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Equivalent definitions of the hyperbolic Cayley-Klein distances of constant curvature x < O:

1 Sp,q + \/ S}%,q - Sp,qu,q
Ds(p,q) = —grlog (1)
Sp,q RY; S}%,q - Sp,qu,q

SP PSQ q

Ds(p,q) = —k xarctanh, /1 — —= ) @)
Sha
Ds(p,q) = —kXx arccoshi7 3)
with arccosh(z) = log(z + V22 — 1) for = > 1, arctanh(z) = § log 32, and:

pas=[p" 1 ]TS[ 1 ] =PS54 = Spq = Sqp



Figure 1: Riemannian metric tensors induced by the flat Euclidean Mahalanobis distance (blue, constant), the
negatively-curved hyperbolic Mahalanobis distance (green), and the positively-curved elliptical Mahalanobis
distance (red).

Figure 2: Bisector for the negatively-curved Mahalanobis distance. The hyperbolic spheres are converted to
equivalent flat Mahalanobis spheres for rasterization. The spheres become tangent to the fundamental conic
as the radius tend to infinity.
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Figure 3: k-NN classification rules and bi-chromatic Voronoi diagrams: (a) bichromatic Voronoi diagram, (b)
Voronoi bi-chromatic bisectors, classifier using the 1-NN rule (classes are monochromatic union of Voronoi
cells), and (d) boundary decision defined as the interface of these two classes.



noi diagram: The three NNs of points in the yellow cell are depicted by

Figure 4: 3-order hyperbolic Voro
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Therefore the 3-NN classifiers have piecewise-linear

three large red dots.



