
c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 4 (2 0 0 9) 250–266

journa l homepage: www. int l .e lsev ierhea l th .com/ journa ls /cmpb

Visualization and GPU-accelerated simulation of medical
ultrasound from CT images

Oliver Kuttera,∗, Ramtin Shamsb, Nassir Navaba

a Computer Aided Medical Procedures (CAMP), Technische Universität München, Boltzmannstr. 3, 85748 Garching bei München, Germany
b Research School of Information Sciences and Engineering (RSISE), The Australian National University, Canberra

a r t i c l e i n f o

Article history:

Received 21 August 2008

Received in revised form

18 December 2008

Accepted 19 December 2008

Keywords:

Ultrasound

Simulation

a b s t r a c t

We present a fast GPU-based method for simulation of ultrasound images from volumetric

CT scans and their visualization. The method uses a ray-based model of the ultrasound

to generate view-dependent ultrasonic effects such as occlusions, large-scale reflections

and attenuation combined with speckle patterns derived from pre-processing the CT image

using a wave-based model of ultrasound propagation in soft tissue. The main applications

of the method are ultrasound training and registration of ultrasound and CT images.

© 2009 Elsevier Ireland Ltd. All rights reserved.
Real-time

GPU

a 3D volume (some directly acquire 3D ultrasound). At run-
Visualization

1. Introduction

1.1. Ultrasound simulation

Ultrasound as an imaging modality is desirable from many
perspectives: (a) it is real-time with a high temporal reso-
lution, (b) it is risk-free (radiation-free and non-hazardous),
(c) the ultrasound devices are relatively cheap, (d) ultrasound
devices are portable and relatively small, and (e) ultrasound
probes can be used to target small tissue interfaces in endo-
scopic, laparoscopic and intravascular applications. The main
drawback, however, is the quality of the acquired images and
a low signal to noise ratio (SNR), which makes navigation
and interpretation of the acquired images, particularly chal-
lenging. Ultrasound simulation systems have been shown to

improve the performance and skills of users, significantly (e.g.
see [1]). This is due to the fact that the trainees can practice
localization and acquisition of ultrasound without the time-

∗ Corresponding author. Tel.: +49 89 289 19403; fax: +49 89 289 17059.
E-mail address: kutter@in.tum.de (O. Kutter).

0169-2607/$ – see front matter © 2009 Elsevier Ireland Ltd. All rights res
doi:10.1016/j.cmpb.2008.12.011
constraints imposed by such practice on the patients and can
also access a variety of cases which have been collected and
stored in the simulation system’s database over time. Other
studies by Knudson and Sisley [2] and Terkamp et al. [3] found
use of an ultrasound simulator compared favorably with tra-
ditional hands-on training on patients. Knudson also reports
simulator training to be a convenient and objective method of
introducing ultrasound to surgery residents.

A number of systems including commercial products are
available for ultrasound training (e.g. [3–11]). These systems
allow navigation with a virtual probe within the space of
pre-recorded ultrasound images. The acquisition protocol is
typically 3D freehand ultrasound with an off-line compound-
ing stage where 2D ultrasound images are combined to create
time, during training sessions, the position and orientation of
the virtual probe is tracked and the relevant ultrasound planes
are re-sliced from the previously computed volumes.

erved.

mailto:kutter@in.tum.de
dx.doi.org/10.1016/j.cmpb.2008.12.011

i n b

s
t
t
u
p
a
g

p
a
s
m
p
t

t
u
o
i
p
e
[
i
g
h
c
a
t
R
i
m
s
s
i
a
s
s
i
b

b

F
s
t
m

c o m p u t e r m e t h o d s a n d p r o g r a m s

UltraSim [4] is a commercially available ultrasound training
imulator by MEDSIM. Aiger and Cohen-Or [5] describe the sys-
em in detail. A dummy ultrasound probe, with an integrated
racking sensor, is moved over a mannequin while simulated
ltrasound images are generated in real-time by re-slicing a
re-computed large volumetric ultrasound data-set from pre-
cquired freehand 3D ultrasound for the selected virtual scan
eometry.

Ehricke [6] presents SONOSim3D, a simulator for sonogra-
hy training and education. Simulated 2D ultrasound images
re generated by re-slicing a pre-acquired 3D ultrasound data-
et from an extendable database of cases. A digital patient
odel with 3D image volumes (CT and MR data-sets and

athology information from the Visible Human project) is used
o help trainees with anatomical interpretation.

Henry et al. [7] describe an ultrasound imaging simula-
ion for diagnosis of deep venous thromboses. A pre-recorded
ltrasound volume in combination with a deformable model
f the anatomy is used to generate the simulated ultrasound

mages. UltraTrainer by Stallkamp and Walper [8] replaces the
robe with a magnetic tracker and uses 3D data from a real
xamination registered with a phantom. Weidenbach et al.
9] present an augmented reality based simulator for training
n echocardiography. Pre-recorded freehand 3D echocardio-
raphy data is registered to a surface model of the human
eart. During a training session the simulated ultrasound data
an be displayed together with the heart model to provide
natomical context to the trainee. Heer et al. [10] evaluate
he use of a training system for gynecological sonography.
e-slicing of a pre-acquired 3D freehand ultrasound data-set

s directly used for simulation of 2D ultrasound image. Tah-
asebi et al. [11] present a generic framework for ultrasound

imulation. Simulated ultrasound images are generated by re-
licing a pre-acquired 3D ultrasound data-set. The authors
ncorporate real-time haptic feedback in conjunction with

deformable model of the data-set to provide a realistic
canning experience. Furthermore simultaneous display of
imulated ultrasound images and co-registered CT or MRI data

s supported. The framework features a flexible design that can
e extended to other medical simulators.

Fully synthetic simulation of ultrasound has been proposed
y Jensen et al. [12–14] based on an acoustic wave-propagation

ig. 1 – (a) Schematic of a convex array transducer with a multi-e
uperimposed on the liver of a human subject; (c) our simulated
he region of interest shown in (b). Also notice shadowing on the

iddle–bottom of the image due to a a bone–tissue interface.
i o m e d i c i n e 9 4 (2 0 0 9) 250–266 251

model and using the concept of spatial impulse response
[15,16] which is implemented in a program called Field II [13].
The program can be used to simulate any linear ultrasound
system with single or multi-element transducers, any given
apodization, focusing, pulse excitation scheme and aperture
geometry [17]. The program requires location and strength
of scatterers as input and gives best results with carefully
designed and synthetically generated scattering patterns. As
such, the program is mostly used to determine the effects
of various parameters on transducer design. Additionally, the
simulations for even a single B-mode image take an extremely
long time and need to be parallelized (the execution time for
a B-mode image with 128 RF scan lines and 1,000,000 point
scatterers is in the order of 2 days on a single CPU), which
makes it impractical for real-time simulation and in training
applications.

More recently, simulation of ultrasound from CT volumes
has attracted interest. Authors in [18] briefly discuss simula-
tion of ultrasound from CT volumes without providing much
detail on their ultrasound modeling. In [19], the authors dis-
cuss a system for ultrasound guided needle insertion and
use CT images for patient specific training. Our team has
investigated ultrasound simulation using a simple ray-based
modeling of ultrasound for registration purposes in [20], which
uses a simple ultrasound simulation. In [21], we proposed an
enhanced modeling of ultrasound, which results in realistic
ultrasound simulations from CT images suitable for ultra-
sound training (see Fig. 1(c)). In this paper, we present a
framework for ray-based simulation of ultrasound on the GPU
and a visualization software. The framework accommodates
ultrasound simulations with varying degrees of complexity
and is fast enough to produce interactive simulation and visu-
alization for training purposes.

One common problem with traditional ultrasound simu-
lation systems (e.g. [3–11]) is that the simulation is realistic
as long as the operator remains within close vicinity of orig-
inally acquired positions and orientations. As the probe is
navigated further away from the acquisition positions, the

images become less realistic, since view-dependent ultra-
sound effects are no longer accurately represented. The
acquisition protocol is also complicated and requires the vol-
ume of interest to be imaged from various positions and not

lement active aperture; (b) ultrasound field of view
ultrasound (combined reflection and scattering images), for
right-hand side due to an air–tissue interface and in the

s i n
252 c o m p u t e r m e t h o d s a n d p r o g r a m

to contain view-dependent artifacts such as shadowing, and
the effect of a fixed gain and focus. Then there is, of course,
the issue of compounding the images and accumulated errors
due to mis-registration and accumulation of intensity values
with varying intensities due to view-dependant artifacts.

Use of CT images as the basis for simulations not only
avoids the aforementioned drawbacks but also has the advan-
tage of allowing for patient specific simulations, ease of navi-
gation for novice users as they can practice ultrasound naviga-
tion with the help of corresponding CT information (this extra
assistance is obviously turned off at later stages of training).
It also provides easier access to raw data for simulation, as CT
images are routinely acquired for diagnostic and planning and
the acquisition protocol is uncomplicated and streamlined.

1.2. General purpose programming on the GPU

General purpose programming on the GPU (GPGPU) has been
around for more than a decade. Up until recently, GPGPU
programs had to be implemented in programmable ver-
tex and fragment shaders of the graphics pipeline mostly
in an OpenGL or Direct3D environment using computer
graphics shading languages, e.g. OpenGL’s built-in Shading Lan-
guage (GLSL), Microsofts High Level Shading Language (HLSL), or
NVIDIA’s C for Graphics (Cg). The implementation of a non-
graphics algorithm is therefore not straightforward as it has to
be reformulated to be executed by the graphics pipeline. Addi-
tionally one has to circumvent the limitations imposed by the
computer graphics environment, e.g. no random access writes
(scatter writes) to the global GPU memory.

Since late 2006, however, NVIDIA and ATI have introduced
Compute Unified Device Architecture (CUDA) and Close to Metal
(CTM), application programming interfaces (API) on their lat-
est generation of graphics cards, respectively. The technology
allows programming of the GPU in a C-like fashion and offers
access to the GPU hardware as a streaming multi-processor
architecture. Some limitations for general purpose computa-
tions on the GPU hardware are addressed by these APIs, e.g.
scatter writes to the global memory are possible.Hence these
approaches provide more flexibility. However, parallelization
and setting up an optimal execution configuration is left to the
programmer.

Despite the benefits offered by CUDA and CTM, we chose
an OpenGL/GLSL GPGPU environment for our GPU-based ultra-
sound simulation. As we will show, the ultrasound simulation
can be formulated as a ray casting problem. Thus, we can
benefit from the availability of an established framework
for direct volume rendering and GPU-based image process-
ing in OpenGL/GLSL. Use of OpenGL/GLSL also ensures that
our implementation is relatively independent of the graphics
hardware and can be run on a wider range of devices. The only
requirement is a graphics card that supports Shader Model 3.0
and OpenGL 2.1.

2. Method
2.1. A ray-based model for ultrasound

When an ultrasound beam travels through a piecewise
homogenous medium, it gets partially reflected at the inter-
b i o m e d i c i n e 9 4 (2 0 0 9) 250–266

face between two media with differing acoustic impedances. The
change in acoustic impedance is the main physical interaction
that makes ultrasound visualization possible [22]. The amount
of energy which is reflected is determined by the reflection coef-
ficient, ˛R, given by

˛R =
(

Z2 − Z1

Z2 + Z1

)2
, (1)

where Z1 and Z2 are the acoustic impedances of the media in
question. The acoustic impedance itself depends on the speed
of sound in a medium and the density and is given by Z =
�c. The remaining energy that passes through the interface is
characterized by the transmission coefficient ˛T = 1 − ˛R.

The ultrasound simulation from CT images is based on
the premise that there is an approximately linear relationship
between CT Hounsfield values and the acoustic impedance for
soft-tissue [20]. We perform automatic segmentation of bone
and air interfaces in order to calculate the reflection coeffi-
cient for air-tissue and bone-tissue interfaces where CT values
cannot be directly used in (1). The reflection of ultrasound at
tissue interfaces is non-specular and subject to scattering. We
use a Lambertian scattering model where the intensity of the
scattered signal depends on the incidence angle and can be
written as

R(x) = ˛R(x)Ii(x)|r(x) · n(x)|, (2)

where Ii(·) is the intensity of the incident beam at the inter-
face, r is the unit vector in the direction of the beam, n is the
surface normal, | · | is the absolute value operator, and R(·) is
the intensity of the reflected signal. According to a Lambertian
scattering model, the intensity of the signal, as perceived by
an arbitrary viewer, is independent of the viewing angle and
only depends on the angle of incidence. If we show the initial
intensity of the ultrasound by I0, and the incident intensity
at spatial location x by Ii(x), the accumulative attenuation at
point x will be given by Ii(x)/I0. The reflected signal travels back
through the same attenuating medium (ignoring any refrac-
tion), and as such the intensity of the signal as sensed by the
receiver, Ir(x), is attenuated by the same coefficient as in the
forward path and can be written as

Ir(x) ∝ ˛R(x)
I2
i
(x)

I0
|r(x) · n(x)|. (3)

The effect of a finite beam width produced by multiple
transducer elements is modeled by integrating the perceived
intensities along the active wavefront at a specified depth
using a suitable window function [21]. For a linear array trans-
ducer we can write

Ir(x, y) ∝
∫ x+�

x−�

˛R(u, y)
I2
i
(u, y)

I0
|r(u, y) · n(u, y)|ω(u) du, (4)

where ω(·) is the window function, and � is the length of the

active aperture, given by � = na(we + se), where na is the num-
ber of active elements, we is the width of each element, and
se is the spacing between adjacent elements. A square, tri-
angular, or a Hanning window can be used for apodization

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 4 (2 0 0 9) 250–266 253

Fig. 2 – Difference of ray casting algorithms for (a) direct volume rendering and (b) ultrasound simulation: (a) for DVR,
multiple samples along a ray require a single storage (red dot in the image plane); (b) for ultrasound simulation, every
s terpr
r

d
v

2

W
a
i
t
p
a
e
s
i
g
d

T
t
t

s
f
s
r
e
t
a
a
a
t
e
w
u

i

o

ample along a ray requires a corresponding storage. (For in
eader is referred to the web version of the article.)

epending on how the transducer elements are being acti-
ated.

.2. GPU-accelerated ultrasound simulation

e formulate the ultrasound simulation problem on the GPU
s a ray casting problem. The (virtual) ultrasound transducer
s positioned within the space of the CT volume. For every
ransducer element, and depending on the geometry of the
robe (i.e. linear or curvilinear), an ultrasound beam is cast
nd multiple rays are processed in parallel by the GPU. For
ach sample along a ray, Eq. (3) is computed inside a fragment
hader. The results are stored as a measure of the acoustic
ntensity received by a transducer element from a point at a
iven depth in the anatomy along an ultrasound beam and
isplayed as an image.

The algorithm is implemented in C++, OpenGL, and GLSL.
he OpenGL FramebufferObject (FBO) Extension1 is employed

o efficiently render to off-screen render targets (i.e. 2D and 3D
extures in GPU memory).

A key difference of our ray casting algorithm for ultrasound
imulation compared to traditional ray casting algorithms (e.g.
or direct volume rendering (DVR) [23]) is the need to store
ample values along each ray. In a standard ray casting algo-
ithm, based on the light propagation model, the output for
ach ray is a single value which is the result of combining
he color and intensity contribution of each sampled element
long a ray (see Fig. 2(a)). As shown in Fig. 2(b), for ultrasound,
n acoustic echo is returned from each sample along a ray
nd needs to be stored separately. For a high quality simula-
ion, we need 256 or more samples along each ray. This largely
xceeds the number of output channels per fragment. As such,

e use a multi-pass algorithm for efficient implementation of
ltrasound ray casting on the GPU.

Various data structures are allocated and loaded during the
nitialization stage and an optimal memory layout is deter-

1 http://www.opengl.org/registry/specs/EXT/framebuffer
bject.txt.
etation of the references to color in this figure legend, the

mined. CT data, ultrasound ray start and end vectors are stored
in textures. Ray start and end vectors are used to compute
position of samples within the CT volume at each pass of the
algorithm. Ray start and end vectors have to be re-initialized,
every time that the user changes the orientation or position
of the probe.

The ray casting algorithm is designed to be independent
of the probe geometry and ultrasound dimensions. Scan line
information is stored in 2D textures for both 2D and 3D ultra-
sound images. This is a major benefit and allows us to use the
same algorithm for simulation of 2D, 3D, linear, curvilinear
and freehand ultrasound. The original dimension and shape
of the ultrasound image are restored in the scan conversion
stage.

We need three render targets for storage of intermediate
results and acoustic intensities. This is to store Ii(x) and Ir(x)
(refer to Section 2.1). Ii(·) is calculated recursively

Ii(x) = Ii(x − �d)(1 − ˛R(x − �d)), (5)

where �d is the incremental sampling vector along a given
ray. Storage of Ii(·) scan line data requires two textures to
avoid read/write conflicts and synchronization issues. The
algorithms interleaves data read/writes for even/odd rows
of the scan lines (ping-pong rendering). This is to ensure
that all fragment shaders finish writing into row k, before
starting row k + 1 which requires values of the previous
row.

A practical consideration in allocating textures is the mem-
ory layout. GPUs typically have an upper-bound for the width
and height of the textures. Regardless of the available mem-
ory, one cannot allocate a texture that exceeds the limit in
one or multiple dimensions. Performance-wise, GPUs typically
perform better with square textures whose dimensions are a
power of 2. We need a texture of size n × d for simulating an
ultrasound with n transducer elements and d samples along

each ray. This is not a problem for 2D ultrasound as the number
of scan lines hardly exceeds 256. However, for 3D ultrasound
the number of elements and as a result scan lines can easily
exceed the limit. Therefore, the memory layout is optimized to

http://www.opengl.org/registry/specs/EXT/framebuffer_object.txt

254 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 4 (2 0 0 9) 250–266

lum
Fig. 3 – (a) Volume rendering of the CT image; (b) vo

be close to square and several tiles of scan lines are arranged
within the texture, as needed.

2.3. Creating the ultrasound image

Using the model presented in Section 2.1, we generate an
image called the reflection image from CT data. The reflec-
tion image simulates view-dependent ultrasonic effects due to
reflection and attenuation of the signal. Tissue boundaries are
emphasized in the image and shadows due to large impedance
mismatches between tissue–bone and tissue–air interfaces
are simulated.

We also generate a scattering image using Field II by pre-
processing a CT volume from a fixed view-point as described in
[21]. Fig. 3 shows a volume rendered CT image of the abdomen
with the corresponding scattering image.

The scattering artifacts in Ultrasound are view-dependent.
In a real ultrasound, the speckle pattern which results from the
scattering looks to be elongated in a direction perpendicular
to the ultrasound beam. We have modeled this in (4) for the
reflection image. Applying the same principle to the scattering
image has the effect of elongating the speckle and improves
visual quality of the ultrasound simulation and somewhat
compensates for the fixed-view computation of the scatter-
ing image. Also note that the scattering image is multiplied by
the respective transmission coefficients in (6). This prevents
formation of speckle in areas of the image where a shadow is
expected and the intensity of the incident signal is low.

The reflection and scattering images are combined using
the following formula:

Ius(x) = (G�1 (x) ∗ Ir(x) + ˛G�2 (x) ∗ ˛T(x))Is(x), (6)

where Ius(·) is the ultrasound image, Ir(·) is the reflection image,
Is(·) is the elongated scattering image, ˛ is a blending coeffi-
cient, and G is a Gaussian filter with 0 mean and adjustable
standard deviation (�1 and �2) used to smooth the output of
the image fusion process. The blending parameters, ˛, � and
1

�2 are adjusted by the operator for best viewing results.
The resulting image has a large dynamic range which far

exceeds the dynamic range of the display and range of inten-
sities that can be identified by the human eye. To reduce the
e rendering of the corresponding scattering image.

dynamic range, we compress the signal using the following
log-compression method

Ic(x) =
{

0, Ius(x) < max{Ius(x)}10−ˇ/10,
10logIus(x)/ max{Ius(x)}

10 + ˇ, otherwise,
(7)

where ˇ is the dynamic range of the compressed signal.

2.4. The simulation pipeline

Our simulation pipeline as shown in Fig. 4 consists of five
stages: the scan line traversal, pre-scan conversion, scan con-
version, post-scan conversion and compositing stages.

The pre-scan conversion, post-scan conversion and com-
positing stages are optional and are executed if required by
the underlying ultrasound model (e.g. the model in [20] uti-
lizes the scan line and scan conversion stages only, while the
more complex in [21] invokes all stages of the pipeline).

• Scan line traversal stage: As the first stage of the pipeline,
the 3D data-set is sampled along each scan line and the
values are stored in a 2D texture. Each time probe-related
parameters are varied by the user, scan line data has to be
recomputed. For simulation of an ultrasound image with d
samples (pixels) along each beam, the algorithm requires
exactly d render passes. For simulation of 2D ultrasound,
typically a single line primitive is executed at each pass.
However, for 3D ultrasound or simulation of multiple 2D
ultrasound images, where scan lines are tiled within the
texture memory, we run m parallel line primitives, where
m is the number of tiles. Running multiple line primitives
typically provides a better utilization of the GPU resources.
This means that our algorithm reaches its full capacity
(throughput) for larger simulations (i.e. multiple 2D and 3D
ultrasound).
The ultrasound simulation may require a re-mapping of the
CT values so that they can be directly used in Eq. (1). A trans-

fer function lookup texture is used for efficient re-mapping
of CT values.

• Pre-scan conversion stage: For efficient computation, Eq. (4)
can be reformulated as the convolution of the scan line data

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 4 (2 0 0 9) 250–266 255

Fig. 4 – Various stages of the simulation pipeline on the GPU. The scan line and scan conversion stages are always
executed. Other stages (orange boxes) are optional and only executed if required by the simulation model. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Fig. 5 – Intermediate results from pre-scan conversion stage: (a) transmission coefficients scan line image, no filtering
a , Han
s e).

•

•

F
c

pplied (transmission texture); (b) reflection scan line image
can line image, Hanning window applied (scattering textur

with an appropriate 1D window function. This computa-
tion is performed in the pre-scan conversion stage. Fig. 5
shows the content of various textures resulting from pre-
scan conversion stage for a sample ultrasound simulation
of the liver.
Scan conversion stage: This stage is used to convert scan line
data into a 2D or 3D Cartesian representation. Scan conver-
sion is implemented by backward warping on the GPU using
a specialized fragment shader for each probe geometry and
dimension. We use the GPUs built-in bilinear interpolation
for maximum performance.
Post-scan conversion stage: 2D and 3D simulated images may
have to be filtered for improved visual quality according to
(6). This requires convolution with the appropriate 2D or

3D filter which is implemented by a fragment shader on
the GPU. Separable kernels are used in conjunction with
two/three render passes for 2D/3D filtering, where possible,
to improve the performance. Fig. 6 shows the content of var-

ig. 6 – Resulting Cartesian images after scan conversion and po
oefficients (transmission texture); (b) smoothed reflection image
ning window applied (reflection texture); (c) scattering

ious textures following the post-scan conversion stage for a
sample ultrasound simulation of the liver.

• Compositing stage: In the compositing stage, intermediate
results from various sources are combined in a fragment
shader according to (6) and (7), which computes the final
value for each pixel and prepares the data for visualization.

2.5. Real-time visualization

A key component of our real-time visualization is the concur-
rent display of the simulated ultrasound images within the
CT data-set using GPU-Accelerated direct volume rendering
(see Fig. 7). We use the emission-absorption model of light

propagation through a translucent volume [24], which is
based on the assumption that the volume is filled with light
emitting particles and ignores scattering of light. For a ray of
light traveling along a direction, parameterized by a variable

st-scan conversion stages: (a) smoothed transmission
(reflection texture); (c) scattering image (scattering texture).

256 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 4 (2 0 0 9) 250–266

Fig. 7 – Real-time direct visualization of a CT volume and simulated 2D ultrasound. (a, b) Simulation with a wide angle
d) Si
s in
curvilinear transducer scanning the liver–lung boundary. (c,
scanning the left kidney. Note the occlusion artifacts due ray

such as s, the volume rendering integral can be written as

I(s) = I(s0)e−�(s0,s) +
∫ s

s0

q(s̃)e−�(s̃,s)ds̃, (8)

with

�(s1, s2) =
∫ s2

s1

�(d)ds, (9)

where I(·) is the intensity of light at a given point along the
ray, s0 denotes the point where the beam enters the volume,
and q and � are emission and absorption coefficients, respec-
tively. The first term in (8) describes the background light
attenuation by the volume and the second term accounts
for the contribution of emitting particles along the ray while
taking the distance dependent attenuation of light into
account.

In practice, a numerical approximation of the analytical
volume rendering integral is used compute the integral itera-
tively while traversing the volume, either in a front-to-back or
back-to-front fashion along the viewing direction using alpha
blending. For a detailed treatment of the subject the reader is
referred to [23].

In recent years, GPU-accelerated ray casting has emerged
as the de facto standard for high quality real-time direct vol-
ume rendering [23,25–27]. The algorithm owes its popularity
to its easy and straightforward implementation on modern

GPUs compared to other volume rendering techniques such
as texture slicing [23]. Furthermore, the algorithm lends itself
to optimization well and is highly adaptable for various visu-
alization tasks.
mulation with a narrow angle curvilinear transducer
tersecting the ribs.

Despite an exponential improvement in computing capa-
bility of GPUs in recent years, volume rendering of 3D medical
images remains a computationally expensive task. Various
techniques need to be employed in order to achieve real-time
high quality rendering. We briefly describe the methods, we
employed for achieving interactive frame rates.

• Deferred rendering: Our renderer is implemented by a
multistage rendering pipeline. To improve the overall per-
formance each stage of the pipeline is updated only if
parameters affecting the stage itself are changed or any pre-
vious stage is updated. Costly operations in the shaders are
deferred to the latest possible phase or avoided completely
if their contribution is negligible for the final image.

• Early termination: We use front-to-back compositing along
the viewing ray when computing the volume rendering inte-
gral which allows us to terminate the computations if the
accumulated opacity is saturated.

• Volume culling: With a typical transfer function, a large num-
ber of voxels in a volume are fully transparent, and thus
do not contribute to the finally rendered image. To improve
the performance, no computations should be performed for
these voxels. We employ an octree to partition the voxels
of the volume into cells. Each cell is initialized with the
intensity range of the enclosed voxels. For a given transfer
function non-contributing cells are culled when computing
the CT volume ray entry and exit positions. Thus, the ray
casting algorithm only renders the volume enclosed by the
active octree cells and skips the invisible areas in front and

behind the visible volume.

• Sampling frequency: The sampling frequency along a ray,
is the basic parameter that provides a trade-off between
the computational performance versus quality. The quality

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 4 (2 0 0 9) 250–266 257

lizat

F
r
t
s

Fig. 8 – Visua

cannot be improved arbitrarily by increasing the sampling
frequency. As such, we use the lowest sampling frequency,

beyond which quality improvement is not noticeable. One
way to achieve a higher quality at a lower sampling rate
is to avoid using a regular sampling grid. A low sampling
rate with equidistance samples exhibits visually displeasing

ig. 9 – Different stages of the visualization pipeline. (a) Ray star
ay stop positions for pixels on the ultrasound image plane. (c) S
exture-mapped ultrasound image in 3D. (e) Direct volume rende
imulated ultrasound.
ion pipeline.

grid artifacts also known as rings. Using a random offset, on
an otherwise equidistance sampling, removes this artifact

and allows the sampling rate to be reduced, without loss of
quality, in the interest of improved performance.

• Classification: The appearance and visibility of voxels is com-
puted in the classification stage of the volume rendering

t and (b) ray end coordinates stored in RGB textures. Note
imulated 2D ultrasound image. (d) Rendering of the
ring of the CT image. (f) Composition of CT DVR and

s i n
258 c o m p u t e r m e t h o d s a n d p r o g r a m

algorithm. Classification is implemented by texture lookups
in transfer function lookup textures. Traditional 1D trans-
fer function tables require a high sampling frequency of
the volume data due to high frequencies introduced by the
transfer function, e.g. in semi-transparent rendering of tis-
sue interfaces. To deal with this problem and to reduce the
volume sampling frequency pre-integrated [28] and post-
color attenuated [29] classification techniques have been
introduced. Both approaches pre-compute the volume inte-
gral between each two sample values and thus allow a
reduction of the sampling frequency while maintaining a
high quality. Pre-integrated transfer functions give the best
visual results, however the lookup table update is computa-
tionally expensive, thus for interactive classification we use
post-color attenuated transfer functions.

2.6. Visual consistency of ultrasound rendering

The simulated ultrasound image is rendered as an opaque
plane/volume within the CT DVR space. Missing or incor-
rect interaction of an opaque geometry, e.g. ultrasound image
plane, with the volume-rendered CT data disturbs the visual
perception of the anatomy and its depth. To correctly integrate
the simulated ultrasound within the CT volume, we adjust the
CT volume entry and exit positions of each ray in the corre-
sponding textures prior to the ray casting pass. For every valid
ray entry position in normalized CT volume coordinates a frag-
ment shader checks whether it is occluded by the ultrasound

plane by comparing the ray entry position and the ultrasound
plane depth values. If the ultrasound plane is closer to the
viewer than the ray volume entry position it is cleared with
zero, so that no ray is cast. For the CT ray exit positions a sim-

Fig. 10 – Screen-shot of the application: (a) application options, (
DVR of the CT data and the 2D ultrasound image, (d) blending of
MPR, (e) simulated 2D ultrasound image, and (f) CT MPR correspo
b i o m e d i c i n e 9 4 (2 0 0 9) 250–266

ilar test is performed. If the ultrasound plane depth value is
smaller than the ray exit position, the ultrasound plane depth
value is back-projected to the normalized CT volume coordi-
nates and replaces the CT volume ray exit position. Thereby,
rays are correctly stopped at the first opaque geometry surface
in the viewing direction. This is demonstrated in Fig. 9(b).

2.7. Visualization pipeline

The described techniques are utilized in the rendering pipeline
for displaying the simulated ultrasound images and the vol-
ume rendered CT image. Fig. 8 and Fig. 9 depict various stages
of the rendering pipeline and a sample visualization of the
pipeline, respectively. In the ray entry and ray exit passes
(Fig. 9(a) and (b)), the front and back faces of the volume’s
bounding geometry are rendered into two textures that store
the ray entry and exit positions in normalized volume coor-
dinates at each texel. In the next pass, the ultrasound field
of view is rendered in the same 3D space as the volume. The
ultrasound field of view is texture mapped with the result of
the ultrasound simulation (Fig. 9(c) and (d)). The depth image
from this pass is used to update the ray entry and exit positions
stored in the corresponding textures prior to the ray casting
pass (Fig. 9(e)). The rendering results of the ray casting pass
and the ultrasound plane are composited in the final render-
ing pass using alpha blending to yield the final image (see
Fig. 9(f)).
3. User interface

We have developed an application for the GPU-accelerated
ultrasound simulation to display the simulated ultrasound

b) transfer function widget, (c) 3D view, depicting shaded
the simulated 2D ultrasound image and corresponding CT
nding with the ultrasound image plane.

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 4 (2 0 0 9) 250–266 259

Fig. 11 – Screen shots from visualization of simulated 3D ultrasound volume. (a) Coronal, sagittal and axial MPRs extracted
from simulated ultrasound volume. Upper-right quadrant: Volume rendering of CT data with wire frame rendering of
ultrasound field of view and ultrasound MPRs inside the CT volume. (b) Coronal, sagittal and axial MPRs extracted from
simulated ultrasound volume. Upper-right quadrant: Volume Rendering of simulated ultrasound volume with texture
mapped MPR planes.

Fig. 12 – Screen shots from visualization of simulated 3D ultrasound volume. (a) Volume rendering of CT data with wire
frame rendering of ultrasound field of view and ultrasound MPRs inside the CT volume. (b) Coronal, sagittal and axial MPRs
extracted from simulated ultrasound volume. (b) Upper-right quadrant: Volume Rendering of simulated ultrasound volume
with texture mapped MPR planes.

260 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 4 (2 0 0 9) 250–266

Fig. 13 – Screen shot from visualization of simulated 3D ultrasound volume. Top row, from left to right: Volume rendering of
CT data with wire frame rendering of ultrasound field of view and ultrasound MPRs inside the CT volume. Volume
Rendering of simulated ultrasound volume with texture mapped MPR planes. Bottom row, from left to right: Axial, sagittal
and coronal MPR planes extracted from simulated ultrasound volume.

Table 1 – Performance in frames per second for the
combined simulation and visualization.

Param. change Radeon
1950Pro

Quadro
FX3600M

Quadro
FX5600

None—Simulation only 45 79 162
Volume pose 5 15 32
Transducer pose 4 16 35
Transducer shape 4 15 34

Table 2 – Benchmark configuration parameters for
performance evaluation of single 2D ultrasound image
simulation.

Benchmark
index

Scan
lines

Depth
samples

Ultrasound image
resolution

1 256 256 256 × 256
2 512 512 512 × 512
3 512 512 640 × 480
4 512 512 800 × 600
Sim. param. 40 76 157

Transfer function 9 31 47

images in 2D and 3D using different visualization techniques

in real-time. A screen-shot of the application’s user interface is
shown in Fig. 10. The user interface consists of four main views
and two widgets for adjusting the simulation parameters and
the direct volume rendering transfer function:

Fig. 14 – (a) Benchmark results for simulation of a single 2D ultra
for benchmark configurations denoted in Table 2. (b) CPU versus
ultrasound image: 512 scan lines with 512 samples, 512 × 512 pi
5 1024 1024 1024 × 1024
• 3D view: The 3D view displays 3D CT volume and the
ultrasound plane within the 3D volume. The 3D image is
rendered using standard volume rendering techniques and
the ultrasound image is texture-mapped onto the corre-

sound image using the simulation model by Shams et al.
GPU performance comparison for simulation of a single 2D
xels image resolution.

i n b i o m e d i c i n e 9 4 (2 0 0 9) 250–266 261

•

•

•

b
t
p
a
u

•

•

•

•

•

Fig. 15 – GPU speedups for the simulation of a single 2D

F
s
1

c o m p u t e r m e t h o d s a n d p r o g r a m s

sponding plane within the 3D volume. The user can change
the details of the volume rendering (e.g. display internal
organs, vasculature, bones or skin surface) in real-time by
changing transfer function parameters.
Ultrasound View: displays the simulated 2D/3D ultrasound
image. For 3D ultrasound, the user can choose between the
2D display of coronal, sagittal or axial MPR reconstructions
or a 3D direct volume rendering of the simulated ultrasound
volume (see Figs. 11–13).
CT view: The CT view displays a multi-planar reconstruction
(MPR) of a CT plane that corresponds with the current posi-
tion, orientation and field of view of the ultrasound image.
Combined view: shows the fusion of the ultrasound and CT
images and allows the user to easily compare ultrasound
and CT features.

Ultrasound simulation and visualization parameters can
e adjusted interactively (see Fig. 10(a), the depicted simula-
ion parameters are for the model by Shams et al. [21]). The
arameters are organized in groups. Certain groups are shared
mong all simulation models, others are specific to a particular
ltrasound simulation model.

Transducer geometry and pose: allows for the selection of the
probe geometry (i.e. linear or curvilinear), setting the probe
position and orientation, field-of-view, and minimum and
maximum penetration depth.
Scan line traversal: parameters in this group affect
the scan line traversal stage. For instance, for the
model in [21] these are the air and bone segmentation
thresholds.
Pre/post-scan conversion: the options include type of filters,
window sizes, standard deviation of the filters, etc.
Compositing: the options include log compression, blend-
ing factors and boolean flags denoting whether cer-
tain operations should be executed in the compositing
shaders.

Visualization: the options include CT window level and
window width for 2D CT slice visualization, and blend-
ing factors and colors for the combined CT/ultrasound
visualization.

ig. 16 – (a) Simulation performance for a single 2D ultrasound im
pecified in Table 2. (b) Comparison of GPU and CPU throughput
28 × 96pixels.
ultrasound image using the model by Shams et al. for
benchmark configurations in Table 2.

4. Computational performance

The ray-based simulation of ultrasound is very efficient on
the GPU. In this section, we present detailed performance
results for the two main application areas of the simula-
tion framework, simulation and visualization in ultrasound
training and simulation for registration of ultrasound and CT
images. The requirements for the two applications are dif-
ferent. Ultrasound training requires more realistic simulation
of ultrasound images and uses a more accurate simulation
model model, whereas for registration only a few ultrasound
specific effects have to be simulated and a more simplified
ultrasound model can be employed. We first describe the
test environment and the data-sets and parameters used for
the performance evaluation. Then, we describe the perfor-
mance of the simulation and simultaneous visualization for
ultrasound training using the ultrasound model presented in
this paper. We conclude with an analysis of the throughput

performance of the ultrasound simulation for registration of
ultrasound and CT images using the ultrasound model by
Wein et al. [20].

age using the benchmark configuration parameters
for simulating a single 2D ultrasound image of

s i n
262 c o m p u t e r m e t h o d s a n d p r o g r a m

4.1. Test environment

The performance of the ultrasound simulation and visualiza-
tion was evaluated on three computers:

(1) AMD Opteron 165 CPU (2 × 1.8 GHz), 2 GB RAM, AMD/ATI
Radeon 1950Pro with 256 MB RAM (Shader Model 3.0), Win.
XP (32-bit)

(2) Intel Core Duo 2 CPU (2×2.66 GHz, mobile), 4 GB RAM,

NVIDIA Quadro FX3600M with 512 MB RAM (Shader Model
4.0), Win. Vista (64-bit)

(3) Intel Core Duo 2 CPU (2× 2.66 GGHz), 4 GB RAM, NVIDIA
Quadro FX5600 with 1.5 GB RAM (Shader Model 4.0), Win.
Vista (64-bit)

Fig. 17 – Throughput [MPixels/s] for different image tile configura
and is typically optimal for square configurations.
b i o m e d i c i n e 9 4 (2 0 0 9) 250–266

For our performance measurements, we used a CT vol-
ume of the abdomen of a human subject with a resolution
of 512 × 512 × 484 voxels (16-bit, 242 MB). A speckle volume
of the same size was pre-computed from the CT data (32-bit
float, 484 MB). The full-size volumes were used with Quadro
FX5600 (1.5 GB RAM) but the volumes were down-sampled for
Quadro FX3600M and Radeon 1950Pro cards to fit within the
GPU’s memory.
4.2. Performance of simulation and visualization for
training applications

Training applications require interactive frame rates for oper-
ation of a virtual transducer and provision of a smooth

tions: the throughput increases with the number of tiles

i n b

a
e
v
t

t
o
l
e
v
i
e
d
t
a

F
a

c o m p u t e r m e t h o d s a n d p r o g r a m s

nd uninterrupted visual feedback. In this section, we first
valuate the combined performance of the simulation and
isualization and then compare the performance of simula-
ions on the different GPUs and with a CPU implementation.

Visualization is typically the more time-consuming part of
he algorithm. The performance of visualization is dependent
n many parameters, e.g. direct volume rendering technique,

ocal illumination, and the chosen transfer function. For our
xperiments, we adjusted the parameters for high quality
isualization using pre-integrated classification for DVR, local
llumination with Blinn-Phong shading and on the fly-gradient

valuation. A resolution of 640 × 480 pixels was used for ren-
ering, the number of samples per ray was set to 512, early ray
ermination and empty space leaping optimizations were also
ctivated.

ig. 18 – Throughput [MPixels/s] for different image tile configura
nd is typically optimal for square configurations.
i o m e d i c i n e 9 4 (2 0 0 9) 250–266 263

Table 1 shows the average frame rate of the combined sim-
ulation and visualization as the operator varies simulation
and visualization parameters. Changes in relative orientation
or position of the volume with respect to the camera, the
ultrasound transducer with respect to the volume, or trans-
ducer geometry affect the performance. This is due to the
fact that these changes require the entire rendering pipeline
to be re-executed. As can be seen, the algorithm performs
interactively on higher end GPUs such as FX5600, under
all conditions. The performance is equally good for main-
stream GPU models (e.g. 8800GTX/GTS and 9800GTX) that have

around the same number of stream processors as FX5600.
However, for lower end GPUs the rendering quality has to be
reduced in order to achieve interactive frame rates, under all
conditions.

tions: the throughput increases with the number of tiles

264 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 4 (2 0 0 9) 250–266

Fig. 19 – Speedups for GPU implementation of Wein’s model and simulation of multiple images of resolution 128 × 96
compared to performance of CPU implementation for simulation of the same total number of images. CPU implementation

in et
performance values estimated from timings provided by We

The performance of the simulations were also measured
by throughput in mega-pixels rendered per second for vary-
ing numbers of scan lines and samples, and ultrasound image
resolutions (see Table 2 for benchmark configuration details).
The results were compared with the throughput of a CPU
implementation measured on an Intel Core 2, Quad 3.0 GHz
processor. The results are given in Fig. 14. Unlike the GPU ver-
sion, the throughput for the CPU implementation does not
(noticeably) vary with the image size. The GPU implementa-
tion outperforms the CPU by up to ∼ 20 times (see Fig. 15).

4.3. Performance of simulation for registration
applications

Registration of ultrasound and CT images requires the
repeated simulation of ultrasound images at various orien-
tations and positions from the CT data during optimization
of the registration parameters. The simulation of a single
2D ultrasound image using the model in [20] barely utilizes
the computational resources of the GPU. Fig. 16(b) depicts
the throughput for a single 2D ultrasound image using the
scan line and ultrasound image resolutions given in Table 2.
The throughput is limited by the number of active fragment
shaders/stream processors and control program overhead in
the scan line traversal stage. As can be seen, the throughput
improves as the size of the ultrasound image increases, since
GPU resources are being more optimally utilized for larger
images. The authors of [20] kindly provided us with the tim-
ings of their CPU ultrasound simulation C++ implementation
on a 2.2 GHz Intel Core 2 Duo mobile processor. The simula-

tion of a single 2D ultrasound image, 128 × 96 took ∼ 3.5 ms. To
compare the performance, we used this value for estimation
of the GPU speedups compared to the CPU for the simulation
of single 2D ultrasound images (see Fig. 16(b)) and multiple
al.

2D ultrasound images on the GPU (see Fig. 19) of the same
resolution.

The key to increase the throughput of the simulation is to
process more fragments in a single pass of the scan line sim-
ulation stage. We achieve this by packing multiple ultrasound
images into tiles of a large texture on the GPU. In each simula-
tion pass, multiple ultrasound images are processed resulting
in an improved GPU hardware utilization and increased data
throughput per second.

Figs. 17 and 18 depict the throughput achieved by the paral-
lel simulation of multiple ultrasound images. The throughput
increases by the number of image tiles. Using a tile configu-
ration of 32 × 16 images, each with a 256 scan lines with 256
samples and an ultrasound image resolution of 256 × 256 pix-
els, we achieved a throughput of > 700 MPixels/s on an NVIDIA
Quadro FX5600 board.

Fig. 19 depicts the speedup for our multi-image GPU sim-
ulation compared to the CPU implementation by Wein et al.
for the simulation of ultrasound images of 128 × 96 pixels res-
olution and 128 scan lines with 96 samples. With a Quadro
FX5600 a speedup of more than 200 times can be achieved.

5. Conclusion

In this paper, we presented a novel framework for ray-based
simulation of ultrasound and its visualization in real-time,
which can be run on a wide range of standard GPU hard-
ware. The modular design of the simulation and rendering
pipeline support ultrasound models with various degrees of

complexity.

We demonstrated the superior performance of our method
for two main applications of ultrasound simulation, ultra-
sound training and registration of CT and ultrasound images

i n b

w
b

p
b
T
a
f
v
fi
G

C
f
t
a
w
i
(
f
C
t
w
u
d
c
w
n

w
o
f
r
m
s
v
s
v
i

A

P
E
h

r

c o m p u t e r m e t h o d s a n d p r o g r a m s

ith significant speedups (up to 200 times) compared to CPU-
ased implementations.

The main benefit of a GPU implementation is improved
erformance of computations which allows us to run the com-
ined simulation and visualization at interactive frame-rates.
his is possible due to higher processing power of the GPU
nd the fact that simulation on the GPU removes the need
or costly data transfers between the host and the GPU for
isualization purposes. Registration applications also bene-
t from the improved performance of the simulations on the
PU.

We chose to implement our method in OpenGL instead of
UDA/CTM for a number of reasons: (a) our problem could be

ormulated as a ray casting problem which is well studied in
he OpenGL domain, (b) hardware independence, and (c) visu-
lization is more suited to OpenGL and there are still issues
ith interoperability between CUDA and OpenGL. We expect

nteroperability issues to be resolved in the future. OpenCL
Open Computing Language) which promises to provide plat-
orm independent access to GPU hardware comparable to
UDA/CTM will also become available. We expect OpenCL

o provide a more generic programming platform which
ill be more suitable for implementation of more complex
ltrasound models. Conceptually, the simulation pipeline, as
escribed in this paper, can be implemented without much
hange. The scan line stage can be further improved as it
ill be able to run in a single pass in a CUDA-like ker-
el.

Ongoing work deals with the integration of the presented
ork into an augmented reality framework for evaluation
f ultrasound acquisition performance by physicians. The
ramework is also being integrated into an ultrasound/CT
egistration application. The method will be used for multi-

odal registration of freehand 3D ultrasound data to CT and
imultaneous mono-modal registration of a set of ultrasound
olumes. In the future, we plan to use fusion of CT and ultra-
ound data for an improved reconstruction of large ultrasound
olumes incorporating knowledge of the anatomy from the CT
mage and from ultrasound artifacts.

cknowledgment

art of this work was supported by funding of the
uropean Committee within the passport project –
ttp://www.passport-liver.eu/.

e f e r e n c e s

[1] H. Maul, A. Scharf, P. Baier, M. Wüstemann, H.H. Günter, G.
Gebauer, C. Sohn, Ultrasound simulators: experience with
the SonoTrainer and comparative review of other training
systems, Ultrasound Obstet. Gynecol. 24 (5) (2004) 581–585.

[2] M.M. Knudson, A.C. Sisley, Training residents using
simulation technology: experience with ultrasound for

trauma, J. Trauma: Injury Infect. Critical Care 48 (4) (2000)
659–665.

[3] C. Terkamp, G. Kirchner, J. Wedemeyer, A. Dettmer, J.
Kielstein, H. Reindell, J. Bleck, M. Manns, M. Gebel,
Simulation of abdomen sonography. evaluation of a new
i o m e d i c i n e 9 4 (2 0 0 9) 250–266 265

ultrasound simulator, Ultraschall. Med. 24 (2003) 239–244.
[4] UltraSim: Ultrasound training simulator, MedSim Advanced

Medical Simulations, Ltd., http://www.medsim.com/, 2008.
[5] D. Aiger, D. Cohen-Or, Real-time ultrasound imaging

simulation, Real-Time Imag. 4 (4) (1998) 263–274.
[6] H.-H. Ehricke, SONOSim3D: a multimedia system for

sonography simulation and education with an extensible
case database, Eur. J. Ultrasound 7 (1998) 225–300.

[7] D. Henry, J. Troccaz, J.L. Bosson, O. Pichot, Ultrasound
imaging simulation: application to the diagnosis of deep
venous thromboses of lower limbs, in: W.M.W. Iii, A.C.F.
Colchester, S.L. Delp (Eds.), Medical Image Computing
and Computer Assisted Intervention (MICCAI),
Lecture Notes in Computer Science, vol. 1496, 1998, pp.
1032–1040.

[8] J. Stallkamp, M. Walper, UltraTrainer—a training system for
medical ultrasound examination, in: Medicine Meets Virtual
Reality (MMVR), IOS Press, 1998, pp. 298–301.

[9] M. Weidenbach, C. Wick, S. Pieper, K.J. Quast, T. Fox, G.
Grunst, D.A. Redel, Augmented reality simulator for training
in two-dimensional echocardiography, Comput. Biomed.
Res. 33 (1) (2000) 11–22.

[10] I.M. Heer, K. Middendorf, S. Müller-Eglo, M. Dugas, A.
Strauss, Ultrasound training: the virtual patient, Ultrasound
Obstet. Gynecol. 24 (2004) 440–444.

[11] A. Tahmasebi, K. Hashtrudi-Zaad, D. Thompson, P.
Abolmaesumi, A framework for the design of a novel
haptic-based medical training simulator, IEEE Trans.
Informat. Technol. Biomed. 12 (5) (2008) 658–666.

[12] J.A. Jensen, N.B. Svendsen, Calculation of pressure elds from
arbitrarily shaped, apodized, and excited ultrasound
transducers, IEEE Trans. Ultrason. 39 (1992) 262–267.

[13] J.A. Jensen, Field: a program for simulating ultrasound
systems, in: 10th Nordic-Baltic Conference on Biomedical
Imaging Published in Medical & Biological Engineering &
Computing, 1996, pp. 351–353.

[14] J.A. Jensen, S.I. Nikolov, Fast simulation of ultrasound
images, in: IEEE Ultrasonics Symposium, 2000, pp.
1721–1724.

[15] G.E. Tupholme, Generation of acoustic pulses by baffled
plane pistons, Mathematika 16 (1969) 209–224.

[16] P.R. Stepanishen, Transient radiation from pistons in an in
nite planar baffle, J. Acoust. Soc. Am. 49 (1971) 1629–1638.

[17] J.A. Jensen, Simulation of advanced ultrasound systems
using Field II, in: IEEE Int. Symp. on Biomedical Imaging
(ISBI), 2004, pp. 636–639.

[18] A. Hostettler, C. Forest, A. Forgione, L. Soler, J. Marescaux,
Real-time ultrasonography simulator based on 3D CT-scan
images, Medicine Meets Virtual Reality (MMVR) vol. 111
(2005) 191–193.

[19] F.P. Vidal, N.W. John, A.E. Healey, D.A. Gould, Simulation of
ultrasound guided needle puncture using patient specic
data with 3d textures and volume haptics, Comput. Animat.
Virtual Worlds 19 (2) (2008) 111–127.

[20] W. Wein, A. Khamene, D.-A. Clevert, O. Kutter, N. Navab,
Simulation and fully automatic multimodal registration of
medical ultrasound, in: N. Ayache, S. Ourselin, A. Maeder
(Eds.), Medical Image Computing and Computer Assisted
Intervention (MICCAI), Lecture Notes in Computer Science,
Springer, 2007, pp. 136–143.

[21] R. Shams, R. Hartley, N. Navab, Real-time simulation of
medical ultrasound from CT images, in: D. Metaxas, L. Axel,
G. Fichtinger, G. Szekely (Eds.), Medical Image Computing
and Computer Assisted Intervention (MICCAI), Lecture
Notes in Computer Science, Springer, New York, USA, 2008,

pp. 734–741.

[22] W. Hedrick, D. Hykes, D. Starchman, Ultrasound Physics
and Instrumentation, 3rd edition, Mosby-Year Book, Inc.,
1995.

http://www.passport-liver.eu/
http://www.medsim.com/

s i n

methodology for interactive 3D medical image visualization,
in: N. Ayache, S. Ourselin, A. Maeder (Eds.), Medical Image
266 c o m p u t e r m e t h o d s a n d p r o g r a m

[23] K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama, Real-Time
Volume Graphics, AK Peters, Ltd, 2006.

[24] P. Sabella, A rendering algorithm for visualizing 3D scalar
elds, Comput. Graphics 22 (4) (1988) 51–58.

[25] J. Krüger, R. Westermann, Acceleration techniques for
GPU-based volume rendering, in: G. Turk, J.J. vanWijk, R.J.
Moorhead II (Eds.), Proceedings of the 14th IEEE Visualization
2003 (VIS’03), IEEE Computer Society, 2003, pp. 287–292.

[26] S. Stegmaier, M. Strengert, T. Klein, T. Ertl, A simple and
flexible volume rendering framework for

graphics-hardware-based raycasting, in: Proceedings of the
International Workshop on Volume Graphics, vol. 5, 2005,
pp. 187–195.

[27] H. Scharsach, M. Hadwiger, A. Neubauer, S. Wolfsberger, K.
Buhler, Perspective isosurface and direct volume rendering
b i o m e d i c i n e 9 4 (2 0 0 9) 250–266

for virtual endoscopy applications, in: Proceedings of
Eurovis/IEEE-VGTC Symposium on Visualization, 2006, pp.
315–322.

[28] K. Engel, M. Kraus, T. Ertl, High-quality pre-integrated
volume rendering using hardware-accelerated pixel shading,
in: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware, 2001, pp. 9–16.

[29] Q. Zhang, R. Eagleson, T. Peters, Rapid voxel classification
Computing and Computer Assisted Intervention (MICCAI),
Lecture Notes in Computer Science, Springer, 2007, pp.
86–93.

	Visualization and GPU-accelerated simulation of medical ultrasound from CT images
	Introduction
	Ultrasound simulation
	General purpose programming on the GPU

	Method
	A ray-based model for ultrasound
	GPU-accelerated ultrasound simulation
	Creating the ultrasound image
	The simulation pipeline
	Real-time visualization
	Visual consistency of ultrasound rendering
	Visualization pipeline

	User interface
	Computational performance
	Test environment
	Performance of simulation and visualization for training applications
	Performance of simulation for registration applications

	Conclusion
	Acknowledgment
	References

