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2 Proof of Theorem 2 and Corollary 3
Our proof assumes basic knowledge about proper losses (see for example Reid & Williamson
(2010)). From (Reid & Williamson, 2010, Theorem 1, Corollary 3) and Shuford et al. (1966), `
being twice differentiable and proper, its conditional Bayes risk L and partial losses `1 and `−1 are
related by:

−L′′(c) =
`′−1(c)

c
= − `

′
1(c)

1− c
,∀c ∈ (0, 1). (1)

The weight function (Reid & Williamson, 2010, Theorem 1) being also w = −L′′, we get from the
integral representation of partial losses (Reid & Williamson, 2010, eq. (5)),

`1(c) = −
∫ 1

c

(1− u)L′′(u)du, (2)

from which we derive by integrating by parts and then using the Legendre conjugate of −L,

`1(c) + L(1) = − [(1− u)L′(u)]
1
c −

∫ 1

c

L′(u)du+ L(1)

= (1− c)L′(c) + L(c)− L(1) + L(1) (3)
= −(−L′)(c) + c · (−L′)(c)− (−L)(c)

= −(−L′)(c) + (−L)?((−L)′(c)). (4)

Now, suppose that the way a real-valued prediction v is fit in the loss is through a general inverse
link ψ−1 : R→ (0, 1). Let

v`,ψ
.

= (−L′) ◦ ψ−1(v). (5)

Since (−L)′−1(v`,ψ) = ψ−1(v), the proper composite loss ` with link ψ on prediction v is the same
as the proper composite loss ` with link (−L)′ on prediction v`,ψ. This last loss is in fact using
its canonical link and so is proper canonical (Reid & Williamson, 2010, Section 6.1), (Buja et al.,
2005). Letting in this case c .

= (−L)′−1(v`,ψ), we get that the partial loss satisfies

`1(c) = −v`,ψ + (−L)?(v`,ψ)− L(1). (6)

Notice the constant appearing on the right hand side. Notice also that if we see (3) as a Bregman
divergence, `1(c) = (−L)(1)− (−L)(c)− ((1− c)(−L′)(c) = D−L(1‖c), then the canonical link
is the function that defines uniquely the dual affine coordinate system of the divergence (Amari &
Nagaoka, 2000) (see also (Reid & Williamson, 2010, Appendix B)).

We can repeat the derivations for the partial loss `−1, which yields (Reid & Williamson, 2010,
eq. (5)):

`−1(c) + L(0) = −
∫ c

0

uL′′(u)du+ L(0)

= − [uL′(u)]
c
0 +

∫ c

0

L′(u)du

= −cL′(c) + L(c)− L(0) + L(0) (7)
= c · (−L′)(c)− (−L)(c)

= (−L)?((−L)′(c)), (8)
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and using the canonical link, we get this time

`−1(c) = (−L)?(v`,ψ)− L(0). (9)

We get from (6) and (9) the canonical proper composite loss

`(y, v) = (−L)?(v`,ψ)− y + 1

2
· v`,ψ −

1

2
· ((1− y) · L(0) + (1 + y) · L(1)) . (10)

Note that for the optimisation of `(y, v) for v, we could discount the right-hand side parenthesis,
which acts just like a constant with respect to v. Using Fenchel-Young inequality yields the
non-negativity of `(y, v) as it brings (−L)?(v`,ψ)− ((y + 1)/2) · v`,ψ ≥ L((y + 1)/2) and so

`(y, v) ≥ L

(
1 + y

2

)
− 1

2
· ((1− y) · L(0) + (1 + y) · L(1))

= L

(
1

2
· (1− y) · 0 +

1

2
· (1 + y) · 1

)
− 1

2
· ((1− y) · L(0) + (1 + y) · L(1))

≥ 0, ∀y ∈ {−1, 1},∀v ∈ R, (11)

from Jensen’s inequality (the conditional Bayes risk L is always concave (Reid & Williamson,
2010)). Now, if we consider the alternative use of Fenchel-Young inequality,

(−L)?(v`,ψ)− 1

2
· v`,ψ ≥ L

(
1

2

)
, (12)

then if we let

∆(y)
.

= L

(
1

2

)
− 1

2
· ((1− y) · L(0) + (1 + y) · L(1)) , (13)

then we get

`(y, v) ≥ ∆(y)− y

2
· v`,ψ,∀y ∈ {−1, 1},∀v ∈ R. (14)

It follows from (11) and (14),

`(y, v) ≥ max
{

0,∆(y)− y

2
· v`,ψ

}
,∀y ∈ {−1, 1},∀v ∈ R, (15)

and we get, ∀h ∈ RX, a ∈ XX,

E(X,Y)∼D[`(y, h ◦ a(X))]

≥ E(X,Y)∼D

[
max

{
0,∆(Y)− Y

2
· (h ◦ a)`,ψ(X)

}]
≥ max

{
0,E(X,Y)∼D

[
∆(Y)− Y

2
· (h ◦ a(X))`,ψ

]}
= max

{
0, L

(
1

2

)
− 1

2
· E(X,Y)∼D [Y · (h ◦ a(X))`,ψ + (1− Y) · L(0) + (1 + Y) · L(1)]

}
= max

{
0, L

(
1

2

)
− 1

2
·
(

EX∼P [π · ((h ◦ a(X))`,ψ + 2L(1))]
−EX∼N [(1− π) · ((h ◦ a(X))`,ψ − 2L(0))]

)}
= max

{
0, L

(
1

2

)
− 1

2
· (ϕ(P, (h ◦ a)`,ψ, π, 2L(1))− ϕ(N, (h ◦ a)`,ψ, 1− π,−2L(0)))

}
,(16)
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with

ϕ(Q, f, b, c)
.

=

∫
X

b · (f(x) + c)dQ(x), (17)

and we recall

(h ◦ a)`,ψ = (−L′) ◦ ψ−1 ◦ h ◦ a. (18)

Hence,

min
h∈H

E(X,Y)∼D[max
a∈A

`(Y, h ◦ a(X))]

≥ min
h∈H

max
a∈A

E(X,Y)∼D[`(Y, h ◦ a(X))] (19)

≥ min
h∈H

max
a∈A

max

{
0, L

(
1

2

)
− 1

2
· (ϕ(P, (h ◦ a)`,ψ, π, 2L(1))− ϕ(N, (h ◦ a)`,ψ, 1− π,−2L(0)))

}
≥ max

a∈A
min
h∈H

max

{
0, L

(
1

2

)
− 1

2
· (ϕ(P, (h ◦ a)`,ψ, π, 2L(1))− ϕ(N, (h ◦ a)`,ψ, 1− π,−2L(0)))

}
= max

a∈A
max

{
0,min

h∈H

(
L

(
1

2

)
− 1

2
· (ϕ(P, (h ◦ a)`,ψ, π, 2L(1))− ϕ(N, (h ◦ a)`,ψ, 1− π,−2L(0)))

)}
= max

a∈A
max

{
0, L

(
1

2

)
− 1

2
·max
h∈H

(ϕ(P, (h ◦ a)`,ψ, π, 2L(1))− ϕ(N, (h ◦ a)`,ψ, 1− π,−2L(0)))

}
= max

a∈A

(
L

(
1

2

)
− 1

2
·max
h∈H

(ϕ(P, (h ◦ a)`,ψ, π, 2L(1))− ϕ(N, (h ◦ a)`,ψ, 1− π,−2L(0)))

)
+

=

(
L

(
1

2

)
− 1

2
·min
a∈A

max
h∈H

(ϕ(P, (h ◦ a)`,ψ, π, 2L(1))− ϕ(N, (h ◦ a)`,ψ, 1− π,−2L(0)))

)
+

=

(
L

(
1

2

)
− 1

2
·min
a∈A

γgH,a(P,N, π, 2L(1), 2L(0))

)
+

=

(
`◦ − 1

2
·min
a∈A

γgH,a(P,N, π, 2L(1), 2L(0))

)
+

=

(
`◦ − 1

2
·min
a∈A

βa

)
+

, (20)

as claimed for the statement of Theorem 2 (we have let g .
= (−L′) ◦ ψ−1). Hence, if, for some

ε ∈ [0, 1],

∃a ∈ A : γgH,a(P,N, π, 2L(1), 2L(0)) ≤ 2ε · `◦, (21)

then

min
h∈H

E(X,Y)∼D[max
a∈A

`(Y, h ◦ a(X))] ≥ (`◦ − ε · `◦)+

= (1− ε) · `◦, (22)

which ends the proof of Corollary 3 if ` is proper composite with link ψ. If it is proper canonical,
then (−L′) ◦ ψ−1 = Id and so γgH,a = γH,a in (21).
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Remark 1 Theorem 2 and Corollary 3 are very general, which naturally questions the optimality
of the condition in Corollary 3 to defeat H – and therefore the optimality of the Monge adversaries
to appear later. Inspecting their proof shows that suboptimality comes essentially from the use of
Fenchel-Young inequality in (12). There are ways to strenghten this result for subclasses of losses,
which might result in fine in the characterisation of different but arguably more specific adversaries.

3 Proof sketch of Corollary 5
Recall that βa = γH,a

(
P,N, 1

2
, 2L(1), 2L(0)

)
. We prove the following, more general result which

does not assume π = 1/2 nor γ`hard = 0.

Corollary 2 Suppose ` is canonical proper and let H denote the unit ball of a reproducing kernel
Hilbert space (RKHS) of functions with reproducing kernel κ. Denote

µa,Q
.

=

∫
X

κ(a(x), .)dQ(x) (23)

the adversarial mean embedding of a on Q. Then

2 · γH,a(P,N, π, 2L(1), 2L(0))

= γ`hard + ‖π · µa,P − (1− π) · µa,N‖H.

Proof It comes from the reproducing property of H,

2 · γH,a(P,N, π, 2L(1), 2L(0))

= γ`hard + max
h∈H

{
π ·
∫
X

h ◦ a(x)dP (x)− (1− π) ·
∫
X

h ◦ a(x)dN(x)

}
= γ`hard + max

h∈H

{
π ·
〈
h,

∫
X

κ(a(x), .)dP (x)

〉
H

− (1− π) ·
〈
h,

∫
X

κ(a(x), .)dN(x)

〉
H

}
= γ`hard + max

h∈H

{
〈h, π · µa,P − (1− π) · µa,N〉H

}
= γ`hard + ‖π · µa,P − (1− π) · µa,N‖H, (24)

as claimed, where the last equality holds for the unit ball.

4 Proof of Theorem 9
We first show a Lemma giving some additional properties on our definition os Lipschitzness.

Lemma 3 Suppose H is (u, v,K)-Lipschitz. If c is symmetric, then {u ◦ h − v ◦ h}h∈H is 2K-
Lipschitz. If c satisfies the triangle inequality, then u− v is bounded. If c satisfies the identity of
indiscernibles, then u ≤ v.
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Proof If c is symmetric, then we just add two instances of (20) with x and y permuted, reorganize
and get:

u ◦ h(x)− v ◦ h(y) + u ◦ h(y)− v ◦ h(x) ≤ K · (c(x,y) + c(y,x)),∀h ∈ H,∀x,y ∈ X.

⇔ (u ◦ h− v ◦ h)(x)− (u ◦ h− v ◦ h)(y) ≤ 2Kc(x,y),∀h ∈ H,∀x,y ∈ X.

and we get the statement of the Lemma. If c satisfies the triangle inequality, then we add again two
instances of (20) but this time as follows:

u ◦ h(x)− v ◦ h(y) + u ◦ h(y)− v ◦ h(z) ≤ K · (c(x,y) + c(y, z)),∀h ∈ H,∀x,y, z ∈ X.

⇔ u ◦ h(x)− v ◦ h(z) + ∆(y) ≤ Kc(x, z),∀h ∈ H,∀x,y, z ∈ X,

where ∆(y)
.

= u ◦ h(y)− v ◦ h(y). If c is finite for at least one couple (x, z), then we cannot have
u−v unbounded in ∪hIm(h). Finally, if c satisfies the identity of indiscernibles, then picking x = y
in (20) yields u ◦ h(x)− v ◦ h(x) ≤ 0,∀h ∈ H,∀x ∈ X and so (u− v)(∪hIm(h)) ∩ R+ ⊆ {0},
which, disregarding the images in H for simplicity, yields u ≤ v.

We now prove TheoremthOTA. In fact, we shall prove the following more general Theorem.

Theorem 4 Fix any ε > 0 and proper loss ` with link ψ. Suppose ∃c : X× X→ R such that:

(1) H is (π · g, (1− π) · g,K)-Lipschitz with respect to c, where g is defined in (14);

(2) A is δ-Monge efficient for cost c on marginals P,N for

δ ≤ 2 · 2ε`◦ − γ`hard

K
. (25)

Then H is ε-defeated by A on `.

Proof We have for all a ∈ A,

max
h∈H

(ϕ(P, h ◦ a, π, 2L(1))− ϕ(N, h ◦ a, 1− π,−2L(0)))

= γ`hard +
1

2
·max
h∈H

(∫
X

π · g ◦ h ◦ a(x)dP (x)−
∫
X

(1− π) · g ◦ h ◦ a(x′)dN(x′)

)
, (26)

where we recall g .
= (−L′) ◦ ψ−1. Let us denote for short

∆
.

= max
h∈H

(∫
X

π · g ◦ h ◦ a(x)dP (x)−
∫
X

(1− π) · g ◦ h ◦ a(x′)dN(x′)

)
. (27)

H being (π · g, (1− π) · g,K)-Lipschitz for cost c, since

H ⊆ {h ∈ RX : πg ◦ h ◦ a(x)− (1− π)g ◦ h ◦ a(x′) ≤ Kc(a(x), a(x′)), ∀x,x′ ∈ X},

it comes after letting for short Ψ
.

= πg ◦ h ◦ a, χ .
= (1− π)g ◦ h ◦ a,

∆ ≤ max
Ψ(x)−χ(x′)≤Kc(a(x),a(x′))

(∫
X

Ψ(x)dP (x)−
∫
X

χ(x)dN(x)

)
≤ K · inf

µ∈Π(P,N)

∫
c(a(x), a(x′))dµ(x,x′). (28)
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See for example (Villani, 2009, Section 4) for the last inequality. Now, if some adversary a ∈ A is
δ-Monge efficient for cost c, then

K · inf
µ∈Π(P,N)

∫
c(a(x), a(x′))dµ(x,x′) ≤ Kδ. (29)

From Theorem 2, if we want H to be ε-defeated by A, then it is sufficient from (26) that a satisfies

γ`hard +
1

2
·Kδ ≤ 2ε`◦, (30)

resulting in

δ ≤ 2 · 2ε`◦ − γ`hard

K
, (31)

as claimed.

Remark 1 note that unless π = 1/2, c cannot be a distance in the general case fot Theorem 9:
indeed, the identity of indiscernibles and Lemma 2 enforce (1− 2π) · g ≥ 0 and so g cannot take
both signs, which is impossible whenever ` is canonical proper as g = Id in this case. We take it as
a potential difficulty for the adversary which, we recall, cannot act on π.

Remark 2 In the light of recent results (Cissé et al., 2017; Cranko et al., 2018; Miyato et al.,
2018), there is an interesting corollary to Theorem 9 when π = 1/2 using a form of Lipschitz
continuity of the link of the loss .

Corollary 5 Suppose loss ` is proper with link ψ and furthermore its canonical link satisfies, some
K` > 0:

(L)′(y)− (L)′(y′) ≤ K` · |ψ(y)− ψ(y′)|,∀y, y′ ∈ [0, 1].

Suppose furthermore that (i) π = 1/2, (ii) H is Kh-Lipschitz with respect to some non-negative c
and (iii) A is δ-Monge efficient for cost c on marginals P,N for

δ ≤ 4ε`◦ − 2γ`hard

K`Kh

. (32)

Then H is ε-defeated by A on `.

Proof The domination condition on links,

(L)′(y)− (L)′(y′) ≤ K` · |ψ(y)− ψ(y′)|, ∀y, y′ ∈ [0, 1], (33)

implies g is Lipschitz and letting y .
= ψ−1 ◦ h ◦ a(x), y′ .

= ψ−1 ◦ h ◦ a(x′), we obtain equivalently
g ◦ h ◦ a(x) − g ◦ h ◦ a(x) ≤ K` · |h ◦ a(x) − h ◦ a(x′)|,∀x,x′ ∈ X. But H is Kh-Lipschitz
with respect to some non-negative c, so we have |h ◦ a(x)− h ◦ a(x′)| ≤ Khc(a(x), a(x′)), and so
bringing these two inequalities together, we have from the proof of Theorem 9 that ∆ now satisfies

∆ ≤ K`Kh

2
· inf
µ∈Π(P,N)

∫
c(a(x), a(x′))dµ(x,x′), (34)
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so to be ε-defeated by A on `, we now want that a satisfies

γ`hard +
K`Kh

2
· δ ≤ 2ε`◦, (35)

resulting in the statement of the Corollary.

5 Proof of Theorem 12
Denote aJ .

= a ◦ a ◦ ... ◦ a (J times). We have by definition

CΦ(aJ , P,N)
.

= inf
µ∈Π(P,N)

∫
X

‖Φ ◦ aJ(x)− Φ ◦ aJ(x′)‖Hdµ(x,x′)

= inf
µ∈Π(P,N)

∫
X

‖Φ ◦ a ◦ aJ−1(x)− Φ ◦ a ◦ aJ−1(x′)‖Hdµ(x,x′) (36)

≤ (1− η) · inf
µ∈Π(P,N)

∫
X

‖Φ ◦ aJ−1(x)− Φ ◦ aJ−1(x′)‖Hdµ(x,x′)

...

≤ (1− η)J · inf
µ∈Π(P,N)

∫
X

‖Φ(x)− Φ(x′)‖Hdµ(x,x′)

= (1− η)J ·WΦ
1 , (37)

where we have used the assumption that a is η-contractive and the definition of WΦ
1 . There remains

to bound the last line by δ and solve for J to get the statement of the Theorem. We can also stop at
(36) to conclude that A is δ-Monge efficient for δ = (1− η) ·WΦ

1 . The number of iterations for AJ

to be δ-Monge efficient is obtained from (37) as

J ≥ 1

log
(

1
1−η

) · log
WΦ

1

δ
, (38)

which gives the statement of the Theorem once we remark that log(1/(1− η)) ≥ η.

6 Proof of Lemma 10
The proof follows from the observation that for any x,x′ in S,

‖a(x)− a(x′)‖ = λ‖x− x′‖, (39)

where ‖.‖ is the metric of X. Thus, letting a denote a mixup to x∗ adversary for some λ ∈ [0, 1], we
have C(a, P,N) = λ ·W1(dP, dN), where W1(dP, dN) denotes the Wasserstein distance of order
1 between the class marginals. δ > 0 being fixed, all mixups to x∗ adversaries in A that are also
δ-Monge efficient are those for which:

λ ≤ δ

W1(dP, dN)
, (40)

and we get the statement of the Lemma.
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Figure 1: Visualising the toy example for the case α = 0.5. Clockwise from top left: (a) the
clean class conditional distributions, (b) the class distributions mapped by the adversary a, (c) the
transport cost c under the adversarial mapping a, (d) the corresponding optimal transport µ.

7 Experiments
Figure 1 includes detailed plots for the α = 0.5 case of the numerical toy example.
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