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a b s t r a c t

A model for the computational cost of the finite-difference time-domain (FDTD) method irrespective of
implementation details or the application domain is given. The model is used to formalize the problem
of optimal distribution of computational load to an arbitrary set of resources across a heterogeneous
cluster. We show that the problem can be formulated as a minimax optimization problem and derive
analytic lower bounds for the computational cost. The work provides insight into optimal design of FDTD
parallel software. Our formulation of the load distribution problem takes simultaneously into account the
computational and communication costs. We demonstrate that significant performance gains, as much
as 75%, can be achieved by proper load distribution.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The finite-difference time-domain (FDTD) method, since its
introduction by Yee [31], has been widely used to obtain
numerical solutions of Maxwell’s equations for a broad range of
problems. The applications of FDTD in electrodynamics include
antenna and radar design, electronic and photonic circuit design,
microwave tomography, cellular andwireless network simulation,
mobile phone safety studies, and many more [29]. The method
is not limited to electrodynamics and can be used to solve
other spatiotemporal partial differential equations such as those
occurring in acoustics (e.g. see [25]). The explicit nature of FDTD
formulation, its simplicity, accuracy and robustness, together with
a well established theoretical framework have contributed to a
seemingly unending popularity of the method.

Realistic FDTD simulations involve fine discretization of the
spatial domain aswell as the temporal domain. It is not uncommon
to use spatial grids of 109 and spatiotemporal grids of 1013

or more cells. As a result, FDTD simulations require significant
computational resources both in terms of memory and execution.
It is inevitable that many realistic simulations exceed the memory
limitations of a single computer and have to be divided across
a cluster of computers. The additional incentive to distribute
FDTD computation is to minimize execution time where resources
are available. This, however, introduces the additional cost of
intercommunication between compute nodes in order to execute
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FDTD simulations on the entire computational domain of the
problem.

Parallelization and acceleration of FDTD has been an active area
in recent years. In particular, there have been several examples
of FDTD acceleration on field programmable gate array (FPGA)
hardware and graphics processing units (GPUs). A list of recent
contributions in this area is given later in Section 2.2.

Traditionally, high performance computer clusters have been
built from identical compute resources. When the communication
links connecting the compute resources also have the same latency
and bandwidth and all nodes run the same software, the cluster is
said to be homogeneous [20]. With the introduction of accelerator
technologies and their rise in popularity for general purpose
computing, this is no longer the case. The current generation
of accelerators require a computer host and hence by definition
create hybrid nodes when clustered. A notable example of one
such cluster is IBM’s Roadrunner supercomputer which comprises
13,824 Opteron cores and 116,640 Cell processor cores. According
to technical staff at Los Alamos the applications are typically
designed for execution on Cell processors and except for trivial
house keeping and data transfer to and from Cell processors, the
Opteron cores remain idle most of the time.1 This represents a
significant computing capacity that remains under-utilized.

A heterogeneous cluster is one that is not homogeneous
and may comprise of computational resources with differing

1 According to discussions at the Path to Petascale Workshop, April 2009,
National Center for Supercomputing Applications, University of Illinois at Urbana-
Champaign.
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technology, execution capability, memory size, and speed. A het-
erogeneous cluster may contain accelerators (e.g. GPUs, Cell pro-
cessors, FPGA boards), desktop computers, and server computers.
While heterogeneous resources are commonly found on any mod-
ern network, they are rarely used as heterogeneous clusters partic-
ularly across technology boundaries (e.g. x86 and PowerPC). The
motivation for heterogeneous computing is to maximize use of
available resources, whether across an organization’s network or
on purpose-built heterogeneous clusters, towards solving larger
scientific problems. It comes as no surprise that the subject has at-
tracted a lot of attention from the research community (see [8] for
a recent survey).

The two main impediments in effective use of heterogeneous
clusters are (a) the additional effort involved in development of
heterogeneous applications and (b) the need to design an optimal
load distribution scheme across heterogeneous resources. In this
work, we assume the reader is sufficiently motivated to tackle
the former problem and focus on the latter in the context of
FDTD parallelization where we look at the problem of optimal
distribution of FDTD computation across a heterogeneous cluster.

1.1. Contributions

This work provides insight into the optimal design of a
heterogeneous FDTD application by
(1) modeling the cost of FDTD computation on a heterogeneous

cluster (Section 3.1);
(2) formalizing the load distribution problem as a minimax

optimization problem (Section 3.2);
(3) deriving analytic lower bounds for the execution cost of FDTD

on a heterogeneous cluster (Section 3.4.1); and
(4) solving the problem by taking simultaneously into account the

cost of computation and data communication (Section 3.5).2

We would like to clarify from the outset that this work is not a
software development effort or a specific parallel implementation
of FDTD. It is an implementation-agnostic analysis of the inherent
computational limitations of FDTD on a most general class
of computational clusters (i.e. heterogeneous clusters). It also
proposes a near optimal load distribution algorithm for FDTD
implementation for heterogeneous clusters in general and for
homogeneous clusters as a subset. The only assumption that we
make regarding computational resources is that their performance,
from the FDTD application’s perspective, does not change over
time. This means that the problem is being investigated under
the so-called ‘constant performance model’ for a heterogeneous
cluster [20] as opposed to a ‘non-constant performance model’
where the resources may be shared by multiple programs and
constant performance cannot be guaranteed over time.

We note that a myriad of parallel implementations of FDTD
on homogeneous clusters, in the form of commercial packages,
open source libraries, and scholarly research exist, that can
benefit from this work. These parallelization efforts cover a wide
range of hardware from supercomputers and general purpose
programmable CPUs to GPU, application-specific integrated circuit
(ASIC) and FPGA clusters. We would particularly like to emphasize
the lack of FDTD software that can efficiently run across such
technology boundaries in a true heterogeneous fashion.

2. Concepts

2.1. An overview of the FDTD method

In this section, we provide a brief overview of the FDTDmethod
based on 3D Maxwell electromagnetic equations. The extent we

2 Existing work in the area, such as the canonical matrix multiplication example
studied in [20], determine the partition sizes based on the computational cost first
and only then try to minimize the communication cost.

delve into the subject is to enable the reader to appreciate the
computational model of FDTD presented in Section 3.1. A careful
treatment of the subject is outside the scope of this paper and the
reader is referred to [29] for detailed discussions.

Maxwell’s curl equations for linear, isotropic, lossy and non-
dispersive media are given by

−µ
∂H
∂t

= ∇ × E + σmH + M, (1)

−ϵ
∂E
∂t

= −∇ × H + σeE + J, (2)

where H is the magnetic field, E is the electric field, µ is the
magnetic permeability, ϵ is the electric permittivity, M is the
equivalent magnetic current density, J is the electric current
density, σm is the equivalent magnetic conductivity, and σe is the
electric conductivity. For the purpose of FDTD simulations H and E
fields are unknown and all other quantities are given at each point
in space. The equations embody 6 partial differential equations,
for example the derivative of the x-component of the electric field
with respect to time is given by

−ϵ
∂Ex
∂t

=
∂Hy

∂z
−

∂Hz

∂y
+ σeEx + Jx. (3)

The equations are discretized in space and time to derive an explicit
solution for the next time step. Due to dependence of E and H
components, it is best to interleave values of E and H in time
with 1t/2 time difference between them. For example, H can be
computed at n1t and E computed with a half interval shift at
n1t + 1t/2. Similarly, the E and H components are staggered in
space according to an arrangement known as the Yee cell [31,29].
For convenience we show a function u(i1x, j1y, k1z, n1t) with
u |

n
i,j,k. Using this notation, (3) can be discretized on a cuboid grid

of (1x, 1y, 1z) using second order accurate central differences as
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since Ex is not computed at n1t , it can be approximated by
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and we have
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. (6)

Based on (6), Ex at each grid point and at time n1t + 1t/2 can
be computed from values of E and H at previous times. Similar
equations can be derived for other components of E and H fields.
These equations allow the field values to be computed explicitly
at an arbitrary time index by marching through all previous time



R. Shams, P. Sadeghi / J. Parallel Distrib. Comput. ( ) – 3

indices. We note that the rather unusual notation involving half
indices such as j +

1
2 are due to the arrangement of the field

components in the Yee cell. We refer the reader to [29] if a detailed
explanation of the notation is desired.

The discrete grid discussed above, also known as the compu-
tational domain, represents a finite, discrete and bounded model
of some real domain of interest. If the simulation is sufficiently
long thewavefronts reach the boundaries of the computational do-
main. With no information about the medium outside the bound-
ary, the wavefronts cannot naturally progress and are reflected
back into the computational domain. In effect, the boundary of
the computational domain acts as a reflective barrier, which in
most circumstances is undesirable and a source of error and clut-
ter. A significant body of work has been dedicated to designing
absorbing boundary conditions (ABCs) to address this problem
[29]. Commonly used ABC’s include Mur’s ABC [23], the perfectly
matched layer (PML) [3] and its variants such as the uniaxial PML
(UPML) [27,10] and the convolutional PML (CPML) [26].

Without getting into the details of different types of ABCs and
their characteristics, we note that implementation of the boundary
conditions involves additional computation at one or several layers
of cells on the border of the computational domain. This makes the
computation of boundary cells more expensive than regular cells.

As previously noted, use of FDTD is not limited to the solution
of Maxwell’s equations or to two or three dimensions. In the
following sections, a general d-dimensional (d > 1) Cartesian
computational domain is assumed.

2.2. Parallelization of FDTD

From the discussion of the previous section it should be obvious
that the FDTD method naturally lends itself to parallelization. At
each time-step updating a cell, for example with (6), requires
values of the field components of a given cell and its neighboring
cells in the previous time step. In a more general setting where
higher order discretization or non-linear wave equations are
involved one may require field values from several previous time
steps. Regardless of the complexity of the wave equations, FDTD
ensures that each cell update is independent of its neighbors in the
current time-step. This allows for FDTD computations to be well
suited to parallelization.

Several parallel implementations of FDTD have appeared in the
literature. The efforts cover a wide range of parallel architecture
and hardware including symmetric multiprocess (SMP) clusters,
FPGA hardware, GPUs, and distributed shared memory (DSM)
systems. A non-exhaustive summary (post 2000) is given in Table 1
which serves to demonstrate the degree of interest in this problem.

SMP clusters typically use a combination of OpenMP [24] for
parallelization on a single node and the message passing interface
(MPI) [11] for parallelization across multiple nodes. There has
been more interest in using GPUs for acceleration of FDTD in
recent years. FDTD is memory intensive and standard caching
mechanisms on the CPUs are not well suited to FDTD memory
access patterns. The latest generation of GPUs, on the other hand,
are specifically suited to this task as they give programmers control
over loading data into a small but efficient shared memory that
can significantly boost memory access. In addition, bandwidths of
devicememory on a GPUmay exceed 100 GB/s which is at least an
order of magnitude higher than standard host memory.

3. Method

3.1. Modeling computational cost of FDTD on a heterogeneous cluster

Consider a hyper-rectangular FDTD computational domain Ω

such as the 2-rectangle shown in Fig. 1 partitioned into a number

Fig. 1. A 2D computational domain divided into 5 partitions. The boundary of the
third partition is shown with a thicker border for emphasis.

of non-overlapping hyper-rectangular sub-domains each denoted
by Ωi and a boundary given by ∂Ωi. The sub-domains are non-
overlapping (except on the boundary), i.e.

i

Ωi = Ω, Ωi ∩ Ωj = ∅ for i ≠ j. (7)

Each partition is mapped to a computational resource such as
a multi-core CPU, a GPU or a Cell processor and the number of
partitions equals the number of available computational resources.
We denote the set of all such partitions with n elements by Γn.

For each partition the cost of a single time-marching step is
broken down into three components

(1) cost of updating regular cells which is proportional to the size
of partition |Ωi|,

(2) additional cost of updating cells in the inner boundary of
the partition with neighboring cells due to the need to
load information from neighboring partitions through an
interconnection between associated resources which depends
on the size of the common boundary between a given partition
and its neighboring partitions |∂Ωi ∩ ∂Ωj|, and

(3) additional cost of updating cells in the outer boundary of
the partition with the boundary of the domain (typically
on an absorbing layer) which is proportional to the size
of the common boundary between the partition and the
computational domain |∂Ωi ∩ ∂Ω|.

Ignoring the additional cost of handling source cells (that typically
comprise only a small number of cells), the cost of the time-
marching algorithm (in terms of execution time) for the ith
partition can be written as

ti = αi|Ωi| +

−
j≠i

βij|∂Ωi ∩ ∂Ωj| + γi|∂Ωi ∩ ∂Ω|, (8)

where |Ωi| is the size of the partition, |∂Ωi| is the size of
the partition boundary, and αi, βij and γi are constants of
proportionality that relate size of partitions and boundaries to
the respective cost of execution. Note that these constants are
determined by the computational capability of each resource i and
the throughput of the interconnect between resources i, j and are
independent of the domain partitioning.

The first term in (8) captures the cost of executing one time-
marching step on the interior of the partition where all the
information to compute in the next time instance for a given
cell resides within the computational resource i, the second term
represents the additional cost associated with the transfer of data
from resource j to resource i to enable computation of the next
time step for boundary cells, and the third term represents the
additional cost of computing absorbing boundary conditions on the
boundary of the domain.
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Table 1
A sample list of parallel FDTD contributions in the literature.

Application ABCa Platform Perfb Group Year

3D FDTD PML Cray T3E (16 CPUs @ 300 MHz), MPI 8.8 Guiffaut [12] 2001
2D FDTD Mur Custom Hardware @ 100 MHz 6.3 Kawaguchi [16] 2002
2D FDTD Mur Firebird FPGA board (@ 70 MHz) 13.8 Chen [5] 2004
3D FDTD PML Xilinx Virtex-II 8000 FPGA 30 Durbano [9] 2004
2D FDTD Murc GeForce FX 5800 Ultra, OpenGL 82 Krakiwsky [18] 2004
3D FDTD PML IBM RS/6000 SP (8 nodes/ 128 CPUs @ 375 MHz),OpenMP/MPI 36.1 Hughes [13] 2005
3D FDTD None GTX 8800 (16 MP/ 128 cores), OpenGL/Cg – Adams [1] 2007
3D FDTD Mur GTX 280 (30 MP/ 240 cores), CUDAd 420 Stefanski [28] 2009
3D ADI-FDTD Mur GTX 280 (30 MP/ 240 cores), CUDA 40 Stefanski [28] 2009
3D FDTD PEC GTX 280 (30 MP/ 240 cores), CUDA – Liuge [21] 2009
2D FDTD None GTX 280 (30 MP/ 240 cores), CUDA 1795 Takada [30] 2009
a Absorbing Boundary Condition.
b Performance in MCells/s.
c A combination of 1st order Mur and periodic boundary conditions is used.
d Compute Unified Device Architecture [7].

3.2. Problem formulation

All resources need to complete their computation of the current
time step before they can proceed to the next step. In other words,
a barrier synchronization primitive is required at the end of each
time step iteration. This requires faster resources towait for slower
resources to complete their task and hence the cost of a single
iteration is given by

tm = max
i


αi|Ωi| +

−
j≠i

βij|∂Ωi ∩ ∂Ωj| + γi|∂Ωi ∩ ∂Ω|


. (9)

We are now ready to formalize the problem: we seek the
optimal distribution of load to a heterogeneous cluster that
minimizes (9). This is a minimax problem over disjoint n-element
partitions of the computational domain Ω

topt = min
Γn


max

i


αi|Ωi| +

−
j≠i

βij|∂Ωi ∩ ∂Ωj|

+ γi|∂Ωi ∩ ∂Ω|


. (10)

Finding the optimal partitions based on (10) is far from trivial.
This is because, the geometry and position of the partitions need
to be known in order to compute the overlap between neighboring
partitions and between partitions and the exterior of the domain.
However, as shown in the following sections, it is possible to find
analytic lower bounds for topt (under certain conditions) that are
independent of the partitioning scheme and hence provide insight
into achievable performance levels without the need to directly
solve for (10). The problem needs to be relaxed in order to achieve
these goals.

3.3. Relaxing the problem

Let βi = minj{βij} for j ≠ i; by replacing βij with βi in (10) and
using−
j≠i

|∂Ωi ∩ ∂Ωj| = |∂Ωi| − |∂Ωi ∩ ∂Ω|, (11)

we have

topt ≥ min
Γn


max

i
{αi|Ωi| + βi|∂Ωi| + (γi − βi)|∂Ωi ∩ ∂Ω|}


.(12)

Assuming the third term (involving |∂Ωi ∩ ∂Ω|) in the above
equation is non-negative (γi ≥ βi for all i), we can write

topt ≥ min
Γn


max

i
{αi|Ωi| + βi|∂Ωi|}


. (13)

This is not an unreasonable assumption, given that computing
boundary conditions is typically a more expensive task. Finding a
solution for the right hand side of (13) provides a lower-bound for
topt. This is also equivalent to solving a special case of (10) where
the normalized cost of data transfer between a resource and all
other resources is the same (i.e.βij = βi) and the normalized cost of
computing boundary conditions is assumed to be the same as the
cost of transferring boundary information between the resources
(i.e. γi = βi). We also relax the partitioning condition (7) such that
we only require the sum of partition sizes to be equal to the size of
the domain. This means that we ignore the need to properly pack
the partitions in the given domain, at least for now.We denote this
‘reduced’ optimization problem by:

topt = min
Γn


max

i
{αi|Ωi| + βi|∂Ωi|}


,
−

i

|Ωi| = |Ω|. (14)

Lemma. If � = {Ω1, . . . , Ωn} is a solution of (14) so is �̃ =

{Ω̃1, . . . , Ω̃n} where |Ωi| = |Ω̃i| and the partitions of �̃ are hyper-
cubes.

Proof. Out of all hyper-rectangles of a given size, the hyper-cube
has the least boundary size, hence |∂Ω̃i| ≤ |∂Ωi| and αi|Ω̃i| +

βi|∂Ω̃i| ≤ αi|Ωi| + βi|∂Ωi|. So the cost of computation for no
resource under �̃ is higher than under � and �̃ must be a solution
as well. �

For a d-dimensional hyper-cube we have |∂Ωi| = 2d|Ωi|


1− 1

d


andwe can now focus our search on finding a hyper-cubic solution
by solving

topt = min
Γn


max

i


|Ωi|


αi + 2dβi|Ωi|

−
1
d


,
−

i

|Ωi| = |Ω|.

(15)

3.4. Lower bounds for the minimax load distribution problem

In this section we derive analytic lower bounds for (15).

3.4.1. Bound 1
Let us denote the execution time of a given partition by tm =

maxi{ti}

1
αi

tm ≥ |Ωi|


1 + 2d

βi

αi
|Ωi|

−
1
d


(16)

−
i

1
αi

tm ≥

−
i

|Ωi| + 2d
−

i

βi

αi
|Ωi|

1− 1
d (17)
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tm ≥

−
i

1
αi

−1 
|Ω| + 2d

−
i

βi

αi
|Ωi|

1− 1
d


(18)

topt = min
Γn

{tm} ≥ min
Γn


−

i

1
αi

−1

×


|Ω| + 2d

−
i

βi

αi
|Ωi|

1− 1
d


. (19)

Minimizing the right hand side of (19) gives a lower bound for
topt. This requires minimizing the term involving |Ωi|

1− 1
d . Let

q be the index of the partition with the smallest ratio of the
normalized transfer cost to the normalized computation cost
(i.e. q = argmini βi/αi)−

i

βi

αi
|Ωi|

1− 1
d ≥

βq

αq

−
i

|Ωi|
1− 1

d , (20)

≥
βq

αq

−
i

|Ωi|

1− 1
d

=
βq

αq
|Ω|

1− 1
d , (21)

where we use xp + yp ≥ (x + y)p for x, y ≥ 0 and 0 ≤ p ≤ 1 to
derive (21). Therefore,

topt ≥

−
i

1
αi

−1 
1 + 2d

βq

αq
|Ω|

−
1
d


|Ω|. (22)

The right hand side of (22) gives a lower bound for topt. A solution
close to this lower bound can be found when the additional cost
of computing boundary cells is significantly lower than the cost of
time-marching regular cells (βi/αi ≪ 1) or ideally when βi = 0 in
which case topt from (8) is given by

topt =

−
i

1
αi

−1

|Ω|. (23)

We argue that this is possible when the partition sizes are given by

|Ωj| =
1
αj

−
i

1
αi

−1

|Ω| =
topt
αj

. (24)

The proof is by contradiction, first consider for some j, we have
|Ωj| > topt/αj, this results in tj > topt, which violates the condition
that topt is the maximum cost of execution of any partition for a
given partitioning scheme. Conversely, consider that for some j,
we have |Ωj| < topt/αj. We have already established that |Ωi| ≤

topt/αi for i ≠ j. Summing up inequalities for all i we have

|Ωj| +

−
i≠j

|Ωi| <
topt
αj

+

−
i≠j

topt
αi

. (25)

Using (23) and noting that
∑

i |Ωi| = |Ω|, both sides of the
above inequality reduce to |Ω| which cannot be and the proof is
complete. �

According to (24), where the computational cost associated
with boundary conditions and data transfers are low, the
optimal partitioning scheme is one that ensures all computational
resources take the same amount of time to complete one iteration
of the algorithm. This is consistent with the desire to ensure
computational resources will not be idle when possible.

3.4.2. Bound 2
The bound given in the previous section is tight where αi ≫ βi

and becomes less tight as the cost of data transfers increases. We
derive a tighter bound under such conditions in this section.

Assuming that |Ωi| > 1 and using (15), we can write

topt ≥ min
Γn


max

i


|Ωi|

1− 1
d (αi + 2dβi)


, (26)

where we replaced αi|Ωi| with the smaller term αi|Ωi|
1− 1

d .
In a manner similar to the proof given in the previous section, it

can be shown that the right hand side of (26) is minimized when

|Ωi|
1− 1

d (αi + 2dβi) = |Ωj|
1− 1

d (αj + 2dβj), (27)
for all i and j and |Ωi| is given by

|Ωj| = |Ω|


(αj + 2dβj)

d
d−1

−
i

(αi + 2dβi)
−

d
d−1

−1

. (28)

And a new lower bound is given by

topt ≥

|Ω|

−
i

(αi + 2dβi)
−

d
d−1

−1
1− 1

d

. (29)

The tightness of the bound improves as the number of dimensions
increases. We also note that the bound given in (29) is loose
when the cost of data transfer is not significant compared to the
cost of computations but improves as data transfer becomes the
bottleneck. This trend is opposite to that of the bound derived in
the previous section. Therefore, it makes sense to combine the two
bounds and use their maximum as the lower-bound.

3.5. Numerical optimization

The objective function given in (15) can be solved using con-
strained numerical optimization methods. The objective function

f (|Ω1|, . . . , |Ω1|) = max
i


|Ωi|


αi + 2dβi|Ωi|

−
1
d


,−

i

|Ωi| = |Ω|
(30)

is nonlinear and non-convex with linear constraints or alterna-
tively one can parameterize in partition dimension size xi = |Ωi|

1
d

where the cost function will be convex in xi but subject to non-
linear constraints. Either way standard convex optimizationmeth-
ods cannot be used. We use a nonlinear constrained optimization
method based on sequential quadratic programming (SQP) and the
Quasi-Newton algorithm to solve the problem [4].3

As usual initialization close to the global minimum is an
important element for improving the success of the optimization
algorithm. We initialize the algorithm with an initial guess in
accordancewith (24) or (26).Weuse the equation that corresponds
to the tighter of the two bounds. In practice, for a range of
experiments, the optimization converges quickly (typically in less
than 100 iterations) and given the simplicity of the cost function
the computations are most efficient. We defer further discussion
on the experiments to Section 4.

3.6. Load distribution algorithm

Up to now, we have discussed methods to determine the size
and dimensions of partitions subject to the relaxed constraint that
the sum of partitions equals the size of the computational domain.
Once the solution of the relaxed problem is found, the partitions
need to be fit into the computational domain under the constraint
that they must cover its entire volume. There are several reasons
that an exact fit may not be possible. In practice, dimensions

3 An implementation of an active-set method based on SQP and the Quasi-
Newton algorithm is given by MATLAB Optimization Toolbox function ‘fmincon’.
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of the computational domain and its partitions belong to the
set of positive integers. This inherently means that the optimal4
partitioning size and dimensions cannot be exactly met except for
carefully engineered dimensions.

We also note that even where optimal partition sizes and
dimensions are feasible, partitioning of the computational domain
to an exact set of partitions may not be possible (e.g. try
partitioning a square into two squares). Intuitively, as the number
of partitions increase these limitations become less of an issue and
a close to optimal partitioning can be achieved.

The problem can be slightly reformulated to ensure that
real-valued solutions exist. The condition for the shape of
partitions is relaxed by only requiring the sum of boundaries
of the partitions to be minimal. This relaxed problem is known
as geometric partitioning and has been well-studied in the
context of partitioning a 2-rectangle to a set of rectangles
with given areas [6,14,2,19]. The problem is NP-complete [2].
However, polynomial solutions for heuristics such as the recursive
bisection algorithm [6], the XY and tile partitioning [14], and
more recently the column-based partitioning [2] and the grid-
based partitioning [19] have been proposed. The column-based
and grid-based algorithms solve a more constrained version
of the problem but have a theoretical advantage, in that they
find the optimal solution for their constrained problems. The
column-based algorithm, the less constrained of the two, makes
the additional assumption that the rectangular partitions are
organized into a number of column partitions. In practice, except
for pathologically constructed examples, all thesemethods provide
satisfactory results.

Here, we use a variation of the recursive bisection algorithm.
The intuition is that the algorithm should be faithful to the original
partition sizes and shapes (which are hyper-cubes) to the extent
possible while maintaining the size of bisections balanced in each
iteration. We will refer to the method as the balanced partitioning
algorithm. Themotivations behind using the balanced partitioning
algorithm are (a) ease of use with FDTD domains: the algorithm
can be used for an arbitrary dimensional hyper-rectangle; (b)
efficient execution: the complexity of the algorithm is typically
O(n(log n)2) where n is the number of partitions. In comparison,
the column-based partitioning has a complexity of O(n3) and
the more constrained grid-based partitioning has a complexity of
O

n

3
2


[20].

Balanced Partitioning Algorithm: Let Ω be a computational
domain to be distributed to n computational resources

(1) Measure normalized computational cost αi and transfer cost βi
of each resource.

(2) Compute the set of optimal partition sizes S = {|Ω1|, |Ω2|, . . . ,
|Ωn|} using a properly initialized nonlinear optimization algo-
rithm.

(3) Partition S into two sets S1 and S2 such that the difference
between the sum of elements of S1 and S2 is minimal.

(4) Partition Ω along the largest dimension into two partitions
whose size is given by the sum of elements of S1 and S2. Adjust
any integer round-off errors introduced as a result.

(5) Replace S with S1 and S2 and Ω with newly created partitions
and continue the steps 3–5 until S1 and S2 cannot be further
partitioned.

The intuition to partition the domain along its largest dimen-
sion is to maintain the lowest possible aspect ratio (the ratio of the
largest dimension to the smallest dimension). This is an attempt

4 In this section, the use of term ‘optimal’ refers to the results obtained from the
numerical optimization algorithm.We realize that given the nonlinear nature of the
problem strict optimality of the optimization algorithm is not guaranteed.

Table 2
Partitioning a sample computational domain.

Partitions Balanced
partitions

Adjusted
sums

Domain

{4, 17, 22, 26, 31} {4, 22, 26}, {17, 31} 50, 50

{4, 22, 26} {4, 22}, {26} 25, 25

{17, 31} {17}, {31} 15, 35

{4, 22} {4}, {22} 5, 20

to make the partitions closer to hyper-cubes as the partitioning al-
gorithm progresses.

The third step of the algorithm is known as the number
partitioning problem. The problem is whether a set of numbers can
be partitioned into two halves of equal sum or more generally
finding two partitions that minimize the maximum partition sum.
The number partitioning problem is NP-complete [22], however,
there are simple heuristic algorithms that can, in many instances,
solve the problem optimally or near optimally in less than O(n2)
time. The best known heuristic algorithm is the differencing
algorithm and is given in [15]. Briefly, the differencing algorithm
reduces the size of the set by one in each iteration by replacing
the two largest numbers with their absolute difference. This is
equivalent to deciding that the two largest numbers will go into
different sets without actually committing which set receives
which number at this time. The forward leg of the algorithm
terminates when the set is reduced to a single number. The
last number standing will represent the discrepancy of the two
sets (the absolute difference of their sums). The algorithm then
backtracks and at each step replaces one difference number with
its components in such a way that discrepancy of the two sets
remains constant. For a detailed discussion and an example of the
algorithm refer to [15].

The number partitioning algorithm has a complexity of
O(n log n) [17]. The balanced partitioning algorithm typically
halves the number of partitions in each round resulting in typical
complexity of O(n(log n)2). In an absolute worst case scenario
the number of iterative partitions is n and the complexity of the
algorithm is bounded by O(n2 log n).

An example of partitioning a 2D computational domain of 10×

10 cells across 5 resources where the partition sizes are given as
S = {4, 17, 22, 26, 31} is given in Table 2. Using the balanced
partitioning algorithm results in slight adjustments to partition
sizes at the end; with final partition sizes being {5, 15, 20, 25, 35}
as shown in the last row of the table.
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(a) Stripe. (b) Balanced.

Fig. 2. Comparison of the stripe andbalancedpartitioning algorithms. The balanced
partitioning results in less discrepancy compared with the desired partition sizes.

We compare the performance of the balanced partitioning
algorithmwith the baseline stripepartitioning algorithmwhere the
computational domain is simply partitioned along a single axis. For
the stripe algorithm, we choose partition sizes proportional to the
resource’s performance (i.e. in accordance to (24)). This is similar
to what is typically used in FDTD parallelization on homogeneous
clusters today. Fig. 2 shows one simple stripe partitioning of the
previous example. The first thing to notice is that the discrepancy
between achievable partitions and desired partitions is higher.
This is the result of larger round-off errors due to the integral
dimensions of the computational domain, which in turn translates
into an even less optimum distribution of the computational load.

4. Results

In this section, we present a number of simulation results
for heterogeneous and homogeneous clusters and compare the
performance of the balanced and stripe partitioning methods
in respect to the derived bounds. We find it more intuitive to
show the results in terms of achievable throughput rather than
the computation time. The throughput is defined as the ratio
of the number of cells to the processing time (i.e. computation
or transfer time). This has the added advantage of having the
results normalized to the size of the computational domain. The
measurements will be given as reciprocals of αi and βi in mega
cells per second (MCells/s). We also note that in the context of
throughput we will be talking about upper bounds which are
inversely related to computation time lower bounds.

As will be demonstrated in this section, the results support
our claim that the heuristic partitioning algorithm chosen for
our implementation performs reasonably well. The blue curve in
the following graphs (optimal partitioning curve) represents the
absolute upper bound for the performance of any partitioning
algorithm and as demonstrated by the experiments the balanced
partitioning algorithm is very close to this upper bound.

We also compared the performance of the balanced partition-
ing method with the column-based method in a number of ex-
periments. For these experiments, we were limited to 2D domains
as the column-based method (in its current form) is suitable for
2D partitioning. We found that the column-based algorithm per-
formed only marginally better than balanced partitioning. It did
not result in any significant improvement in throughput (in fact
the increase in throughputwas only between 0.14% and 0.65%). For
this reason and due to our interest in higher dimensional FDTD, in
the following experiments,wewill only show the results for 3Ddo-
mains and use the balanced partitioning method that can be easily
used in any number of dimensions.

Example 1 (Homogeneous GPU Cluster).
• Domain: 500 × 500 × 500 cells.
• Cluster: homogeneous, 2–8 NVIDIA GT200 GPUs on a single

host (certain motherboards allow up to 8 GT200 GPUs to be
installed), 3D FDTD performance on a GT200 GPU α−1

i =

493 MCells/s.

• Link: PCI-E x16, nominal bandwidth: 8 GB/s, actual bandwidth
measured at 2.4 GB/s and 4.3 GB/s on two different mother-
boards, combined throughput is

∑
i β

−1
i = 50 MCells/s and

93 MCells/s respectively.
• Notes: The throughput measurements were performed with

host memory allocated as standard page-able memory. The
throughput can be improved by using page-locked (pinned)
memory. However, pinned memory is a scarce resource and
not suitable for typically large memory demands of FDTD
applications. The total bandwidth is constant and aswe increase
the number of GPUs the data transfer rate per GPU decreases.
In Fig. 3, we show the performance of the cluster as a function

of the number of GPUs on two different hosts with different actual
PCI-E bandwidths. A number of observations can be made from
Fig. 3: (a) the scalability of the cluster improves with increased
throughput; (b) the performance of the balanced partitioning is
close to the optimal solution; (c) the balanced partitioningmethod
outperforms the stripemethod byup to 47% for the slower host and
up to 38% for the faster host; (d) as the number of GPUs increases,
the transfer rate per GPU decreases and the advantage of better
partitioning is more emphatically demonstrated; (e) the stripe
method exhibits poor scalability and the performance plateaus
with 5 or 6 GPUS whereas the balanced partitioning continues to
scale.

Example 2 (Heterogeneous GPU Cluster).
• Domain: 500 × 500 × 500 cells.
• Cluster: heterogeneous, (a) 1–4 NVIDIA GT200 GPUs, 3D FDTD

performance measured at α−1
i = 493 MCells/s, (b) 1–4

NVIDIA GT80 GPUs, 3D FDTD performance measured at α−1
i =

140 MCells/s.
• Link: PCI-E x16, nominal bandwidth: 8 GB/s, actual bandwidth

measured at 2.4 GB/s and 4.3 GB/s on two different mother-
boards, combined throughput is

∑
i β

−1
i = 50 MCells/s and

93 MCells/s respectively.
In this example, we look at a heterogeneous cluster of

GPUs installed in a single host. The cluster comprises equal
numbers of GT80 and GT200 GPUs. The results depicted in Fig. 4
demonstrate the superior performance and scalability of the
balanced partitioning for a heterogeneous cluster. The results are
more or less consistent with earlier observations in the previous
example.

Example 3 (Homogeneous CPU Cluster).
• Domain: 1500 × 1500 × 1500 cells.
• Cluster: homogeneous, 4–32 nodes each with Quad-core Intel

Core i7 2.67 GHz CPUs, 3D FDTD performance measured at
α−1
i = 72.8 MCells/s.

• Link: (a) Gigabit Ethernet, actual bandwidth: 0.1 GB/s,
∑

i β
−1
i

= 2.1 MCells/s, (b) 10 Gigabit Ethernet throughput, actual
bandwidth: 0.6 GB/s,

∑
i β

−1
i = 12.5 MCells/s.

• Note: OpenMP is used to parallelize the FDTD code on each
node.
In this example, a larger computational domain is distributed

to a cluster of PCs. We compare the scalability and performance
of the cluster over a Gigabit and 10 Gigabit network. The
simulations predict that for a Gigabit network the cluster saturates
with 8 nodes when balanced partitioning is used. Using the
stripe partitioning method saturates the cluster with only 4
nodes. Fig. 5(a) also demonstrates that using the balanced
partitioning method results in more than 31% improvement in
peak performance compared to the stripe method. In Fig. 5(b)
the network bandwidth is increased by a factor of 6. This has a
significant impact on the performance of the cluster. The balanced
partitioning method scales up to 32 nodes now and achieves a
peak performance of 669 MCells/s compared to 180 MCells/s
on the Gigabit network. Also note that the peak performance
of the balanced partitioning is almost 76% higher than the peak
performance of the stripe partitioning method.
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(a) Bandwidth: 2.4 GB/s. (b) Bandwidth: 4.3 GB/s.

Fig. 3. Comparison of balanced and stripe partitioning algorithms. The balancedpartitioning results in up to 47% improvement in performance and is close to the performance
of the optimal solution.

(a) Bandwidth: 2.4 GB/s. (b) Bandwidth: 4.3 GB/s.

Fig. 4. Comparison of balanced and stripe partitioning algorithms on a heterogeneous cluster. The balanced partitioning results in up to 34% improvement in performance
and is close to the performance of the optimal solution.

(a) Bandwidth: 0.1 GB/s. (b) Bandwidth: 0.6 GB/s.

Fig. 5. Comparison of balanced and stripe partitioning algorithms on a homogeneous cluster of PCs and for different network bandwidths. The network bandwidth is the
main bottleneck. Increasing network bandwidth improves the scalability of the cluster.

The advantage of PC clusters over GPU clusters is their larger
memory size. This makes simulation of larger computational

domains possible, albeit at the cost of lower performance. As
shown in previous examples, a cluster of GPUs on a single host
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(a) Bandwidth: 0.1 GB/s. (b) Bandwidth: 0.6 GB/s.

Fig. 6. Comparison of balanced and stripe partitioning algorithms on a heterogeneous cluster of PCs and for different network bandwidths. The network bandwidth is the
main bottleneck. Increasing network bandwidth improves the scalability of the cluster.

exceeds a performance level of 1000MCells/s. Perhaps to solve the
dilemma, one can create a cluster of multi-GPU nodes to address
both memory capacity and performance problems. However, such
a cluster will hardly scale unless one is prepared to invest in higher
bandwidth technologies such as quad data rate (QDR) InfiniBand.

Example 4 (Heterogeneous CPU Cluster).
• Domain: 1500 × 1500 × 1500 cells.
• Cluster: heterogeneous, (a) 2–16 nodes each with Quad-core

Intel Core i7 2.67 GHz CPUs, 3D FDTD performance measured
at α−1

i = 72.8 MCells/s, (b) 2–16 node each with Quad-core
Intel Core Duo 2.66 GHz CPUs, 3D FDTD performance measured
at α−1

i = 39.1 MCells/s.
• Link: (a) Gigabit Ethernet, actual bandwidth: 0.1 GB/s,

∑
i β

−1
i

= 2.1 MCells/s, (b) 10 Gigabit Ethernet throughput, actual
bandwidth: 0.6 GB/s,

∑
i β

−1
i = 12.5 MCells/s.

In our last example, we look at results from a heterogeneous
cluster of up to 32 nodes. The cluster comprises an equal number
of quad-core Core i7 and quad-core Core Duo nodes. Despite the
disparity in performance of the nodes, the balanced partitioning
achieves reasonable scalability with the faster network.

We conclude with an implementation note on the use of MPI
for message exchange between cluster nodes. Following an FDTD
iteration, each node needs to send the field values associated with
its boundary cells to the neighboring nodes. The send process
can be blocking or non-blocking (non-blocking is preferred). It
also needs to receive boundary field values from neighboring
nodes. The next iteration cannot start without completing the
receive and hence there is an implicit synchronization at this stage
regardless of whether one uses blocking or non-blocking receive.
Now consider the case where a node has sent its data in a non-
blocking manner and has already received all the data it needs.
Even so, the node cannot start the next iteration as it will overwrite
data in its send buffer. The safe course of action is to ensure that
the send operation is acknowledged by all the recipients before
overwriting send buffers. Obviously, there are ways around this
limitation at the cost of increased memory use which will result
in an increase in the effective bandwidth. However, this may
complicate the implementation not tomention the fact that typical
FDTD problems are usuallymemory-bound and thrive tominimize
memory usage.

5. Discussion

For ease of reference, the main results of the paper are
summarized here:

• The problem of distribution of FDTD load to a heterogeneous
cluster canbe formulated as aminimaxproblemovern-element
partitions of the computational domain Ω

topt = min
Γn


max

i


αi|Ωi| +

−
j≠i

βij|∂Ωi ∩ ∂Ωj|

+ γi|∂Ωi ∩ ∂Ω|


.

• A simpler problem is formulated by relaxing the conditions of
the original problem as

topt = min
Γn


max

i
{αi|Ωi| + βi|∂Ωi|}


,

−
i

|Ωi| = |Ω|.

• Two lower bounds can be found for the relaxed problem. The
combination of which gives the following bound

topt ≥ max


−

i

1
αi

−1 
1 + 2d

βq

αq
|Ω|

−
1
d


|Ω|,

|Ω|

−
i

(αi + 2dβi)
−

d
d−1

−1
1− 1

d
 .

The results set an upper bound on achievable performance
improvements that can be used to predict the extent to which
parallelization is practically beneficial. In a dynamic cluster
where resources may become available during the lifetime of
computations one may have to decide if it is beneficial to
repartition the problem to utilize the newly available resources.
Redistribution of the problem may incur significant traffic and
an algorithm may not redistribute the problem until such time
that enough computational resources are available to justify
the overhead or may even determine that redistribution of the
problem is detrimental to the overall performance. One can simply
use the bounds or better sill estimate the performance of the
redistributed configuration before making such decisions.

The experiments that we performed were based on the basic
implementation of FDTD in the context of Maxwell equations. It
should be noted that our computational FDTD model, analytical
derivations, and partitioning method are equally valid in other
contexts such as FDTD for acoustic equations and also for more
complex stencilswhere higher degree discretization of parameters
is applied.
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The results show that significant performance gains can be
achieved by proper distribution of load across a heterogeneous
cluster. We used a heuristic algorithm for partitioning the
computational domain and showed by experiment that the
algorithm achieves performance levels close to ideal partition sizes
obtained by the numerical optimization algorithm. The algorithm
is simple and efficient and given the results there does not seem
to be any significant room for improvement by switching to other
partitioning algorithms. Optimal load distribution also improves
scalability which means that more computational resources can
be efficiently utilized. The burden of optimizing load distribution
as described in this paper is negligible compared to the effort
of parallelizing an FDTD code. A properly parallelized FDTD code
should in principle be able to run with non-equal partitions and
should benefit from the method presented in this paper with
minimal effort. As an additional benefit existing FDTD applications
can efficiently run onheterogeneous clusters of similar technology.
Fully heterogeneous applications that can run across technology
boundaries will be a natural extension.

One interesting observation is that the balanced partitioning
algorithm is usually closer to the absolute upper bound of
partitioning when the number of nodes is a power of 2 (e.g. see the
performance of the algorithm in Figs. 5 and 6 for 8 and 32 nodes).
This is perhaps due to the fact that the algorithmhalves the domain
in each iteration and therefore does a better job of partitioning
when the number of partitions is a power of 2.

The question remains whether the numerical optimization
finds the global minimum of (15). Based on the experiments, we
believe the numerical optimization results are optimal or very
close to optimal. This is a claim that can be more comfortably
asserted if one is able to derive tighter bounds or indeed prove the
optimality of the solution.
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