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Abstract

Supervised learning requires the specification of
a loss function to minimise. While the theory of
admissible losses from both a computational and
statistical perspective is well-developed, these of-
fer a panoply of different choices. In practice,
this choice is typically made in an ad hoc manner.
In hopes of making this procedure more princi-
pled, the problem of learning the loss function
for a downstream task (e.g., classification) has
garnered recent interest. However, works in this
area have been generally empirical in nature.

In this paper, we revisit the SLISOTRON algo-
rithm of Kakade et al. (2011) through a novel
lens, derive a generalisation based on Bregman
divergences, and show how it provides a princi-
pled procedure for learning the loss. In detail, we
cast SLISOTRON as learning a loss from a fam-
ily of composite square losses. By interpreting
this through the lens of proper losses, we derive a
generalisation of SLISOTRON based on Bregman
divergences. The resulting BREGMANTRON algo-
rithm jointly learns the loss along with the classi-
fier. It comes equipped with a simple guarantee
of convergence for the loss it learns, and its set of
possible outputs comes with a guarantee of agnos-
tic approximability of Bayes rule. Experiments
indicate that the BREGMANTRON outperforms
the SLISOTRON, and that the loss it learns can be
minimized by other algorithms for different tasks,
thereby opening the interesting problem of /oss
transfer between domains.

1. Introduction

Computationally efficient supervised learning essentially
started with the PAC framework of Valiant (1984), in which
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the goal was to learn in polynomial time a function being
able to predict a label (or class, among two possible) for
i.i.d. inputs. The initial loss, whose minimization enforces
the accurate prediction of labels, was the binary zero-one
loss which returns 1 iff a mistake is made.

The zero-one loss was later progressively replaced in learn-
ing algorithms for tractability reasons, including its non-
differentiability and the structural complexity of its min-
imization (Kearns & Vazirani, 1994; Auer et al., 1995).
From the late nineties, a zoo of losses started to be used
for tractable machine learning (ML), the most popular ones
built from the square loss and the logistic loss. Recently,
there has been a significant push to widen even more the
choice of loss; to pick a few, see Grabocka et al. (2019);
Kakade et al. (2011); Liu et al. (2019); Mei & Moura (2018);
Nock & Nielsen (2008; 2009); Reid & Williamson (2010);
Siahkamari et al. (2019); Streeter (2019); Sypherd et al.
(2019).

With a few exceptions, seldom do such works ground rea-
sons for change of the loss outside of tractability at large, be
it algorithmic or statistical — with for example the introduc-
tion of classification calibration, which studies conditions
on losses complying with the accurate prediction of labels
(Bartlett et al., 2006). It turns out that statistics and Bayes de-
cision theory give a precise reason, one which has long been
the object of philosophical and formal debates (de Finetti,
1949). It starts from a simple principle:

Bayes rule is optimal for the loss at hand,

a property known as properness (Savage, 1971). Then
comes a less known subtlety: a proper loss as commonly
used for real-valued prediction, such as the square and lo-
gistic loss, involves an implicit canonical link (Reid &
Williamson, 2010) function that maps class probabilities
(such as the output of Bayes rule) to real values. This is
exemplified by the sigmoid (inverse) link in deep learning.

Supervised learning in a Bayesian framework can thus be
more broadly addressed by learning a classifier and a link
for the domain at hand, which implies learning a proper
canonical loss with the classifier. This loss, if suitably
expressed, can be used for training. This kills two birds in
one shot: we get access not just to real valued predictions,
but also a way to embed them into class probability estimates
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via the inverse link: we directly learn to estimate Bayes rule.

A large number of papers, especially recently, have tried to
push forward the problem of learning the loss, including
e.g. (Grabocka et al., 2019; Liu et al., 2019; Mei & Moura,
2018; Siahkamari et al., 2019; Streeter, 2019; Sypherd et al.,
2019), but none of those alludes to properness to ground
the choice of the loss, therefore taking the risk of fitting a
loss whose (unknown) optima may fail to contain Bayes
rule. To the best of our knowledge, Nock & Nielsen (2008)
is the first paper grounding the search of the loss within
properness and Kakade et al. (2011) brings the first algo-
rithm (SLISOTRON) and associated theoretical results for
fitting the link — though subject to restrictive assumptions
on Bayes rule and on the target distribution, the risk to
fit probabilities outside [0, 1], and finally falling short of
showing convergence that would comply with the classical
picture of ML, either for training or generalization.

Our major contribution is a new algorithm, the
BREGMANIRON (Algorithm 2), a generalisation of the
SLISOTRON (Kakade et al., 2011) to learn proper canonical
losses. BREGMANIRON exploits two dual views of proper
losses, guarantees class probability estimates in [0, 1], and
uses Lipschitz constraints that can be tuned at runtime.

Our formal contribution includes a simple convergence
guarantee for this algorithm which alleviates all assump-
tions on the domain and Bayes rule in (Kakade et al., 2011).
Our result shows that convergence happens as a function
of the discrepancy between our estimate and the true value
of of the mean operator — a sufficient statistic for the class
(Patrini et al., 2014). As the discrepancy converges to zero,
the estimated (link, classifier) by the BREGMANIRON con-
verges to a stable output. To come to this result, we pass
through an intermediate step in which we show a partic-
ular explicit form for any differentiable proper composite
loss, of a Bregman divergence (Bregman, 1967), which are
canonical distortion measures. To save space, all proofs are
given in a supplementary material, denoted SI.

2. Definitions and notations

The following shorthands are used: [n] = {1, 2, ...,n} for
n € N,, forz > 0,a <b € R, denote z - [a,b] = [za, 2
and z + [a,b] = [z + a, z + b]. We also let R = [—o0, 00].
In (batch) supervised learning, one is given a training set of
m examples S = {(x;,y}),? € [m]}, where ¢, € X is an
observation (X is called the domain: often, X C R%) and
yr €Y ={-1,1} is alabel, or class. The objective is to
learn a classifier h : X — R which belongs to a given set H.
The goodness of fit of some h on S is evaluated by a /oss.

> Losses: A loss for binary class probability estima-
tion (Buja et al., 2005) is some ¢ : Y x [0, 1] — R whose

expression can be split according to partial losses {1, ¢_1,

y*su) = [y* =11 - b(u) + [y" = =1] - €1 (w), (1)

Its conditional Bayes risk function is the best achievable loss
when labels are drawn with a particular positive base-rate,

L(m) = infEvL(Y,u), 2)

where Pr[Y = 1] = 7. A loss for class probability esti-
mation ¢ is proper iff Bayes prediction locally achieves the
minimum everywhere: L(7) = Ey{(Y,n),Vm € [0,1], and
strictly proper if Bayes is the unique minimum. Fitting a
prediction h(x) € R into some u € [0, 1] as required in (1)
is done via a link function.

> Links, composite and canonical proper losses. A link
¥ : [0,1] — R allows to connect real valued predic-
tion and class probability estimation. A loss can be aug-
mented with a link to account for real valued prediction,
Ly (y*, 2) = L(y*, 1~ (2)) with z € R (Reid & Williamson,
2010). There exists a particular link uniquely defined!
for any proper differentiable loss, the canonical link, as:
P = —L' (Reid & Williamson, 2010, Section 6.1). We note
that the differentiability condition can be removed (Reid
& Williamson, 2010, Footnote 6). As an example, for log-
loss we find the link ) (u) = log %, with inverse the
well-known sigmoid ¢~ (2) = (1 + e~*)~!. A canonical
proper loss is a proper loss using the canonical link.

> Convex surrogates. When the loss is proper canonical
and symmetric (¢1(u) = £_1(1 — u),Vu € (0,1)), it was
shown in Nock & Nielsen (2008; 2009) that there exists a
convenient dual formulation amenable to direct minimiza-
tion with real valued classifiers: a convex surrogate 10ss

Fi(z) = (=L)"(=2), 3)

where x denotes the Legendre conjugate of F', F*(z) =
SUP,scdom(F) 122" — F(2')} (Boyd & Vandenberghe, 2004).
For simplicity, we just call F} the convex surrogate of /.
The logistic, square and Matsushita losses are all surrogates
of proper canonical and symmetric losses. Such functions
are called surrogates since they all define convenient upper-
bounds of the 0/1 loss. Any proper canonical and symmetric
loss has £(y*, z) < Fy(y*z) so both dual forms are equiva-
lent in terms of minimization (Nock & Nielsen, 2008; 2009).

> Learning. Given a sample S, we learn h by the em-
pirical minimization of a proper loss on S that we denote
Ly (S, h) = Ei[l(y;, v~ (h(z;)))]. We insist on the fact
that minimizing any such loss does not just give access to
a real valued predictor h: it also gives access to a class
probability estimator given the loss (Nock & Nielsen, 2008,
Section 5), (Nock & Williamson, 2019),

PrlY = 1|x;h, )] = ¢~ ' (h(x)), @)

'Up to multiplication or addition by a scalar (Buja et al., 2005).
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so in the Bayesian framework, supervised learning can also
encompass learning the link v of the loss as well. If the loss
is proper canonical, learning the link implies learning the
loss. As usual, we assume S sampled i.i.d. according to an
unknown but fixed D and let £ (D, h) = Eg.p[l.(S, h)].

3. Related work

Our problem of interest is learning not only a classifier, but
also a loss function itself. A minimal requirement for the
loss to be useful is that it is proper, i.e., it preserves the Bayes
classification rule. Constraining our loss to this set ensures
standard guarantees on the classification performance using
this loss, e.g., using surrogate regret bounds.

Evidently, when choosing amongst losses, we must have
a well-defined objective. We now reinterpret an algorithm
of Kakade et al. (2011) as providing such an objective.

> The SLISOTRON algorithm. Kakade et al. (2011) con-
sidered the problem of learning a class-probability model
of the form Pr(Y = 1 | &) = u(w,] x) where u(-) is a
1-Lipschitz, non-decreasing function, and w, € R is a
fixed vector. They proposed SLISOTRON, an iterative algo-
rithm that alternates between gradient steps to estimate w.,
and nonparametric isotonic regression steps to estimate u.

SLISOTRON provably bounds the expected square loss, i.e.,

C3(Sh) = Eaws [Ey-nsl(y — o7 (h(x)))*]2]] 65)
where h(x) = w " x is a linear scorer and y = (y* + 1)/2.
The square loss has 2 - £3%(u) = (1 —u)?, 2 - £°% (u) = u?,
and conditional Bayes risk 2 - L*®(u) = u(1 — u).

Observe now that the SLISOTRON algorithm can be inter-

preted as follows: we jointly learn a classifier h € J{ and
composite link 1) for the square loss ¢ € £, as

L ={(y,2) — (y—y(2))?: ¢ is 1-Lipschitz, invertible}.

That is, SLISOTRON can be interpreted as finding a classifier
and a link via all compositions of the square loss with a 1-
Lipschitz, invertible function. Kakade et al. (2011) in fact
do not directly analyze (5) but a lowerbound that directly
follows from Jensen’s inequality:

Eons [Ey-nsly — v~ (W(x)))?|2]] ,
Eons [(Eywslyle] — 7" o h(@))?] (6)
This does not change the problem as the slack is the expected

(per observation) variance of labels in the sample, a constant
given .S. We shall return to this point in the sequel.

6oS,h) =

v

Kakade et al. (2011) make an assumption about Bayes
rule, Eyonlylz] = 95, (wg,,x) with ¢} Lipschitz
and ||wep|| < R. Under such an assumption, it is

shown that there exists an iteration t = O((Rm/d)"/?)

of the SLISOTRON with max{£5¢, (S, h), 52, (D,h)} <
O((dR?/m)'/3) with high probability (5 is the lower-
bound of the loss in (6)). Nothing is guaranteed outside
this unknown "hitting" point, which we partially attribute
to the lack of convergence results on training. Another po-
tential downside from the Bayesian standpoint is that the
estimates learned are not guaranteed to be in [0, 1] by the

isotonic regression as modeled.

> Learning the loss. Over the last decade, the problem of
learning the loss has seen a considerable push for a variety
of reasons: Sypherd et al. (2019) introduced a family of tun-
able classification calibrated losses, aimed at increasing ro-
bustness in classification. Mei & Moura (2018) formulated
the generalized linear model using Bregman divergences,
though no relationship with proper losses is made and the
loss function used integrates several regularizers breaking
properness; the formal results rely on several quite restric-
tive assumptions and the guarantees are loosened if the true
composite link comes from a loss that is not strongly convex
"enough". In Streeter (2019), the problem studied is in fact
learning the regularized part of the logistic loss, with no
approximation guarantee. In Grabocka et al. (2019), the
goal is to learn a loss defined by a neural network, without
reference to proper losses and no approximation guarantee.
Such a line of work also appears in a slightly different form
in Liu et al. (2019). In Siahkamari et al. (2019), the loss
considered is mainly used for metric learning, but integrates
Bregman divergences. No mention of properness is made.
Perhaps the most restrictive part of the approach is that it
fits piecewise linear divergences, which are therefore not
differentiable nor strictly convex.

Interestingly, none of these recent references alludes to
properness to constrain the choice of the loss. Only the
modelling of Mei & Moura (2018) can be related to proper-
ness via Theorem 1 proven below. The problem of learning
the loss was introduced as loss funing in Nock & Nielsen
(2008) (see also Reid & Williamson (2010)). Though a gen-
eral boosting result was shown for any tuned loss following
a particular construction on its Bayes risk, it was restricted
to losses defined from a convex combination of a basis set
and no insight on improved convergence rates was given.

4. Learning proper canonical losses

We now present BREGMANIRON, our algorithm to learn
proper canonical losses by learning a link function. We
proceed in two steps. We first show an explicit form to
proper differentiable composite losses and then provide our
approach, the BREGMANIRON.

> Every proper differentiable composite loss is Bregman
Let F : R — R be convex differentiable. The Bregman
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4 | Algorithm 0 SLISOTRON | N\

Input: sample S = {(x;,v;),i = 1,2, ..., m}, iterations 7' € N,.
Fort=0,1,...7 -1
[Step 1] If t = O Then w;;; = w; = 0 Else fit w;; using

m

1
Wit = W= — > (u(mi) — i) - @i )

i=1

[Step 2] order indexes in S so that w, ;41 > w,, @, Vi € [m — 1];

[Step 3] let 2,41 = w;lmi_l’_l
[Step 4] fit next (inverse) link

Ut41

Output: ur, wr.

\.

< IsotonicReg(2¢11, S);

/fitting of w41 given z41 ®)

Figure 1: The SLISOTRON algorithm of Kakade et al. (2011).

divergence D with generator F' is:

Dr(z||Z) = F(2)—F(E')—(z—2)F'(2).(12)
Bregman divergences satisfy a number of convenient prop-
erties, many of which are going to be used in our results. In
order not to laden the paper’s body, we have summarized in
SI (Section II) a factsheet of all the results we use.

Our first result gives a way to move between proper com-
posite losses and Bregman divergences.

Theorem 1 Let ¢ : Y x [0,1] — R be differentiable and
¥ : [0,1] — R invertible. Then ¢ is a proper composite loss
with link ) iff it is a Bregman divergence with:

(y", W) D_p(ylv™" o h(x)), (13)

D(py- (=L oy~ o h(=)||-L'(y)),

where L is the conditional Bayes risk defined in (2), and we
remind the correspondence y = (y* +1)/2.

Though similar forms of this Theorem have been proven in
the past in Cranko et al. (2019, Theorem 2), Nock & Nielsen
(2008, Lemma 3), Reid & Williamson (2010, Corollary 13),
Zhang (2004, Theorem 2.1), Savage (1971, Section 4), none
fit exactly to the setting of Theorem 1, which is therefore
of independent interest and proven in SI, Section III. We
now remark that the approach of Kakade et al. (2011) in (6)
in fact cannot be replicated for proper canonical losses in
general: because any Bregman divergence is convex in its
left parameter, we still have as in (6)

p(S,h) = Eans[D_r(Ey~slyla][¢™" o h(x))],

but the slack in the generalized case can easily be found to
be the expected Bregman information of the class (Baner-
jee et al.,, 2004), E,s[l_p(Y|x)], with I_,(Y|x) =
Ey~s[—L(y)|x] + L(Ey~s[y|z]), which therefore depends
on the loss at hand (which in our case is learned as well).

> Learning proper canonical losses We now focus on
learning class probabilities unrestricted to all losses hav-
ing the expression in (13), but with the requirement that we
use the canonical link: v = —L’, thereby imposing that we
learn the loss as well via its link. Being the central piece of
our algorithm, we formally define this function alongside
some key parameters that will be learned. Notably, we in
fact learn for algorithmic convenience the inverse canonical
link of a loss but in order not to laden the paper, we shall
also refer to this function as a link for short. Its domain or
image makes the distinction clear from context.

Definition 2 A link u is a strictly increasing function with
Imu = [0, 1], for which there exists —00 K Zy, Zuax <K
oo and 0 < n < N such that (i) u(zyy) = 0, u(2yax) = 1
and (i) Vz < 2/, n(z' — z) < (') —u(z) < N(Z' — 2).

Notice that relaxing 2y, Zuax € R (the closure of R) and
n, N € R, would allow to encompass all invertible links,
so definition 2 is not restrictive but rather focuses on simply
computable links. Given the canonical link u, we let

U(z) = /Z u(t)dt, (14)

from which we obtain the convex surrogate F,(z) = U(—z)
and conditional Bayes risk L, (v) = —U*(v) for the proper
loss £y (c) = D_p_(yllc), Yy € {0,1}.



Supervised Learning: No Loss No Cry

4 | Algorithm 1 BREGMANTRON | N\
Input: sample S = {(x;,v;),i = 1,2, ..., m}, iterations 7' € N,.
Initialize ug(z) =0V (1 A (az +b));
Fort=0,1,....T —1
[Step 1] If ¢ = O Then w4 ; = w; = 0 Else fit w;; using a gradient step towards:
w* = argminEg[Dy, (w' x|ju; *(y))]. /Iproper canonical fitting of w; 41 given gy, uy )
[Step 2] order indexes in S so that w, ;1 > w,, @, Vi € [m — 1];
[Step 3] fit ;41 by solving for global optimum (7, N; chosen so that 0 < n; < Ny):
Yip1 = argminEg[Dy: (9]9:)] //proper composite fitting of ¢, 1 given wy. 1, u;
g
op 4 B =i € [ (Wil (@igs — 22)), Ne - (W) (i1 — 24))] Vi € [m— 1] (10)
Tl 120,90, <1
[Step 4] fit next (inverse) link
U1 FIT(:’Jt+1, Wiy1, S), /Mitting of uyy given w4, 'gt+l (11)
Output: ur, wr.
L J

Figure 2: The BREGMANIRON algorithm.

Inline with Theorem 1, the loss we seek to minimize is

Uy*, h(x)) = Dy-(ylluo h(x)) = Dy(h(z)|[u"" (y)), (15)

with h(x) = w "z a linear classifier.

We present BREGMANIRON, our algorithm for fitting such
losses in Figure 2. BREGMANIRON iteratively fits a se-
quence ug, U1, ... of links and losses and wq, wy, ... of clas-
sifiers. Here, A, V are shorthands for min, max respectively
and in Step 3, we have dropped the iteration in the optimiza-
tion problem (g; denotes ¢;;). Notice that Steps 1 and 3
exploit the two dual views of proper losses presented in §2.

Before analyzing BREGMANIRON, we make a few com-
ments. First, in the initialization, we pick 2gyax — Zomn =
A>0andleta=1/Ab= —zpun/A.

Second, the choice of n;, IV is made iteration-dependent for
flexibility reasons, since in particular the gradient step does
not put an explicit limit on w,;. However, there is an implicit
constraint which is to ensure ny < 1/(w,, ; (2, — 1)) <
Ny to get a non-empty feasible set for wy .

Third, BREGMANIRON bears close similarity to
SLISOTRON, but with two key points to note. In
Step 1, we perform a gradient step to minimise a divergence
between the current predictions and the labels; fixing a
learning rate of 1 = 1, in fact reduces to the SLISOTRON
update. Further, in Step 3, we perform fitting of 3,41 based

on the previous estimates ¢, rather than the observed labels
themselves as per SLISOTRON. Our Step 3 can thus be
seen as “Bregman regularisation” step, which ensures the
predictions (and thus the link function) do not vary too
much across iterates. Such stability ensures asymptotic
convergence, but does mean that the initial choice of link
can influence the rate of this convergence.

Finally, with z; y1); = lemi, FIT can be summarized as:

[1] linearly interpolate between (z(;41)i,¥(t+1):) and
(Z(t41)(i+1)s Je+1)(i+1))» Vi € {2,3,m — 2},

[2] pick 2(r41)mn < W 1®1, 214 1)wax = Wiy 1@y, With:

Yj € [lj7rj]7j € {1,771}, (16)

and linearly interpolate between (2(;+1)w;0)
and (2(t41)1, Je+1)1)s and (Z(e41ym> Je+1)m) and
(Z(t+1)MAX7 1)-

Here, r1 = ny - (thJrl:cl - Z(t+1)M1N)7 ly = Ny (thJrlml -
Z(t+1)MIN)7 T = Ny - (Z(t+1)MAX - lemm)alm = N -
(Z(t41)max — wtllscm). Figure 3 presents a simple example
of FIT in the BREGMANIRON. Our theoretical results depend
on the sample-wise variation conditions following from (10).
As such, the piecewise affine interpolation in FIT, chosen
for its simplicity, can be replaced by other interpolation
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procedures tailored to other constraints, such as second-
order differentiability of the surrogate.

> Analysis of BREGMANTRON We are now ready to ana-
lyze the BREGMANIRON. Our main result shows that pro-
vided the link does not change too much between iterations,
we are guaranteed to decrease the following loss:

G(S,we) = Es[Du;(ylu(w)a)] . (A7)
for r,¢,t' = 1,2, ..., which gives (13) for —L = U, u; =
¢~! and h(z) = w/] z. We do not impose r = t, as our
algorithm incorporates a step of proper composite fitting of
the next link given the current loss.

We formalise the stability of the link below.

Definition 3 Let Oét,ﬁt > 0. BREGMANIRON is (O{t,/Bt)-
stable at iteration t iff the solution y.y1 in Step 3 satisfies
71 € ut(w;rﬂacl) 1= B, 14 oyl

Since 1 = w;1(w/ @) from FIT, it comes that sta-
bility requires a bounded local change in inverse link for
a single example (but implies a bounded change for all
via the Lipschitz constraints in Step 3; this is explained
in the proof of the main Theorem of this Section). We
define the following mean operators (Patrini et al., 2014):
i, = Esly - @] (sample), f1, = Es[j, - @], vt > 1 (esti-
mated), where 9, is defined in the BREGMANTRON. We also
let p; = max{Es[y], Es[us(w,, ;2)]} € [0,1] denote the
max estimated Pr(Y = 1) using both our model and the
sample S. Assume p; > 0 as otherwise the problem is
trivial. Finally, X = max; ||z;||2 (we consider the Ly norm
for simplicity; our result holds for any norm on X).

Definition 4 BREGMANTRON is said to be in the ds-regime
at iteration t, for some 6, > 0 iff-

|y — fiells > 24/pF6: X, V. (18)

To simplify the statement of our Theorem, we let f(2) =
z/(1 + z), which satisfies f(R4) = [0, 1].

Theorem 5 Suppose that BREGMANIRON is in the ;-
regime at iteration t, and the following holds:

o in Step 1, the learning rate

. (1 )+ f(ét))pi;x>
ey — frell2 ’

1=
2N, X2

Nt

for some user-fixed y; € {0, fo f(ét)/Q} ;

e in Step 3, Ny, ny satisfy Ne/n,, Ne—1/n, <1+ f(6).

Then if the BREGMANIRON is (f(6:), f(0;))-stable, then:

* (6
OIS, wey) < éi(&w»—%. (19)

t

(proof in SI, Section IV) Explicitly, it can be shown that the
learning rate at iteration ¢ lies in the following interval:

VOip; (2 + 61) <
' (1_ 2(1+6,)2 [m’lm’

Theorem 5 essentially says that as long as fi,, # fi¢, we can
hope to get better results. This is no surprise: the gradient
step in Step 1 of BREGMANIRON is proportional to fi,, — fi;.

L=
2N X?

n €

The conditions on Steps 1 and 3 are easily enforceable at
any step of the algorithm, so the Theorem essentially says
that whenever the link does not change too much between
iterations, we are guaranteed a decrease in the loss and
therefore a better fit of the class probabilities. Stability is
the only assumption made: unlike Kakade et al. (2011), no
assumptions are made about Bayes rule or the distribution
D, and no constraints are put on the classifier w.

We can also choose to enforce stability in the update of u
in Step 3. Interestingly, while this restricts the choice of
links (at least when || ft,, — fi;]|2 is small), this guarantees
the bound in (19) at no additional cost or assumption.

Corollary 6 Suppose BREGMANIRON is run with so that
in Step 3, constraint {; > 0 is replaced by

n € Ut(w;liﬁl) 1= B 14y, (20

and all other constraints are kept the same. Suppose
BREGMANTRON is in the §;-regime at iteration t, parame-
ters My, Ny, ny are fixed as in Theorem 5 and furthermore
ag, Be € 10, f(6¢)]. Then (19) holds.

(proof in SI, Section V) There exists an alternative reading
of Corollary 6: there exists a way to fix the key parameters
(M¢, ne, Ny, g, By) at each iteration such that a decrease of
the loss is guaranteed if our current estimate of the sample
mean operator, fi;, is not good enough.

5. Discussion

Bregman divergences have had a rich history outside of con-
vex optimisation, where they were introduced (Bregman,
1967). They are the canonical distortions on the manifold
of parameters of exponential families in information geome-
try (Amari & Nagaoka, 2000), they have been introduced
in normative economics in several contexts (Magdalou &
Nock, 2011; Shorrocks, 1980). In machine learning, their re-
discovery was grounded in their representation and algorith-
mic properties, starting with the work of M. Warmuth and
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1+ oy ?
ut A : 1 73,
/y2
ot Y1
. S '
Ztain I Zt2 Y Rt (m-1) Ztm Rtuax
Zt1 Z(t+1)1

Figure 3: (Inverse) link u of a proper canonical loss learned (red), as computable in FIT (z;; = th x;). In blue, we have
depicted the stability constraint in the update of the link (Definition 3). Stability imposes just a constraint in the change of
(inverse) link for a single example. It does not impose any constraint on the classifier update (which, in this example, is

significant for example (x1,y1), see text).

collaborators (Helmbold et al., 1995; Herbster & Warmuth,
1998), later linked back to exponential families (Azoury
& Warmuth, 2001), and then axiomatized in unsupervised
learning (Banerjee et al., 2004; 2005), and then in super-
vised learning (See Section 4).

Classical uniform convergence bounds apply to the convex
surrogate of any proper canonical loss (1-Lipschitz), so we
refer to Bartlett & Mendelson (2002, Section 2) for avail-
able tools. The setting of the BREGMANTRON raises two
questions, the first of which is crucial for the algorithm. We
make no assumption about the optimal link, which resorts
to a powerful agnostic view of machine learning chased in a
number of work (Bousquet et al., 2019), but it makes much
more sense if we can prove that the link fit by FIT belongs to
a set with reasonable approximations of the target. This set
contains piecewise affine links, which is a bit more general
than Definition 2 but matches the links learned by the BREG-
MANTRON. We remove the index notation 7" in ur and z7,
and consider the following ¢; restricted discrepancy,

Zm
E(u,l) = / I(—L")"'(z) —u(z)|dz, (1)
21
where £ is proper canonical with invertible canonical link.
It is restricted because we do not consider set (—o0, z1) U
(2m, +00), whose fitting in fact does not depend on data
(see Figure 3). Denote U, y(w,S) the set of piecewise
affine links with non-{0, 1} breakout points on abscissae
21,29, 0 zm (W X, = 2z < Ziy1 = 'wT:nHl,Vi €
{0,1,...,m — 1}, wlog), satisfying Definition 2. Let |.||
be any norm on X and ||.||, its dual. For any & > 0, G.(.5)
is the graph whose vertices are the observations in .S and an
edge links ¢, ' € Siff ||z—a'| < e. Gis said 2-connected
iff it is connected when any single vertex is removed.

Lemma 7 For any S of size m, any € > 0 such that G¢(S)
is 2-connected and any proper canonical loss £, In, N <
0o such that inf e, (w,s) E(u, €) < 2Nme? - [|w]|2.

2-connectivity is a lightweight connectivity condition that
essentially prevents the graph from being constituted of two
almost separate subgraphs. The proof of the Lemma relies
on an old result from graph theory connecting 2-connectivity
and Hamiltonicity, known as Fleischner’s Theorem (Fleis-
chner, 1974), Gross & Yellen (2004, p. 265, F17). Cru-
cially, N can be much smaller than the Lipschitz constant of
(—L')~'. Lemma 7 does guarantee that the set of links in
which the BREGMANIRON finds ur is powerful enough to
approximate a link provided we sample enough examples to
drag ¢ small enough while guaranteeing G (.S) 2-connected.
This does not require i.i.d. sampling but would require addi-
tional assumptions about X to be tractable (such as bound-
edness), or the possibility of active learning in X. This also
does not guarantee that FIT finds a link with small E(., ¢),
and this brings us to our second question: is it possible that
(near-)optimal solutions contain very "different" couples
(u, w), for which useful notion(s) of "different" ? This, we
believe, has ties with the transferability of the loss.

Last, deep learning has achieved tremendous success on
how one can learn a mapping ¢ from a general space X to
R?, where X possesses only weak mathematically amenable
properties. Our work can be directly branched after (or
during) training ¢ to get a complete proper learning pipeline
for Pr(Y = 1 | ) = u(w ' ¢(x)). To fold BREGMANT
RON within the training of ¢ shall however likely require
significant algorithmic improvements of Lipschitz isotonic
regression for an efficient training pipeline.
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6. Experimental results

We present experiments illustrating:

(a) the viability of the BREGMANTRON as an alternative
to classic GLM or SLISOTRON learning.

(b) the nature of the loss functions learned by the BREG-
MANTRON, which are potentially asymmetric.

(c) the potential of using the loss function learned by the
BREGMANTRON as input to some downstream learner.

> Predictive performance of BREGMANTRON We com-
pare BREGMANIRON as a generic binary classification
method against the following baselines: logistic regression,
GLMTron Kakade et al. (2011) with wu(-) the sigmoid, and
SLISOTRON. We also consider two variants of BREGMANT
RON: one where in Step 4 we do not find the global optimum
(BREGMANIRON,;,,r0x), but rather a feasible solution with
minimal ¢,,; and another where in Step 4 we fit against the
labels, rather than j; (BREGMANIRON,pel)-

In all experiments, we fix the following parameters for
BREGMANIRON: we use a constant learning rate of n = 1
to perform the gradient update in Step 1, For Step 3, we fix
n; = 1072 and N, = 1 for all iterations.

We compare performance on two standard benchmark
datasets, the MNIST digits (mni st) and the fashion MNIST
(fmnist) — on this latter domain, we sub-sample the data
to 1000 points for computational efficiency. We converted
the former to a binary classification problem of the digits
0 versus 8, and the latter of the odd versus even classes.
We also consider a synthetic dataset (synth), comprising
2D Gaussian class-conditionals with means £(1,1) and
identity covariance matrix. The Bayes-optimal solution for
Pr(Y = 1 | X) can be derived in this case: it takes the
form of a sigmoid, as assumed by logistic regression, com-
posed with a linear model proportional to the expectation.
In this case therefore, logistic regression works on a search
space much smaller than BREGMANTRON and guaranteed
to contain the optimum.

On a given dataset, we measure the predictive performance
for each method via the area under the ROC curve. This
assesses the ranking quality of predictions, which provides
a commensurate means of comparison; in particular the
BREGMANTRON optimises for a bespoke loss function that
can be vastly different from the square-loss.

Table 1 summarises the results. We make three observations.
First, BREGMANTRON is consistently competitive with the
mature baseline of logistic regression. Interestingly, this is
even so on the synth problem, wherein logistic regression
is correctly specified. Although the difference in perfor-
mance here is minor, it does illustrate that BREGMANIRON
can infer a meaningful pair of (u, w).

synth mnist fmnist
Logistic regression 922%  99.9%  98.5%
GLMTron 922%  99.6%  98.1%
SLISOTRON 91.6% 94.6%  90.7%
BREGMANIRON;pprox 92.2%  993%  94.6%
BREGMANTRON 161 90.1% 99.6%  97.7%
BREGMANIRON 923% 997%  97.9%

Table 1: Test set AUC of various methods on binary classifi-
cation datasets. See text for details.

Second, BREGMANIRON and BREGMANIRON .1 are gen-
erally superior to the performance of the SLISOTRON. We
attribute this to the latter’s reliance on an isotonic regression
step to fit the links, as opposed to a Bregman regularisation.

Third, while BREGMANIRON 0« also performs reason-
ably, it is typically worse than the full BREGMANIRON.
This illustrates the value of (at least approximately) solving
Step 4 in the BREGMANIRON. Further, while BREGMAN
TRON.16 generally performs slightly worse than standard
BREGMANTRON, it remains competitive. A formal analysis
of this method would be of interest in future work.

> Illustration of learned losses As with the SLISOTRON, a
salient feature of BREGMANIRON is the ability to automati-
cally learn a link function. Unlike the SLISOTRON, however,
the link in the BREGMANTRON has an interpretation of cor-
responding to a canonical loss function.

Figure 4 illustrates the link functions learned by BREGMAN
TRON on each dataset. We see that these links are generally
asymmetric about % This is in contrast to standard link func-
tions such as the sigmoid. Recall that each link corresponds
to an underlying canonical loss, given by ¢'(y, v) = u(v)—y.
Asymmetry of u(-) thus manifests in £(+1,v) # ¢(—1, —v).
We illustrate these implicit canonical losses in Figure 5. As
a consequence of the links not being symmetric around %,
the losses on the positive and negative classes are not sym-
metric for the synth dataset. This is unlike the theoretical
link, but the theoretical link may not be optimal at all on
sampled data. This, we believe, also illustrates the intrigu-
ing potential of the BREGMANTIRON to detect and exploit
hidden asymmetries in the underlying data distribution.

> Transferability of the loss between domains Finally,
we illustrate the potential of “recycling” the loss function
implicitly learned by BREGMANTRON for some other task.
We take the fmnist dataset, and first train BREGMAN
TRON to classify the classes O versus 6 (“T-shirt” versus
“Shirt”). This classifier achieves an AUC of 0.85, which is
competitive with the logistic regression AUC of 0.86.

Recall that BREGMANTRON gives us a learned link u, which
per the above discussion also defines an implicit canonical
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Figure 4: (Inverse) link functions estimated by BREGMANTRON on each dataset. On all datasets, the losses are seen to be
(slightly) asymmetric around 1, i.e., u(v) # 1 — u(—v). In particular, u(0) # 1.
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Figure 5: Loss functions estimated by BREGMANIRON on each dataset. The losses are (slightly) asymmetric, and have the
flavour of the square-hinge loss; this is a consequence of the linear interpolation used when fitting.

loss. By training a classifier to distinguish classes 2 versus
4 (“Pullover” versus “Coat”) using this loss function, we
achieve an AUC of 0.879. This slightly outperforms the
0.877 AUC of logistic regression, and is also competitive
with the 0.879 AUC attained by training BREGMANIRON
directly on classes 2 versus 4. This indicates that the loss
learned by BREGMANTIRON on one domain could be useful
in related domains to another classification algorithms just
training a classifier. To properly develop this possibility is
out of the scope of this paper, and as far as we know such a
perspective is new in machine learning.

7. Conclusion

Fitting a loss that complies with Bayes decision theory im-
plies not just to be able to learn a classifier, but also a canon-
ical link of a proper loss, and therefore a proper canonical
loss. In a 2011 seminal work, Kakade et al. made with the
SLISOTRON algorithm the first attempt at solving this big-
ger picture of supervised learning. We propose in this paper
a more general approach grounded on a general Bregman
formulation of differentiable proper canonical losses. From
a formal standpoint, an interesting avenue for future work

is the inclusion of a regulariser in the loss: we conjecture
that the choice of a gradient step in Step 1 of BREGMANT
RON makes it convenient to devise and analyse such exten-
sions.

Experiments tend to confirm the ability of our approach, the
BREGMANTRON, to significantly beat the SLISOTRON, and
compete with classical supervised approaches even when
they are informed with the optimal choice of link. Interest-
ingly, they seem to illustrate the importance of a stability
requirement made by our theory. More interesting is per-
haps the observation that the loss learned by the BREGMAN
TRON on one domain can be useful to other learning algo-
rithms to fit classifiers on related domains, a transferability
property of the loss learned that deserves further thought.
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