Tsallis Regularized Optimal Transport and Ecological Inference
Boris Muzellec, Richard Nock, Giorgio Patrini and Frank Nielsen
Ecole polytechnique and Data61

Overview
A new framework for optimal transport which
- Unifies Monge-Kantorovich and Sinkhorn-Cuturi
- Interpolates a broad class of distance distortions
- Has metric properties
- Can be efficiently solved for algorithmically
- Can be successfully applied to ecological inference

Optimal Transport
A powerful framework for computing distances between probability distributions. Two approaches:
- Monge-Kantorovich (unregularized)
 \[d_{MK}(r, c) = \frac{1}{\lambda} \sum \phi(M_{ij}) \] (OT)
- Sinkhorn-Cuturi (entropic regularization)
 \[d_{SC}(r, c) = \frac{1}{\lambda} \sum \psi(M_{ij}) \] (SC)
- Fast convergence with Sinkhorn’s algorithm!

Tsallis Entropy
- Generalization of Shannon’s entropy:
 \[H_q(P) := \sum \phi(M_{ij}) \]
- Generalized logarithm \(\ln_q(z) := \frac{1}{q-1} (z^{1-q} - 1) \rightarrow \ln(z) \)

TROT
Add a Tsallis regularizer to OT:
\[d_{TROT}(r, c) = \min_{P \in \Delta(c,r)} (P, M) - \frac{1}{\lambda} H_q(P) \] (TROT)

TROT Properties
- Has a unique solution
- Interpolates Monge-Kantorovich \((q \rightarrow 0)\) and Sinkhorn-Cuturi \((q \rightarrow 1)\)
- Unrecoverability \((q, \lambda) \neq (q', \lambda') \Rightarrow \text{TROT}(q, \lambda) \neq \text{TROT}(q', \lambda')\)
- Efficient solving by approximate matrix balancing
- Metric properties \((q \geq 1)\) e.g. triangle inequality

Economic Inference
- Def: Reconstruction of joint distributions from marginal distributions
 - e.g., find the vote share within social groups
- Ill-posed problem: zero or infinite number of solutions
- Usual approach: use an information theoretic criterion
- TROT: information theory + encode a priori information in the cost matrix \(M\)

Ecological Inference with TROT
- Example: Afro-American
- Additional data (census, …)
- (unknown)
- (known)
- (unknown)
- Fast convergence with Sinkhorn’s algorithm!

Experiments
- On 2012 Florida US vote data. Two approaches:
 - Demographic information only: \(m_{\text{DV}} = \sqrt{2 - 2 \exp(-q |x - y|)} \)
 - Survey statistics: \(m_{\text{SV}} = 1 - p_{ij}^{\text{SV}} \)

TROT vs Sinkhorn inferred probabilities and ground truth for all Florida counties. Parameters noted with \(\dagger \) are not cross-validated but defined by the algorithm.

Acknowledgements
We wish to thank Seth Flaxman and Wendy Y. Tam Cho for numerous stimulating discussions. Work done while Boris Muzellec was visiting NICT and Data61. NICT was funded by the Australian Government through the Department of Communications and the Australian Research Council through the ICT Center of Excellence Program.

References
Tsallis regularized optimal transport and ecological inference.
Code repository: https://github.com/BorisMuzellec/TROT