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Supplementary Material: proofs

2 Proof of Theorem 3
The proof encompasses a more general statement than that of Theorem 3 since we show
that M may actually not even be a distance matrix for the Theorem to hold.

(?) Let M ∈ Rn×n+ be a distance matrix, and q, q′ ∈ R − {1}, q 6= q′ (the case when
q = 1 xor q′ = 1 can be treated in a similar fashion). We suppose wlog that the support
does not reduce to a singleton (otherwise the solution to optimal transport is trivial).
Rescaling M and a constant row vector and a constant column vector, the solution of
TROT(q, λ,M) can be written wlog as

pij = expq(−1) exp−1
q (mij) . (1)

Assume there exists a λ′ ∈ R such that the solution of TROT(q′, λ′,M) is equal to that
of TROT(q, λ,M). This is equivalent to saying that there exists α,β ∈ Rn such that

expq(mij) = expq′(αi + λ′mij + βj) ,∀i, j . (2)

Composing with logq′ and rearranging, this implies that

fλ
′

q′,q(mij) = αi + βj ,∀i, j , (3)

where

fλ
′

q′,q(x)
.
= logq′ ◦ expq −λ′Id . (4)

Now, remark that, since M is a distance, mii = 0,∀i because of the identity of the
indiscernibles, and so αi+βi = fλ

′

q′,q(0) = 0, implyingα = −β. fλ
′

q′,q is differentiable.
Let:

gλ
′

q′,q(x)
.
=

d

dx
fλ
′

q′,q(x)

= expq−q
′

q (x)− λ′ ; (5)

hλ
′

q′,q(x)
.
=

d

dx
gλ
′

q′,q(x)

= (q − q′) · exp2q−q′−1
q (x) . (6)

If we assume wlog that q > q′, then gλ
′

q′,q is increasing and zeroes at most once over R,
eventually on some m∗ that we define as:

m∗
.
=

{
logq

(
λ′

1
q−q′

)
if (λ′ > 1) ∧ (0 ∈ Imgλ

′

q′,q)

+∞ otherwise
. (7)

Notice that m∗ > 0 and fλ
′

q′,q is bijective over (0,m∗). Suppose wlog that mij ≤
m∗,∀i, j. Otherwise, all distances are scaled by the same real so that mij ≤ m∗,∀i, j:
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this does not alter the property of M being a distance. A distance being symmetric, we
also havemij = mji and since fλ

′

q′,q is strictly increasing in the range of distances, then
we get from eq. (3) that αi+βj = αj+βi,∀i, j and so αi−αj = βi−βj = −(αi−αj)
(since α = −β). Hence, there exists a real α such that α = α · 1. We get, in matrix
form

fλ
′

q′,q(M) = α1> + 1β> (8)

= α · 11> − α · 11> = 0 . (9)

Hence, mij = mii,∀i, j and the support reduces to a singleton (because of the identity
of the indiscernibles), which is impossible.

(?) Remark that the proof also works when M is not a distance anymore, but for ex-
ample contains all arbitrary non negative matrices. To see this, we remark that the right
hand side of eq. (8) is a matrix of rank no larger than 2. Since fλ

′

q′,q is continuous, we
have

Im(fλ
′

q′,q)
.
= I ⊆ R

where I is not reduced to a singleton and so the left hand side of eq. (8) spans matrices
of arbitrary rank. Hence, eq. (8) cannot always hold.

3 Proof of Theorem 4
Denote

fij : pij → pijmij −
1

λ(1− q)
(pqij − pij) .

fij is twice differentiable on R+∗, and

d2

dx2
fij(x) =

q

λ
xq−2 > 0

for any fixed q > 0, and so fij is strictly convex on R+∗. We also remark that U(r, c) is
a non-empty compact subset of Rn×n. Indeed, rc> ∈ U(r, c), ∀P ∈ U(r, c), ‖P‖1 =
1 (which proves boundedness) and U(r, c) is a closed subset of U(r, c) (being the
intersection of the pre-images of singletons by continuous functions). Hence, since
〈P,M〉 − 1

λHq(P ) =
∑
i,j fij(pij), there exists a unique minimum of this function in

U(r, c).

To prove the analytic shape of the solution, we remark that TROT(q, λ,M ) consists
in minimizing a convex function given a set of affine constraints, and so the KKT
conditions are necessary and sufficient. The KKT conditions give

pij = expq(−1) exp−1
q (αi + λmij + βj) ,

where α,β ∈ Rn are Lagrange multipliers.
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Finally, let us show that Lagrange multipliers α,β ∈ Rn are unique up to an
additive constant. Assume that α,α′,β,β′ ∈ Rn are such that

∀i, j, pij = expq(−1) exp−1
q (λmij + αi + βj)

= expq(−1) exp−1
q (λmij + α′i + β′j) ,

where P is the unique solution of TROT(q, λ,M ). This implies

αi + βj = α′i + β′j ,∀i, j ,

i.e.

αi − α′i = β′j − βj ,∀i, j .

In particular, if there exists i0 andC 6= 0 such that αi0−α′i0 = C, then ∀j, β′j = βj+C
and in turn ∀i, αi = α′i + C, which proves our claim.

4 Proof of Theorems 5 and 6
For reasons that we explain now, we will in fact prove Theorem 6 before we prove
Theorem 5.
Had we chosen to follow [4], we would have replaced TROT(q, λ,M ) by:

dM,α,q(r, c)
.
= min

P∈U(r,c)
Hq(P )−Hq(r)−Hq(c)≥α

〈P,M〉 , (10)

for some α > 0. Both problems are equivalent since λ in TROT(q, λ,M ) plays the role
of the Lagrange multiplier for the entropy constraint in eq. (10) [4, Section 3], and so
there exists an equivalent value of α∗ for which both problems coincide:

dM,α∗,q(r, c) = dλ,qM (r, c) , (11)

so eq. (10) indeed matches TROT(q, λ,M ). It is clear from eq. (11) that α does not
depend solely on λ, but also (eventually) on all other parameters, including r, c.

This would not be a problem to state the triangle inequality for dM,α,q, as in [4]
(∀x,y, z ∈ 4n):

dM,α,q(x, z) ≤ dM,α,q(x,y) + dM,α,q(y, z) . (12)

However, α is fixed and in particular different from the α∗ that guarantee eq. (11) —
and there might be three different sets of parameters for dλ,qM as it would equivalently
appear from eq. (12). Under the simplifying assumption that only λ changes, we might
just get from eq. (12):

dλ
∗,q
M (x, z) ≤ dλ

′∗,q
M (x,y) + dλ

′′∗,q
M (y, z) , (13)
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with λ∗ 6= λ′
∗ 6= λ′′

∗. Worse, the transportation plans may change with λ: for example,
we may have

arg min
P∈U(x,z)

dλ1,q
M (x, z) 6= arg min

P∈U(x,z)
dλ2,q
M (x, z) ,

with λ1 6= λ2 and λ1, λ2 ∈ {λ∗, λ′∗, λ′′∗}. So, the triangle inequality for dλ,qM that
follows from ineq. (12) does not allow to control the parameters of TROT(q, λ,M ) nor
the optimal transportation plans that follows. It does not show a problem in regularizing
the optimal transport distance, but rather that the distance dM,α,q chosen from eq. (11)
does not completely fulfill its objective in showing that regularization in dλ,qM still keeps
some of the attractive properties that unregularized optimal transport meets.

To bypass this problem and establish a statement involving a distance in which all
parameters are in the clear and optimal transportation plans still coincide with dλ,qM , we
chose to rely on measure:

dλ,q,βM (r, c)
.
= min

P∈U(r,c)
〈P,M〉

− 1

λ
· (Hq(P )− β · (Hq(r) +Hq(c))) ,

where β is some constant. There is one trivial but crucial fact about dλ,q,βM (r, c): regard-
less of the choice of β, its optimal transportation plan is the same as for TROT(q, λ,M ).

Lemma 1 For any r, c ∈ 4n and constant β ∈ R, let

P1
.
= arg min

P∈U(r,c)
〈P,M〉

− 1

λ
· (Hq(P )− β · (Hq(r) +Hq(c))) . (14)

P2
.
= arg min

P∈U(r,c)
〈P,M〉

− 1

λ
· (Hq(P )) . (15)

Then P1 = P2.

Theorem 2 The following holds for any fixed q ≥ 1 (unless otherwise stated):

• for any β ≥ 1, dλ,1,βM satisfies the triangle inequality;

• for the choice β = 1/2, dλ,q,1/2M satisfies the following weak version of the iden-
tity of the indiscernibles: if r = c, then dλ,q,1/2M (r, c) ≤ 0.

• for the choice β = 1/2, ∀r ∈ 4n, choosing the (no) transportation plan P =
Diag(r) brings

〈P,M〉 − 1

λ
·
(
Hq(P )− 1

2
· (Hq(r) +Hq(r))

)
= 0 .
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Remark: the last property is trivial but worth stating since the (no) transportation plan
P = Diag(r) also satisfies P = arg minQ∈U(r,r)〈Q,M〉, which zeroes the (no) trans-
portation distance dM (r, r). Remark that in this case, P = Diag(r) amounts to mak-
ing no transportation in the support of the marginal, hence the ”(no) transportation”
name.
Proof To prove the Theorem, we need another version of the Gluing Lemma with
entropic constraints [4, Lemma 1], generalized to handle Tsallis entropy.

Lemma 3 (Refined gluing Lemma) Let x,y, z ∈ 4n. Let P ∈ U(x,y) and Q ∈
U(y, z). Let S ∈ Rn×n defined by general term

sik
.
=

∑
j

pijqjk
yj

. (16)

The following holds about S:

1. S ∈ U(x, z);

2. if q ≥ 1, then:

Hq(S)−Hq(x)−Hq(z)

≥ Hq(P )−Hq(x)−Hq(y) . (17)

Proof The proof essentially builds upon [4, Lemma 1]. We remark that S can be built
by

sik =
∑
j

tijk , (18)

where ∀i, j, k ∈ {1, 2, ..., n}, we have

tijk
.
=

{ pijqjk
yj

if yj 6= 0

0 otherwise
. (19)

S is a transportation matrix between x and z. Indeed,∑
i

∑
j

sijk =
∑
j

∑
i

pijqjk
yj

=
∑
j

qjk
yj

∑
i

pij

=
∑
j

qjk
yj
yj =

∑
j

qjk = zk ;

∑
k

∑
j

sijk =
∑
j

∑
k

pijqjk
yj

=
∑
j

pij
yj

∑
k

qjk

=
∑
j

pij
yj
yj =

∑
j

pij = xi .
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So, S ∈ U(x, z). To prove ineq. (17), we need the following definition from [6].

Definition 4 [6] Let X and Y denote random variables. The Tsallis conditional entropy
of X given Y, and Tsallis joint entropy of X and Y, are respectively given by:

Hq(X|Y)
.
= −

∑
x,y

p(x, y)q logq p(x|y) ,

Hq(X,Y)
.
= −

∑
x,y

p(x, y)q logq p(x, y) .

The Tsallis mutual entropy of X and Y is defined by

Iq(X;Y)
.
= Hq(X)−Hq(X|Y)

= Hq(X) +Hq(Y)−Hq(X,Y) .

We have made use of the simplifying notation that removes variables names when un-
ambiguous, like p(x)

.
= p(X = x). Let X,Y,Z be random variables jointly distributed

as T , that is, for any x, y, z,

p(x, y, z) =
p(x, y)p(y, z)

p(y)
(20)

It follows from that and Bayes rule that:

p(x|y) =
p(x, y)

p(y)

=
p(x, y, z)

p(y, z)
,∀z

= p(x|y, z) ,∀z , (21)

and so

Iq(X;Z|Y)
.
= Hq(X|Y)−Hq(X|Y,Z)

= 0 . (22)

It comes from [6, Theorem 4.3],

Iq(X;Y,Z) = Iq(X;Z) + Iq(X;Y|Z) (23)
= Iq(X;Y) + Iq(X;Z|Y) , (24)

but since Iq(X;Z|Y) = 0, we obtain

Iq(X;Y) = Iq(X;Z) + Iq(X;Y|Z) . (25)

It also follows from [6, Theorem 3.4] that Iq(X;Y|Z) ≥ 0 whenever q ≥ 1, and so

Iq(X;Y) ≥ Iq(X;Z) ,∀q ≥ 1 . (26)
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Now, it comes from Definition 4 and the definition of X,Y and Z from eq. (20),

−Iq(X;Y) = Hq(X,Y)−Hq(X)−Hq(Y)

= Hq(P )−Hq(x)−Hq(y) , (27)
−Iq(X;Z) = Hq(X,Z)−Hq(X)−Hq(Z)

= Hq(S)−Hq(x)−Hq(z) . (28)

Since P ∈ Uλ(x,y), by assumption, we obtain from ineq. (26) that whenever q ≥ 1,

Hq(S)−Hq(x)−Hq(z) ≥ Hq(P )−Hq(x)−Hq(y) ,

as claimed.

We can now prove Theorem 2. Shannon’s entropy is denoted H1 for short.
Define for short

∆
.
= H1(P ) +H1(Q)−H1(S)− 2β ·H1(y) , (29)

where P,Q, S are defined in Lemma 3. It follows from the definition of S and [4, Proof
of Theorem 1] that

dλ,q,βM (x, z)

.
= min

R∈U(x,z)
〈R,M〉 − 1

λ
· (H1(R)− β · (H1(x) +H1(z)))

≤ 〈S,M〉 − 1

λ
· (H1(S)− β · (H1(x) +H1(z)))

≤ 〈P,M〉+ 〈Q,M〉 − 1

λ
· (H1(S)− β · (H1(x) +H1(z)))

= 〈P,M〉 − 1

λ
· (H1(P )− β · (H1(x) +H1(y)))

+〈Q,M〉 − 1

λ
· (H1(Q)− β · (H1(y) +H1(z)))

+
1

λ
· (H1(P ) +H1(Q)−H1(S)− 2β ·H1(y))

.
= dλ,q,βM (x,y) + dλ,q,βM (y, z) +

1

λ
·∆ . (30)

We now show that ∆ ≤ 0. For this, observe that ineq. (17) yields:

∆

≤ (H1(S) +H1(y)−H1(z))

+H1(Q)−H1(S)− 2β ·H1(y)

= H1(Q)−H1(y)−H1(z) + 2(1− β)H1(y) , (31)

and, by definition of Q,y, z,

H1(Q)−H1(y)−H1(z)
.
= H1(Y,Z)−H1(Y)−H1(Z) . (32)
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Shannon’s entropy of a joint distribution is maximal with independence: H1(Y,Z) ≤
H1(Y × Z) = H1(Y) +H1(Z), so we get from eq. (31) after simplifying

∆ ≤ 2(1− β)H1(y) . (33)

Hence if β ≥ 1, then ∆ ≤ 0. We get that for any β ≥ 1,

dλ,1,βM (x, z) ≤ dλ,1,βM (x,y) + dλ,1,βM (y, z) , (34)

and dλ,1,βM satisfies the triangle inequality. For β = 1/2, it is trivial to check that for
any x ∈ 4n, the (no) transportation plan P = Diag(x) is in U(x,x) and satisfies

〈P,M〉 − 1

λ
·
(
Hq(P )− 1

2
· (Hq(x) +Hq(x))

)
= 0− 1

λ
· (Hq(x)−Hq(x)) = 0 . (35)

This ends the proof of Theorem 2.

Notice that Theorem 6 is in fact a direct consequence of Theorem 2. To finish up, we
now prove Theorem 5. To simplify notations, let

Uα(r, c)
.
=

{
P ∈ U(r, c) :
Hq(P )−Hq(r)−Hq(c) ≥ α(λ)

}
. (36)

Suppose P,Q in Lemma 3 are such that P,Q ∈ Uλ(x,y). In this case,

Hq(P )−Hq(x)−Hq(y) ≥ α (37)

and so point 2. in Lemma 3 brings

Hq(S)−Hq(x)−Hq(z) ≥ α , (38)

so S ∈ Uλ(x, z). The proof of [4, Theorem 1] can then be used to show that ∀x,y, z ∈
4n,

dM,α,q(x, z) ≤ dM,α,q(x,y) + dM,α,q(y, z) . (39)

It is easy to check that dM,α,q is non negative and that 1{r=c}dM,α,q(r, c) meets, in
addition, the identity of the indiscernibles. This achieves the proof of Theorem 5.

5 Proof of Theorem 7
Basic facts and definitions — In this proof, we make two simplifying assumptions: (i)
we consider matrices either as matrices or as vectorized matrices without ambiguity,
and (ii) we let φ(P )

.
= −Hq(P ), noting that the domain of φ is 4n2 (nonnegative

matrices with row- and column-sums in the simplex) when P ∈ U(r, c). Since φ is
convex, we can define a Bregman divergence with generator Dφ [2] as:

Dφ(P‖R)
.
= φ(P )− φ(R)− 〈∇φ(R), P −R〉 .
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We define

aij
.
= αi + λmij + βj , (40)

so that

pij = expq(−1) exp−1
q (aij) (41)

in eq. (7) (main file). Finally, let us denote for short

Dq(P‖R)
.
= K1/q(P

q, Rq) , (42)

so that we can, reformulate eq. (6) (main file) as:

dλ,qM (r, c) =
1

λ
· min
P∈U(r,c)

Dq(P‖Ũ) + g(M) , (43)

and our objective ”reduces” to the minimization of Dq(P‖Ũ) over U(r, c). In SO–
TROT (Algorithm 1), we just care for a single constraint out of the two possible in
U(r, c), so we will focus without loss of generality on the row constraint and therefore
to the solution of:

P ?
.
= arg min

P∈Rn×n+ :P1=r
Dq(P‖Ũ) . (44)

The same result would apply to the column constraint.
Convergence proof — We reuse the theory of auxiliary functions developed for the
iterative constrained minimization of Bregman divergences [2, 5]. We reuse notation
”�” following [3, 7] and define for any y ∈ Rn, P ∈ Rn×n matrix y �q P ∈ Rn×n
such that

(y �q P )ij

.
=

exp−1
q (yi)pij

expq

[
(1− q)yi exp1−q

q (yi) logq(pij)
] . (45)

We also define key matrix P̃ ∈ Rn×n with:

P̃
.
= rc> . (46)

Let us denote

Q
.
=

{
Q ∈ Rn×n :
Q = expq(−1) exp−1

q (α>1 + λM + 1>β) , with α,β ∈ Rn
}

.

P
.
= {P ∈ 4n2 : P1 = P̃1 = r} .

One function will be key.
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Definition 5 We define A(P,y)
.
=
∑
iAi(P,y), with:

Ai(P,y)
.
= yiri +

∑
j

(pqij − expqq(−1) exp−qq (aij − yi)) . (47)

Here aij is defined in eq. (40), ri is the i-th coordinate in r (the row marginal con-
straint), and y ∈ Rn.

Lemma 6 For any y,

A(P,y) = Dφ(P̃‖P )−Dφ(P̃‖y �q P ) . (48)

Furthermore, A(P,0) = 0.

Proof We have

Dφ(P̃‖P )−Dφ(P̃‖y �q P )

= −Dφ(P‖y �q P )

+〈P̃ − P,∇φ(y �q P )−∇φ(P )〉 .

Because a Bregman divergence is non-negative and A(P,0) = 0, if, as long as there
exists some y for whichA(P,y) > 0 we keep on updating P by replacing it by y∗�qP
such that A(P,y∗) > 0, then the sequence

P0 = Ũ → P1
.
= y∗0 �q P0 → P2

.
= y∗1 �q P1 · · · (49)

will converge to a limit matrix in the sequence,

lim
j
Pj

.
= y∗j−1 �q Pj−1 . (50)

This matrix turns out to be the one we seek.

Theorem 7 Let Pj+1
.
= yj �q Pj (with P0

.
= Ũ ) be such that A(Pj ,yj) > 0,∀j ≥ 0,

and the sequence ends when no such yj exists. Then S
.
= {Pj}j≥0 ⊂ Q̄. If furthermore

S lies in a compact of Q̄, then it satisfies

P ?
.
= lim

j
Pj = arg min

P∈P
Dq(P‖Ũ) . (51)

Proof sketch: The proof relies on two steps, first that

P ?
.
= lim

j
Pj = arg min

P∈P
Dφ(P‖Ũ) , (52)

and then the fact that (51) holds as well, which ”amounts” to replacing Dφ, which
is Bregman, by Dq , which is not. Because it is standard in Bregman divergences, we
sketch the first step. The fundamental result we use is adapted from [5] (see also [3,
Theorem 1]).
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Theorem 8 Suppose that Dφ(P̃ , Ũ) < ∞. Then there exists a unique P ? satisfying
the following four properties:

1. P ? ∈ P ∩ Q̄

2. ∀P ∈ P,∀R ∈ Q̄, Dφ(P‖R) = Dφ(P‖P ?) +Dφ(P ?‖R)

3. P ? = arg min
P∈P

Dφ(P‖Ũ)

4. P ? = arg min
R∈Q̄

Dφ(P̃‖R)

Moreover, any of these four properties determines P ? uniquely.

It is not hard to check that Ũ ∈ Q̄ and whenever Pj ∈ Q̄, then y �q Pj ∈ Q̄,∀y, so we
indeed have S ⊂ Q̄. With the constraint that A(Pj ,yj) > 0,∀j ≥ 0, it follows from
Lemma 6 that A(P,y) is an auxiliary function for S [3] if we can show in addition that
if y = 0 is a maximum of A(P,y), then P ∈ P. To remark that this is true, we have

∇A(P,y)y = r − P1 , (53)

so whenever A(P,y) reaches a maximum in y, we indeed have P1 = r and so P ∈ P,
and if y = 0 then because a Bregman divergence satisfies the identity of the indis-
cernibles, if y = 0 is the maximum, then S has converged to some P ?. From 4. above,
we get

P ? = arg min
R∈Q̄

Dφ(P̃‖R) , (54)

and so from 3. above, we also get

P ? = arg min
P∈P

Dφ(P‖Ũ) . (55)

To ”transfer” this result to Dq , we just need to remark that there is one remarkable
trivial equality:

Dφ(P‖R) = Dq(P‖R)−
∑
i,j

(pqij − r
q
ij) , (56)

so that even when K1/q is not a Bregman divergence for a general q, it still meets the
Bregman triangle equality [1].

Lemma 9 We have;

Dq(P‖R) +Dq(R‖S)−Dq(P‖S)

= Dφ(P‖R) +Dφ(R‖S)−Dφ(P‖S)

= 〈P −R,∇φ(S)−∇φ(R)〉 . (57)

12



P0 = Ũ

Q

Rn×n
+

P̃

PP∞

Pj+1

Pj

Figure 1: High level overview of the proof of Theorem 7 (see text for details).

Hence, point 2. implies as well

Dq(P‖R) = Dq(P‖P ?) +Dq(P
?‖R) , (58)

∀P ∈ P,∀R ∈ Q̄, and so Dq(P‖Ũ) = Dq(P‖P ?) +Dq(P
?‖Ũ),∀P ∈ P, so that we

also have (since Dq is non negative and satisfies Dq(P‖P ) = 0)

P ? = arg min
P∈P

Dq(P‖Ũ) ,

as claimed (end of the proof of Theorem 7).
Figure 1 summarizes Theorem 7. We are left with the problem of finding an auxiliary
function for the sequence S, which we recall boils down to finding, whenever it exists,
some y such that A(P,y) > 0.

Theorem 10 A(P,y) is an auxiliary function for S for the sequence of updates y given
as in steps 6-11 of SO–TROT (Algorithm 1).

Proof We shall need the complete Taylor expansion of A(P,y).

Lemma 11 Let us denote for short γ .
= 1−q. The Taylor series expansion ofAi(P,y)
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(as defined in Definition 5) is:

Ai(P,y)

= yi(ri −
∑
j

pij)

−
∑
j

pij

∞∑
k=2

[
1

k

k−1∏
l=1

(γ + q/l)

]
yki

(
pγij
q

)k−1

. (59)

Proof Let us denote f(x) = exp−qq (x). We have:

d

dx
f(x) = q exp1−q

q (x)
d

dx
exp−1

q (x)

= −q exp−1
q (x) . (60)

A simple recursion also shows (∀k ≥ 2):

dk

dxk
exp−1

q (x)

= (−1)k

[
k∏
i=1

(i− (i− 1)q)

]
expkq−(k+1)

q (x) ,

which yields ∀k ≥ 1,

dk

dxk
f(x) = −q dk−1

dxk−1
exp−1

q (x)

= (−1)kq

[
k−1∏
i=1

(iγ + q)

]
exp−(k−1)γ−1

q (x) .

Since expqq(−1) = expq(−1)/q and ∀i, j, pij = expq(−1) exp−1
q (aij), writing the

Taylor development of f at point aij evaluated at yi, and adding the yiri +
∑
j p

q
ij

term, we obtain the desired result.

We have two special reals to define, ti and zi. If ri ≤
∑
j pij , we let ti denote the

maximum of the second order approximation of Ai(P,y),

T
(2)
i (yi)

.
= yi(ri −

∑
j

pij)−
y2
i

2

∑
j

p1+γ
ij

q
, (61)

i.e. the root of

d

dy
T (2)(yi) = (ri −

∑
j

pij)− yi
∑
j

p1+γ
ij

q
.

14



If
∑
j pij ≤ ri, we let zi be the the largest root of

Ri
.
= (ri −

∑
j

pij)

−yi
∑
j

p1+γ
ij

q
− y2

i (2− q)
∑
j

p1+2γ
ij

q2
. (62)

We shall see that zi is positive. Let y∗i
.
= ti if ri ≤

∑
j pij , and y∗i

.
= zi otherwise. We

first make the assumption that∣∣∣∣∣y∗i p
γ
ij

q
·
(
γ +

q

3

)∣∣∣∣∣ ≤ 1

2
,∀i, j . (63)

Under this assumption, we have two cases.
(?) Case ri ≤

∑
j pij . By definition, we have in this case that yi = ti ≤ 0 in SO–

TROT (Step 10). We also have

Ai(P,y)

= T (2)(yi)

−
∑
j

pij

∞∑
k=3

[
1

k

k−1∏
l=1

(γ + q/l)

]
yki

(
pγij
q

)k−1

︸ ︷︷ ︸
.
=S3

. (64)

Since yi = ti ≤ 0, S3 is an alternating series, that is a series whose general term is
alternatively positive and negative. Under assumption (63), the module of its general
term is decreasing. A classic result on series allows us to deduce from this fact that
(a) S3 � ∞ and (b) the sign of S3 is that of its first term, i.e., it is negative. Since
Ai(P,y) = T (2)(yi)− S3, we have that

Ai(P,y) ≥ T (2)(yi) = 0 . (65)

Note also that Ai(P,y) = 0 iff
∑
j pij = ri as T (2)(yi) is decreasing on [ti, 0] and

T (2)(0) = 0. Hence, for the choice in Step 10, Ai(P,y) is an auxiliary function for
variable i.

(?) Case
∑
j pij ≤ ri: we still have Ai(P,y) = T (2)(yi) − S3, but this time yi will

be positive, ensuring yi(ri −
∑
j pij) ≥ 0. We first show that S3 is upperbounded by a

15



geometric series under assumption (63):

S3

=
∑
j

pijy
3
i

(
pγij
q

)2 ∞∑
k=0

yki
k + 3

[
k+2∏
l=1

(γ + q/l)

](
pγij
q

)k

≤
∑
j

pij(1− q/2)
y3
i

3

(
pγij
q

)2 ∞∑
k=0

(
yip

γ
ij

q
(γ + q/3)

)k

=
∑
j

pij(1− q/2)
y3
i

3

(
pγij
q

)2

× 1

1− yip
γ
ij

q (γ + q/3)

≤ (2− q)
∑
j

pij
y3
i

3

(
pγij
q

)2

,

which conveniently yields

Ai(P,y) ≥ T (2)(yi)− (2− q)
∑
j

pij
y3
i

3

(
pγij
q

)2

. (66)

The derivative of the right-hand term of (66) is Ri defined in eq. (62) above. Let us
define:

a
.
= (2− q)

∑
j

p1+2γ
ij

q2
, (67)

b
.
=

∑
j

p1+γ
ij

q
, (68)

c
.
= −(ri −

∑
j

pij) . (69)

We have ac < 0 and consequently the discriminant ∆
.
= b2 − 4ac > b2, implying

Ri has a positive root zi
.
= (−b+

√
∆)/(2a) which maximises the right-hand term of

66, and is such that this right-hand term is positive. Further, we again have that zi = 0
iff
∑
j pij = ri. It is easy to check that zi = yi in Step 8 of SO–TROT, for which we

check that Ai(P,y) ≥ 0, wich equality iff
∑
j pij = ri. Hence, for the choice in Step

8, Ai(P,y) is an auxiliary function for variable i.

We can now conclude that under assumption (63), A(P,y) is an auxiliary function.

If assumption (63) does not hold, then notice that this cannot not hold at convergence
for coordinate i. For this reason, ri 6=

∑
j pij and the sign sign(ri −

∑
j pij) is also

well defined. Therefore, we just need to pick a value for yi 6= 0 which guarantees
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Ai(P,y) > 0. To do so, we pick

yi =
q · sign(ri −

∑
j pij)

(6− 4q) ·maxj p
1−q
ij

, (70)

remarking that this yi indeed violates (63) (recalling γ .
= 1 − q). We also have |yi| ∈

(0, n2(1−q)/2]. Notice that this choice guarantees Ai(P,y) > 0. (end of the proof of
Theorem 10)

Theorems 7 and 10 altogether prove Theorem 7.

Supplementary Material: experiments

6 Per county error distribution, TROT survey vs Florida
average

Figure 2 displays the empirical distribution of the errors for TROT vs Florida average.
While not being a true distribution of the solution error of TROT — in a Bayesian sense
—, the graph should convey the intuition that algorithms with a distribution that shrinks
around zero provide better inference.

Figure 2: (Signed) error distribution of TROT compared to Florida-average.
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7 Per county errors, TROT survey vs TROT 11>

Figure 3 confronts the prediction errors by county of TROT when we use M = M sur

(survey) and M = M no(= 11>) as cost matrix: while the overall performance of
the two algorithms is very close, the graph demonstrates that TROT optimized with
M sur achieves very often smaller error, although the average error is worsen by few
particularly bad counties.

Figure 3: Absolute error of TROT optimized with M compared to with no prior.
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