Supervised Learning: No Loss No Cry
— Supplementary Material —

Abstract

This is the Supplementary Material to Paper ”Supervised Learning: No Loss No Cry” by R.
Nock and A.-K. Menon. To differentiate with the numberings in the main file, the numbering of
Theorems is letter-based (A, B, ...).
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II Factsheet on Bregman divergences

We summarize in this section the results we use (both in the main file and in this SI) related to
Bregman divergence with convex generator F',

Dp(z]|2") = F(2) = F(') = (= = 2)F'(¢), (D)
where we assume for the sake of simplicity that ' is twice differentiable.
> General properties — Dp is always non-negative, convex in its left parameter, but not always in

its right parameter. Only the divergences corresponding to F'(z) o< 2% are symmetric (Boissonnat
et al., 2010)).

> Dy is locally proportional to the square loss — assuming second order differentiability, we
have (Nock et al., [2008):

F//
Vz,2',3c€ [z NZ,2V 2] De(z]|2) = 2(0) (2= 22 (2)

> Bregman triangle equality — also called the three points property (Nock et al.,|2008, 2016),

Vz, 2", 2" Dr(z||2") = Dr(z||2") + De(Z'||2") + (F'(2") — F'(2)(z' — 2). (3)
> Invariance to affine terms — for any affine function G(z) (Boissonnat et al., 2010),
Vz,2', Dpia(z]|2') = Dgp(z]|7). 4)
> Dual symmetry — letting /™ denote the convex conjugate of /', we have (Nock et al.,[2016)),
V2,2, Dp(z]|2) = Dp(F'(2)||F'(2)). Q)
> The right population minimizer is the mean — we have (Banerjee et al., 2004),
arg mZinEz[DF(ZHz)] = [Ez[Z] = u(Z). (6)

> Bregman information — the Bregman information of random variable Z, defined as Ir(Z) =
min, Ez[Dr(Z||2)], satisfies (Banerjee et al., 2004)

Ip(Z) = Bz[Dr(Z||n(2))]. @)

IIT Proof of Theorem

(=) The proof assumes basic knowledge about proper losses as in Reid & Williamson| (2010) (and
references therein) for example. It comes from Reid & Williamson! (2010, Theorem 1, Corollary
3) and Shuford et al. (1966) that a differentiable function defines a proper loss iff there exists a
Riemann integrable (eventually improper in the integrability sense) function w : (0,1) — R, such
that:

! U
_ Gl 4l ,Vee (0,1). (8)

c 1—-c

w(c)
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To simplify notations, we slightly abuse notations and let L” = —w and define L'(u) = [ L"(z)dz
for some adequately chosen constant a (for example, a = 1/2 for symmetric proper canonical losses
Nock & Nielsen| (2009, [2008])). We denote such a representation of loss functions their integral
representation (Reid & Williamson, [2010, eq. (5)), as it gives:

ae) = [ ~0- 0L ©)
from which we derive by integrating by parts,
tle) = —[1-wL(w)], - [ L'(u)du
= (1=0¢)L(c) = L(1) + L(c) (10)
= ( L)(1) = (=L)(¢) = (1 = c)(=L)'(c) (1D
= D_p(1le), (12)

Where D_ | is the Bregman divergence with generator —L (we remind that the conditional Bayes
risk of a proper loss is concave (Reid & Williamson, 2010, Section 3.2)). We get similarly for the
partial loss ¢_; (Reid & Williamson, 2010, eq. (5)):

l_1(c) = —/OcuL"(u)du

— L+ [ L

= —cL'(¢) + L(c) — L(0) (13)
= (=L)(0) — (~L)(¢) — (0 — ¢)(~L)'(¢) (14)
= D_.(0]e). (15)

We now replace c by the inverse of the link chosen, ¢/, and we get for any proper composite loss:

Uy z) = [y =1 6@ () + [y =11 - 17 (2))

= D_p(yllv™(2)), (16)
as claimed for the implication =-. The identity
D_l¢'(2)) = Depy(=L' o™ (2)[-L(y)) (17)

follows from the dual symmetry property of Bregman divergences (Boissonnat et al.,|2010; Nock
et al., 2016]).

(<) Let £(y*, 2) = D_p(yllg~'(2)), some Bregman divergence, where g : [0, 1] — R is invertible.
Let £,(y*, c) : Y x [0,1] — R defined by £,(y*, c) = £(y*, g(c)). We know that the right population
minimizer of any Bregman divergence is the expectation (Banerjee et al., 2004; Nock et al.,[2016),
so7 € arginf, Ev.{,(Y,u),Vr € [0, 1] and ¢, is proper. Therefore ¢ is proper composite since g
is invertible. The conditional Bayes risk of ¢, is therefore by definition:

L(m) = Eyolp(Y,7) (18)
= F(m)+ G() (19)



where G(7w) = —7F(1) — (1 — ) F(0) is affine. Since a Bregman divergence is invariant by
addition of an affine term to its generator (@), we get
by e) = Dr(ylo) (20)
= D_y(ylle). 1)
We now check that if ¢ = —F" then ¢ is proper canonical. It comes from (—F")7H(2) =
(—L')"'(z + K) where K = —(F(1) — F(0)) is a constant, which is still the inverse of the
canonical link since it is defined up to multiplication or addition by a scalar (Buja et al., 2005).
Hence, if ¢ = —F" then {(y*, z) is proper canonical. Otherwise as previously argued it is proper
composite with link g in the more general case. This completes the proof for the implication <,
and ends the proof of Theorem [}

Remark: symmetric proper canonical losses (such as the logistic, square or Matsushita losses)
admit L(0) = L(1) Nock & Nielsen| (2009, |2008). Hence (19) enforces V7 € [0, 1]

w(F(0) = F(1)) = L(0) = L(1) = (1 — )(F(1) — F(0)), (22)

resulting in F'(1) = F'(0) and therefore enforcing the constraint X" = 0 above.

IV Proof of Theorem 3

IV.1 Helper results about BREGMANTRON and FIT

To prove the Theorem, we first show several simple helper results. The first is a simple consequence
of the design of u;. We prove it for the sake of completeness.

Lemma A Let u, be the function output by FIT in BREGMANTRON. Let z,, = u; *(0) and z,, =
u; ' (1). Let Uy be defined as in (14)) (main body, with u < wuy). The following holds true on u,

ne - (z—2) <w(2) —w(2) < Ny (2= 2) (23)

1 / —1 —1 / /
Nt_l-(p—p)éut (p) — uy (p)Snt_l-(p—p), (24)

Von < 2/ <z <2y, VO < p' < p <1, and the following holds true on U,:

(p—p)?

(p—1p)?
2N '

< Dy (pllp) < ST

(25)

Proof We show the right-hand side of ineq. (23)). The left hand side of follows by symmetry
and ineq (24) follow after a variable change from ineq (23)). The proof is a rewriting of the mean-
value Theorem for subdifferentials: consider for example the case u;(b) — u;(a) = N'(b — a) with
N’ > N,_; for some z,, < a < b < z. Let

v(z) = u(z) —uw(b)+N'(b—=z2), (26)

and since v(a) = v(b) = 0, let z, = argmin, v(z), assuming wlog that the min exists. Then
v(z) > v(z4), and equivalently u;(2) —u(b) + N'(b—2) > u(2) —ur(b) + N'(b—z,) (Vz € [a, b)),
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which, after reorganising, gives u;(z) > w;(2.) + N'(z — 2.), implying N € Ju(z,). Pick now
a <z, < z, < z! < bthat are linked to z, by a line segment in u;. At least one of the two segments
has slope > N’, which is impossible since N’ > N, _; and yields a contradiction. The case a = z,,
xor b = z,; reduces to a single segment with slope > N’, also impossible.

We now show (23)). Let

V(p) = Ui(b) = Ui (p) — (b—phu; () — Alb — p)*, 27)
(remind that (U})" = u; ') where A is chosen so that V' (a) = 0, which implie since V' (b) = 0 that
3c € (a,b),0 € OV (c). We have 0V (c) > —(b — ¢)¢’ — 2A(c — b) for any ¢ € du; *(c), implying
A = /2 for some ¢ € du; ' (c). Solving for V(a) = 0 yields Dy (bl|a) = (//2)(b— a)? for some
¢ € Ou; " and since Imdu; ' C [1/N;_1,1/n;_;] from (24), we get

b—a)? b—a)?
% < Dy (blja) < %, (28)

as claimed. [ |

Note that we indeed have 7; = uy (’w;@l) by the design of Step 4 in BREGMANTRON. The
second result we need is a direct consequence of Step 3 in BREGMANTRON.

Lemma B The following holds for any t > 1,i € [m],

. n N,
U (wx) € u(w ) - [mm {1 — By, —t} , max {1 + ay, —t}] , (29)
Ny iy
where oy, B; > 0 are the stability property parameters at the current iteration of BREGMANTRON,

as defined in Definition 3| (main file).

Proof We prove the upperbound in by induction. Assuming the property holds for x; and
considering x;; (recall that indexes are ordered in increasing value of w;lmi, see Step 2 in
BREGMANTRON), we obtain

w(w) i) < g (w @) + New/ (@i — ;) (30)
N,
< Ut+1(’th+133i) + n—t : (ut('th—i-lwiJrl) - Ut(w;ﬁi)) (31
t
_M T T op)— ¢t T 32
~ Ut(wt+1f'/'z+1) +Ut+1(wt+15’/’z) n 'ut(wt+1wl) . (32)
t t

The first inequality comes from the right interval constraint in problem (10} applied to u;1, ineq.
comes from Lemma [A]applied to u,. We now have two cases.

Case 1 If N, /n; > 1 + oy, using the induction hypothesis (29) yields utH(thJrl:I;i) < (NVy/ny) -
uy(w, ;) and so (32)) becomes

N, N, N,
w(w/) i) < n—fut(w;ﬁm) + n—:ut(Wlei) - n—fut(w;ﬂi)
N,
= n—fut(wglmiﬂ). (33)
t

I'This is a simple application of Rolle’s Theorem to subdifferentials.
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Case 2 If N;/n; < 1+ oy, we have this time from the induction hypothesis u;1(w,, @;) <
(1+ o) - uy(w, ,x;), and so we get from (32),

N,
U (W] @) < n_zut(wt:—lwi+l) + (1 +ap — Ef) cup(w] ;)
N, N,
< Su(w @) + (1 + o — —t> cup(w) i) (34)
Ty Uz
=(1+ at)ut(w;_lmi—i—l) ; (35)

where holds because w,, ;x; < w, ,x;.; (by assumption) and w; is non-decreasing.
t+1 t+1Li+

The proof of the lowerbound in follows from the following ”symmetric” induction, noting
first that the second constraint in problem (main file) implies the base case, ut+1('w;1ml) >
(1 — By)us(w, 1), and then, for the general index i > 1,

U (W ®i1) > () ) + ngw) (T — ;) (36)
n
2 Utq1 (w;ﬂmz) + Ftt . (Ut<w;:_1wi+1) — ut(wglmz)) (37)
n n
=2 ut(th-g-lwiJrl) + Ut+1(th+1$i) - L. Ut(w;ﬂi)- (38)
Nt Nt

The first inequality comes from the left interval constraint in problem (10) applied to u;. 1, ineq.
comes from Lemma [A]applied to v,. Similarly to the upperbound in (29)), we now have two
cases.

Case 1 If n;/N; < 1 — f3;, using the induction hypothesis yields w1 (w/ ;) > (ny/N) -
uy(w, ;) and so becomes

n n
u (Wl i) > ﬁtt u(wl @) + Nt w(w x;) — ﬁi'ut(’w;ﬂi)
n
= Ntt (W Tig). (39)

Case 2 If n;/N; > 1 — f3;, using the induction hypothesis 29) yields w41 (w,  x;) > (1 — 3) -
uy(w, ;) and so (38) becomes

Uz

n
Ui (W @) > N u (w1 @) + (1= B) - wg(wiy,2i) — ﬁt ROICTARE
t t
n n
> - Ug (wt+1$l) (1—75) - ut(wt+1mZ) -+ ut('w;:qwz’) (40)
N N
=(1-8)  w(w,,x;). (41)
(@0) holds because w,, ;z; < w, @1 (by assumption) and u is non-decreasing. This achieves
the proof of Lemma [B] |

We now analyze the following Bregman loss for r,t,t' = 1,2, ....

6(S;wy) = Es[Du; (yllus(wy®))] = Es [Dy, (u; ' o up(wp)llu, (y)] , 42)

The key to the proof of Theorem [3]is the following Theorem which breaks down the bound that we
have to analyze into several parts.



Theorem C Foranyt > 1,

(1 (S wen) < 6G(S,wr) — Es[Dy, (wy alluy " 0 upir (w)y12))] — Ly — Qe

where
Ly = Esl(w/ @ —u; " ouggr(w/ @) - (w1 (/@) — we(w/,,2))],
. _ N,_
Qi1 = ]ES[(w:m — U Yo Ut+1('th+1w)) : (Ut(w;ﬂ) —y)] - ( 7tlt - - 1) -€§+1(S, Wip1).

Proof We have the following derivations:
G(S,we) = Es[Dy; (yllu(w, )]
= Es[Du; (yllus1(w/ )] + Es[Dyy (upsr (w/y 2) un(w) @))]
HEs[((UF) (w(w/ @) — (UF) (e (/1)) - (e (wiy @) — )]
= {1 (S,wi) + Es[Dy, (w, ®|u; ™ 0wy (w) )]

+£ES[("U1;T33 —u;'o Ut+1(’th+1m)) : (Ut+1(’th+1m) —y).

-~

=A¢41

(43)

(44)

(@3) follows from the Bregman triangle equality (3). (@4) follows from (U})" = u; ' and ().

Reordering, we get:
U1 (Sswin) = 6(S,w) — Es[Dy, (w, @[|u; " o Ut+1(th+1w>)] — Ay,

and we further split A, in two: A,y = Fyy1 + Ly, where

Fiyr = Es[(w/ @ —u; " oupr (w1 2)) - (w(w/ ) — y)],
Ly = ES[(thaz — ut_1 o ut+1(wt1193)) . (utH(lew) — ut('w;lm))].

We now have the following Lemma.

Lemma D The following holds for any t > 0:

Ny_
Eiﬁ(S,th) < ;L_l'gi—s-l(&wt—i-l)-
t
Proof We use Lemma @ and we get:
1
D+ N < — . (p—19p)?
Ui PIP) < 5 (0 =)
Ny

< - Dy; (pllp)

t

from which we just compute the expectation in ¢;; (S, wy1) and get the result as claimed.

Putting altogether (43), (46), and Lemma D] yields, V¢ > 1,

N;_
@E(S; th) < @H(S’ ’wt+1) + ( = - 1) ~€§+1(S, wt+1>

Uz
= (S, w;) — Es[Dy, (w, z|u; ' o ut+1(th+1w))] — Ly

N, _
— <Ft+1 — ( ;z L 1) Ly (S, wt+1>) ;
t

8

(45)

(46)
(47)

(48)

(49)

(50)



as claimed. This ends the proof of Theorem|[C| |

Last, we provide a simple result about the gradient step in Step 1.

LemmaE Ler i, = Egly - x| and 1, = Eg[y, - x]. The gradient update for Q) in Step 1 of the
BREGMANTIRON yields the following update to get w1, for some learning rate 1 > 0:

Wiy S we N (fy — ) (1)

Proof We trivially have V,Eg[ Dy, (w z||u; ()] = Eglus(w'2) - — y - ] = Egus;(w ' x) -
x| — ft,, from which we get, for some 11 > 0 the gradient update:

Wiy < Wy —T1M- vwES[DUt(wTa:”ut_l(y))hw:wt =w;+M- (ﬂy - ﬂt) ) (52)

as claimed. [ |

IV.2 Proof of Theorem
LemmaPF [, ; > 0, Vi

Proof We show that the Lemma is a consequence of the fitting of u;,; by FIT from Step 3 in
BREGMANTRON. The proof elaborates on the proofsketch of Lemma 2 of Kakade et al. (2011).
Denote for short N; = Nyw,',,&; and n; = n,w, ,x;. We introduce two (m — 1)-dim vectors of
Lagrange multipliers A; and A, for the top left and right interval constraints and two multipliers p;
and p,, for the additional bounds on ¢; and ¥,, respectively. This gives the Lagrangian,

m—1
L(G, S A p1,pm) = Es[Dup (dlly)] + D Ni+ (s — Gier +mia — o)
i=1
m—1
+Z)\ri'(?Ji+1—?Ji—Nz‘+1+Ni)+/01'—?31+Pm'@m—1) )
i=1

where we let ¢; = u;(w/, ;) for readability and we adopt the convention of Boyd & Vandenberghe
(2004, Chapter 5) for constraints. Letting w € /\ ~(the m-dim probability simplex) denote the



weight vector of the examples ins .S, we get the following KKT conditions for the optimum:

(57)

(61)

wilu  (G6) — w7 () + Mi = Moty + Aoy — Ay = 0 ,¥i=2,3,.,m—1, (53)
wiu, (1) —u ' (G0) + = A —p1 = 0, (54)
wi (" (Gm) = v (Gem)) = Mn—1) + Argm-1) + pm = 0, (55)
Uis1 — Ui € [nig1 —ng, Nigr — N;| Vi € [m — (§6)
no o> 0,
Um < 1, (58)
i (G = Gis1 + 11 —ni) = 0., Vie[m—1], (59)
Ai- (Jisr — i — Nt +N;) = 0 ,Vie[m—1], (60)
pr-—Hh = 0,
Pm * (1 - gm) 0, (62)
ALA = 0,
pP1,Pm = 0.

Fori=1,2,...,m, we define
S 15 15
> wiur (@) — w7 (5)).
j=i
We note that by summing the corresponding subset of (117]—[I19), we get

oi = A(i-1) — M—1) + Pm Vi €1{2,3,...,m} | (63)
o = —p1+pPm . (64)

Letting 9o and gy denote any identical reals, we obtain:

Zwi(ut_l@ti) - Ut_l@z’)) : (?)z - Qi) = Zai : ((?)z - Qi) - (Z)(ifl) - Q(ifl))) ,  (65)
i=1 =1

which we are going to show is non-negative, which is the statement of the Lemma, in two steps:
Step 1 — We show, for any ¢ > 1,

(0i = pm) - (U — @) — (Y-1) — qa-1))) = 0. (66)

We have four cases:
Case 1.17 > 1, 0; — pp, > 0. In this case, A1) > Ai;;—1), implying A;;_q) > 0 and so from eq.

. Ui — Yi—1) — Ni + Ni—1) = 0, and 50 J; — Ji—1) = Ntw;rl(mi — X(i—1))- Lemmaapplied
to u; gives

Ut(w;z.lwi) - Ut(w;1m(i71)) < Ntw;:.1($i - C17(1'71)) ) (67)

and so §; — Y-1) = ¢ — q(i—1), thatis, (7; — ¢;) — (Ja-1) — qa-1)) = 0.
Case 1.21 > 1, 0; — py,, < 0. In this case, \j;_1) > Ar;—1), implying Aj;_1) > 0, and so from eq.

10



(122), ii—1) — 9 + ni — ng—1y = 0 and s0 §; — J—1) = newy,, (¢; — T 1)) LemmalA]applied
to u; also gives

Ut(w;rﬂ?i) - Ut(’w;@(ifl)) > nt’thH(iEi — w(ifl)) ) (68)

and 50 ¢; — qi—1) = Ui — J(i-1), or, equivalently, (7; — ¢;) — (J-1) — qu-1)) < 0.

Case 1.3i =1, p; > 0. The case i = 1 yields oy — p,, = —p1. It comes from KKT condition (124))
that ¢; = 0, and since ¢q; > 0 (because of FIT), we get 01 — p,, < 0,91 — ¢1 < 0 and since o = qo,
we get the statement of (60)).

Case 14 i =1, py = 0. We obtain o1 — p,, = 0 and so (66 immediately holds.

Step 2 — We sum (66)) for i € [m], getting

Zai : ((?)z - C.h') - (?)(171) - Q(i—l))) > me : ((@z - Qi) - (g(z’fl) - Q(zel)))
i=1 i=1

We show that the right-hand side of is non-negative. Indeed, it is immediate if p,,, = 0, and if
pm > 0, then it comes from KKT condition (1235)) that ¢; = 1, and since ¢, < 1 (because of FIT),

Wegetpm'(gm_QM) me-(l—Qm) > 0.

To summarize our two steps, we have shown that

m

=1

which brings from (63) that

Es[(u; " (9¢) — u; ' (Ge41)) - (1 — w(wy®))] > 0, (70)

which after using the fact that FIT guarantees §;1 = w1 (w/, ), Vi, yields

Es[(w, @ — u; ' o gy (w1 @) - (uerr(w) ) — wy(w)y,x))] > 0, (71)
which is the statement of Lemma [E [ |
We recall

py = Esly- (72)
I:l’t = ]ES [gt ' m]th Z 1, (73)

Finally, we let

pi = max{Es[y], Es[u(w/,2)]} (€[0,1]). (74)

11



Lemma G Fix any lowerbound 6, > 0 such that

M > 24/prd;. (75)
Fix any ~; satisfying:
e [yt a6)
and learning rate
= e (o TeaT) .

Suppose oy, By < 6,/(1 + &;) and

Ne New o _ o6

. 78
ng g - + 1 + 6t ( )
Then
Ny pi i ot
F > -1)- —_. 79
= ( T ) 2nt nt(l + (St) ( )
Remark: it can be shown from (73)) (see also [I09) that 1 belongs to the following interval:
1- Spr(2+ 6
noe ot (1o YRR T )
IN, X 2(1+6)
Also, since ||, — ]2 < 2X, implies
1
0y —. (80)
Dy
Proof The following two facts are consequences of Lemmata and the continuity of u;:
Vi € [m],
Tpi € [N n i ou (wl ) = oyt ow(w/ )

+pi - (e (w ;) — u(w]a;))
= W@+ pi (e (W] 2) — uw(w/2)) 81)
Ir; € [0, N] twp(w ) = wl(w/ @) +r (we —wy) ' @
= w(w @) +nr - (foy — ) @ (82)

12



Folding and in Fyyq, we get:

Fryn = Es|( [ Loy wt—i—lw) w, x) - (y - Ut(w;rlw))]
_ w/ @ — wt z+p- (w(w @) — ut(“’;lw)))
= H —u(w/x) —nr- (1, — )" x }
_ )"+ p- (e (w) ) —w(w) x)))
B {{ - ut wt x) —nr- (fiy — ﬂt;Tw ' } (83)
-y "B [y s ) o]
HEs [p - (w1 (w1 @) — w(w/ @) - (y — ue(w; x))]
- Bs [r- ((foy — i) ")’
- (foy — 1) "Es [pr(up(w)z) — w(w, @) - x]
= -y — fulls + Bs [p- (v (wl @) — w(w/) @) - (y — wlw, x))]

J/

-~

=A
_112 s [r~ ((f, — ﬂt)Ta:)z]J

=B
- (Foy — f1r) " Es [W(Utﬂ(’thHfU) —u(w/,x)) - 331 - (84)

-

=C

We now bound lowerbound A and upperbound B, C'. Lemma [B| brings

) n
mln{ By, ﬁi — 1} . ut(thHzc) < utﬂ(w;lw) — ut('w;rlm), (85)
and
T T Ni T
Ut+1('wt+1a3) - ut(thrlw) < max {Oét, P 1} : Ut<wt+1f’3)a (86)
t
and so we get
A = Esp- (uga(w/x) —w(w @) - (y — w(w/ )]
= s [py- (Ut+1(th+1$) - ut(w;w))} — Es [put(w;a:) : (Ut+1(th+1w) - ut(w;rlw))}
1 1 N,
> o max {@, N, } Es [ut(w;rlzc)} o max {at, n—: — 1} Es [ut(wtllw)ut(ij)}
1 ne IV T
> o max {Oémﬁt; 1 - NAY T 1} Es [u(w,, )]
1 N,
> —— -max {Oémﬂta_t_l}p:: 87)
ny Uz

sincey € {0,1},U; < land1— (1/2) < z — 1 for z > 0. Cauchy-Schwartz inequality and
yield

B < n*-Es[r- |y, — fullllz]]

<
< MENX? |y — 3 (88)
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We also have successively because of Cauchy-Schwartz inequality, the triangle inequality, Lemma

[Aland (86)

C < 0y = Bullz - Es [pruea (w) @) — w(w/ @) - 2] |5
< 0y = fulle - Eslpriuen (w) @) — w(w/y, )] - |[2])]
nN: . N
< iy — frell2 - Esllup (w1 @) — ui(w/y, )] - |2 ]o]
NN, max {at, g—tt -1 X .
< > ity = fulla - Bs [l )]
1NNV, max {ozt, Jr\[—: — 1} Xp;
< ity = faelz - (89)

Uz

We thus get

N, _ *
o (B2
Tt Ny

o 1 N, . Ny Pt
Z n'Hl’l’y_p’tng_n_t'max{ataﬁhn_t_l}pt_( tl_l)'_t

t
1NNV, max {ozt, Jr\[—: — 1} Xp;

—?N X2 £y — fuell3 — nt Ny — fuel|2
) oy Qmax{at,ﬁt,g—z—l,]v;—;l—l}pj , . o
> -y — el — , —MEN X [y — ]
1nN; max {at, Jn\]—f — }Xp;‘
- o Eey = a2
) Zmax{at,ﬁt,g—f—l,Né—;l—l}pf , , )
=1 |lf, — fullz — Ty =N TNXE - [y — ey
T]Nt max {ntOét,Nt —nt}XpI ~ ~
- - Ny ful
t
o ) 2max{at,ﬁt,g—:—1,]v;—;1—l}p§ - ,
= -y — pullz — n NN X
NN, max {n,ay, Ny — n, } Xpj
_ wy
> —af’+bn+c, (90)
—_———
=J(f)
with ) =1 - ||, — ]2 and:
a = NX?, 91)
b = [y — fulla — (1 + &) - pp X, 92)
o = _E 93)
Ty

14



where ¢, 1s any real satisfying

N, N,_
g > max{ozt,ﬁt,—t -1, =1 1}. 94)
Uz Uz

Remark that

2 a(l + {—:t) c—c = 2y 28,5(1 + 8,5)\/pr7

so if we can guarantee that b* > 4a(1+¢;) - —c, then fixing ] = (1 — )b/ (2a) for some ~, € [0, 1]
yields from (90))

8 b*(1—~7)
J@) = — e

> —ge+ (1 +e)e (95)

The condition on b is implied by the following one, since p; < 1:
iy — fulls > 2v2e(1+e)V/piX +e(1+e) Vi X. (96)
Fix any K, > 1. It is easy to check that for any
g < Ky —1, 97)

we have ¢, < 2(v/K; — V/2),/Z1, so a sufficient condition to get (96) is

Ity — ]
Vel + < 98
TS R .

Letting f(z) = \/z(1 + 2), it is not hard to check that if we pick z = min{\/K; — 1,u*/K,} then
f(2) < u: indeed,

e if the min is u?/K;, implying u < /K;(v/K; — 1), then f(z) being increasing we ob-
serve f(2) < f(u?/K;) < wu, which simplifies for the rightmost inequality into u <
vV Ki(v/K; — 1), which is our assumption;

e if the min is /K; — 1, implying uv > +/K;(v/K; — 1), then this time we directly get
f2)=vVVEK— 11+ VK, —1) = \/K:(vV/K; — 1) < u, as claimed.

To summarize, if we pick

PSP
e = min{\/Kt—l,M}, (99)

AKipr X*
then we check that our precondition holds and we obtain from (90) and (93),

n Ty Ty

oy <Nt—1 B 1) N A ) (100)

15



Suppose ~; satisfies

(1+e)w < %

In this case, we further lowerbound (T100) as

N, * 52*
Ft+1—( ;1—1>’& > i

N ~ 2
y2 . ”IJ'y_l-"tH%
=Lt VE, -1,y —Eila 4
n, (mm{ CT AKX

To simplify this bound and make it more readable, suppose we fix a lowerbound

A a2
ey — fuell5 > 6,
4dpr X2

for some d; > 0. Some simple calculation shows that if we pick

K o= (142 2
L 1446,)

then the min in (T02) is achieved in v/ K; — 1, which therefore guarantees

Ni_q Dy D; 0y
F — -1 - = > —-
trl ( ) ng — m(1+6)

and therefore gives the choice ¢; = ¢;/(1 + d;). The constraint on ~y, from (T0T)) becomes

(101)

(102)

(103)

(104)

(105)

(106)

107)

< 0
=\ 22t
and it comes from (94) that o, 5; < d;/(1 + ;) and
Ml gy S
Ny g 1 + 5t
as claimed. This ends the proof of Lemma[G] after having remarked that the learning rate 1 is then
fixed to be (from (90))
L
T] - T~  ~
£y = Bl
1—’}/,5 ( N N 5t(2+5t) )
= _ _ . - — " YUprX
2H“y_u‘tHQNtX2 ||l"y l’l’t”? (1+5t)2 yz

_ ﬂ( _%2+e)  piX )
2N X? (1460 My = full2)
and it satisfies, because of (I03),

L= (1_ \/5tpf(2+5t)>

2N, X2 2(1 + ;)2

16
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and since ||, — fut|2 < 2X,

n <

L= - 610} (2 + &)
IN, X2 2(1+ 6,)?

(we note that (103)) implies d;p; < 1) This ends the proof of Lemma@

We now show a lowerbound on ();;; in Theorem

Lemma H Suppose the setting of Lemma |G| holds. Then

P 0t
> —
Qt+1 - nt(l + 515)

Proof Remind that it comes from Theorem

, N;_
Qi1 = Fry1— ( ; - - 1) L (S, W),
t
We have using Lemma
i1 (S;wern) = Es[Dyg (yllus(w/y@))]
1
< o Es((y — wi(w/y,))’]
1
= 2_7% (Esly] — 2ES[Z/“t<th+1w)] + ES[ut(th«Hwy])
< Eslyl + Esfw(wy,,@)]
- 2nt
o
1y

because u;(z) < 1. We get

Ny Ny ;
( t1_1>_€§+1(57wt+1) < ( tl_l)'&a

Uz

so using Lemma|G| we get

N;_ P}
Qi1 > Ft+1_( : 1—1)'—t
Ty ny
P:CSt
- nt(l +6t)7

as claimed.

Remind from Theorem [Cl that

ﬁiﬂ(S, w) < Ei(S, w;) — ES[DUt(thm”ut_l © ut+1(w;1w))] — Liy1 — Qi1

and we know that
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e Es[Dy,(w/z||u; " o upyi(w/, )] > 0, because a Bregman divergence cannot be negative;
e Liyy >0 from LemmalF;
® Q111 > p;d/(ni(1+ 6;)) from Lemma H| (assuming the conditions of Lemma|G).

Putting this altogether, we get

Ry
0 (S,we) < Ei(&wt)—ma

which then easily translates into the statement of Theorem [3]

V  Proof of Corollary [0

To make things explicit, we replace Step 3 in the BREGMANTRON by the following new Step 3:

Step 3 fit g, 1 by solving for global optimum:

Y1 = argminEg[Dy:(7]|9)] /lproper composite fitting of ;1 given w; 1, u;
9
Jir1 — Ui € [ (Wl (®ig1 — ®)), Ne - (wi (@ign — 23))] ,Vi € [m — 1]
st. $ g1 € [(1 = Bu(wl@), (14 ap)u(w], )] (115)
Um <1

The only step that needs update in the proof of Theorem [5|is Lemma [F} We now show that the
property still holds for this new Step 3.

Lemmal L, >0, Vt.

Proof The proof proceeds from the same steps as for Lemma[F} We reuse the same notations. This
time, we get the Lagrangian,

m—1

L(G, S A p1,0m) = Es[Dup (3lly)] + D Mi - (s = Gier + min — na)
=1

m—1
+ Z Aviw ivr = 9i = Niga + Ni) +p1 - (L= B — )
i=1

+pi (0 — L+ a)@) + pm - (Gm — 1) (116)
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and the following KKT conditions for the optimum:

wi(uy (9:) — uy  (G6) + Mi— Mot + Aot — Awg 0,vi=23,...m—1, (117)
wi(u, () —u  (G0) F A — A —pr+pp = 0, (118)
wi (g () = 7 (Gom)) = Mot + Atmet — P = 0, (119)
Ui1 — Ui € [nip1 — 14, Nigr — Ny, Vi € [m —(120)
h € q-[1—=0,1+a], (121)
i (Ui — ipr + 1 —ng) = 0, Vie[m—1], (122)
i (i1 =9 — Nipp +N;) = 0 ,Vie[m—1], (123)
pr-(1=8aq—m) = 0 (124)
pi- (G —(1T+a)p) = 0, (125)
P (G — 1 0, (126)

ALA = 0,
P10 P > 0. (127)

Letting again o; = 37", w;(uy Y (Ge;) — uy *(9;)) (fori = 1,2, ...,m) and g, and qo any identical
reals, we obtain this time:

gy = )\rifl - )\lifl + Pm , Vi € {2737 am} ) (128)
o1 = —p1+p1+ P - (129)

We now remark that just like in (66]), we still get
(i = pm) - (B — @) — (W-1) — qa-1))) = 0,Vi>1, (130)
since the expression of the corresponding os does not change. The proof changes for o, as this time,
(01 =pm) (I — @) = (Go —q)) = (=p1+p) (G — @), (13D
and we have the following possibilities:

e suppose p; > 0. In this case, KKT condition (124) implies ¢; = (1 — (3;)¢1, implying
U1 —q1 = —0Byq1 <0, and also §; # (1 + ay)qy, implying from KKT condition (123)) p} = 0,
which gives us (—p1 +py) - (1 — q1) = —p1 - (11 — q1) > 0.

e suppose pj > 0. In this case, the KKT condition (125]) implies 5, = (1 + «)g; and so
J1—q1 = aqp > 0,butalsoso g, # (1—03)q1, so p1 = 0, which gives us (—p1+p))-(01—q1) =
pi- (G — @) > 0.

e If both p; = p} =0, we note (—p1 + p}) - (91 — 1) = 0,

and so (66) also holds for i = 1, which allows us to conclude in the same way as we did for Lemma
[Fl and ends the proof of Lemmall] [ |
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A
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N
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Figure 1: Crafting from o € S,,, a subset of m — 1 reals for which the induction hypothesis can be
applied in the proof of Lemma|/|(see text).

VI Proof of Lemma

Let us drop the iteration index, thus letting z; = zp; for7 = 0,1, ...,m + 1 (with zy = zp,, and
Zma1 = Zuax)- We thus have z; < 244, Vi. We now pick one specific element in U(w, S), such
that

u(z) = (=L)'(=), (132)

for i € [d], which complies with the definition of U as both u and (—L') ! are non decreasing. We
then have

[Enrt@ -l = X [T e - wels
< 3 ulein) — ulz) i — )
< Nm_ (Zz'+1_zi)27 (133)

where the first inequality holds because of (132) and u is non decreasing, and the second inequality
holds because of the constraint in Step 3. Let S,,, 3 o : [m] — [m] be a permutation of the indices.
We now show

m— m—1
Z 2o (i+1) > Z Ziy1 — 2Vm > 1,Yo € S, (134)
=1 =1

We show this by induction on m. The result is trivially true for m = 2. Considering any m > 2
and any permutation o € S,,, suppose the order of the zs in the permutation is as in Figure
Let Yoy = Z?:ll(zg(iﬂ) — Zy(3))?, which therefore includes term (z,,, — 2,,)* + (2, — 2,,)*. Now,
drop z,,. This gives us a partial sum, X ,,tia1, OVer {z1, 2o, ..., z,—1 } described by a permutation
o € S,,_1 for which the induction hypothesis applies. We then have two cases:

Case 1: 1 < o(m) < m, which implies that z,, is "inside” the ordering given by ¢ and is in fact the
case depicted in Figure(l| In this case and using notations from Figure |1, we get:

Etot = Zpartial + (Zm - Zu)2 + (Zv - Zm)2 - (Zv - Zu)Qa (135)
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and the induction hypothesis yields

m—2
Spartial > Y (201 — 2)°. (136)
i=1
So to show (134)) we just need to show
m—2 m—1
(ziv1 = 22 + (zm — 20)* + (20 = 20)? = (% > ) (za— )% (137)
=1 i=1

(2
N J/

Lowerbound on Etot‘%mm (I35) and (140)

which equivalently gives
(Zm — 20)2 4+ (2m — 20)% > (20 — 2)* + (2m — Zm-1)> (138)
After putting (z, — z,)? in the LHS and simplifying, we get equivalently that the induction holds if
222 — 22mzu — 22mze + 22020 > (Zm — Zm-1)*. (139)

The LHS factorizes conveniently as 222 — 22,2, — 2220 + 22020 = 2(2m — 24)(2m — 2,). Since
by hypothesis 21 < zp... < 21 < 2, We gt 2(20, — 20) (2m — 20) > 2(2m — Zm_1)?, which
implies (I139) holds and the induction is proven.

Case 2: o(m) = m (the case o(m) = 1 give the same proof). In this case, z,, is at the “right” of
the permutation’s ordering. Using notations from Figure[I] we get in lieu of (I35),

Ztot - Zpartial + (Zm - Zu)za (140)

and leaves us with the following result to show:

m—2

m—1
d (i — )+ (2 —2)? =) (21 — (141)
=1

i=1

which simplifies in (2, — 24)? > (2 — Zm_1)?, which is true by assumption (2, < 2,1 < Zp).

To summarize, we have shown that Vo : [m] — [m],

Zm m—1
[ @ w3 Gy 2o (142)
1 i=1

Assuming the e-NN graph is 2-vertex-connected, we square the graph. Because of the triangle
inequality on norm ||.||, every edge has now length at most 2¢ and the graph is Hamiltonian,
a result known as Fleischner’s Theorem (Fleischner, [1974), (Gross & Yellen, 2004, p. 265,
F17). Consider any Hamiltonian path and the permutation o of [m] it induces. We thus get
|Zo@it1) — To@)|| < 26, Vi, and so Cauchy-Schwarz inequality yields:

m—1

m—1

2 : T 2

E ZU i+1) ) - E ’(U ma i+1) —w m0'(1'))
=1

i=1

< w2 Z 1Zo(i1) — o) ||
=1
< 2me’ - [lwlf?, (143)
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as claimed, where ||.||. is the dual norm of ||.||. We assemble (133]) and (143) and get:

/zm (=L '(z) —u(z)|dz < 2Nme*- ||w|?,

zZ1

which is the statement of the Lemma.

Remark: had we measured the ¢; discrepancy using the loss and not its link (and adding a second
order differentiability condition), we could have used the fact that a Bregman divergence between
two points is proportional to the square loss to get a result similar to the Lemma (see Section [II).
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