12) and assumption LOSSO0 that ¢ being strictly proper, we have (—L)” =
0 — 0 =inf{l | — ¥} = K, so we get

D_(w 3 || Wt .4 if P = 0 btk
P Eim), [{ D (w1 llwe ) -y ] > 2 “Eivm], [(thﬂ_ _wm)z]’

LI = w11 —wy) if oy =1 2
We remark
2 2
Z Wt 4 y;kht(mz) = Z Wi+ Y; ht -’L'z Z Wii1,5 Y ht(%) (64)
€[m]s i€[m]¢ i€[m]¢
2
= Z (Wi — weg) -y he () (65)
i€[m]¢
< Z (wi,i — wig1:) Z (66)
i€[m]¢ i€[m]
< Card([m]t) z~ [m]e [ Wt41,i wt,i>2] ; (67)
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where we have used (15), Cauchy-Schwartz, the assumption that the distribution is uniform and let M; = max;e[y,, |h(2;)|.
Thus,

e B D_p(wesri|weq) if y =0
bl D_p(1 —wip1,41 —we) if ys=1
2
hi (x4
= Card (], ?

2
Ptk Zi,e[m],, Wi Wi x Dt (:I:Z)
- BEL (S ) ot . (68)
2 (Card([m]t) ie[Zm]t L jelm], W M,

52 ~
=w*} >v2 from WLA

Assumptions LOSS0 and WLA thus imply the guaranteed decrease between two successive risks

2% 2
O(HS) < @(Hi-1,8) - HELL, (69)
and we have, after collapsing summing inequalities for ¢ = 1,2, ..., T, the guarantee that as long as the WLA holds,
T
_ 2(®(Hy,8) — @
VP e R, Zptw*f > ((07—2)) = (®(Hr,8) <), (70)
t=1 il
which is the statement of Theorem B. O

Because it involves w*;, this bound is not fully readable, but there is a simple way to remove its dependence as w* is also
linked to the quality of the classifier H: roughly speaking, the smaller it is, the worse is the dependence in (70) but the better
is H since weights tends to decrease as H gives the right class with increased confidence (| H|). The trick is thus to find a
value of w*; below which H is "satisfying” (boosting-wise) and then plug this bound in (70), which then gives a number of
iterations after which H becomes satisfying anyway.

We need the following definition.

Definition II.1. (after (Bun et al., 2020)) Weights at iteration t are called (-dense if W, = (, where

Diefm] Wi
—

W =

Notice that the expected weight here, W, spans all the training sample, which is not the case for w*; (which relies on the
examples “fed” to the weak learner). We make precise the notion of being “satisfying” when weights are “small”.

Lemma M. Foranyt > 1,( € [0, 1], suppose the weights at iteration t + 1 are not (-dense. Then ¥ € R,

¢
Piepmlyf He(xi) < 0] < w(0)’ (71)

where we let w(6) = min{l — (—=L')~1(9), (=L")~1(-0)}.

Proof: We denote [m] ;. the set of indices whose examples have positive class. Let zf , z; S ey zérar d([m] ) SOMe associated

reals and w (z) = 1 — (—L')71(2) the positive examples’ weight function. Being non-increasing and with range in [0, 1],
we have V0 € R

Eifm], [wi(z7)] = Punp, 2 < 0] w0 (0) + Ppyy, [27 > 0] - infw, (72)
m]+[zi+ < 9] C Wy (9)7 (73)

so using this with z:“ = Hy(x;) = yfH(x;) yields wy (z:r) = wiy1, and By, [wig 1] = Py, 9 He(®:) <
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Similarly, let [m]_ the set of negative indices for iteration ¢. Let 21,25, ... some associated reals and

’ Z(_]ard([m],)
w_(z) = (=L')~!(z) the negative examples’ weight function. Being non-decreasing and with range in [0, 1], we have
voeR

Einm]_ [w_(z;)] = P [Z; = —9] w_(—0) — P [z; < —0]-infw_ (74)
so using this with z;7 = Hy(x;) = —yFH(z;) yields w+(zl ) = w1 and By ) [wig1i] = Py [y He(:) <

0] - w_(—6).

Denote c(i) € {+, —} the label of index 4 in [m] and p™, p~ the proportion of positive and negative examples in [m]. With a
slight abuse of notation in indices, we have p™E; L[], [w4 ()] + p" Eiwpmy [w—(27)] = Eixfm) [wc(i)(zf(l))] = Wiyl
where the last identity holds for the choices of the z;'s made above We thus have the lower-bound on W, 1:

W1 = P Ppa, [y He(ei) < 0wy (0) + pPpay_ [y He(i) < 0] w_(=0) (76)
> (P Py [y He(a:) < 0] + pPpy_ [y He() < 0]) - minfw, (0), w—(—0)} amn
= Pivfm[yf He(:) < 0] - min{l — (=L)71(0), (-L) 7' (-0)}, (78)
so forany ¢ € [0, 1],
(Biop [y Ho(:) < 0] ) = (Wie1 > 2 min{l — (—L')~1(8), (~L') "1 (~6)}), (79)
so if w41 < (, then by contraposition
— ¢
Piwpmlyi He (i) < 0] min{l — (—L')-1(9), (—L')~1(—6)} (80)
_ <
" w0y oy
as claimed. O
Fix from now on
¢ = e-w(). (82)

‘We have two cases to conclude on our main result.

Case 1: sometimes during the induction, the weights for the ’next iteration” (¢ + 1) fail to be (-dense. By Lemma M,
P;m1lyi Hi(x;) < 0] < € and we are done.

Case 2: weights are always (-dense:

Recall the key statement of Theorem B:
T
— 2(®(Hpy,8) — @
voeR, | ) puwt, = AR(Ho.8) =)} (®(Hr,8) < ®).
t=1 K
Provided we can assume a lowerbound of the form
Pt > wwRLVE=1,2, ... (83)

where u; > 0 is not too small, we see that (-denseness thus enforces a decrease of ®(H, §) via Theorem B, and we only
need a link between this and P;_p,,,1[y; H (;) < 6], reminding

O(H,8) = By [be(—H () —y:H(®:)]  delz) = (=L)"(—2).

TNote that this is equivalent to u; compliance in Definition 5.1.
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Lemma N. Let ¢¢(2) = min{d(2), de(—2) — z}. Forany t > 1 and any 0 € R such that:

$e(0) > min de(y; *Hi(x)),

i€[m]

we have for any u € [0, 1],

ProtmlF Hi(e) <012 0) = (901,80 > ua0) + (1= ) min 0u(s7 Hu(w1) ).

i€[m]

Proof: We reuse some notations from Lemma M. We first note

Einpm) [@e(=Hi(®:)) — yiHi(z:)] = p Eivpmy_ [Po(—Hi(:))]
+p Eiw[m]+ [be(—Hi(i)) — Hi(w;)] . (84)

Let us analyse the term for negative examples and have z; < H (x;) for short. Because ¢¢(—z) is non-decreasing, for any
feR,

Efm]_ [ (=2 )]
= [m] [Zz 9] : (I)g(@) + (1 - I[D[m,]_ [z; = _0]) - min d)f( 7)

i€[m]—

= Ppon)_ [y He(zi) <01 $o(0) + (1 — Py _[y7 Hi(i) < 0]) - D[fllﬂl de(y; He(x;))

= ]P)[m]f[y;kHt(wi) < 9] . d)f(g) + (1 - ]P)[m]f[y;kHt(wi) < 9]) - min ¢€( Ht(wl))

- i€[m]

Similarly for positive examples, letting z; < H (x;) for short, we remark that ¢¢(—2) — z is non-increasing and so for any
felR,

Epmy, [be(—2) — 2]
> Ppny, [z < 0] (de(—0) = 0) + (1 = Ppy, [27 < 0]) 'lg%i be(—2") — 2
+(1 - [ Ht(ﬂfz) <0]) - min ¢o(—y He(x:)) — yi Hi(w;)

ie[m] 4+

> P[mh[@/?Ht(va:) < O] &e(0) + (1= Py, [yf He(@i) < 0]) 'Zler%m] Pelyi He(:)).

Hence we get from (84) that for any 6 € R,

Eipm] [Pe(—Hi(xs)) — ys Hy ()]
= P Eicpm)_ [Pe(—Hi(x:))] + p  Eiepmy, [de(—He(z:)) — Hy(;)]
> (p Ppn)_[yf He(x:) < 0]+ p  Ppoy, [y Hi(z:) < 0]) - be(0)
+((p™ +p") = (0 Py [y Hi(2:) < 0]+ p  Ppy, [y He(2i) < 0])) - min do(y] Hy(;))

i€[m]

= Pim] [yi He(;) < 0] - e(6) + (1 — P [m) lyi Hy(x;) < 0]) Zgﬁ?] Gy He ().
We get that for any 6 € R such that:
$e(0) > min de(yf He(x;)),

- i€[m]
we have for any u € [0, 1],
(P Lyi He (i) < 6] > )

= | Eipm) [be(—Hi(i)) — yiHe(2:)] = ude(0) + (1 —u) min by (y; He(x:)) |,

- i€[m]

~—

~®(H,,8,)
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as claimed. Cl
If all weights at iterations ¢ are ( = € - w(#)-dense for t = 1,2, ..., then, letting v = ¢ in Lemma N and

O = ede(0) + (1 — )y,

in Theorem B, for some ¢, to be made precise, then a sufficient condition to get ®(Hr,8) < @ is Zthl uawr =
2(®(Ho, 8) —ede(0) — (1 —e)dey)/ (k) (using (83)), and integrating the (-denseness of weights, this condition becomes
the sufficient condition:

iw . 2(2(Ho, 8) —ede(0) — (1 — &)brs) (85)

re2w(0)2+2
So, if we pick ¢y, = minep,n) Go(y; Hr(x;)), then from Lemma N we get
Pz~[m] [yv*HT(mz) < 9] < g

which is what we want. We wrap up in two last steps. We first simplify the RHS of (85) by replacing it by a more readable
sufficient condition: if the loss’ partial losses satisfy

0.4(0),64(1) = C (36)

for some C' € R (such as if the loss is fair: C' = 0), then we remark that for any H € R and y € {0, 1},

bo(—H) —yH = s%pl]{(u —y)H + L(u)}
= sup {(u—y)H +uly(u) + (1 —u)l_1(u)}
ue[0,1]
> ylhi(y) + (1 —y)la(y). (87)

The integral representation of proper losses (Reid & Williamson, 2010, Theorem 1) (Nock & Menon, 2020, Appendix
Section 9),

1 u
() = J (1= wt)dt 0 1() = j f(t)dt,
u 0
where (0,1) — R, shows that ¢; is non-increasing and ¢_; is non-decreasing, so inf ¢_; > C' # oo andinf ¢y > C #
+00, so (87) yields

e L) =C if y=1,

$0 mine[m) Go(y; Hr(x;)) = C and ¢g(0) = C, which allows us to replace (85) by the sufficient condition:

d 2(®(Ho,8) — C)
DI U (®9)

In our second step to wrap-up, if we have 23;1 uy = U(T) (for some U strictly increasing and thus invertible), then under
the three conditions:

¢ LOSS0 and (86) on the loss,
¢ WLA on the weak learner,
* (83) on Step 2.1 of MODABOOST (the architecture emulation oracle is compliant for the u; shown),

we are guaranteed that anytime we have

(90)

T s U (2(<I>(H0,S)—C)),

k- e2w(0)?y?
we are guaranteed
Picimilyi Hr(z:) < 0] < e,

which is the statement of the Theorem. Figure 4 depicts some key functions used in MODABOOST and Theorem 1.
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A

Figure 4. Schematic depiction of key functions used for weights (14) and Theorem 1 on an example of loss whose Bayes risk is schematised
in red.

I1.7. Proof of Lemma 5

Denote W, T~ the total sum of (unnormalized) boosting weights in 8; before the call for splitting the node. Denote
W W the corresponding weights at the new leaf A and VVﬁ, W, the corresponding weights at the next leaf \’,
completing the split (See Figure 5). The proof of the Lemma relies on the following observations:

(1) W+ = W~ (before split, the current leaf is balanced); also, W+ = W1+ + W and W= = W™ + W (every
example in X; goes to exactly one new leaf);
(2) the weak learner predicts 1,,>, - bt € {—1,0, 1} wlog (call it the “prediction at the right node of the split at X;”);
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xt ", > a” xt

)\/

)

Figure 5. When MODABOOST learns a decision trees, X; in Step 2.1 is the domain corresponding to a leaf A\. The weak learner gives the
split and fits the prediction of one leaf only to guarantee the WLA. The WLA at this split guarantees that the other split also complies with
the WLA (the red parts are chosen by the weak learner, see text).

We then derive from the quantity in absolute value of the WLA (20):

i€[m]¢

with

Wt,5

Zje[m]t We,j

Y, - ht(ml) — Z W5 y* . ht
i maXsje(m)], |ht(513j)| ie[m)wi=a Zje[m],, Wy, j v
W Wy,
- \wrsw- wr+w- )
_(WEewE W W
- \wrsw- wrew- )
_(wrewe W WY,
a W++w-  Wr+w- Wr+w- )"
C(mwr oy,
- \wrsw- wrew- )
Wt 4
- ) Zit (<)
i€[m]izi<a je[m]: Wt,j
wtvi * h;(wz
- ST , (D)
i€[m]¢ ZJE[m]t thj maxje[m]t |h‘,t(w])‘
h;(:l?) 1wi<a : (_ht), (92)

which is both (i) a function computing a prediction for the left node of the split at X; and (ii) satisfying the WLA since

1z,>q - ht does satisfy the WLA.
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IL.8. Proof of Lemma 6

Let X denote a leaf of the decision tree. We have

v =y (L) (HY)
my
t—(mf—mp) 22
my —(my —m -
- mA( TS (93)
+12
= (m)\s) (m,\—mi—&-m;)Q
m3

N2 .2
_4mJM.CA>.(A>
m my my
o« pa- (20 (1-p{))%
as claimed. In (93), we have made use of the expression in (97).

I1.9. Proof of Lemma 7

We proceed in three steps. Suppose a new leaf A has been put, with prediction h), by the weak learner (this is in fact ’half
a split” as usually described for DTs). We compute the leveraging coefficient ) in Step 2.3 of MODABOOST. Denote
parent(v) the parent node of v in H.

Hparcnt()\) = Z ay hl/ 94)
vepath(A)\{\¢}

is the prediction computed from the root of the tree up to the parent of A. Given a constant prediction h) at leaf A, We wish
to find avy so that (15) holds. We reuse notations from Lemma 6 and its proof. We note that (15) is equivalent to

mi_ - (m)\ - mj\_) ! (7LI)71(O@\hA + Hparent()x)) - mi_ ' (7L1)71(O‘)\h>\ + Hparent()\)) = 07 (95)

which gives, since p} = m} /m,,

1

= e (L) )~ Hecn) o

Our second step computes the final decision tree prediction at the new leaf A\, which is trivially:

Hy = Hparent(z\) + axhy
= (L) (%) oD

Plugging this prediction in the SPD, it simplifies as

®(H,8) ) + i L' (p)] (98)

Il
=
>
14
Z
=z

L(py)], (99)
as claimed.
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I1.10. Proof of Lemma 8

We can now show a more general result for any loss, encompassing Lemma 8. We reason in terns of noise probability 7y
instead of V.

Lemma O. If one of the two conditions is satisfied:

(S) the loss { is symmetric, ny < 1/2 (= w(0)) and MODABOOST is run for any number T > 1 of iterations, or

(A) the loss ¢ is asymmetric, 1y, < w(0) and MODABOOST is run for a number of iterations T such that the following
condition holds on the DT leaves (p* = (—L')~1(0)):

. *— 1 (A =p*)—ny 1
+ < p oL R y 1
VAe A(H), (pA \mln{12nY, 2}) v (1 Dy \mln{12nY '3 , (100)

then MODABOOST with DT is Bayes optimal in T iterations on Long and Servedio’s data.

Proof: We treat case (S) first. The proof is straightforward since the noisy proportion of positive examples at the root leaf
(first iteration) \, py, satisfies p{ = ny + (1 — 2ny)py (p} = noise-free proportion). Hence, i > 1/2iff p} > 1/2, and
Py < 1/2iff pf < 1/2. The prediction at the root node is obtained using (97), has the same sign with and without noise
since when the loss is symmetric, —L' zeroes at 1/2 (and it is strictly monotonic because the loss is strictly proper). If
T > 1, we note that for any observation with > 0 probability of occurrence, the local proportion of positive examples is the
same for all three distinct observations in Long and Servedio’s dataset, hence our argument for the root is still valid for any
node given that the prediction at any leaf is still (97).

If the loss is not symmetric, the picture changes compared to symmetric losses. To have a sign flip between no noise and
noise, we need either:

Py > p* >+ (1= 2n00)p3, (101)
pj\r <p*<n+(01- 277Y)pj\L. (102)
Note that looking at the extremes, we see that (101) implies pj > 1/2 while (102) implies pj < 1/2. We have two cases:

Case 1: we reach the point where

*— 1
p;f < min P nY,f .
1—2n, 2

We note that the 1/2 upperbound prevents (101), while the other one can be reformulated as 7, + (1 — 277Y)p§ < p*,
preventing (102).
Case 2: we reach the point where

1—p*)—mn, 1

1—pt < mn{dZPD = 1L
1—2n 2

We note that the 1/2 upperbound prevents (102), while the other one can be reformulated as p* < 7y + (1 — 2n,) pj\',
preventing (101).

This ends the proof of Lemma O. O

I1.11. Application of MODABOOST #¥5: labeled branching programs (LBP)

A labeled branching program is a branching program with prediction values at each node, just like our encoding of DT, with
the same way of classifying an observation — sum an observation’s path values from the root to a leaf. The key difference
with classical branching programs is that to one leaf can correspond as many possible predictions as there are paths leading
to it. See Figure 6 for an example.

> uy compliance of AEO and the weak learner: the weak learner is the same as for DT, except it looks for a split over the
union of a set of leaves in the current LBP, with the constraint that this split has to cut every leaf’s domain in two (this
requirement can be removed if the user is comfortable that some inner nodes in the LBP may have out-degree 1). After the
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Figure 6. Using MODABOOST to learn a LBP: the main difference with DT is the current X is the union of the domains of several leaves,
yielding larger u:s and more efficient boosting.

split is found, it is carried at each node and the outgoing arcs get to two new leaves only by merging the leaves of the stumps
accordingly (call this procedure the split-merge process), as displayed in Figure 1. This makes the weak learner have the
same properties as for DT, but of course, yields larger u; compliance than for DT, and so bring better boosting rates as we
now show.

= Boosting rate: suppose we run MODABOOST as for DT and start to merge nodes to always ensure u; > 3 for some

B>1/T. Weget 37wy, =SB (1/t) + (T —[1/B]) = log(1 + [1/B]) + BT — 1 = log(1/B) + BT — 1. The choice
B = T—¢ for a constant c € (0, 1) immediately leads that P; . [y Hr(x;) < 0] < e if

T s (2(<I>(Ho,8) —O))lc — (Bu) =0 <12> , (103)

2 2~/2
K€ Q(e) Y gl%cy\:,:

=Bigp

a bound which is exponentially better than (25) for DT. While it does extend previous boosting rates to margins / edges
(Kalai & Servedio, 2003; Mansour & McAllester, 2000), (103) is suboptimal compared to the O(log2(1 /€)) dependence of
Mansour & McAllester (2000) shown for 6 = 0.

= Effect of Long and Servedio’s data: a single node LBP is also a single node DT. Since learning a DT achieves Bayes
optimal prediction with a single root DT on Long & Servedio (2010), the same happens for a single root LBP.

Lemma P. Forany (N, K,v) € N2 x R, 4, MODABOOST with LBP is Bayes optimal in 1 iteration on Long and Servedio’s
data if the loss is symmetric.

I11. Toy experiment

Table A1 presents a toy result of MODABOOST. As predicted by Long & Servedio (2010), LS learned always have very
substantial degradation in their estimated posterior below a threshold margin parameter -y, which translates to classifiers as
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Accuracy on 8, Expected posterior
1.1 T T T T 1.1 T T T T
eta = 0.3333 = eta = (0.3333 =—
1r eta = 0.2 —— eta = 0.2 =—
eta = 0.1667 1+ eta = 0.1667 =
eta = 0.1429 = 0.1429 —
0.9 eta = 0.125
eta = 0.1111
0.8 eta = 0.1
eta = 0.0625
0.7 F eta = 0.04
eta = 0.02
0.6
0.5 =
0.4 1 _f
0.3 | | | | | 0.5 | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3
gamma gamma

Table A1. MODABOOST’s results with the induction of linear separators (LS) on Matusita’s loss. Each plot has parameter - in abscissa
(10) and in ordinate respectively the accuracy on Scean and the expected posterior estimation from Spoisy (5) (Bayes’ optimum indicated in
a green rectangle). Different curves correspond to different values of the noise parameter 7y (indicated as et a).

accurate as the unbiased coin on Sey.
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