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Abstract
In supervised learning, efficiency often starts with
the choice of a good loss: support vector machines
popularised Hinge loss, Adaboost popularised the
exponential loss, etc. Recent trends in machine
learning have highlighted the necessity for train-
ing routines to meet tight requirements on commu-
nication, bandwidth, energy, operations, encoding,
among others. Fitting the often decades-old state
of the art training routines into these new con-
straints does not go without pain and uncertainty
or reduction in the original guarantees.
Our paper starts with the design of a new
strictly proper canonical, twice differentiable loss
called the Q-loss. Importantly, its mirror up-
date over (arbitrary) rational inputs uses only in-
teger arithmetics – more precisely, the sole use
of +,−, /,×, |.|. We build a learning algorithm
which is able, under mild assumptions, to achieve
a lossless boosting-compliant training. We give
conditions for a quantization of its main mem-
ory footprint, weights, to be done while keeping
the whole algorithm boosting-compliant. Exper-
iments display that the algorithm can achieve a
fast convergence during the early boosting rounds
compared to AdaBoost, even with a weight stor-
age that can be 30+ times smaller. Lastly, we
show that the Bayes risk of the Q-loss can be used
as node splitting criterion for decision trees and
guarantees optimal boosting convergence.

1. Introduction
More often than not, today’s supervised machine learning
(ML) toolkit exploits ideas and algorithms grounded in
decades-old approaches: stochastic gradient descent (SGD,
Robbins & Monro (1951)), backpropagation (Rumelhart
et al., 1986), boosting (Freund & Schapire, 1997), support
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vector machines (Boser et al., 1992), etc. . To be carried out
in today’s settings, such long-lived algorithms require care
and caution to cope with practical constraints on parallel and
distributed processing, memory, communication, bandwidth
or energy, the availability of reduced sets of operations, the
coding size of models, etc. These constraints are non exclu-
sive and arise for a number of reasons that were just mostly
not in the original bills of specifications for those algorithms,
essentially "reduced" to the optimisation of a risk (Vapnik,
1998). Many started to be formally studied a decade later
(Bottou & Bousquet, 2007), only to become almost a further
decade later a focus of attention for the whole field.

To adapt, tailor and run such algorithms, three important
tools (not independent from each other) emerge that we
refer to as (i) quantization, (ii) encoding and (iii)
operations. (i-ii) deal with parameters stored: in (i),
we limit the number of different values (and eventually the
values) that may be coded; in (ii) we tune the encoding of
those values. In (iii) we control the set of operations used to
train or classify. Tools from (i-iii) can cover the complete
training or classification phases (See section 2). Most of the
state of the art has been focusing in using (i-iii) for adapting
the aforementioned algorithms to today’s constraints. While
this has met with unquestionable empirical success, there
has been comparatively little formal understanding of the
impacts of changes; furthermore, the resulting algorithms
are not a panacea for such constraints, to the extent that there
are calls to redesign learning algorithms when possible to
be constraint friendly from the start (Goldwasser, 2018).

Such is the starting point of our contribution: we design a
new boosting algorithm for ensembles, compliant with the
original boosting theory requirements (Kearns, 1988), with
the following characteristics with respect to (i-iii) above:
(i) quantization: conditions are given for boost-
ing weights to be quantized without loosing boosting-
compliance;
(ii) encoding: if the inputs are rational then the full algo-
rithm and the output model’s classification can be carried
out with no precision loss using integer arithmetic;
(iii) operations: the algorithm just needs +,−,×, /, |.|.

In other words, under mild conditions, the algorithm is able
to compute a lossless solution to the boosting problem. Pop-
ular boosting algorithms like AdaBoost (Freund & Schapire,
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Figure 1: Left pane: test error (y, ± standard deviation) on UCI domain Hardware vs iteration number t (x, logscale), for
AdaBoost (Schapire & Singer, 1999) (blue) vs RATBOOST (green). We observe that RATBOOST tends to converge faster to
good solutions during early iterations. We plot in addition two results for quantized versions of RATBOOST: adaptive with 2
bits index (left, black) and regular with 2 and 3 bits indexes (right, orange). A 2 bits index represents a reduction in weight
storage by a factor > 30 compared to RATBOOST or Adaboost. Right pane: additional results on two UCI domains (left:
mice, right: yeast); RATBOOSTE (magenta) implements an integer arithmetic version of RATBOOST.

1997) are not compatible with constraints (i) and (ii), and we
do not know any result on (iii), which is a non-trivial but ma-
jor problem. Indeed, weight handling has been known to be
a source of numerical precision errors for decades (Kohavi,
1998). Furthermore, weights represent the main memory
overhead and become a significant communication over-
head too for distributed boosting (Lazarevic & Obradovic,
2002). Finally, numbers encoded in a computer are finite
and inevitably quantized (Widrow & Kollár, 2008), so our
contribution on (i) extends beyond the scope of our paper.

To design such an algorithm, we start from the root of any
supervised learning algorithm: we design a loss function,
called the Q-loss, having (a) the desirable statistical property
of being strictly proper canonical, (b) a surrogate with the
desirable optimisation property of being strictly convex and
twice differentiable, (c) a mirror update which entails only
+,−,×, /, |.| and (d) a canonical link whose image spans
the full R. For example, (a) rules out the exp-loss, (c)
rules out the log-loss and Matsushita loss, (d) rules out the
square loss. While (c) has clear importance in our case,
all others are crucial as well: for example, the fact that
the square loss fails at (d) is a source of tricky bounding
problems (Friedman et al., 2000). Since the mirror update
for a loss can be of use in various other settings, such as
on-line learning, our contribution on the Q-loss extends as
well beyond the batch learning scope of our paper.

We obtain a boosting algorithm that we call RATBOOST. To
get an idea of the performances of RATBOOST, Figure 1 (left
pane) shows an example of run on an UCI domain (Blake
et al., 1998) comparing three flavours of RATBOOST to Ad-
aBoost (Schapire & Singer, 1999) to learn linear models. All
algorithms are run for 10 000 iterations. RATBOOSTQb is
RATBOOST with a deterministic regular quantization for
weights with a b-bits index (we encode 2b− 1 weights), and
RATBOOSTAb is the same as RATBOOSTQb but with an
adaptive quantization scheme for weights (see §6). We see
that RATBOOST beats AdaBoost significantly over the first
boosting rounds, but also while 2-bit deterministic regular

quantization of weights fails to converge (to good values) for
RATBOOSTQ., 3-bit does, as well as 2-bit adaptive quanti-
zation. In this last case, we achieve a ∼31.9× reduction in
coding size for weights over RATBOOST or AdaBoost.

While our focus is on ensembles, we also show an additional
result on the boosting ability of domain partitioning classi-
fiers using the Bayes risk of the Q-loss. This is the state of
the art approach to learning decision trees Quinlan (1993);
Schapire & Singer (1999); Dietterich et al. (1996); Kearns &
Mansour (1996). We show that the Q-loss displays optimal
convergence rates in this case, beating the guarantees of
CART and C4.5 (Breiman et al., 1984; Quinlan, 1993).

The rest of our paper is as follows: §2 summarizes related
results, §3 presents definitions, §4 presents the Q-loss and
its properties, §5 presents boosting results for ensembles, §6
summarizes experiments, §7 presents boosting results for
decision trees and a last section discusses and concludes.
All proofs, detailed experiments are given in an SM.

2. Related work
A substantial body of work has essentially focused on
quantization for architectures (often deep learning)
(Banner et al., 2018; Gupta et al., 2015; Hubara et al., 2016)
and algorithms: stochastic gradient descent (Bernstein et al.,
2018; Alistarh et al., 2017) (and references therein), sup-
port vector machines (Qin et al., 2014; Sakr et al., 2017b)
and regression (Slawski & Li, 2015); in that last case, the
theory builds on contributions from sparse signal recov-
ery, whose motivations are loosely related to ours (see
references in Slawski & Li (2015)). Three categories of
quantization have been investigated so far: determin-
istic and fixed (e.g. regular) (Gupta et al., 2015), fixed but
stochastic (Gupta et al., 2015), and finally adaptive, essen-
tially used in two previous work: Jacob et al. (2018) fits
the quantization range dynamically and Zhang et al. (2017)
learn the quantization with bounds on quantization error. In
the stochastic case, the range of values is fixed but a sochas-
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tic assignation of the quantized value is carried out to ensure
that the expected quantized value is the true value. Early
approaches on distributed boosting can be related to an early
form of quantization (Lazarevic & Obradovic, 2002).

The topic of encoding is receiving substantial attention
because of its huge interest and connections to hardware.
Progress has been essentially been experimental and met
with mixed outcomes (Drumond et al., 2018; Narang et al.,
2018) with reductions from floating to fixed point (Sakr
et al., 2017a; Lin et al., 2016) or hybrid/mixed floating
point (Drumond et al., 2018; Narang et al., 2018) and with
substantial effort, mixed float/integer arithmetics (Jacob
et al., 2018). The experimental motives behind encoding
are clear: a careful encoding allows the reduction of time,
space, bandwidth, energy in proportions that can exceed the
reduction factor in encoding (Drumond et al., 2018; Narang
et al., 2018). Finally, operations is strongly motivated
by hardware considerations (Jacob et al., 2018). It is also
fundamental for private learning (Goldwasser, 2018), in
particular with the development of training algorithms on
top of partially homomorphic encryption systems allowing
a subset of arithmetic operations (Hardy et al., 2017).

Even when related results were obtained decades ago (Das-
gupta et al. (1990) and references therein), formal results are
still comparatively sparse in the field and include the fixed-
point approaximation of a model (Sakr et al., 2017a), signal
recovery from b-bits linear regression (Slawski & Li, 2015),
precision requirements for linear SVM (Sakr et al., 2017b),
and 1-bit SGD compression (Bernstein et al., 2018).

3. Definitions
. Batch learning: we use the shorthand notations [n]

.
=

{1, 2, ..., n} for n ∈ N∗ and z · [a, b] .
= [za, zb] for z ≥

0, a ≤ b ∈ R. We also let R .
= [−∞,∞]. In the batch

supervised learning setting, one is given a training set of
m examples S .

= {(xi, yi), i ∈ [m]}, where xi ∈ X is an
observation (X is called the domain: often, X ⊆ Rd) and
yi ∈ Y

.
= {−1, 1} is a label, or class. The objective is to

learn a classifier, i.e. a function h : X→ R which belongs
to a given set H. The goodness of fit of some h on S is
evaluated by a given loss F (h; S):

F (h; S)
.
= ES [F (yh(x))], (1)

where F : R → R. F shall be used without ambiguity to
denote both the (expected) loss in the left hand side and the
function F . The most popular example of such a function
F is probably the 0/1-loss, F0/1(z)

.
= 1z≤0, where 1. is the

indicator function. In this case, (1) is the empirical risk.

. Proper losses: general criteria such as (1) are also called
surrogate criteria (Buja et al., 2005), either because they
define upperbounds of the 0/1-loss or because they are op-
timisation devices solving in disguise the class probability

estimation problem for P[Y = 1|X] via classifier h as es-
timate P̂[Y = 1|X, h]. In that latter case, losses whose
minimum is achieved by Bayes rule are called proper (and
strictly if the minimizer is unique) and the subset of which
whose estimation P̂[Y = 1|X, h] is computed in disguise
directly from the loss itself are called canonical. A formal
definition of proper canonical losses shall be given below;
popular losses like the logistic and square loss are proper
canonical, but Adaboost’s exponential loss is not proper
canonical (Buja et al., 2005, Section 16). We now review
the main properties of these losses, adopting notations of
(Reid & Williamson, 2010). A loss for class probability es-
timation is a function ` : Y× (0, 1)→ R whose expression
can be split according to partial losses `1, `−1,

`(y, u)
.
= Jy = 1K · `1(u) + Jy = −1K · `−1(u), (2)

where JP K is the truth value of a predicate P . We extend the
loss to Y× [0, 1] by taking the limits. The loss is symmetric
when `1(u) = `−1(1 − u),∀u ∈ (0, 1) (Nock & Nielsen,
2008). Its pointwise risk is

L(π, u)
.
= EY∼B(π)[`(Y, u)], (3)

where B(π) refers to a Bernoulli for picking Y = 1. The
associated pointwise Bayes risk is defined as

L(π)
.
= inf

u
L(π, u). (4)

The loss is called proper iff π realizes the inf in (4) and
strictly proper if it is the only argument realizing the inf .

Example 1 The square loss has `SQ
1 (u)

.
= (1/2) · (1− u)2

and `SQ
−1(u)

.
= (1/2) · u2. Its Bayes risk is defined by Gini

entropy, LSQ(π) = (1/2) · π(1 − π). The logistic loss has
`LOG
1 (u)

.
= − log u and `LOG

−1(u)
.
= − log(1 − u). Its Bayes

risk is the binary entropy, LLOG(u) = −π log(π) − (1 −
π) log(1− π). Both losses are strictly proper.

. Link functions: the connection between class probability
estimation and real valued prediction through classifier h in
the loss in (1) is achieved through a link function, that is, an
invertible function ψ : [0, 1]→ R (Buja et al., 2005; Reid &
Williamson, 2010). One such link is fundamental for a loss
function, its canonical link. (Buja et al., 2005) define the
canonical link ψ` (ψ for short when there is no ambiguity
on the loss) of a loss ` as

ψ`(u)
.
= −L′ +K, (5)

where ′ denotes derivative and K is a constant. We assume
that K = 0. This choice can be formally grounded (Nock
& Nielsen, 2008, Section 5), but it is also intuitive: when
the loss is symmetric, ψ(1/2) = 0, which is a meaningful
way to associate to the most uncertain class probability
(π = 1/2) the most unconfident real valued prediction (0).
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Example 2 The canonical link for the logistic loss is given
by ψLOG(u) = log(u/(1 − u)); the canonical link for the
square loss is given by ψSQ(u) = u− 1/2.

. Convex surrogates: there is an interesting connection
between a subset of losses as in (1) and proper losses via
canonical links (Buja et al., 2005; Nock & Nielsen, 2008;
Reid & Williamson, 2010). Assuming from now on that
K = 0 in (5), we can craft, from any proper symmetric loss,
a balanced convex loss (Nock & Nielsen, 2008) F` : R→ R
(F for short when there is no ambiguity), as:

F`(z)
.
= (−L)?(−z), (6)

where ? denotes the Legendre conjugate of F , F ?(z) .
=

supz′∈dom(F ){zz′−F (z′)} (Boyd & Vandenberghe, 2004).
For simplicity, we just call F` the convex surrogate of `.
F` is important because its minimization amounts to the
minimization of the pointwise risk in (3) via the canonical
link (Nock & Nielsen, 2008, Lemma 1), as follows. The
derivative of F` involves the canonical link (Boyd & Van-
denberghe, 2004; Reid & Williamson, 2010):

F ′`(z) = −(−L′)−1(−z) = 1− ψ−1(z). (7)

The class probability estimator (also called the matching
prediction for z given ψ)

P̂[y = 1|ψ; z] = ψ−1(z) (8)

gives the expression that ties the minimization of F` (for
z ∈ R) to the minimization of the sample-wise expected
risk in (3) (for u ∈ [0, 1]) (Nock & Nielsen, 2008). In short,
the minimization of F`(h; S) in (1) achieves in disguise the
minimization of the full expected pointwise risk:

L(u;π,M)
.
= EX∼M [L(π(X), u(X))], (9)

where M is the empirical marginal of X, π(X)
.
= PS[y =

1|X] and u(X)
.
= P̂[y = 1|ψ;h(X)] as defined in (8) where

ψ is the canonical link in (5). Any loss in (2) for which this
decomposition holds for the full expected pointwise risk is
called proper canonical.

Example 3 The matching prediction for the logistic loss
is given by P̂[y = 1|ψLOG; z] = 1/(1 + exp(−z)). In the-
ory, the matching prediction for the square loss, P̂[y =
1|ψSQ; z] = z + 1

2 , constrains the domain of z ∈ 1
2 · [−1, 1].

4. The Q-loss
We first define the Q-loss.

Definition 4 The Q-loss `Q is defined for any ε ∈
(0, 1/2), % > 0 (implicit) by the following partial losses:

`Qy (u)
.
=% ·

(
log
(u
ε

)
+ Jy = 1K ·

(
−2 +

1

u

))
if u ≤ 1/2, (10)
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Figure 2: Matching prediction P̂[y = 1|ψ; z] obtained using
(8) for ψ being the canonical link of three proper losses.
Remark that the domain of z is R for both the logistic and
our Q-loss, but restricted to 1

2 · [−1, 1] for the square loss.

and `Qy (u)
.
= `Q−y(1− u) if u > 1/2.

We define two additional functions, H(z)
.
= 0 ∨ −z and

err(u)
.
= u ∧ (1 − u), where ∨,∧ are shorthands for the

max and min, respectively. We are now ready to show the
key properties of the Q-loss.

Theorem 5 The Q-loss is strictly proper and symmetric. Its
pointwise Bayes risk is:

LQ(u) =% ·
(

log

(
err(u)

ε

)
+ 1− 2 · err(u)

)
. (11)

Its canonical link and inverse canonical link are:

ψQ(u) = % · 2u− 1

err(u)
, ψQ

−1
(z) =

%+ H(−z)
2%+ |z|

,(12)

its convex surrogate is

FQ(z) =−% · log ε− % · log

(
2 +
|z|
%

)
+ H(z). (13)

The proof (SM, Section 2), includes a technical discussion
explaining the reason of the ε parameter for properness.
We insist however on the fact that ε plays no role in the
minimisation of the loss or its convex surrogate. Figure 2
plots the matching prediction for the Q-loss. We remark that
it does not suffer the same constraints as for the square loss.
Unlike the square loss, FQ(.) is strictly decreasing over R
and it is 1-Lipschitz (direct consequence of (7), (8)).

We now define following Collins et al. (2000) the mirror
update for the Q-loss:

z � u .
= ψQ

−1 (−z + ψQ(u)
)
, (14)

where z ∈ R, u ∈ (0, 1). The following Lemma gives
a concrete idea of how simple the mirror update is using
the Q-loss when inputs are rational in the context of our
boosting application (that is, when z ∝ %).
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Algorithm 1 RATBOOST

Input sample S = {(xi, yi), i = 1, 2, ...,m}, number of
iterations T , % ∈ N∗, a ∈ Q+∗;
Step 1 : let α← 0;
Step 2 : let wi = 1/2,∀i = 1, 2, ...,m; // initial weights
Step 3 : for t = 1, 2, ..., T

Step 3.1 : let j ← WL(S,w)
Step 3.2 : let η(j)← (1/m) ·

∑
i wiyihj(xi)

Step 3.3 : let δj ← aη(j)
Step 3.4 : for i = 1, 2, ...,m, let

wi ← δjyihj(xi) � wi ; (21)

Step 3.5 : let αj ← αj + δj // update of αj
Return HT =

∑
j αjhj .

Lemma 6 Suppose u = nu/du (with nu ∈ N, du ∈
N∗, nu ≤ du), z = % · nz/dz (with nz ∈ Z, dz ∈ N∗
wlog). Denote for short

a1
.
= (nu ∧ (du − nu)) · dz (∈ N), (15)

a2
.
= (nu ∧ (du − nu)) · nz (∈ Z), (16)

a3
.
= du · dz (∈ N∗), (17)

a4
.
= 2 · (du − 2nu) · dz (∈ Z). (18)

Then,

z � u=

{
a1

a2+a3−H(a4) if a2 + (a4/2) ≥ 0

1− a1
−a2+a3−H(−a4) otherwise .(19)

(proof in SM, Section 4) In the general case, the mirror
update takes the simplified form:

z � u =
% · err(u) +H (z · err(u) + % · (1− 2u))

2% · err(u) + |z · err(u) + % · (1− 2u)|
.(20)

5. Boosting ensembles
We train linear combinations of weak classifiers to mini-
mize the Q-loss. Algorithm RATBOOST is described in
Algorithm 1. As we shall see, RATBOOST is a formal boost-
ing algorithm. As such, it relies on calls to a weak learner,
WL(S,w), which takes as input sample S and weights w
over the examples, and returns a weak hypothesis. To sim-
plifiy notation, the weak learner returns the index j of the
weak hypothesis in a set of possible choices. Quantity η(j),
the edge of the weak hypothesis, is used to compute a lever-
aging update δj for the classifier in the set. Step 3.4 is
fundamental for boosting: it is the update of weights w
following the mirror update of the Q-loss, which defines a
"memory" of previous boosting iterations. A minor differ-
ence emerges with variants (Schapire & Singer, 1999; Nock
& Nielsen, 2007): weights are in [0, 1] but not normalized.

A major difference with previous boosting algorithms is
however immediate using Lemma 6: suppose without loss
of generality that the input of RATBOOST is encoded in
Q (training sample S and parameters a, %) and the weak
hypotheses of WL(S,w) have range in Q. Then,

RATBOOST requires only integer functions +,−,/,×,|.|

and the boosted classifier HT also has range in Q. The
absolute value function can equivalently be replaced by H(.)
or sign, still with integer domain.
RATBOOST is a boosting algorithm We now investigate
the boosting abilities of RATBOOST, and for this objective,
we make the following assumption:

(M) ∃ constant M > 0 s. t.
√
Ei∼[m]

[
h2
j (xi)

]
≤M , ∀j.

(M) bounds the second moment of h., and would be implied
if for example the range of h. were bounded. Hereafter, we
shall re-index the edge by the iteration number (ηt) instead
of the weak classifier index, for readability.

Theorem 7 Consider the following in RATBOOST:

(i) assumption (M) holds;
(ii) pick π ∈ [0, 1), a ∈ 2%

M2 · [1− π, 1 + π] (Step 3.3);

Then for any z∗ ≥ 0, if the sequence of edges {ηt}t satisfies

1

M2
·
T∑
t=1

η2
t ≥ FQ(0)− FQ(z∗)

(1− π2)%
, (22)

then ED
[
FQ(yiHT (xi))

]
≤ FQ(z∗).

(proof in SM, Section 4) Suppose we make the following
weak learning assumption: there exists a small constant γ >
0 such that |ηt| ≥ γ,∀t (Nock & Nielsen, 2008; Schapire
& Singer, 1999). Then we have ED

[
FQ(yiHT (xi))

]
≤

FQ(z∗) as soon as the number of iterations T satisfies

T ≥ M2(FQ(0)− FQ(z∗))

(1− π2)γ2%
, (23)

which is indeed boosting compliant (Schapire et al., 1998,
Section 2), (Nock & Nielsen, 2008). We remark the freedom
in choosing parameter a with which we can enforce a ∈ Q.
Quantizing RATBOOST We now provide a sufficient con-
dition for a quantization of the weights in RATBOOST to
keep the boosting convergence property. Importantly, the
result does not rely on a specific form of the quantization but
on a dominance of the quantization residuals with respect to
the edge. Since the available edges η. should intuitively van-
ish with the number of boosting iterations as we reach the
global optimum, it means that quantization shall be efficient
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until a certain iteration, after which we cannot guarantee
boosting convergence. Since real numbers encoded in a
computer are finite and inevitably quantized (Widrow &
Kollár, 2008), this message extends to RATBOOST as well,
with less stringent conditions on convergence though.

Hereafter, we let w̃ denote a vector of quantized weights.
As we shall see later, values in w̃ can also be progressively
learned. Since the initial weight value in RATBOOST is
1/2, it is important that at least the initial w̃ contains this
value. When the quantization is regular, it is also important
that we can encode u and 1− u for all available us, so one
should pick dim(w̃) odd. We then define Q-RATBOOST as
RATBOOST in which we replace weight update in Step 3.4
by the following step:

Step 3.4 : for i = 1, 2, ...,m, let

w̃i ← arg min
w∗∈w̃

|δ̃jyihj(xi) � w̃i − w∗| ; (24)

The tilda notation additionally renames parameters whose
value may depend on the quantization of w̃ (we also define
η̃ accordingly). Let

κj
.
=

∣∣∣∣∑i(w̃ji − wji)yihj(xi)
m

∣∣∣∣ (25)

denote the error due to quantization in the weight update,
where w. denotes the output of the weight update as in (21)
and Lemma 6. If there were no weight quantization, κj
would be zero. As we did for η., we reindex for the sake
of our formal results κ. by the iteration number (κt) and
consider the following assumption:

(Q) there exists ζ > 0 such that the quantization error is
dominated by the edge: κt ≤ (1− ζ) · |η̃t|, for any t.

Before commenting on this assumption, let us show that (Q)
still allows for boosting.

Theorem 8 Consider the following in Q-RATBOOST:

(i) assumptions (M) and (Q) hold;
(ii) pick π ∈ [0, ζ); a ∈ 2%

M2 · [ζ − π, ζ + π] (Step 3.3);

Then for any z∗ ≥ 0, if the sequence of edges {ηt}t satisfies

1

M2
·
T∑
t=1

η2
t ≥ FQ(0)− FQ(z∗)

(ζ2 − π2)%
, (26)

then ED
[
FQ(yiHT (xi))

]
≤ FQ(z∗).

(proof in SM, Section 5) If we make the weak learning
assumption on quantized edges, |η̃t| ≥ γ,∀t for some γ >

0, then we have ED
[
FQ(yiHT (xi))

]
≤ FQ(z∗) as soon

as the number of iterations T satisfies

T ≥ M2(FQ(0)− FQ(z∗))

(ζ2 − π2)γ2%
. (27)

What is interesting in the context of boosting is that the weak
learning assumption guarantees that (Q) can be satisfied
for a moderate size encoding of a regular quantization, as
explained in the following Lemma (proof immediate).

Lemma 9 Suppose the weak assumption holds and (M) is
replaced by the condition |hj | ≤M, ∀j. Then (Q) holds if
w̃ is a regular quantization and

dim(w̃) ≥ 1 +
M

2(1− ζ)γ
. (28)

Hence, in theory, quantized boosting requires no more as-
sumption than the weak learning assumption. To get an idea
of the space required to store or communicate w̃, suppose
ζ = 1/2, π = 0, which implies that the iteration bound on
T is four times that for boosting without quantization. For
a regular quantization, the amount of bits b̃(S) to store (or
communicate) w̃ and the index of the quantized weight for
each example in the training sample is therefore

b̃(S) = O

((
m+

M

γ

)
· log

(
M

γ

))
, (29)

whereas without quantization, the corresponding amount,
b(S), would rather satisfy

b(S) = O (mk) , (30)

provided we can make a lossless encoding of each weight in
a k-bits data structure for a fair comparison, which is every-
thing but simple. Even in this case, we see that quantisation
can be fairly advantageous if γ is not too small, such as for
example γ � 1/k. For a 64 bits encoding of weights in
RATBOOST, this could be achieved with the weak learner
learning not too weak classifiers. We shall see how this is
theoretically possible with decision trees in Section 7.

6. Experiments
We implemented the following variants of RATBOOST:
. RATBOOST refers to Algorithm 1 ran with unconstrained
inputs and the weight update as in (20). Numbers are en-
coded as double precision;
. RATBOOSTQb is Q-RATBOOST with a deterministic reg-
ular quantization of weights on b bits, which brings a 2b − 1
regular quantization of [0, 1], used as in (24).
. RATBOOSTSb is RATBOOSTQb in which we replace the
deterministic quantization by a stochastic one following the
stochastic rounding of Gupta et al. (2015).
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RATBOOSTQb, b = RATBOOSTSb, b = RATBOOSTAb, b =

2 6 2 6 2 6
F 3 38.00±10.33 37.00±9.49 40.00±9.43 40.00±11.55 47.00±14.94 42.00±11.35 38.00±7.89 52.00±16.19 41.00±7.38 39.00±8.76
H 3 25.53±8.79 25.53±8.79 25.85±8.32 26.81±9.71 25.84±9.83 26.81±9.71 25.84±9.34 26.17±10.01 25.52±9.65 25.84±8.31
T 4 38.78±6.86 39.05±6.68 38.92±7.15 34.91±7.25 39.18±7.02 40.66±7.98 30.24±8.27 38.24±6.92 33.59±8.06 35.71±5.39
B 4 2.70±1.62 2.63±1.55 2.99±1.70 4.89±1.89 15.46±2.59 13.93±2.97 7.73±3.12 3.43±1.33 12.54±3.22 3.57±2.16

BW 4 2.86±2.78 2.86±2.78 3.29±2.52 3.14±2.59 10.02±3.83 3.58±2.72 2.86±2.13 3.00±2.65 4.29±3.09 3.00±2.37
I 5 11.39±4.01 11.11±3.91 11.68±3.92 12.54±5.26 25.37±5.82 13.69±4.25 12.83±3.64 13.40±5.41 14.53±4.94 13.40±3.60
S 5 20.67±7.12 20.67±7.12 21.64±6.47 25.48±9.88 30.69±12.30 27.38±9.72 24.02±8.71 26.07±9.29 23.10±9.62 24.05±11.76
Y 5 48.18±4.43 48.18±4.43 48.59±4.59 34.04±7.09 48.52±4.00 48.45±4.60 49.33±3.83 46.77±3.67 48.79±2.64 49.33±3.97

WR 5 26.14±3.02 26.14±3.15 25.45±3.70 26.27±3.18 30.77±3.48 27.02±4.23 27.08±3.36 26.89±4.08 27.64±3.45 25.96±3.39
Ca 5 41.63±4.62 41.58±4.55 39.23±4.46 37.91±2.88 45.86±2.04 42.47±2.80 42.06±4.33 42.00±2.27 38.05±3.89 37.11±3.54

CCS 5 40.00±4.62 39.90±4.70 40.90±3.31 39.90±4.56 57.90±4.12 42.10±5.95 39.90±3.87 36.40±4.40 42.60±4.58 40.90±4.33
Ab 5 21.64±1.81 21.62±1.86 21.35±1.60 22.10±1.41 24.18±1.55 24.40±1.42 22.86±1.54 21.52±1.46 24.28±1.40 21.74±1.45
Q 5 22.47±6.54 22.37±6.50 19.81±5.14 20.48±5.55 31.47±4.82 22.65±4.44 22.47±5.49 22.37±5.72 24.55±4.60 21.24±5.74

WW 5 30.36±2.18 30.32±2.09 29.77±1.95 29.64±2.03 35.87±2.05 31.69±1.68 31.46±2.12 31.58±2.23 31.30±2.30 29.75±1.23
P 5 19.26±1.91 19.24±1.84 6.01±1.18 7.80±1.45 35.61±1.93 21.14±1.77 11.04±2.20 14.80±2.04 22.35±1.68 7.22±1.07

Mi 5 4.07±2.15 3.89±2.04 4.44±2.30 7.41±3.55 26.11±4.32 10.09±3.77 11.94±3.61 8.33±2.90 13.70±2.72 7.31±2.97
H+n 6 41.91±5.96 41.91±5.96 35.15±5.32 39.93±5.56 49.25±4.85 44.06±6.79 45.72±6.26 40.18±5.64 42.99±5.54 28.96±9.20

H+nn 6 41.99±5.45 41.99±5.45 32.91±5.07 37.95±4.98 48.76±4.78 41.99±8.40 42.58±6.41 37.47±5.10 41.66±4.26 19.63±8.76
Ft 6 12.23±0.93 12.39±0.90 12.33±0.85 13.56±1.07 33.78±1.62 13.74±0.75 17.13±1.13 12.56±0.82 21.12±1.42 12.57±0.90
Ma 6 21.00±1.00 21.01±0.93 20.91±0.97 20.94±0.98 26.41±0.97 21.11±0.88 20.95±0.93 20.94±0.96 21.45±0.88 21.01±0.96
E 6 45.55±1.48 45.55±1.49 43.48±1.36 42.92±0.81 47.26±1.43 44.07±1.45 45.63±1.71 44.51±1.80 44.83±1.50 42.25±0.72
Sk 6 9.62±0.22 10.18±0.29 10.74±0.21 9.65±0.23 33.97±0.29 9.87±0.23 9.74±0.24 9.61±0.23 9.62±0.23 6.77±0.34
Mu 7 23.36±1.19 23.28±1.24 19.48±1.12 22.26±1.19 46.07±5.17 26.20±1.46 32.92±2.97 28.13±2.28 28.54±2.03 24.72±1.04
Ha 7 1.94±0.23 3.11±0.31 3.11±0.33 1.76±0.25 9.73±0.44 2.28±0.20 1.80±0.32 2.72±0.19 2.29±0.23 1.66±0.17
Tw 8 7.45±0.08 7.45±0.08 4.42±0.11 4.72±0.10 6.63±0.07 5.65±0.14 4.34±0.11 5.07±0.11 5.21±0.19 4.90±0.15

Table 1: Test errors on UCI domains (excerpt). The single digit after the ID is #digits of md (∝ log (storing size)).

. RATBOOSTAb is RATBOOSTQq in which we replace
the regular quantization by an adaptive one learned using
(2b − 1)-means, updated at each boosting iteration. Note
that the optimal solution of k-means is rational if inputs are
(Banerjee et al., 2004), and there is an optimal polynomial
algorithm for the 1D case (Nielsen & Nock, 2014; Zhang
et al., 2017) – yet with a costly O(m2) time and space com-
plexity: since we renew quantization at each iteration, we
have instead opted for a fast Forgy k-means, which experi-
mentally approximately converges in few iterations.
. RATBOOSTE is RATBOOST ran with all numbers (in-
cluding inputs) represented as rational fractions with long
numerators and denominators, weight update as in Lemma
6, operations restricted to integer +,−,×, /, |.|, and a deter-
ministic quantization as in RATBOOSTQq with q = 11 to
manage overflows. When quantization is not used and in-
puts are rational (including training set and weak learning’s
classifiers outputs), RATBOOSTE implements the lossless
solution to the iterative minimization.

In all algorithms, we fix % = 1, estimate M for assump-
tion (M) from the training sample and then compute a as
in Theorem 7 with π = 0. Experiments are carried out
with 10-folds stratified cross validation on 25 UCI domains
(Blake et al., 1998). Contenders are AdaBoost (Schapire &
Singer, 1999) and ADABOOSTR (Nock & Nielsen, 2007)
(both algorithms have in common that they do not optimize
a proper canonical loss). Table 1 gives results for a subset
of the values for b. The Supplement (Section 7) details do-

mains, per-domain results and provides a complete version
of Table 1. The following conclusions can be drawn: RAT-
BOOSTE competes with all other boosting algorithms, all
the more on the biggest domains, with some very signifi-
cant improvement observed (P). Quantization clearly brings
benefits, RATBOOSTA. being a clear winner, with just 2-bit
indexes allowing to compete with the best algorithms in
several cases (Ca, E, Sk, Tw). Stochastic quantization leads
to a much more erratic behaviour. Attempts to (adaptively)
quantize AdaBoost for comparisons have met with mixed
results against non quantized AdaBoost, and were clearly
defeated by RATBOOSTA. on the bigger domains.

7. More and better boosting with the Q-loss
The state of the art decision tree (DT) induction algorithms
historically consist of two phases: the induction of a large
tree which is then pruned for good generalization (Breiman
et al., 1984). Pruning is a statistical procedure out of the
scope of our paper, but the top-down induction is more
closely related: the state of the art indeed minimizes the
pointwise Bayes risk of a given proper canonical loss, which
can be the Gini entropy for CART (Breiman et al., 1984), the
binary entropy for C4.5/C5 (Quinlan, 1993), Matsushita’s
criterion for the optimal tree algorithm of Dietterich et al.
(1996); Kearns & Mansour (1996), etc. . Let H be a DT
with a set Λ of leaves. For any leaf λ ∈ Λ, q(λ) denotes
the relative proportion of positive examples in that leaf and
ω(λ) is the proportion of examples coming to that leaf (thus,
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λ ω(λ) = 1). Then the top-down induction repeatedly

changes leaves by subtrees (starting from the tree being a
single root leaf node) by minimizing the tree’s Bayes risk:

L(H)
.
=

∑
λ∈Λ:p(λ) 6=0,1

ω(λ)L(q(λ)). (31)

In the final tree, one can attribute class probability esti-
mates at each leaf (Quinlan, 1996), but a convenient (and in
fact equivalent) real-valued prediction at leaf λ is ψ(q(λ))
(Schapire & Singer, 1999), ψ being the canonical link of the
loss. Notice the relevance of such trees in our context as

the output of the tree learned using the Q-loss is always
in Q if % is also in Q (Theorem 5).

Also, we do not use pure leaves (p(λ) 6= 0, 1) in (31) with-
out loss of generality as L(0) = L(1) = 0 for all the
state of the art splitting criteria. In the context of DT, the
weak learning assumption (WLA) of boosting can be re-
stated as folllows: let sλ ∈ {0, 1}m denote the predicate
storing in index i whether training example i reaches λ
in H (since each training example reaches one leaf, we
have

∑
λ sλ = 1), g : Rd → {−1, 1} denote a potential

test put to split leaf λ (H is binary wlog) and η(g, s)
.
=

(1/Nλ) ·
∑
i∈Sλ wisλiyig(xi) with Nλ

.
=
∑
i∈Sλ wisλi a

normalizing constant for weights. Then the WLA of Kearns
& Mansour (1996) is equivalent to: there exists a small con-
stant γ > 0 such that split g at leaf λ satisfies η(g, s) ≥ 2γ,
which has a similar flavour to our WLA in § 5.

Since LQ(u) takes values in % · [−∞, log(1/(2ε))] and a
DT partitions finite data in discrete subsets, we can consider
wlog that ε is sufficiently small so that LQ(p) > 0 where
p = s>w/1>w,∀s ∈ {0, 1}m\{0m, 1m}. This is just a
technical assumption for the result below to be meaningful
and allow fair comparisons with (Kearns & Mansour, 1996).
We also consider that no leaf in H is pure (with examples of
just one class), a very reasonable assumption since (i) from a
formal standpoint it does not endanger the WLA, and (ii) in
practice DTs are pruned for good generalization so we end
up with leaves indeed not pure with overwhelming probabil-
ity (see for example the near-optimal pruning of Kearns &
Mansour (1998)). The question we now address is: what is
the minimal number of iterations T of the leaf-growing pro-
cedure to guarantee that the final tree HT (thus with T + 1
leaves) will have LQ(HT ) ≤ ρ · LQ(q(S)), where we fix
ρ ∈ (0, 1] and q(S) is the proportion of positive examples
in S. The following Theorem answers this question. We let
v(ε, %)

.
= 4%/ log(1/(2ε)) > 0.

Theorem 10 Suppose WLA holds. Then for any ρ ∈ (0, 1],
we are guaranteed that LQ(HT ) ≤ ρ · LQ(q(S)) if

T ≥
(

1

ρ

) v(ε,%)

γ2

. (32)

(SM, Section 6) Remarkably, this convergence rate is op-
timal and guarantees rates of the same order as the best
DT splitting criterion of Kearns & Mansour (1996, Section
4). In particular, we significantly improve on both CART
and C.5 guarantees (Kearns & Mansour, 1996, Theorem 1).
The strong dependence on the Q-loss parameters ε, % is not
surprising as both influence the range and curvature (hence,
concavity) of Bayes risk (Kearns & Mansour, 1996).

8. Discussion and Conclusion
Disregarding the boosting and convergence results, one can
wonder whether simple transformations of an existing loss
would grant the same (a-d) properties as for the Q-loss
(See Introduction), in addition to the boosting rates we get.
While popular losses (log, exp, square) fail at at least one
of the properties, the existing statistical theory includes the
toolbox that could allow the adaptation of existing losses, in
particular by changing the link function to create so-called
proper composite losses (Reid & Williamson, 2010). It is
however unclear how to get all the statistical, arithmetic and
boosting properties we grant with the Q-loss, but certainly
worth investigating to optimize the arithmetic of boosting.

Theory and experiments suggest that this may be highly
desirable: while our formal results give only a sufficient
condition for weight quantization to allow boosting, our
results suggest that a weight encoding optimized for boost-
ing is in fact the key to boost better (and for a longer time)
than with standard IEEE machine encodings. The recent
literature has shown how this problem can benefit deep
learning by reducing training time, energy and model sizes.
Such concerns are far from being recent: Dasgupta et al.
(1990) explored bitsize compression convergence of LMS
almost thirty years before this was done for SGD (Bernstein
et al., 2018), and the complexity of evaluating even simple-
looking updates such as the Q-loss mirror update have been
the object of studies for decades (Strassen, 1972). All our re-
sults point to the need to explore this problem further for the
elegant machinery of boosting as it was primarily designed
(Kearns, 1988). The ability to compute the lossless solution
of the boosting problem has an experimental impact, since
quantization can become the only source of approximation
– yet it may necessitate to optimize integer encoding to
eventually delay further the use of quantization.

Our resuls also show that such considerations might prove
worthy in the longstanding debate on several remarkable
abilities of boosting (Mease & Wyner, 2008), which has
been so far mainly been driven by statistical or convexity
arguments. Numerical handling issues, even when long
known, have never really made it to qualify arguments in
the debate, even less so weight arithmetic / encoding. The
perspective that a reduced set of operations may act as
a regularization process is interesting for generalization.
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