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“Data science becomes the art of extracting labels out of thin air” 
[Malach & Shalev-Shwartz 17]
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Labels from Web queries

Crowd sourcing                                                                                                                                                                                                                                                                                                                                    :	?												:	jaguar													:	leopard													:	cheetah					



Previous work (sample)
•  Noise-aware deep nets (CV)

–  Good performance on specific domains, scalable
–  Heuristics
–  In many cases, need some clean labels
[Sukhbaatar et al. ICLR15, Krause et al. ECCV16, Xiao et al. CVPR15]

•  Theoretically robust loss functions (ML)
–  Theoretically sound 
–  Unrealistic assumptions… knowing the noise distribution!
[Natarajan et al. NIPS13, Patrini et al. ICML16]

•  Estimating the noise from noisy data
[Menon et al. ICML15]
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Contributions
•  Two procedures for loss correction. Loss/architecture/

dataset agnostic.

•  Theoretical guarantee: same model as without noise (in 
expectation).

•  Noise estimation, by using the same deep net.

•  Tests on MNIST, CIFAR10/100, IMDB with multiple nets 
(CNN, ResNets, LSTM, …). SOTA on data of [Xiao et al. 15].
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•  Sample from
•    -class classification:
•  Learn a neural network  

Supervised learning
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•  Sample from
•    -class classification:
•  Learn a neural network  
•  Minimize the empirical risk associated 

with loss                       :

•  Let

Supervised learning
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Asymmetric label noise

•  Sample from              
•  Corruption by asymmetric noise, defined 

by a transition matrix                        :
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Asymmetric label noise

•  Sample from              
•  Corruption by asymmetric noise, defined 

by a transition matrix                        :
              

•  How to be robust to such noise?
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ỹ y

x

Feature independent noise

T 2 [0, 1]c⇥c



Backward loss correction

•    -class version of [Natarajan et al. 13]

•  Rationale: linear combination of losses, 
weighted by the inverse of the noise 
probabilities

•  “One step back” in the Markov chain 
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Backward loss correction: theory
•  Theorem: if     is non-singular,       is 

unbiased. It follows that the models 
learned with/without noise are the same 
under noise expectation:
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Forward loss correction

•  Inspired by [Sukhbaatar et al. 15]: 
“absorbs” the noise in a top linear layer, 
emulating 

•  Rationale: compare noisy labels with 
“noisified” predictions
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Forward loss correction: theory
•  Theorem: if     is non-singular,         is such 

that the models with/without noise are 
the same under noise expectation* :

* Technically, the loss needs to be proper composite here. Cross-
entropy and square are OK.  
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Noise estimation
•    -class extension of [Menon et al. 15]
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Noise estimation
•    -class extension of [Menon et al. 15]
•  Hp: there are some “perfect examples”, 

and the net can model              very well
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Noise estimation
•    -class extension of [Menon et al. 15]
•  Hp: there are some “perfect examples”, 

and the net can model              very well
•  First, train and get             
•  Then estimate      byT̂

8i, j
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Noise estimation
•    -class extension of [Menon et al. 15]
•  Hp: there are some “perfect examples”, 

and the net can model              very well
•  First, train and get             
•  Then estimate      by

•  Rationale: mistakes on “perfect examples” 
must be due to the noise

T̂

8i, j
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Recap: the algorithm

(1) Train the network on noisy data to obtain 

(2) Re-train the network correcting with 
backward/forward loss, e.g.

T̂
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Empirics: models and datasets

•  Goal: show robustness independently 
from architecture and dataset

Simulated noise:
– MNIST: 2 x fully connected, dropout 
–  IMDB: word embedding + LSTM
– CIFAR10/100: various ResNets

Real noise:
– Clothing1M [Xiao et al. 15], 50-ResNet
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Inject sparse, asymmetric     T
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Experiments with real noise
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Clothing1M [Xiao et al. CVPR15]
•  Trainset:

1M noisy label + 
50k clean labels 

•  Testset:
10k clean labels 



Experiments with real noise
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Recipe for SOTA:
•  Pre-train: “forward loss” on 1M noisy labels
•  Fine-tune: cross-entropy on 50k clean labels

Clothing1M

# model loss init training accuracy

1 AlexNet cross-. ImageNet 50k 72.63
2 AlexNet cross-. #1 1M, 50k 76.22
3 2x AlexNet cross-. #1 1M, 50k 78.24
4 50-ResNet cross- ImageNet 1M 68.94
5 50-ResNet backward ImageNet 1M 69.13
6 50-ResNet forward ImageNet 1M 69.84
7 50-ResNet cross-. ImageNet 50k 75.19
8 50-ResNet cross-. #6 50k 80.38

Our method 



Conclusions
Contributions

–  End to end
–  Theoretical guarantees
–  In pair/better than previous work, SOTA on Clothing1M
–  Forward better than backward (easier to optimize)

Limitations
–  Noise estimation: hard with massively multiclass

Potential improvements
–  Couple noise estimation with training [Xiao et al. 15, 

Goldberger & Ben-Reuven 17, Veit et al. 17]
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Example: cross-entropy

•  cross-entropy (multi-class logistic)
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Inject sparse, asymmetric     
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Compare with previous work
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•  Similar for CIFAR100, but estimating high-intensity noise is 
hard for 100 classes with 50k examples.

CIFAR-10, 32-layer ResNet
NO NOISE SYMM. ASYMM. ASYMM.

N = 0.2 N = 0.2 N = 0.6
cross-entropy 90.1 86.6 89.0 53.6
unhinged [van Rooyen et al., 15] 90.2 86.5 87.1 60.0
sigmoid [Ghosh et al., 15] 81.6 69.6 79.1 61.8
Savage [Masnadi-Shirazi et al., 09] 88.3 86.2 86.3 53.5
bootstrap soft [Reed et al., 14] 90.9 86.9 88.6 53.1
bootstrap hard [Reed et al., 14] 90.4 86.4 88.6 54.7
backward 90.1 83.0 84.4 74.3
backward, T̂ 90.8 86.9 86.4 66.7
forward 91.2 87.7 89.9 87.6
forward, T̂ 90.5 87.9 90.1 77.6


