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Abstract
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1 Table of contents

Supplementary material on proofs
Proof of Theorem [2] and Corollary 3]

Pg[3]
Pg[3]

Proof sketch of Corollary [3]
Proof of Theorem 9]

Pglf]
Pgf]

Proof of Theorem 12]

Pg[]

Proof of Lemma (]

Supplementary material on experiments

Pg[]

Pg 0]



2 Proof of Theorem 2] and Corollary 3

Our proof assumes basic knowledge about proper losses (see for example Reid & Williamson
(2010)). From (Reid & Williamson, 2010, Theorem 1, Corollary 3) and Shuford et al.| (1966), ¢
being twice differentiable and proper, its conditional Bayes risk L and partial losses ¢; and ¢_; are
related by:

=22 A9 e o) 1)

The weight function (Reid & Williamson, 2010, Theorem 1) being also w = —L”, we get from the
integral representation of partial losses (Reid & Williamson, 2010, eq. (5)),

hie) = - / (1 - w) L (w)du, @)

from which we derive by integrating by parts and then using the Legendre conjugate of —L,

(O +L0) = [0 -0 - [ L+ L)
= (1=¢)L'(e) + L(e) = L(1) + L(1) (3)
= (L)) + e (-L)(0) - (-D)(o
= —(-L)O) + (LY (-L (@), @

Now, suppose that the way a real-valued prediction v is fit in the loss is through a general inverse
link p~! : R — (0,1). Let

vy = (=L)oy™(v). (&)

Since (—L) ! (vey) = ¢! (v), the proper composite loss ¢ with link 1) on prediction v is the same
as the proper composite loss ¢ with link (—L)" on prediction v, . This last loss is in fact using
its canonical link and so is proper canonical (Reid & Williamson, 2010, Section 6.1), (Buja et al.,
2005)). Letting in this case ¢ = (—L)"*(uvy,), we get that the partial loss satisfies

ti(e) = —vey + (=L) (vey) — L(1). (6)
Notice the constant appearing on the right hand side. Notice also that if we see (3)) as a Bregman
divergence, ¢1(c) = (—L)(1) — (—=L)(¢) — (1 — ¢)(—L')(¢) = D_(1]|c), then the canonical link
is the function that defines uniquely the dual affine coordinate system of the divergence (Amari &

Nagaoka, 2000) (see also (Reid & Williamson, 2010, Appendix B)).
We can repeat the derivations for the partial loss ¢_;, which yields (Reid & Williamson, 2010,

eq. (9)):

() +L0) = — /0 "L (w)du + L(0)

= @l [ Lde

= —cL'(¢) + L(c) — L(0) + L(0) )
= ¢ (=L)(¢) = (=L)(c)
= (=L)"((=L)'(0)), (®)
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and using the canonical link, we get this time
la(e) = (=L)"(vey) — L(0). ©)

We get from (6)) and (9)) the canonical proper composite loss

(o) = (- (o) = L = 5 (L= ) - LO)+ (L4 y) - L) (10)

2

Note that for the optimisation of ¢(y, v) for v, we could discount the right-hand side parenthesis,
which acts just like a constant with respect to v. Using Fenchel-Young inequality yields the
non-negativity of ¢(y, v) as it brings (—L)*(ve,y) — ((y +1)/2) - ve.y, > L((y +1)/2) and so

i) = L(55) =5 (=) O+ (140) - L)

L (50 04 ) 1) = (=) L)+ (14 9)- L)
> 0,Vy € {-1,1},Vv € R, (11)

from Jensen’s inequality (the conditional Bayes risk L is always concave (Reid & Williamson,
2010)). Now, if we consider the alternative use of Fenchel-Young inequality,

1 1
(D) =5 oue 2 L(3), (12)
then if we let
. 1 1
AW = L(3) -5 (=0 LO+ (4 L), 13)
then we get
() = Aly) =5 vew Vye {11} Wwek (14)
It follows from (I1)) and (T4),
((y,v) > max {O, Aly) — % . UW} Ny e {—1,1},Vv € R, (15)

and we get, Yh € R¥, a € X%,
Ex,v)~n[l(y, h o a(X))]

> Eocven [max {0,000 = 7 - (ho o)}
> max {0, Exv)oD [A(Y) —~ ; +(ho a(X))e,w} }

= max {o,; ( > - % Exyyen [Y  (hoa(X))ew + (1= Y) - L(0) + (1 +Y) 'L(l)]}
~ nax {O,L (%) . ( | Bep - (o a(X)y + 2L(D) )}

=) ((ho alX))es - 2L(0))
= max{0.L(3) - 3+ (P (0o @y m. 2L00) = N, (10 s = 5, ~2L(0)) 16

N | —
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with
(@100 = [ b (@) + Q) (a7
and we recall
(hoa)y = (~L)o¢'ohoa. (18)
Hence,
in E vy p max (Y o a(X)

heXH

>
> I}}g{lfgg{(E v)~p (Y, h o a(X))] (19)

> ggﬂr{l max max {O,L (%) — % (p(P,(hoa)yy, ™ 2L(1)) — (N, (hoa)y, 1 —m, —2L(0 }
> s (0.2 (3) = 5 (P (0o )i 2L00) = (N, (0 i1 = 7. -2L0) |
= maxmax {0, 1];%191{1 (L (% — % “(p(P,(hoa)py,m2L(1)) — (N, (hoa)yy, 1 —m,—2L(0 ) }
= maxmax {O,L (%) - % - max (e(P,(hoa)y,m2L(1)) — (N, (hoa)y, 1 —m, —2L(0)))}
— max (L (% _ % max (p(P, (h© a)e . 2L(1)) = (N, (h o @)y, 1 =, —2L(0))))+

: raneifrll max (p(P,(hoa)y,m2L(1)) — (N, (hoa)yy, 1 —m, —QL(O)))>

+

N = N = N~

i (PN 2L01). 2L(0) )
acA ’ +

— (ﬁo — % . mlny}f (P,N,m, 2L(1), QL(O)))+

acA

_ (go 1 5a> | 20)
2 +

acA

as claimed for the statement of Theorem [2| (we have let g = (—L') o ¢)™"). Hence, if, for some
e €[0,1],

Ja € A: i, (P,N,m,2L(1),2L(0)) < 2=-¢°, 21)
then
> o _ . o]
1}2%191;1 E(XY)ND[maXK(Y hoa(X))] > (£°—e-£°),
—(1-¢)- 0, 22)

which ends the proof of Corollary [3if ¢ is proper composite with link . If it is proper canonical,
then (—L') o ¢~! = Id and so ygf,a = V0 in 2I).
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Remark 1 Theorem|2|and Corollary|3|are very general, which naturally questions the optimality
of the condition in Corollary [3|to defeat H — and therefore the optimality of the Monge adversaries
to appear later. Inspecting their proof shows that suboptimality comes essentially from the use of
Fenchel-Young inequality in (12). There are ways to strenghten this result for subclasses of losses,
which might result in fine in the characterisation of different but arguably more specific adversaries.

3 Proof sketch of Corollary

Recall that 3, = ys..(P, N, 3,2L(1),2L(0)). We prove the following, more general result which

)9
does not assume 7 = 1/2 nor y: , = 0.

Corollary 2 Suppose ( is canonical proper and let H denote the unit ball of a reproducing kernel
Hilbert space (RKHS) of functions with reproducing kernel k. Denote

poo = [ rlal@). )dQ) @3
x
the adversarial mean embedding of a on (). Then

2. ‘Y?f,a(Pa N7 , 2L(1)7 QL(()))
= yfarzl—i_ Hﬂ'ua’P_ (1_7T) ILLUqNH:H
Proof It comes from the reproducing property of I,

2- yﬂ{,a(P> Na T, QL(l)a 2L<0))
vE,, -+ max {w : /xh oa(x)dP(x) — (1 —x)- /

heH X

Vit {W . <h, / w(alz), '>dP(w>>H —(1-m)- <h, / w(a(), JAN <w>>%}

0
- ‘Yhard + I}Illeaj_}é {(h’ . MG,P - (1 - ﬂ-) . MQ,N>}C}

ho a(m)dN(:v)}

Viwo 17+ ptap — (1= 7)  pan |36, (24)

as claimed, where the last equality holds for the unit ball. |

4 Proof of Theorem

We first show a Lemma giving some additional properties on our definition os Lipschitzness.

Lemma 3 Suppose H is (u,v, K)-Lipschitz. If ¢ is symmetric, then {u o h — v o h}peq is 2K -
Lipschitz. If c satisfies the triangle inequality, then v — v is bounded. If c satisfies the identity of
indiscernibles, then u < v.



Proof If c is symmetric, then we just add two instances of (20]) with « and y permuted, reorganize
and get:

uoh(x) —voh(y)+uoh(y)—voh(xe) < K-(c(x,y)+c(y,x)),Vh € H,Va,y € X.
< (uoh—voh)(x)— (uoh—voh)(y) < 2Kc(x,y),Vh € H,Vx,y € X.

and we get the statement of the Lemma. If c satisfies the triangle inequality, then we add again two
instances of (20) but this time as follows:

uoh(x) —voh(y)+uoh(y)—voh(z) < K-(c(x,y)+c(y,2)),Vh € H,Va,y,z € X.
s wuoh(x)—voh(z)+Aly) < Kc(zx,2z),Vh € H,Va,y,z € X,

where A(y) = uo h(y) — v o h(y). If ¢ is finite for at least one couple (x, z), then we cannot have
u—v unbounded in U,Im(h). Finally, if ¢ satisfies the identity of indiscernibles, then picking = y
in (20) yields u o h(x) —v o h(x) < 0,Vh € H,Vx € X and so (v — v)(UpIm(h)) "R, C {0},
which, disregarding the images in I for simplicity, yields u < v. |

We now prove TheoremthOTA. In fact, we shall prove the following more general Theorem.
Theorem 4 Fix any € > 0 and proper loss ¢ with link 1. Suppose 3c : X x X — R such that:
(1) His (m-g,(1 —m) - g, K)-Lipschitz with respect to ¢, where g is defined in (14);
(2) A is 6-Monge efficient for cost ¢ on marginals P, N for

o N
5§ < Q.M_

< I (25)

Then I is e-defeated by A on (.
Proof We have forall a € A,

r}?%?f( (SO<P7 ho a, T, 2&(1)) - QO(N7 ho a, 1- T, _2L<O>))
S

1
= Yfard+§'max(/W-QOhoa(a:)dP(a:)—/
X

hedt %

(1—m)-goho a(a:’)dN(zc’)) , (26)
where we recall g = (—L') o =1, Let us denote for short

A = max (/ m-gohoa(x)dP(x)— /(1 —m)-goho a(a:')dN(:L")) : (27)
heX X x
H being (7 - g, (1 — ) - g, K)-Lipschitz for cost ¢, since
HC{heR :mgohoa(x) — (1 —m)gohoa(x) < Ke(a(zx), a(x)), Ve, ' € X},

it comes after letting for short W = rgohoa,x = (1 —7m)gohoa,

ps ([ eire - [ @)
= K- o / c(a(z), a(@'))du(z, z'). (28)

LETI(P,N)
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See for example (Villani, 2009, Section 4) for the last inequality. Now, if some adversary a € A is
0-Monge efficient for cost c, then

K- inf Nd " < K. 29
Lt [ o). ae)dute.n) < 29
From Theorem 2] if we want JH to be e-defeated by A, then it is sufficient from (26)) that « satisfies

1
Vi + 5 K6 < 2607, (30)
resulting in
2el° — ¢

j < 20 ———== 31
< 7 €1y
as claimed. |

Remark 1 note that unless m = 1/2, ¢ cannot be a distance in the general case fot Theorem [0
indeed, the identity of indiscernibles and Lemma 2] enforce (1 — 27) - ¢ > 0 and so g cannot take
both signs, which is impossible whenever ¢ is canonical proper as ¢ = Id in this case. We take it as
a potential difficulty for the adversary which, we recall, cannot act on 7.

Remark 2 In the light of recent results (Cissé et al., 2017} Cranko et al., 2018; Miyato et al.,
2018), there is an interesting corollary to Theorem [9] when 7 = 1/2 using a form of Lipschitz
continuity of the /ink of the loss .

Corollary 5 Suppose loss ( is proper with link 1) and furthermore its canonical link satisfies, some
K ¢ > 0

(L)' (y) — (L)' (y) < K¢+ [9(y) — )], Vy,y' € [0,1].

Suppose furthermore that (i) m = 1/2, (ii) H is Kp,-Lipschitz with respect to some non-negative ¢
and (iii) A is 6-Monge efficient for cost c on marginals P, N for

4el® — 2yt

o
- K/Kj,

(32)

Then H is e-defeated by A on .

Proof The domination condition on links,

(L)' (y) — (L)' () < Ke-[ly) =¥, Yy, v €0,1], (33)

implies g is Lipschitz and letting y = ¢! o ho a(x), 3y = 1! o h o a(x’), we obtain equivalently
gohoa(x) —gohoa(x) < K;-|hoa(x) — hoa(ad)|,Ve, 2 € X. But H is Kj-Lipschitz
with respect to some non-negative ¢, so we have |h o a(x) —hoa(x')| < Kyc(a(x),a(x’)), and so
bringing these two inequalities together, we have from the proof of Theorem 9] that A now satisfies

Keln inf /c(a(w),a(w’))du(w,zc’), (34)

A <
- 2 nell(P,N)
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so to be e-defeated by A on ¢, we now want that a satisfies

K/K
Vit ‘2 b o< 2l (35)
resulting in the statement of the Corollary. |

5 Proof of Theorem 12

Denote a’/ = aoao...oa (J times). We have by definition

Cotw PN) = it [ [0 oa'@) — @00’ @) e 2)
= HGI%HIEN /||<Doaoa (x) —PoaocaHz)|sdu(z, z') (36)
< — / /
< (1-n) Heﬁnff)N /||<I>oa —Poag’” (w)Hﬂfle(iL',w)
< (A-n)’ inf /||<1> 2 e, 2)

UEI(P,N)
=1 -n)’ W (37)

where we have used the assumption that a is n-contractive and the definition of T,*. There remains
to bound the last line by ¢ and solve for J to get the statement of the Theorem. We can also stop at
to conclude that A is 6-Monge efficient for § = (1 — ) - W*. The number of iterations for A’
to be 6-Monge efficient is obtained from (37) as

1 we
J > — log 51 ; (38)
which gives the statement of the Theorem once we remark that log(1/(1 — 7)) > n.
6 Proof of Lemma
The proof follows from the observation that for any «, " in 8,
la(x) —a(@)|| = Az -], (39)

where ||.|| is the metric of X. Thus, letting a denote a mixup to «* adversary for some \ € [0, 1], we
have C(a, P,N) = X - W;(dP,dN), where W;(dP,dN) denotes the Wasserstein distance of order
1 between the class marginals. ¢ > 0 being fixed, all mixups to * adversaries in A that are also

0-Monge efficient are those for which:
A< d (40)
— Wi(dP,dN)’

and we get the statement of the Lemma.
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Figure 1: Visualising the toy example for the case a = 0.5. Clockwise from top left: (a) the
clean class conditional distributions, (b) the class distributions mapped by the adversary a, (c) the
transport cost ¢ under the adversarial mapping a, (d) the corresponding optimal transport .

7 Experiments

Figure [T)includes detailed plots for the o = 0.5 case of the numerical toy example.
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