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ABSTRACT

We study the classification with respect to the class of curved
Mahalanobis metrics that extend the celebrated flat Maha-
lanobis distances to constant curvature spaces. We prove
that these curved Mahalanobis k-NN classifiers define piece-
wise linear decision boundaries, and report the performance
of learning those metrics within the framework of the Large
Margin Nearest Neighbor (LMNN). Finally, we show experi-
mentally that a mixture of curved Mahalanobis metrics define
a composite metric distance that improves the classification
performance.

Index Terms— Classification, Mahalanobis distance,
metric learning, Large Margin Nearest Neighbor (LMNN),
Cayley-Klein geometry

1. INTRODUCTION AND CONTRIBUTION

1.1. Introduction

In supervised classification [1, 2], one of the simplest classi-
fierM is the k-NN classifier that classes an unlabeled obser-
vation x by taking the majority of the labels of the k near-
est neighbors (NN) of x in the training set T = {(xi, yi) :

i ∈ [n]} with xi = (x
(1)
i , ..., x

(d)
i ) ∈ Rd, yi ∈ {−1, 1}

(with [n] = {1, ..., n}). To avoid ties in binary classifi-
cation, k is chosen odd. The notion of “nearest” neighbor
depends on the selected distance function D(·, ·). The dis-
tance is often chosen to be the Euclidean distance: D(p, q) =√∑d

i=1(p(i) − q(i))2 = ‖p − q‖ where ‖ · ‖ is the L2 norm
induced by the Euclidean inner product 〈p, q〉 = p>q (com-
monly called scalar or dot product in Euclidean geometry):
‖x‖ =

√
〈x, x〉. Learning an appropriate distance from the

training set allows one to improve the performance of the k-
NN classifier over the ordinary Euclidean distance. A well-
known generalization of the Euclidean distance is the Ma-
halanobis distance [1, 2] DΣ(p, q) =

√
(p− q)>Σ(p− q),

where Σ � 0 is a symmetric d × d positive definite ma-
trix. The Euclidean distance is a Mahalanobis distance ob-
tained for the identity matrix I . The Mahalanobis distance
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is a metric distance that satisfies the three axioms of met-
rics: (i) reflexivity: DΣ(p, q) = 0 ⇔ p = q, (ii) sym-
metry: DΣ(p, q) = DΣ(q, p), and (iii) triangle inequality:
DΣ(p, q) + DΣ(q, r) ≥ DΣ(p, r). To learn an appropriate
Mahalanobis distance (i.e., matrix Σ � 0), various algorithms
relying on side information have been proposed: For example,
the Mahalanobis Metric Clustering [3] (MMC) for clustering
and the Large Margin Nearest neighbor [4] (LMNN) for clas-
sification. In image retrieval systems by image query, the Ma-
halanobis k-NN classifier on image features allows one to re-
turn a ranked list of similar images to the query [5]. Notice
that since the k nearest neighbors of a query point does not
change by considering any monotonically increasing func-
tion of the selected distance (like a squaring operation), we
may consider equivalently the squared Mahalanobis distance
D2

Σ(p, q) (but doing so we loose the triangle inequality prop-
erty, and it is not anymore a metric). By generalizing the Ma-
halanobis distance one may further hope to improve the Ma-
halanobis k-NN classifier performance. It turns out that the
squared Mahalanobis distance is a particular case of a larger
family of distortion measures, called Bregman divergence [6]
BF (p, q) defined for a strictly convex and differentiable gen-
erator F by BF (p, q) = F (p)−F (q)− 〈p− q,∇F (q)〉. For
the generator FΣ(x) = x>Σx, we get BF (p, q) = D2

Σ(p, q).
However the cone space of such convex and differentiable
functions is infinite-dimensional, and it is challenging to de-
sign methods for learning appropriate Bregman generators.
In [5] (2015), a neat generalization of Mahalanobis distances
has been proposed, called generalized hyperbolic and gener-
alized elliptical Mahalanobis distances, and the classification
using the generalized elliptical Mahalanobis distances has
been proven superior compared to “Euclidean” Mahalanobis
distances.

1.2. Contributions and outline

In this work, we refine and extend the framework of [5]. We
summarize our contributions as follows: (i) We prove that
curved Mahalanobis k-NN classifiers are always piecewise
linear. (ii) We describe how to perform negatively-curved
Mahalanobis metric learning using LMNN [4], extending the
approach in [5] that considered only positively-curved Maha-
lanobis setting. (iii) We consider learning a mixture of curved
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Fig. 1. Measuring length distances in Cayley-Klein geome-
tries: L(p, q) ∝ log(p, q;P,Q), where (p, q;P,Q) denotes
the cross-ratio of 4 collinear points.

Mahalanobis distances that induces a Riemannian geometry
that is not anymore of constant curvature, and show exper-
imentally that this mixed metric distance improves over the
curved Mahalanobis distances for the classification task. Be-
sides, we also show that curved Mahalanobis balls are equiva-
lent to Euclidean Mahalanobis balls with shifted centers (and
ellipsoid shapes) and report corresponding radii values.

The paper is organized as follows: Section 2 introduces
the basic notions of Cayley-Klein geometries and explained
the two hyperbolic/elliptical metric Cayley-Klein geometries
that induce the negatively-curved and positively-curved Ma-
halanobis distances. Section 3 proves that the decision bound-
aries of k-NN for the curved Mahalanobis metric distances are
piecewise-linear. Section 4 report the basic mapping trans-
formations to transform any curved/flat Mahalanobis space
into an equivalent canonical space of canonical curvature
κ ∈ {−1, 0,+1}. Section 5 presents the curved Mahalanobis
Large Margin Nearest Neighbor algorithm, further considers
a mixture of curved Mahalanobis distances, and report exper-
imentally on the accuracies of classification.

2. CURVED MAHALANOBIS GEOMETRIES

To define the curved Mahalanobis metric distances, we in-
troduce their underlying Cayley-Klein geometries [7]. In
brief, the Cayley-Klein geometries unify the metric Eu-
clidean/elliptical/hyperbolic geometries with other space-
time geometries (Minkowskian, Galilean, de Sitter, etc.) from
the viewpoint of projective geometry [7]. In a Cayley-Klein
geometry [7], the signed length L(p, q) between two points
is defined according to a fundamental conic [7] C and a
prescribed constant c as L(p, q) = c × log(p, q;P,Q) =
c log pP×qQ

qP×pQ , where P and Q are the two intersection
points of the line l passing through p and q with C (Fig-
ure 1). The length measurements are signed: L(q, p) =
−L(p, q) (checked from the property of the cross ratio
(p, q;P,Q) = 1/(q, p;P,Q)), and furthermore L(p, p) =
0 since (p, p, P,Q) = 0 (reflexivity). For three collinear
points p, q and r we have L(p, q) + L(q, r) = L(p, r). The
proof follows easily from the properties of the cross-ratio:
(p, q;x, y)(q, r;x, y) = (p, r;x, y) (taking the logarithm
yields the additive property). Let D(p, q) = |L(p, q)|, then
the distance D(·, ·) satisfies the reflexivity/symmetry/triangle
inequality axioms of a metric.

Fig. 2. Riemannian metric tensors induced by the flat Eu-
clidean Mahalanobis distance (blue, constant), the negatively-
curved hyperbolic Mahalanobis distance (green), and the
positively-curved elliptical Mahalanobis distance (red).

To define the Cayley-Klein distance without the intersec-
tion points P andQ on the conic C, let S be an invertible sym-
metric real-valued matrix of dimension (d+ 1)× (d+ 1), and
consider the symmetric bilinear map (not necessarily an in-
ner product since it may also yield negative values) on p, q ∈
Rd defined by:S(p, q) = p̃Sq̃ =

[
p> 1

]>
S

[
q
1

]
=

S(q, p). Here, we shall distinguish between two particular
cases for an invertible matrix S (with |S| = det(S) 6= 0):
Case 1: S � 0 (S is positive definite): All eigenvalues1 are
positive, and the induced Cayley-Klein geometry is said el-
liptical (with the fundamental conic C = {x : x̃>Sx̃ = 0}
purely complex, and the intersection points P and Q are con-
jugates) defined over the full domain DS = Rd. The elliptical
geometry [7] is not to be confused with the Riemannian spher-
ical geometry since we identify antipodal points in the projec-
tive setting. Case 2: The last eigenvalue of S, λd+1, is neg-
ative and all the others are positive, we get the Cayley-Klein
hyperbolic geometry (with real fundamental conic C) defined
over the partial conic domain DS = {x : x̃>Sx̃ < 0} ⊂ Rd.

To incorporate these two cases, let us write S =[
Σ a
a> b

]
. Then the bilinear form becomes S(p, q) =

SΣ,a,b(p, q) = Sp,q = p̃>Sq̃ = p>Σq + p>a + a>q + b.
For notational convenience, further define µ ∈ Rd and κ ∈ R
so that a = −Σµ (that is, µ = −Σ−1a) and b = µ>Σµ +

sign(κ) 1
κ2 (that is, κ =

{
(b− µ>µ)−

1
2 b > µ>µ

−(µ>µ− b)− 1
2 b < µ>µ

),

then S(p, q) can be written as S(p, q) = SΣ,µ,κ(p, q) =
(p−µ)>Σ(q−µ)+sign(κ) 1

κ2 . Finally, by choosing the arbi-
trary but appropriate constants to get real (and not complex)
distances [7], we get the curved Mahalanobis distances be-
tween two points p, q ∈ DS as:

DS(p, q) = DΣ,µ,κ(p, q) =
1

2|κ|arccosh

(
|S(p, q)|√

S(p, p)S(q, q)

)

where κ ∈ R\{0} denotes the curvature, and
1Eigenvalues of symmetric real matrices are guaranteed reals and not

complex values.



Fig. 3. Bisector for the negatively-curved Mahalanobis dis-
tance. The hyperbolic spheres are converted to equivalent flat
Mahalanobis spheres for rasterization. The spheres become
tangent to the fundamental conic as the radius tend to infinity.

arccosh(x) = log(x +
√
x2 − 1) for x ≥ 1 is a

monotonically increasing function. We have [5]:
limκ→0+ DΣ,µ,κ(p, q) = limκ→0− DΣ,µ,κ(p, q) = DΣ(p, q).
That is, the curved Mahalanobis distances generalize
the Mahalanobis distance and DΣ(p, q) = DΣ,0,0(p, q).
By choosing S = diag(1, 1, ..., 1,−1), we recover
the usual hyperbolic geometry with distance [8]

Dh(p, q) = arccosh

(
1−〈p,q〉√

1−〈p,p〉
√

1−〈q,q〉

)
defined in-

side the interior of a unit ball, since we have S(p, q) =[
p
1

]> [
I 0
0 −1

] [
q
1

]
= p>Iq − 1 = p>q − 1.

The Euclidean, hyperbolic and elliptical Cayley-Klein
metric geometries can be interpreted as Riemannian ge-
ometries [9] with a corresponding metric tensor that yields
Euclidean-straight geodesics. Figure 2 displays some Eu-
clidean, hyperbolic and elliptical Cayley-Klein unit balls: We
observe that the (flat) Mahalanobis balls have shapes inde-
pendent of their center, but not the curved Mahalanobis balls
with shapes varying according to their center position. In fact,
it can be proved that curved Mahalanobis balls are equiva-
lent to flat Mahalanobis balls with shifted centers (and cor-
responding radius values). We report the conversion formula
(without proof for sake of conciseness): A Mahalanobis ball
of center µ and covariance matrix ΣM (and radius rM ) is de-
fined by (x−µM )>ΣM (x−µ)M = r2

M . That is, x>ΣMx−
2x>ΣMµM + µ>MΣMµM = r2

M By identifying the curved
Mahalanobis ball of radius r and center c with the equation of
the flat Mahalanobis ball, we find that: ΣM = r′2Σ− a′a′>,
µM = Σ−1

M (b′a′ − r′2a), r2
M = b′2 − r′2b + c′>ΣMc

′, with
a′ = Σc+ a, b′ = a>c+ b and r′ =

√
−S(c, c)cosh(r).

3. CURVED MAHALANOBIS K-NN CLASSIFIERS

The k-NN classifier associates for any point x ∈ DS a label
in {−1, 1} as the majority class of labels among the k-nearest
neighbors (no ties for odd k). The bisector of two sites p
and q is given by Bi(p, q) = {x : DS(p, x) = DS(q, x)}.
This yields the following bisector equation in the hy-
perbolic/elliptical case:

〈
x,
√
|S(p, p)|Σq −

√
|S(q, q)|Σp

〉
+
√
|S(p, p)|(a>(q+x)+b)−

√
|S(q, q)|(a>(p+x)+b) = 0.

Thus the bisector for the curved Mahalanobis distances are

always Euclidean hyperplanes. Figure 3 illustrates such a bi-
sector for a hyperbolic Cayley-Klein geometry.

It follows that the k-order Voronoi diagram [10] that par-
titions the space into elementary cells having the same equiv-
alece class of the k-nearest neighbors is piecewise linear.
Note that k-order Voronoi cells may be empty of generators
when k > 1, see [10]. Since the decision boundary of the
k-NN classifier is obtained from the boundaries of the union
of those elementary k-order Voronoi cells after merging them
by corresponding classes, we conclude that the curved Ma-
halanobis k-NN classifier is always piecewise linear. Fur-
thermore, the VC dimension of those classifiers is d + 1,
see [1, 2]. Hence, curved Mahalanobis metrics boosts repre-
sentation power but has no negative impact on generalisation
compared to flat Mahalanobis metrics.

4. SPECTRAL DECOMPOSITION

It is well-known that one can apply the Cholesky decom-
position Σ = LL> (with L a lower triangular matrix) and
transform the coordinate system x to x′ = L>x so that
DΣ(p : q) = (p − q)>Σ(p − q) = (p − q)>LL>(p − q) =
‖L>p − L>q‖ = DE(L>p, L>q). That is, the Mahalanobis
distance amounts to compute an ordinary Euclidean distance
on the affinely transformed space. Since the Euclidean ge-
ometry is flat and that an affine transformation yields an
anisotropic stretching of space that is position independent,
this motivates us again to use the term “flat Mahalanobis”
distance. Now, consider the spectral decomposition of ma-
trix S = OΛO> obtained by eigenvalue decomposition,

and let us write canonically: S = OD
1
2

[
I 0
0 λ

]
D

1
2O>,

where λ ∈ {−1, 1} and O is an orthogonal matrix with
O−1 = O>. Diagonal matrix D has all positive values, with
Di,i = Λi,i and Dd+1,d+1 = |Λd+1,d+1| so that D

1
2 is de-

fined as the diagonal matrix obtained by taking the square
root values element-wise of the matrix. We rewrite the bilin-
ear form into a canonical form by mapping the points x to

x̃′ = D
1
2O>

[
x
1

]
=

[
x′′

w

]
. Since x̃′ =

[
x′

1

]
, we can

then find x′ = x′′

w . When λ > 0 (elliptical with Dd+1,d+1 >
0), we have SS(p, q) = SI(p

′, q′). When λ < 0 (hyperbolic
with Dd+1,d+1 < 0), we have SS(p, q) = SH(p′, q′), with
H = diag(1, ..., 1,−1) the canonical matrix form for hyper-
bolic Cayley-Klein spaces. Notice that in the ordinary Ma-
halanobis case, instead of using the Cholesky decomposition,
we may use the L1DL

>
1 matrix decomposition where L1 is

a unit lower triangular matrix (with diagonal elements all 1),
andD is a diagonal matrix of positive elements. The mapping
is then x′ = D

1
2L>1 or x′ = (L1D

1
2 )> since D = D>. Thus

by transformation the input space into one of the canonical
Euclidean/elliptical/hyperbolic spaces, we avoid performing
costly matrix multiplications in the bilinear form, and once
the structure (say, a k-NN decision boundary) has been recov-



Dataset d n k Mahalanobis Elliptical (κ > 0) Hyperbolic (κ < 0) Mixed α β
balance 4 625 3 0.846 0.910 (0.66) 0.904 (-0.15) 0.920 0.440 0.560
pima 8 768 2 0.709 0.712 (0.59) 0.699 (-0.04) 0.720 0.584 0.416
vowel 10 528 11 0.827 0.825 (1.16) 0.816 (-0.05) 0.841 0.407 0.593
sonar 60 208 2 0.733 0.788 (0.45) 0.640 (-0.01) 0.802 0.794 0.206

Table 1. LMNN classification accuracy: We observe experimentally on UCI datasets that positively-curved Mahalanobis
distance (elliptical geometry) have better performance than negatively-curved Mahalanobis distance (hyperbolic geometry) that
improves over the flat Mahalanobis distance (Euclidean geometry). Furthermore, a mixture of curved Mahalanobis distances
(inducing a non-constant curvature space) improves the performance over a constant curvature space.

ered, we can map back to the original space (say, for classify-
ing new observations using the original coordinate system).

5. CURVED METRIC LEARNING WITH LMNN

There are important differences between hyperbolic and ellip-
tical spaces: While in the elliptical case, the domain is fully
Rd, the maximum distance is bounded by κπ. In the hyper-
bolic case, the distance is not bounded, and we need to en-
sure that the real conic matrix inducing the domain contains
all points to classify. LMNN [4] aims to minimize the dis-
tances between points and their designated “target neighbors”
(i.e., points with the same label and likely to be close to each
other) while keeping a distance margin with so-called “im-
postors” (i.e., points with a different label but closer than a
target neighbor). LMNN uses labeled triplet-wise constraints
(xi, xj , xl) as side information. We denote by j → i the
fact that xj is a neighbor of xi. For a distance function DS ,
LMNN minimizes the non-convex loss function l where γ
is a trade-off between the two terms of the objective func-
tion: l =

∑
i,i→j(DS(xi, xj) + γ

∑
l(1 − yi,l)ζi,j,l), with

yi,j ∈ {0, 1}, ζi,j,l = [1 + DS(xi, xj) − DS(xi, xl)]+ the
hinge loss corresponding to impostors. This generic LMNN
energy is minimized using gradient descent optimization.

We first review the adaptation to the elliptical case (S � 0,
reported in [5]) before proposing an extension to hyperbolic
metrics. For the elliptical case, we write S = LL>, and com-
pute the gradients for minimizing l(L) as follows: ∂l(L)

∂L =∑
i,i→j(

∂ρE(xi,xj)
∂L + γ

∑
l(1 − yi,l)

∂ζi,j,l
∂L ), ∂DS(xi,xj)

∂L =

κ√
Si,iSj,j−S2

i,j

L
(
Si,j

Si,i
Ci,i +

Si,j

Sj,j
Cj,j − (Ci,j + Cj,i)

)
,

∂ζi,j,l
∂L =

∂DS(xi,xj)
∂L − ∂DS(xi,xl)

∂L when ζi,j,l ≥ 0, else 0,
where Ci,j = (xi, 1)>(xj , 1).2

Compared to the elliptical case, two difficulties arise in
the hyperbolic case: First, we must ensure that matrix S
has signature [7] (d, 1, 0), and second, we must make sure
that the input points remain at all time within the definition
domain of DS with DS = {x : Sxx < 0}. To address the first
difficulty, we impose S to be of the form L>DL where D

2There is a slight error in the expression of ∂DS(xi,xj)

∂L
in the original

paper, as Ci,j + Cj,i was replaced by 2Ci,j , which is not the distance gra-
dient since it must be symmetric with respect to both xi and xj .

is a symmetric matrix of signature (d, 1, 0) and L is positive
semi-definite. As in the elliptical case, L will be our learning
parameter, whereas D will remain fixed. The gradient of
the distance wrt. is expressed as follows: ∂DH(xi,xj)

∂L =
κ√

S2
i,j−Si,iSj,j

DL
(
Si,j

Si,i
Ci,i +

Si,j

Sj,j
Cj,j − (Ci,j + Cj,i)

)
.

Substituting this new expression in the former gradient, we
obtain the gradient for the loss function in the hyperbolic
case. Assuming that we have found a proper initialization
(that is, two matrices L and D for which the data lie in the
definition domain), we can now perform our gradient descent.
Intuitively, since when a point comes closer to the boundary
of the definition domain its distance to the others becomes
infinite, with a good initialization our data should remain
within the definition domain all throughout the algorithm.
However in practice it may happen (because of numerical
precision and choice of the gradient step) that some point
gets out of the definition domain. To circumvent this, we
allow the algorithm to backtrack when this happens, and
reduce the gradient step for the next iteration (in practice, we
divide it by two). Another difficulty raised by the definition
domain is the initialization. We pick any symmetric PSD
matrix for L � 0 which yields a good initialization, and
then compute D as D = diag(1, ..., 1,−minx{‖Lx‖2}).
It can be checked that with such an initialization, all points
lie in the hyperbolic domain defined by S = L>DL. In
practice, we have tried L = Id+1 or L = diag(L′, 1) where
Σ = L′L′> is the precision matrix (inverse covariance)
of the data. Finally, we considered learning a mixture of
elliptical and hyperbolic curved Mahalanobis distances:
M(p, q) = αDE(p, q) + βDH(p, q) (with β = 1 − α).
Since a scaled metric distance and the sum of two metric
distances is a metric distance, the mixture distance is a metric.
However, the Riemannian metric tensor is not a composite
metric tensors since the geodesics need to be solved by a
non-trivial partial differential equation [9]. Table 1 displays
our experimental results on UCI data-sets.3 In all cases, the
mixed elliptical/hyperbolic combination yields better results.

3https://archive.ics.uci.edu/ml/datasets.html. The
various matrices S defining the bilinear form learnt from the data-
sets under the Euclidean, hyperbolic, elliptical and composite settings
are available online at https://www.lix.polytechnique.fr/

˜nielsen/CayleyKlein/ for reproducible research.
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